1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
  26 #define SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "runtime/virtualspace.hpp"
  30 #include "utilities/globalDefinitions.hpp"
  31 
  32 // The CollectedHeap type requires subtypes to implement a method
  33 // "block_start".  For some subtypes, notably generational
  34 // systems using card-table-based write barriers, the efficiency of this
  35 // operation may be important.  Implementations of the "BlockOffsetArray"
  36 // class may be useful in providing such efficient implementations.
  37 //
  38 // BlockOffsetTable (abstract)
  39 //   - BlockOffsetArray (abstract)
  40 //     - BlockOffsetArrayNonContigSpace
  41 //     - BlockOffsetArrayContigSpace
  42 //
  43 
  44 class ContiguousSpace;
  45 class SerializeOopClosure;
  46 
  47 //////////////////////////////////////////////////////////////////////////
  48 // The BlockOffsetTable "interface"
  49 //////////////////////////////////////////////////////////////////////////
  50 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  51   friend class VMStructs;
  52 protected:
  53   // These members describe the region covered by the table.
  54 
  55   // The space this table is covering.
  56   HeapWord* _bottom;    // == reserved.start
  57   HeapWord* _end;       // End of currently allocated region.
  58 
  59 public:
  60   // Initialize the table to cover the given space.
  61   // The contents of the initial table are undefined.
  62   BlockOffsetTable(HeapWord* bottom, HeapWord* end):
  63     _bottom(bottom), _end(end) {
  64     assert(_bottom <= _end, "arguments out of order");
  65   }
  66 
  67   // Note that the committed size of the covered space may have changed,
  68   // so the table size might also wish to change.
  69   virtual void resize(size_t new_word_size) = 0;
  70 
  71   virtual void set_bottom(HeapWord* new_bottom) {
  72     assert(new_bottom <= _end, "new_bottom > _end");
  73     _bottom = new_bottom;
  74     resize(pointer_delta(_end, _bottom));
  75   }
  76 
  77   // Requires "addr" to be contained by a block, and returns the address of
  78   // the start of that block.
  79   virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
  80 
  81   // Returns the address of the start of the block containing "addr", or
  82   // else "null" if it is covered by no block.
  83   HeapWord* block_start(const void* addr) const;
  84 };
  85 
  86 //////////////////////////////////////////////////////////////////////////
  87 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
  88 // divides the covered region into "N"-word subregions (where
  89 // "N" = 2^"LogN".  An array with an entry for each such subregion
  90 // indicates how far back one must go to find the start of the
  91 // chunk that includes the first word of the subregion.
  92 //
  93 // Each BlockOffsetArray is owned by a Space.  However, the actual array
  94 // may be shared by several BlockOffsetArrays; this is useful
  95 // when a single resizable area (such as a generation) is divided up into
  96 // several spaces in which contiguous allocation takes place.  (Consider,
  97 // for example, the garbage-first generation.)
  98 
  99 // Here is the shared array type.
 100 //////////////////////////////////////////////////////////////////////////
 101 // BlockOffsetSharedArray
 102 //////////////////////////////////////////////////////////////////////////
 103 class BlockOffsetSharedArray: public CHeapObj {
 104   friend class BlockOffsetArray;
 105   friend class BlockOffsetArrayNonContigSpace;
 106   friend class BlockOffsetArrayContigSpace;
 107   friend class VMStructs;
 108 
 109  private:
 110   enum SomePrivateConstants {
 111     LogN = 9,
 112     LogN_words = LogN - LogHeapWordSize,
 113     N_bytes = 1 << LogN,
 114     N_words = 1 << LogN_words
 115   };
 116 
 117   bool _init_to_zero;
 118 
 119   // The reserved region covered by the shared array.
 120   MemRegion _reserved;
 121 
 122   // End of the current committed region.
 123   HeapWord* _end;
 124 
 125   // Array for keeping offsets for retrieving object start fast given an
 126   // address.
 127   VirtualSpace _vs;
 128   u_char* _offset_array;          // byte array keeping backwards offsets
 129 
 130  protected:
 131   // Bounds checking accessors:
 132   // For performance these have to devolve to array accesses in product builds.
 133   u_char offset_array(size_t index) const {
 134     assert(index < _vs.committed_size(), "index out of range");
 135     return _offset_array[index];
 136   }
 137   // An assertion-checking helper method for the set_offset_array() methods below.
 138   void check_reducing_assertion(bool reducing);
 139 
 140   void set_offset_array(size_t index, u_char offset, bool reducing = false) {
 141     check_reducing_assertion(reducing);
 142     assert(index < _vs.committed_size(), "index out of range");
 143     assert(!reducing || _offset_array[index] >= offset, "Not reducing");
 144     _offset_array[index] = offset;
 145   }
 146 
 147   void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
 148     check_reducing_assertion(reducing);
 149     assert(index < _vs.committed_size(), "index out of range");
 150     assert(high >= low, "addresses out of order");
 151     assert(pointer_delta(high, low) <= N_words, "offset too large");
 152     assert(!reducing || _offset_array[index] >=  (u_char)pointer_delta(high, low),
 153            "Not reducing");
 154     _offset_array[index] = (u_char)pointer_delta(high, low);
 155   }
 156 
 157   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
 158     check_reducing_assertion(reducing);
 159     assert(index_for(right - 1) < _vs.committed_size(),
 160            "right address out of range");
 161     assert(left  < right, "Heap addresses out of order");
 162     size_t num_cards = pointer_delta(right, left) >> LogN_words;
 163 
 164     // Below, we may use an explicit loop instead of memset()
 165     // because on certain platforms memset() can give concurrent
 166     // readers "out-of-thin-air," phantom zeros; see 6948537.
 167     if (UseMemSetInBOT) {
 168       memset(&_offset_array[index_for(left)], offset, num_cards);
 169     } else {
 170       size_t i = index_for(left);
 171       const size_t end = i + num_cards;
 172       for (; i < end; i++) {
 173         // Elided until CR 6977974 is fixed properly.
 174         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
 175         _offset_array[i] = offset;
 176       }
 177     }
 178   }
 179 
 180   void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
 181     check_reducing_assertion(reducing);
 182     assert(right < _vs.committed_size(), "right address out of range");
 183     assert(left  <= right, "indexes out of order");
 184     size_t num_cards = right - left + 1;
 185 
 186     // Below, we may use an explicit loop instead of memset
 187     // because on certain platforms memset() can give concurrent
 188     // readers "out-of-thin-air," phantom zeros; see 6948537.
 189     if (UseMemSetInBOT) {
 190       memset(&_offset_array[left], offset, num_cards);
 191     } else {
 192       size_t i = left;
 193       const size_t end = i + num_cards;
 194       for (; i < end; i++) {
 195         // Elided until CR 6977974 is fixed properly.
 196         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
 197         _offset_array[i] = offset;
 198       }
 199     }
 200   }
 201 
 202   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
 203     assert(index < _vs.committed_size(), "index out of range");
 204     assert(high >= low, "addresses out of order");
 205     assert(pointer_delta(high, low) <= N_words, "offset too large");
 206     assert(_offset_array[index] == pointer_delta(high, low),
 207            "Wrong offset");
 208   }
 209 
 210   bool is_card_boundary(HeapWord* p) const;
 211 
 212   // Return the number of slots needed for an offset array
 213   // that covers mem_region_words words.
 214   // We always add an extra slot because if an object
 215   // ends on a card boundary we put a 0 in the next
 216   // offset array slot, so we want that slot always
 217   // to be reserved.
 218 
 219   size_t compute_size(size_t mem_region_words) {
 220     size_t number_of_slots = (mem_region_words / N_words) + 1;
 221     return ReservedSpace::allocation_align_size_up(number_of_slots);
 222   }
 223 
 224 public:
 225   // Initialize the table to cover from "base" to (at least)
 226   // "base + init_word_size".  In the future, the table may be expanded
 227   // (see "resize" below) up to the size of "_reserved" (which must be at
 228   // least "init_word_size".)  The contents of the initial table are
 229   // undefined; it is the responsibility of the constituent
 230   // BlockOffsetTable(s) to initialize cards.
 231   BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
 232 
 233   // Notes a change in the committed size of the region covered by the
 234   // table.  The "new_word_size" may not be larger than the size of the
 235   // reserved region this table covers.
 236   void resize(size_t new_word_size);
 237 
 238   void set_bottom(HeapWord* new_bottom);
 239 
 240   // Whether entries should be initialized to zero. Used currently only for
 241   // error checking.
 242   void set_init_to_zero(bool val) { _init_to_zero = val; }
 243   bool init_to_zero() { return _init_to_zero; }
 244 
 245   // Updates all the BlockOffsetArray's sharing this shared array to
 246   // reflect the current "top"'s of their spaces.
 247   void update_offset_arrays();   // Not yet implemented!
 248 
 249   // Return the appropriate index into "_offset_array" for "p".
 250   size_t index_for(const void* p) const;
 251 
 252   // Return the address indicating the start of the region corresponding to
 253   // "index" in "_offset_array".
 254   HeapWord* address_for_index(size_t index) const;
 255 
 256   // Return the address "p" incremented by the size of
 257   // a region.  This method does not align the address
 258   // returned to the start of a region.  It is a simple
 259   // primitive.
 260   HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }
 261 
 262   // Shared space support
 263   void serialize(SerializeOopClosure* soc, HeapWord* start, HeapWord* end);
 264 };
 265 
 266 //////////////////////////////////////////////////////////////////////////
 267 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
 268 //////////////////////////////////////////////////////////////////////////
 269 class BlockOffsetArray: public BlockOffsetTable {
 270   friend class VMStructs;
 271   friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
 272  protected:
 273   // The following enums are used by do_block_internal() below
 274   enum Action {
 275     Action_single,      // BOT records a single block (see single_block())
 276     Action_mark,        // BOT marks the start of a block (see mark_block())
 277     Action_check        // Check that BOT records block correctly
 278                         // (see verify_single_block()).
 279   };
 280 
 281   enum SomePrivateConstants {
 282     N_words = BlockOffsetSharedArray::N_words,
 283     LogN    = BlockOffsetSharedArray::LogN,
 284     // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
 285     // All entries are less than "N_words + N_powers".
 286     LogBase = 4,
 287     Base = (1 << LogBase),
 288     N_powers = 14
 289   };
 290 
 291   static size_t power_to_cards_back(uint i) {
 292     return (size_t)(1 << (LogBase * i));
 293   }
 294   static size_t power_to_words_back(uint i) {
 295     return power_to_cards_back(i) * N_words;
 296   }
 297   static size_t entry_to_cards_back(u_char entry) {
 298     assert(entry >= N_words, "Precondition");
 299     return power_to_cards_back(entry - N_words);
 300   }
 301   static size_t entry_to_words_back(u_char entry) {
 302     assert(entry >= N_words, "Precondition");
 303     return power_to_words_back(entry - N_words);
 304   }
 305 
 306   // The shared array, which is shared with other BlockOffsetArray's
 307   // corresponding to different spaces within a generation or span of
 308   // memory.
 309   BlockOffsetSharedArray* _array;
 310 
 311   // The space that owns this subregion.
 312   Space* _sp;
 313 
 314   // If true, array entries are initialized to 0; otherwise, they are
 315   // initialized to point backwards to the beginning of the covered region.
 316   bool _init_to_zero;
 317 
 318   // An assertion-checking helper method for the set_remainder*() methods below.
 319   void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
 320 
 321   // Sets the entries
 322   // corresponding to the cards starting at "start" and ending at "end"
 323   // to point back to the card before "start": the interval [start, end)
 324   // is right-open. The last parameter, reducing, indicates whether the
 325   // updates to individual entries always reduce the entry from a higher
 326   // to a lower value. (For example this would hold true during a temporal
 327   // regime during which only block splits were updating the BOT.
 328   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
 329   // Same as above, except that the args here are a card _index_ interval
 330   // that is closed: [start_index, end_index]
 331   void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
 332 
 333   // A helper function for BOT adjustment/verification work
 334   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
 335 
 336  public:
 337   // The space may not have its bottom and top set yet, which is why the
 338   // region is passed as a parameter.  If "init_to_zero" is true, the
 339   // elements of the array are initialized to zero.  Otherwise, they are
 340   // initialized to point backwards to the beginning.
 341   BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
 342                    bool init_to_zero_);
 343 
 344   // Note: this ought to be part of the constructor, but that would require
 345   // "this" to be passed as a parameter to a member constructor for
 346   // the containing concrete subtype of Space.
 347   // This would be legal C++, but MS VC++ doesn't allow it.
 348   void set_space(Space* sp) { _sp = sp; }
 349 
 350   // Resets the covered region to the given "mr".
 351   void set_region(MemRegion mr) {
 352     _bottom = mr.start();
 353     _end = mr.end();
 354   }
 355 
 356   // Note that the committed size of the covered space may have changed,
 357   // so the table size might also wish to change.
 358   virtual void resize(size_t new_word_size) {
 359     HeapWord* new_end = _bottom + new_word_size;
 360     if (_end < new_end && !init_to_zero()) {
 361       // verify that the old and new boundaries are also card boundaries
 362       assert(_array->is_card_boundary(_end),
 363              "_end not a card boundary");
 364       assert(_array->is_card_boundary(new_end),
 365              "new _end would not be a card boundary");
 366       // set all the newly added cards
 367       _array->set_offset_array(_end, new_end, N_words);
 368     }
 369     _end = new_end;  // update _end
 370   }
 371 
 372   // Adjust the BOT to show that it has a single block in the
 373   // range [blk_start, blk_start + size). All necessary BOT
 374   // cards are adjusted, but _unallocated_block isn't.
 375   void single_block(HeapWord* blk_start, HeapWord* blk_end);
 376   void single_block(HeapWord* blk, size_t size) {
 377     single_block(blk, blk + size);
 378   }
 379 
 380   // When the alloc_block() call returns, the block offset table should
 381   // have enough information such that any subsequent block_start() call
 382   // with an argument equal to an address that is within the range
 383   // [blk_start, blk_end) would return the value blk_start, provided
 384   // there have been no calls in between that reset this information
 385   // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
 386   // for an appropriate range covering the said interval).
 387   // These methods expect to be called with [blk_start, blk_end)
 388   // representing a block of memory in the heap.
 389   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 390   void alloc_block(HeapWord* blk, size_t size) {
 391     alloc_block(blk, blk + size);
 392   }
 393 
 394   // If true, initialize array slots with no allocated blocks to zero.
 395   // Otherwise, make them point back to the front.
 396   bool init_to_zero() { return _init_to_zero; }
 397   // Corresponding setter
 398   void set_init_to_zero(bool val) {
 399     _init_to_zero = val;
 400     assert(_array != NULL, "_array should be non-NULL");
 401     _array->set_init_to_zero(val);
 402   }
 403 
 404   // Debugging
 405   // Return the index of the last entry in the "active" region.
 406   virtual size_t last_active_index() const = 0;
 407   // Verify the block offset table
 408   void verify() const;
 409   void check_all_cards(size_t left_card, size_t right_card) const;
 410 };
 411 
 412 ////////////////////////////////////////////////////////////////////////////
 413 // A subtype of BlockOffsetArray that takes advantage of the fact
 414 // that its underlying space is a NonContiguousSpace, so that some
 415 // specialized interfaces can be made available for spaces that
 416 // manipulate the table.
 417 ////////////////////////////////////////////////////////////////////////////
 418 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
 419   friend class VMStructs;
 420  private:
 421   // The portion [_unallocated_block, _sp.end()) of the space that
 422   // is a single block known not to contain any objects.
 423   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
 424   HeapWord* _unallocated_block;
 425 
 426  public:
 427   BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
 428     BlockOffsetArray(array, mr, false),
 429     _unallocated_block(_bottom) { }
 430 
 431   // accessor
 432   HeapWord* unallocated_block() const {
 433     assert(BlockOffsetArrayUseUnallocatedBlock,
 434            "_unallocated_block is not being maintained");
 435     return _unallocated_block;
 436   }
 437 
 438   void set_unallocated_block(HeapWord* block) {
 439     assert(BlockOffsetArrayUseUnallocatedBlock,
 440            "_unallocated_block is not being maintained");
 441     assert(block >= _bottom && block <= _end, "out of range");
 442     _unallocated_block = block;
 443   }
 444 
 445   // These methods expect to be called with [blk_start, blk_end)
 446   // representing a block of memory in the heap.
 447   void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 448   void alloc_block(HeapWord* blk, size_t size) {
 449     alloc_block(blk, blk + size);
 450   }
 451 
 452   // The following methods are useful and optimized for a
 453   // non-contiguous space.
 454 
 455   // Given a block [blk_start, blk_start + full_blk_size), and
 456   // a left_blk_size < full_blk_size, adjust the BOT to show two
 457   // blocks [blk_start, blk_start + left_blk_size) and
 458   // [blk_start + left_blk_size, blk_start + full_blk_size).
 459   // It is assumed (and verified in the non-product VM) that the
 460   // BOT was correct for the original block.
 461   void split_block(HeapWord* blk_start, size_t full_blk_size,
 462                            size_t left_blk_size);
 463 
 464   // Adjust BOT to show that it has a block in the range
 465   // [blk_start, blk_start + size). Only the first card
 466   // of BOT is touched. It is assumed (and verified in the
 467   // non-product VM) that the remaining cards of the block
 468   // are correct.
 469   void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
 470   void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
 471     mark_block(blk, blk + size, reducing);
 472   }
 473 
 474   // Adjust _unallocated_block to indicate that a particular
 475   // block has been newly allocated or freed. It is assumed (and
 476   // verified in the non-product VM) that the BOT is correct for
 477   // the given block.
 478   void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
 479     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 480     verify_single_block(blk_start, blk_end);
 481     if (BlockOffsetArrayUseUnallocatedBlock) {
 482       _unallocated_block = MAX2(_unallocated_block, blk_end);
 483     }
 484   }
 485 
 486   void allocated(HeapWord* blk, size_t size, bool reducing = false) {
 487     allocated(blk, blk + size, reducing);
 488   }
 489 
 490   void freed(HeapWord* blk_start, HeapWord* blk_end);
 491   void freed(HeapWord* blk, size_t size);
 492 
 493   HeapWord* block_start_unsafe(const void* addr) const;
 494 
 495   // Requires "addr" to be the start of a card and returns the
 496   // start of the block that contains the given address.
 497   HeapWord* block_start_careful(const void* addr) const;
 498 
 499   // Verification & debugging: ensure that the offset table reflects
 500   // the fact that the block [blk_start, blk_end) or [blk, blk + size)
 501   // is a single block of storage. NOTE: can't const this because of
 502   // call to non-const do_block_internal() below.
 503   void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
 504     PRODUCT_RETURN;
 505   void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
 506 
 507   // Verify that the given block is before _unallocated_block
 508   void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
 509     const PRODUCT_RETURN;
 510   void verify_not_unallocated(HeapWord* blk, size_t size)
 511     const PRODUCT_RETURN;
 512 
 513   // Debugging support
 514   virtual size_t last_active_index() const;
 515 };
 516 
 517 ////////////////////////////////////////////////////////////////////////////
 518 // A subtype of BlockOffsetArray that takes advantage of the fact
 519 // that its underlying space is a ContiguousSpace, so that its "active"
 520 // region can be more efficiently tracked (than for a non-contiguous space).
 521 ////////////////////////////////////////////////////////////////////////////
 522 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
 523   friend class VMStructs;
 524  private:
 525   // allocation boundary at which offset array must be updated
 526   HeapWord* _next_offset_threshold;
 527   size_t    _next_offset_index;      // index corresponding to that boundary
 528 
 529   // Work function when allocation start crosses threshold.
 530   void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
 531 
 532  public:
 533   BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
 534     BlockOffsetArray(array, mr, true) {
 535     _next_offset_threshold = NULL;
 536     _next_offset_index = 0;
 537   }
 538 
 539   void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
 540 
 541   // Initialize the threshold for an empty heap.
 542   HeapWord* initialize_threshold();
 543   // Zero out the entry for _bottom (offset will be zero)
 544   void      zero_bottom_entry();
 545 
 546   // Return the next threshold, the point at which the table should be
 547   // updated.
 548   HeapWord* threshold() const { return _next_offset_threshold; }
 549 
 550   // In general, these methods expect to be called with
 551   // [blk_start, blk_end) representing a block of memory in the heap.
 552   // In this implementation, however, we are OK even if blk_start and/or
 553   // blk_end are NULL because NULL is represented as 0, and thus
 554   // never exceeds the "_next_offset_threshold".
 555   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 556     if (blk_end > _next_offset_threshold) {
 557       alloc_block_work(blk_start, blk_end);
 558     }
 559   }
 560   void alloc_block(HeapWord* blk, size_t size) {
 561     alloc_block(blk, blk + size);
 562   }
 563 
 564   HeapWord* block_start_unsafe(const void* addr) const;
 565 
 566   void serialize(SerializeOopClosure* soc);
 567 
 568   // Debugging support
 569   virtual size_t last_active_index() const;
 570 };
 571 
 572 #endif // SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP