1 /*
   2  * Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_cardTableRS.cpp.incl"
  27 
  28 CardTableRS::CardTableRS(MemRegion whole_heap,
  29                          int max_covered_regions) :
  30   GenRemSet(),
  31   _cur_youngergen_card_val(youngergenP1_card),
  32   _regions_to_iterate(max_covered_regions - 1)
  33 {
  34 #ifndef SERIALGC
  35   if (UseG1GC) {
  36       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
  37                                                   max_covered_regions);
  38   } else {
  39     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  40   }
  41 #else
  42   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  43 #endif
  44   set_bs(_ct_bs);
  45   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
  46   if (_last_cur_val_in_gen == NULL) {
  47     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
  48   }
  49   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
  50     _last_cur_val_in_gen[i] = clean_card_val();
  51   }
  52   _ct_bs->set_CTRS(this);
  53 }
  54 
  55 void CardTableRS::resize_covered_region(MemRegion new_region) {
  56   _ct_bs->resize_covered_region(new_region);
  57 }
  58 
  59 jbyte CardTableRS::find_unused_youngergenP_card_value() {
  60   for (jbyte v = youngergenP1_card;
  61        v < cur_youngergen_and_prev_nonclean_card;
  62        v++) {
  63     bool seen = false;
  64     for (int g = 0; g < _regions_to_iterate; g++) {
  65       if (_last_cur_val_in_gen[g] == v) {
  66         seen = true;
  67         break;
  68       }
  69     }
  70     if (!seen) return v;
  71   }
  72   ShouldNotReachHere();
  73   return 0;
  74 }
  75 
  76 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
  77   // Parallel or sequential, we must always set the prev to equal the
  78   // last one written.
  79   if (parallel) {
  80     // Find a parallel value to be used next.
  81     jbyte next_val = find_unused_youngergenP_card_value();
  82     set_cur_youngergen_card_val(next_val);
  83 
  84   } else {
  85     // In an sequential traversal we will always write youngergen, so that
  86     // the inline barrier is  correct.
  87     set_cur_youngergen_card_val(youngergen_card);
  88   }
  89 }
  90 
  91 void CardTableRS::younger_refs_iterate(Generation* g,
  92                                        OopsInGenClosure* blk) {
  93   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
  94   g->younger_refs_iterate(blk);
  95 }
  96 
  97 class ClearNoncleanCardWrapper: public MemRegionClosure {
  98   MemRegionClosure* _dirty_card_closure;
  99   CardTableRS* _ct;
 100   bool _is_par;
 101 private:
 102   // Clears the given card, return true if the corresponding card should be
 103   // processed.
 104   bool clear_card(jbyte* entry) {
 105     if (_is_par) {
 106       while (true) {
 107         // In the parallel case, we may have to do this several times.
 108         jbyte entry_val = *entry;
 109         assert(entry_val != CardTableRS::clean_card_val(),
 110                "We shouldn't be looking at clean cards, and this should "
 111                "be the only place they get cleaned.");
 112         if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
 113             || _ct->is_prev_youngergen_card_val(entry_val)) {
 114           jbyte res =
 115             Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
 116           if (res == entry_val) {
 117             break;
 118           } else {
 119             assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
 120                    "The CAS above should only fail if another thread did "
 121                    "a GC write barrier.");
 122           }
 123         } else if (entry_val ==
 124                    CardTableRS::cur_youngergen_and_prev_nonclean_card) {
 125           // Parallelism shouldn't matter in this case.  Only the thread
 126           // assigned to scan the card should change this value.
 127           *entry = _ct->cur_youngergen_card_val();
 128           break;
 129         } else {
 130           assert(entry_val == _ct->cur_youngergen_card_val(),
 131                  "Should be the only possibility.");
 132           // In this case, the card was clean before, and become
 133           // cur_youngergen only because of processing of a promoted object.
 134           // We don't have to look at the card.
 135           return false;
 136         }
 137       }
 138       return true;
 139     } else {
 140       jbyte entry_val = *entry;
 141       assert(entry_val != CardTableRS::clean_card_val(),
 142              "We shouldn't be looking at clean cards, and this should "
 143              "be the only place they get cleaned.");
 144       assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
 145              "This should be possible in the sequential case.");
 146       *entry = CardTableRS::clean_card_val();
 147       return true;
 148     }
 149   }
 150 
 151 public:
 152   ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
 153                            CardTableRS* ct) :
 154     _dirty_card_closure(dirty_card_closure), _ct(ct) {
 155     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
 156   }
 157   void do_MemRegion(MemRegion mr) {
 158     // We start at the high end of "mr", walking backwards
 159     // while accumulating a contiguous dirty range of cards in
 160     // [start_of_non_clean, end_of_non_clean) which we then
 161     // process en masse.
 162     HeapWord* end_of_non_clean = mr.end();
 163     HeapWord* start_of_non_clean = end_of_non_clean;
 164     jbyte*       entry = _ct->byte_for(mr.last());
 165     const jbyte* first_entry = _ct->byte_for(mr.start());
 166     while (entry >= first_entry) {
 167       HeapWord* cur = _ct->addr_for(entry);
 168       if (!clear_card(entry)) {
 169         // We hit a clean card; process any non-empty
 170         // dirty range accumulated so far.
 171         if (start_of_non_clean < end_of_non_clean) {
 172           MemRegion mr2(start_of_non_clean, end_of_non_clean);
 173           _dirty_card_closure->do_MemRegion(mr2);
 174         }
 175         // Reset the dirty window while continuing to
 176         // look for the next dirty window to process.
 177         end_of_non_clean = cur;
 178         start_of_non_clean = end_of_non_clean;
 179       }
 180       // Open the left end of the window one card to the left.
 181       start_of_non_clean = cur;
 182       // Note that "entry" leads "start_of_non_clean" in
 183       // its leftward excursion after this point
 184       // in the loop and, when we hit the left end of "mr",
 185       // will point off of the left end of the card-table
 186       // for "mr".
 187       entry--;
 188     }
 189     // If the first card of "mr" was dirty, we will have
 190     // been left with a dirty window, co-initial with "mr",
 191     // which we now process.
 192     if (start_of_non_clean < end_of_non_clean) {
 193       MemRegion mr2(start_of_non_clean, end_of_non_clean);
 194       _dirty_card_closure->do_MemRegion(mr2);
 195     }
 196   }
 197 };
 198 // clean (by dirty->clean before) ==> cur_younger_gen
 199 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
 200 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
 201 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
 202 // cur-younger-gen                ==> cur_younger_gen
 203 // cur_youngergen_and_prev_nonclean_card ==> no change.
 204 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
 205   jbyte* entry = ct_bs()->byte_for(field);
 206   do {
 207     jbyte entry_val = *entry;
 208     // We put this first because it's probably the most common case.
 209     if (entry_val == clean_card_val()) {
 210       // No threat of contention with cleaning threads.
 211       *entry = cur_youngergen_card_val();
 212       return;
 213     } else if (card_is_dirty_wrt_gen_iter(entry_val)
 214                || is_prev_youngergen_card_val(entry_val)) {
 215       // Mark it as both cur and prev youngergen; card cleaning thread will
 216       // eventually remove the previous stuff.
 217       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
 218       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
 219       // Did the CAS succeed?
 220       if (res == entry_val) return;
 221       // Otherwise, retry, to see the new value.
 222       continue;
 223     } else {
 224       assert(entry_val == cur_youngergen_and_prev_nonclean_card
 225              || entry_val == cur_youngergen_card_val(),
 226              "should be only possibilities.");
 227       return;
 228     }
 229   } while (true);
 230 }
 231 
 232 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
 233                                                 OopsInGenClosure* cl) {
 234   DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, _ct_bs->precision(),
 235                                                    cl->gen_boundary());
 236   ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
 237 
 238   _ct_bs->non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
 239                                 dcto_cl, &clear_cl, false);
 240 }
 241 
 242 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
 243   GenCollectedHeap* gch = GenCollectedHeap::heap();
 244   // Generations younger than gen have been evacuated. We can clear
 245   // card table entries for gen (we know that it has no pointers
 246   // to younger gens) and for those below. The card tables for
 247   // the youngest gen need never be cleared, and those for perm gen
 248   // will be cleared based on the parameter clear_perm.
 249   // There's a bit of subtlety in the clear() and invalidate()
 250   // methods that we exploit here and in invalidate_or_clear()
 251   // below to avoid missing cards at the fringes. If clear() or
 252   // invalidate() are changed in the future, this code should
 253   // be revisited. 20040107.ysr
 254   Generation* g = gen;
 255   for(Generation* prev_gen = gch->prev_gen(g);
 256       prev_gen != NULL;
 257       g = prev_gen, prev_gen = gch->prev_gen(g)) {
 258     MemRegion to_be_cleared_mr = g->prev_used_region();
 259     clear(to_be_cleared_mr);
 260   }
 261   // Clear perm gen cards if asked to do so.
 262   if (clear_perm) {
 263     MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
 264     clear(to_be_cleared_mr);
 265   }
 266 }
 267 
 268 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
 269                                       bool perm) {
 270   GenCollectedHeap* gch = GenCollectedHeap::heap();
 271   // For each generation gen (and younger and/or perm)
 272   // invalidate the cards for the currently occupied part
 273   // of that generation and clear the cards for the
 274   // unoccupied part of the generation (if any, making use
 275   // of that generation's prev_used_region to determine that
 276   // region). No need to do anything for the youngest
 277   // generation. Also see note#20040107.ysr above.
 278   Generation* g = gen;
 279   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
 280       g = prev_gen, prev_gen = gch->prev_gen(g))  {
 281     MemRegion used_mr = g->used_region();
 282     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
 283     if (!to_be_cleared_mr.is_empty()) {
 284       clear(to_be_cleared_mr);
 285     }
 286     invalidate(used_mr);
 287     if (!younger) break;
 288   }
 289   // Clear perm gen cards if asked to do so.
 290   if (perm) {
 291     g = gch->perm_gen();
 292     MemRegion used_mr = g->used_region();
 293     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
 294     if (!to_be_cleared_mr.is_empty()) {
 295       clear(to_be_cleared_mr);
 296     }
 297     invalidate(used_mr);
 298   }
 299 }
 300 
 301 
 302 class VerifyCleanCardClosure: public OopClosure {
 303 private:
 304   HeapWord* _boundary;
 305   HeapWord* _begin;
 306   HeapWord* _end;
 307 protected:
 308   template <class T> void do_oop_work(T* p) {
 309     HeapWord* jp = (HeapWord*)p;
 310     if (jp >= _begin && jp < _end) {
 311       oop obj = oopDesc::load_decode_heap_oop(p);
 312       guarantee(obj == NULL ||
 313                 (HeapWord*)p < _boundary ||
 314                 (HeapWord*)obj >= _boundary,
 315                 "pointer on clean card crosses boundary");
 316     }
 317   }
 318 public:
 319   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
 320     _boundary(b), _begin(begin), _end(end) {}
 321   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
 322   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
 323 };
 324 
 325 class VerifyCTSpaceClosure: public SpaceClosure {
 326 private:
 327   CardTableRS* _ct;
 328   HeapWord* _boundary;
 329 public:
 330   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
 331     _ct(ct), _boundary(boundary) {}
 332   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
 333 };
 334 
 335 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
 336   CardTableRS* _ct;
 337 public:
 338   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
 339   void do_generation(Generation* gen) {
 340     // Skip the youngest generation.
 341     if (gen->level() == 0) return;
 342     // Normally, we're interested in pointers to younger generations.
 343     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
 344     gen->space_iterate(&blk, true);
 345   }
 346 };
 347 
 348 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
 349   // We don't need to do young-gen spaces.
 350   if (s->end() <= gen_boundary) return;
 351   MemRegion used = s->used_region();
 352 
 353   jbyte* cur_entry = byte_for(used.start());
 354   jbyte* limit = byte_after(used.last());
 355   while (cur_entry < limit) {
 356     if (*cur_entry == CardTableModRefBS::clean_card) {
 357       jbyte* first_dirty = cur_entry+1;
 358       while (first_dirty < limit &&
 359              *first_dirty == CardTableModRefBS::clean_card) {
 360         first_dirty++;
 361       }
 362       // If the first object is a regular object, and it has a
 363       // young-to-old field, that would mark the previous card.
 364       HeapWord* boundary = addr_for(cur_entry);
 365       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
 366       HeapWord* boundary_block = s->block_start(boundary);
 367       HeapWord* begin = boundary;             // Until proven otherwise.
 368       HeapWord* start_block = boundary_block; // Until proven otherwise.
 369       if (boundary_block < boundary) {
 370         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
 371           oop boundary_obj = oop(boundary_block);
 372           if (!boundary_obj->is_objArray() &&
 373               !boundary_obj->is_typeArray()) {
 374             guarantee(cur_entry > byte_for(used.start()),
 375                       "else boundary would be boundary_block");
 376             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
 377               begin = boundary_block + s->block_size(boundary_block);
 378               start_block = begin;
 379             }
 380           }
 381         }
 382       }
 383       // Now traverse objects until end.
 384       HeapWord* cur = start_block;
 385       VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
 386       while (cur < end) {
 387         if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
 388           oop(cur)->oop_iterate(&verify_blk);
 389         }
 390         cur += s->block_size(cur);
 391       }
 392       cur_entry = first_dirty;
 393     } else {
 394       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
 395       // is a transient value, that cannot be in the card table
 396       // except during GC, and thus assert that:
 397       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
 398       //        "Illegal CT value");
 399       // That however, need not hold, as will become clear in the
 400       // following...
 401 
 402       // We'd normally expect that if we are in the parallel case,
 403       // we can't have left a prev value (which would be different
 404       // from the current value) in the card table, and so we'd like to
 405       // assert that:
 406       // guarantee(cur_youngergen_card_val() == youngergen_card
 407       //           || !is_prev_youngergen_card_val(*cur_entry),
 408       //           "Illegal CT value");
 409       // That, however, may not hold occasionally, because of
 410       // CMS or MSC in the old gen. To wit, consider the
 411       // following two simple illustrative scenarios:
 412       // (a) CMS: Consider the case where a large object L
 413       //     spanning several cards is allocated in the old
 414       //     gen, and has a young gen reference stored in it, dirtying
 415       //     some interior cards. A young collection scans the card,
 416       //     finds a young ref and installs a youngergenP_n value.
 417       //     L then goes dead. Now a CMS collection starts,
 418       //     finds L dead and sweeps it up. Assume that L is
 419       //     abutting _unallocated_blk, so _unallocated_blk is
 420       //     adjusted down to (below) L. Assume further that
 421       //     no young collection intervenes during this CMS cycle.
 422       //     The next young gen cycle will not get to look at this
 423       //     youngergenP_n card since it lies in the unoccupied
 424       //     part of the space.
 425       //     Some young collections later the blocks on this
 426       //     card can be re-allocated either due to direct allocation
 427       //     or due to absorbing promotions. At this time, the
 428       //     before-gc verification will fail the above assert.
 429       // (b) MSC: In this case, an object L with a young reference
 430       //     is on a card that (therefore) holds a youngergen_n value.
 431       //     Suppose also that L lies towards the end of the used
 432       //     the used space before GC. An MSC collection
 433       //     occurs that compacts to such an extent that this
 434       //     card is no longer in the occupied part of the space.
 435       //     Since current code in MSC does not always clear cards
 436       //     in the unused part of old gen, this stale youngergen_n
 437       //     value is left behind and can later be covered by
 438       //     an object when promotion or direct allocation
 439       //     re-allocates that part of the heap.
 440       //
 441       // Fortunately, the presence of such stale card values is
 442       // "only" a minor annoyance in that subsequent young collections
 443       // might needlessly scan such cards, but would still never corrupt
 444       // the heap as a result. However, it's likely not to be a significant
 445       // performance inhibitor in practice. For instance,
 446       // some recent measurements with unoccupied cards eagerly cleared
 447       // out to maintain this invariant, showed next to no
 448       // change in young collection times; of course one can construct
 449       // degenerate examples where the cost can be significant.)
 450       // Note, in particular, that if the "stale" card is modified
 451       // after re-allocation, it would be dirty, not "stale". Thus,
 452       // we can never have a younger ref in such a card and it is
 453       // safe not to scan that card in any collection. [As we see
 454       // below, we do some unnecessary scanning
 455       // in some cases in the current parallel scanning algorithm.]
 456       //
 457       // The main point below is that the parallel card scanning code
 458       // deals correctly with these stale card values. There are two main
 459       // cases to consider where we have a stale "younger gen" value and a
 460       // "derivative" case to consider, where we have a stale
 461       // "cur_younger_gen_and_prev_non_clean" value, as will become
 462       // apparent in the case analysis below.
 463       // o Case 1. If the stale value corresponds to a younger_gen_n
 464       //   value other than the cur_younger_gen value then the code
 465       //   treats this as being tantamount to a prev_younger_gen
 466       //   card. This means that the card may be unnecessarily scanned.
 467       //   There are two sub-cases to consider:
 468       //   o Case 1a. Let us say that the card is in the occupied part
 469       //     of the generation at the time the collection begins. In
 470       //     that case the card will be either cleared when it is scanned
 471       //     for young pointers, or will be set to cur_younger_gen as a
 472       //     result of promotion. (We have elided the normal case where
 473       //     the scanning thread and the promoting thread interleave
 474       //     possibly resulting in a transient
 475       //     cur_younger_gen_and_prev_non_clean value before settling
 476       //     to cur_younger_gen. [End Case 1a.]
 477       //   o Case 1b. Consider now the case when the card is in the unoccupied
 478       //     part of the space which becomes occupied because of promotions
 479       //     into it during the current young GC. In this case the card
 480       //     will never be scanned for young references. The current
 481       //     code will set the card value to either
 482       //     cur_younger_gen_and_prev_non_clean or leave
 483       //     it with its stale value -- because the promotions didn't
 484       //     result in any younger refs on that card. Of these two
 485       //     cases, the latter will be covered in Case 1a during
 486       //     a subsequent scan. To deal with the former case, we need
 487       //     to further consider how we deal with a stale value of
 488       //     cur_younger_gen_and_prev_non_clean in our case analysis
 489       //     below. This we do in Case 3 below. [End Case 1b]
 490       //   [End Case 1]
 491       // o Case 2. If the stale value corresponds to cur_younger_gen being
 492       //   a value not necessarily written by a current promotion, the
 493       //   card will not be scanned by the younger refs scanning code.
 494       //   (This is OK since as we argued above such cards cannot contain
 495       //   any younger refs.) The result is that this value will be
 496       //   treated as a prev_younger_gen value in a subsequent collection,
 497       //   which is addressed in Case 1 above. [End Case 2]
 498       // o Case 3. We here consider the "derivative" case from Case 1b. above
 499       //   because of which we may find a stale
 500       //   cur_younger_gen_and_prev_non_clean card value in the table.
 501       //   Once again, as in Case 1, we consider two subcases, depending
 502       //   on whether the card lies in the occupied or unoccupied part
 503       //   of the space at the start of the young collection.
 504       //   o Case 3a. Let us say the card is in the occupied part of
 505       //     the old gen at the start of the young collection. In that
 506       //     case, the card will be scanned by the younger refs scanning
 507       //     code which will set it to cur_younger_gen. In a subsequent
 508       //     scan, the card will be considered again and get its final
 509       //     correct value. [End Case 3a]
 510       //   o Case 3b. Now consider the case where the card is in the
 511       //     unoccupied part of the old gen, and is occupied as a result
 512       //     of promotions during thus young gc. In that case,
 513       //     the card will not be scanned for younger refs. The presence
 514       //     of newly promoted objects on the card will then result in
 515       //     its keeping the value cur_younger_gen_and_prev_non_clean
 516       //     value, which we have dealt with in Case 3 here. [End Case 3b]
 517       //   [End Case 3]
 518       //
 519       // (Please refer to the code in the helper class
 520       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
 521       //
 522       // The informal arguments above can be tightened into a formal
 523       // correctness proof and it behooves us to write up such a proof,
 524       // or to use model checking to prove that there are no lingering
 525       // concerns.
 526       //
 527       // Clearly because of Case 3b one cannot bound the time for
 528       // which a card will retain what we have called a "stale" value.
 529       // However, one can obtain a Loose upper bound on the redundant
 530       // work as a result of such stale values. Note first that any
 531       // time a stale card lies in the occupied part of the space at
 532       // the start of the collection, it is scanned by younger refs
 533       // code and we can define a rank function on card values that
 534       // declines when this is so. Note also that when a card does not
 535       // lie in the occupied part of the space at the beginning of a
 536       // young collection, its rank can either decline or stay unchanged.
 537       // In this case, no extra work is done in terms of redundant
 538       // younger refs scanning of that card.
 539       // Then, the case analysis above reveals that, in the worst case,
 540       // any such stale card will be scanned unnecessarily at most twice.
 541       //
 542       // It is nonethelss advisable to try and get rid of some of this
 543       // redundant work in a subsequent (low priority) re-design of
 544       // the card-scanning code, if only to simplify the underlying
 545       // state machine analysis/proof. ysr 1/28/2002. XXX
 546       cur_entry++;
 547     }
 548   }
 549 }
 550 
 551 void CardTableRS::verify() {
 552   // At present, we only know how to verify the card table RS for
 553   // generational heaps.
 554   VerifyCTGenClosure blk(this);
 555   CollectedHeap* ch = Universe::heap();
 556   // We will do the perm-gen portion of the card table, too.
 557   Generation* pg = SharedHeap::heap()->perm_gen();
 558   HeapWord* pg_boundary = pg->reserved().start();
 559 
 560   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
 561     GenCollectedHeap::heap()->generation_iterate(&blk, false);
 562     _ct_bs->verify();
 563 
 564     // If the old gen collections also collect perm, then we are only
 565     // interested in perm-to-young pointers, not perm-to-old pointers.
 566     GenCollectedHeap* gch = GenCollectedHeap::heap();
 567     CollectorPolicy* cp = gch->collector_policy();
 568     if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
 569       pg_boundary = gch->get_gen(1)->reserved().start();
 570     }
 571   }
 572   VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
 573   SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
 574 }
 575 
 576 
 577 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
 578   if (!mr.is_empty()) {
 579     jbyte* cur_entry = byte_for(mr.start());
 580     jbyte* limit = byte_after(mr.last());
 581     // The region mr may not start on a card boundary so
 582     // the first card may reflect a write to the space
 583     // just prior to mr.
 584     if (!is_aligned(mr.start())) {
 585       cur_entry++;
 586     }
 587     for (;cur_entry < limit; cur_entry++) {
 588       guarantee(*cur_entry == CardTableModRefBS::clean_card,
 589                 "Unexpected dirty card found");
 590     }
 591   }
 592 }