1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_genCollectedHeap.cpp.incl"
  27 
  28 GenCollectedHeap* GenCollectedHeap::_gch;
  29 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  30 
  31 // The set of potentially parallel tasks in strong root scanning.
  32 enum GCH_process_strong_roots_tasks {
  33   // We probably want to parallelize both of these internally, but for now...
  34   GCH_PS_younger_gens,
  35   // Leave this one last.
  36   GCH_PS_NumElements
  37 };
  38 
  39 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  40   SharedHeap(policy),
  41   _gen_policy(policy),
  42   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  43   _full_collections_completed(0)
  44 {
  45   if (_gen_process_strong_tasks == NULL ||
  46       !_gen_process_strong_tasks->valid()) {
  47     vm_exit_during_initialization("Failed necessary allocation.");
  48   }
  49   assert(policy != NULL, "Sanity check");
  50   _preloading_shared_classes = false;
  51 }
  52 
  53 jint GenCollectedHeap::initialize() {
  54   CollectedHeap::pre_initialize();
  55 
  56   int i;
  57   _n_gens = gen_policy()->number_of_generations();
  58 
  59   // While there are no constraints in the GC code that HeapWordSize
  60   // be any particular value, there are multiple other areas in the
  61   // system which believe this to be true (e.g. oop->object_size in some
  62   // cases incorrectly returns the size in wordSize units rather than
  63   // HeapWordSize).
  64   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  65 
  66   // The heap must be at least as aligned as generations.
  67   size_t alignment = Generation::GenGrain;
  68 
  69   _gen_specs = gen_policy()->generations();
  70   PermanentGenerationSpec *perm_gen_spec =
  71                                 collector_policy()->permanent_generation();
  72 
  73   // Make sure the sizes are all aligned.
  74   for (i = 0; i < _n_gens; i++) {
  75     _gen_specs[i]->align(alignment);
  76   }
  77   perm_gen_spec->align(alignment);
  78 
  79   // If we are dumping the heap, then allocate a wasted block of address
  80   // space in order to push the heap to a lower address.  This extra
  81   // address range allows for other (or larger) libraries to be loaded
  82   // without them occupying the space required for the shared spaces.
  83 
  84   if (DumpSharedSpaces) {
  85     uintx reserved = 0;
  86     uintx block_size = 64*1024*1024;
  87     while (reserved < SharedDummyBlockSize) {
  88       char* dummy = os::reserve_memory(block_size);
  89       reserved += block_size;
  90     }
  91   }
  92 
  93   // Allocate space for the heap.
  94 
  95   char* heap_address;
  96   size_t total_reserved = 0;
  97   int n_covered_regions = 0;
  98   ReservedSpace heap_rs(0);
  99 
 100   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
 101                           &n_covered_regions, &heap_rs);
 102 
 103   if (UseSharedSpaces) {
 104     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
 105       if (heap_rs.is_reserved()) {
 106         heap_rs.release();
 107       }
 108       FileMapInfo* mapinfo = FileMapInfo::current_info();
 109       mapinfo->fail_continue("Unable to reserve shared region.");
 110       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
 111                &heap_rs);
 112     }
 113   }
 114 
 115   if (!heap_rs.is_reserved()) {
 116     vm_shutdown_during_initialization(
 117       "Could not reserve enough space for object heap");
 118     return JNI_ENOMEM;
 119   }
 120 
 121   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 122                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 123 
 124   // It is important to do this in a way such that concurrent readers can't
 125   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
 126   _reserved.set_word_size(0);
 127   _reserved.set_start((HeapWord*)heap_rs.base());
 128   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
 129                                            - perm_gen_spec->misc_code_size();
 130   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 131 
 132   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 133   set_barrier_set(rem_set()->bs());
 134 
 135   _gch = this;
 136 
 137   for (i = 0; i < _n_gens; i++) {
 138     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
 139                                               UseSharedSpaces, UseSharedSpaces);
 140     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 141     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 142   }
 143   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
 144 
 145   clear_incremental_collection_will_fail();
 146   clear_last_incremental_collection_failed();
 147 
 148 #ifndef SERIALGC
 149   // If we are running CMS, create the collector responsible
 150   // for collecting the CMS generations.
 151   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 152     bool success = create_cms_collector();
 153     if (!success) return JNI_ENOMEM;
 154   }
 155 #endif // SERIALGC
 156 
 157   return JNI_OK;
 158 }
 159 
 160 
 161 char* GenCollectedHeap::allocate(size_t alignment,
 162                                  PermanentGenerationSpec* perm_gen_spec,
 163                                  size_t* _total_reserved,
 164                                  int* _n_covered_regions,
 165                                  ReservedSpace* heap_rs){
 166   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 167     "the maximum representable size";
 168 
 169   // Now figure out the total size.
 170   size_t total_reserved = 0;
 171   int n_covered_regions = 0;
 172   const size_t pageSize = UseLargePages ?
 173       os::large_page_size() : os::vm_page_size();
 174 
 175   for (int i = 0; i < _n_gens; i++) {
 176     total_reserved += _gen_specs[i]->max_size();
 177     if (total_reserved < _gen_specs[i]->max_size()) {
 178       vm_exit_during_initialization(overflow_msg);
 179     }
 180     n_covered_regions += _gen_specs[i]->n_covered_regions();
 181   }
 182   assert(total_reserved % pageSize == 0,
 183          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
 184                  SIZE_FORMAT, total_reserved, pageSize));
 185   total_reserved += perm_gen_spec->max_size();
 186   assert(total_reserved % pageSize == 0,
 187          err_msg("Perm size; total_reserved=" SIZE_FORMAT ", pageSize="
 188                  SIZE_FORMAT ", perm gen max=" SIZE_FORMAT, total_reserved,
 189                  pageSize, perm_gen_spec->max_size()));
 190 
 191   if (total_reserved < perm_gen_spec->max_size()) {
 192     vm_exit_during_initialization(overflow_msg);
 193   }
 194   n_covered_regions += perm_gen_spec->n_covered_regions();
 195 
 196   // Add the size of the data area which shares the same reserved area
 197   // as the heap, but which is not actually part of the heap.
 198   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
 199 
 200   total_reserved += s;
 201   if (total_reserved < s) {
 202     vm_exit_during_initialization(overflow_msg);
 203   }
 204 
 205   if (UseLargePages) {
 206     assert(total_reserved != 0, "total_reserved cannot be 0");
 207     total_reserved = round_to(total_reserved, os::large_page_size());
 208     if (total_reserved < os::large_page_size()) {
 209       vm_exit_during_initialization(overflow_msg);
 210     }
 211   }
 212 
 213   // Calculate the address at which the heap must reside in order for
 214   // the shared data to be at the required address.
 215 
 216   char* heap_address;
 217   if (UseSharedSpaces) {
 218 
 219     // Calculate the address of the first word beyond the heap.
 220     FileMapInfo* mapinfo = FileMapInfo::current_info();
 221     int lr = CompactingPermGenGen::n_regions - 1;
 222     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
 223     heap_address = mapinfo->region_base(lr) + capacity;
 224 
 225     // Calculate the address of the first word of the heap.
 226     heap_address -= total_reserved;
 227   } else {
 228     heap_address = NULL;  // any address will do.
 229     if (UseCompressedOops) {
 230       heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
 231       *_total_reserved = total_reserved;
 232       *_n_covered_regions = n_covered_regions;
 233       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 234                                    UseLargePages, heap_address);
 235 
 236       if (heap_address != NULL && !heap_rs->is_reserved()) {
 237         // Failed to reserve at specified address - the requested memory
 238         // region is taken already, for example, by 'java' launcher.
 239         // Try again to reserver heap higher.
 240         heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
 241         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 242                                      UseLargePages, heap_address);
 243 
 244         if (heap_address != NULL && !heap_rs->is_reserved()) {
 245           // Failed to reserve at specified address again - give up.
 246           heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
 247           assert(heap_address == NULL, "");
 248           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 249                                        UseLargePages, heap_address);
 250         }
 251       }
 252       return heap_address;
 253     }
 254   }
 255 
 256   *_total_reserved = total_reserved;
 257   *_n_covered_regions = n_covered_regions;
 258   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 259                                UseLargePages, heap_address);
 260 
 261   return heap_address;
 262 }
 263 
 264 
 265 void GenCollectedHeap::post_initialize() {
 266   SharedHeap::post_initialize();
 267   TwoGenerationCollectorPolicy *policy =
 268     (TwoGenerationCollectorPolicy *)collector_policy();
 269   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
 270   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 271   assert(def_new_gen->kind() == Generation::DefNew ||
 272          def_new_gen->kind() == Generation::ParNew ||
 273          def_new_gen->kind() == Generation::ASParNew,
 274          "Wrong generation kind");
 275 
 276   Generation* old_gen = get_gen(1);
 277   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 278          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
 279          old_gen->kind() == Generation::MarkSweepCompact,
 280     "Wrong generation kind");
 281 
 282   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 283                                  old_gen->capacity(),
 284                                  def_new_gen->from()->capacity());
 285   policy->initialize_gc_policy_counters();
 286 }
 287 
 288 void GenCollectedHeap::ref_processing_init() {
 289   SharedHeap::ref_processing_init();
 290   for (int i = 0; i < _n_gens; i++) {
 291     _gens[i]->ref_processor_init();
 292   }
 293 }
 294 
 295 size_t GenCollectedHeap::capacity() const {
 296   size_t res = 0;
 297   for (int i = 0; i < _n_gens; i++) {
 298     res += _gens[i]->capacity();
 299   }
 300   return res;
 301 }
 302 
 303 size_t GenCollectedHeap::used() const {
 304   size_t res = 0;
 305   for (int i = 0; i < _n_gens; i++) {
 306     res += _gens[i]->used();
 307   }
 308   return res;
 309 }
 310 
 311 // Save the "used_region" for generations level and lower,
 312 // and, if perm is true, for perm gen.
 313 void GenCollectedHeap::save_used_regions(int level, bool perm) {
 314   assert(level < _n_gens, "Illegal level parameter");
 315   for (int i = level; i >= 0; i--) {
 316     _gens[i]->save_used_region();
 317   }
 318   if (perm) {
 319     perm_gen()->save_used_region();
 320   }
 321 }
 322 
 323 size_t GenCollectedHeap::max_capacity() const {
 324   size_t res = 0;
 325   for (int i = 0; i < _n_gens; i++) {
 326     res += _gens[i]->max_capacity();
 327   }
 328   return res;
 329 }
 330 
 331 // Update the _full_collections_completed counter
 332 // at the end of a stop-world full GC.
 333 unsigned int GenCollectedHeap::update_full_collections_completed() {
 334   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 335   assert(_full_collections_completed <= _total_full_collections,
 336          "Can't complete more collections than were started");
 337   _full_collections_completed = _total_full_collections;
 338   ml.notify_all();
 339   return _full_collections_completed;
 340 }
 341 
 342 // Update the _full_collections_completed counter, as appropriate,
 343 // at the end of a concurrent GC cycle. Note the conditional update
 344 // below to allow this method to be called by a concurrent collector
 345 // without synchronizing in any manner with the VM thread (which
 346 // may already have initiated a STW full collection "concurrently").
 347 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 348   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 349   assert((_full_collections_completed <= _total_full_collections) &&
 350          (count <= _total_full_collections),
 351          "Can't complete more collections than were started");
 352   if (count > _full_collections_completed) {
 353     _full_collections_completed = count;
 354     ml.notify_all();
 355   }
 356   return _full_collections_completed;
 357 }
 358 
 359 
 360 #ifndef PRODUCT
 361 // Override of memory state checking method in CollectedHeap:
 362 // Some collectors (CMS for example) can't have badHeapWordVal written
 363 // in the first two words of an object. (For instance , in the case of
 364 // CMS these words hold state used to synchronize between certain
 365 // (concurrent) GC steps and direct allocating mutators.)
 366 // The skip_header_HeapWords() method below, allows us to skip
 367 // over the requisite number of HeapWord's. Note that (for
 368 // generational collectors) this means that those many words are
 369 // skipped in each object, irrespective of the generation in which
 370 // that object lives. The resultant loss of precision seems to be
 371 // harmless and the pain of avoiding that imprecision appears somewhat
 372 // higher than we are prepared to pay for such rudimentary debugging
 373 // support.
 374 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 375                                                          size_t size) {
 376   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 377     // We are asked to check a size in HeapWords,
 378     // but the memory is mangled in juint words.
 379     juint* start = (juint*) (addr + skip_header_HeapWords());
 380     juint* end   = (juint*) (addr + size);
 381     for (juint* slot = start; slot < end; slot += 1) {
 382       assert(*slot == badHeapWordVal,
 383              "Found non badHeapWordValue in pre-allocation check");
 384     }
 385   }
 386 }
 387 #endif
 388 
 389 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 390                                                bool is_tlab,
 391                                                bool first_only) {
 392   HeapWord* res;
 393   for (int i = 0; i < _n_gens; i++) {
 394     if (_gens[i]->should_allocate(size, is_tlab)) {
 395       res = _gens[i]->allocate(size, is_tlab);
 396       if (res != NULL) return res;
 397       else if (first_only) break;
 398     }
 399   }
 400   // Otherwise...
 401   return NULL;
 402 }
 403 
 404 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 405                                          bool is_large_noref,
 406                                          bool is_tlab,
 407                                          bool* gc_overhead_limit_was_exceeded) {
 408   return collector_policy()->mem_allocate_work(size,
 409                                                is_tlab,
 410                                                gc_overhead_limit_was_exceeded);
 411 }
 412 
 413 bool GenCollectedHeap::must_clear_all_soft_refs() {
 414   return _gc_cause == GCCause::_last_ditch_collection;
 415 }
 416 
 417 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 418   return UseConcMarkSweepGC &&
 419          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 420           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 421 }
 422 
 423 void GenCollectedHeap::do_collection(bool  full,
 424                                      bool   clear_all_soft_refs,
 425                                      size_t size,
 426                                      bool   is_tlab,
 427                                      int    max_level) {
 428   bool prepared_for_verification = false;
 429   ResourceMark rm;
 430   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 431 
 432   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 433   assert(my_thread->is_VM_thread() ||
 434          my_thread->is_ConcurrentGC_thread(),
 435          "incorrect thread type capability");
 436   assert(Heap_lock->is_locked(),
 437          "the requesting thread should have the Heap_lock");
 438   guarantee(!is_gc_active(), "collection is not reentrant");
 439   assert(max_level < n_gens(), "sanity check");
 440 
 441   if (GC_locker::check_active_before_gc()) {
 442     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 443   }
 444 
 445   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 446                           collector_policy()->should_clear_all_soft_refs();
 447 
 448   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 449 
 450   const size_t perm_prev_used = perm_gen()->used();
 451 
 452   if (PrintHeapAtGC) {
 453     Universe::print_heap_before_gc();
 454     if (Verbose) {
 455       gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
 456     }
 457   }
 458 
 459   {
 460     FlagSetting fl(_is_gc_active, true);
 461 
 462     bool complete = full && (max_level == (n_gens()-1));
 463     const char* gc_cause_str = "GC ";
 464     if (complete) {
 465       GCCause::Cause cause = gc_cause();
 466       if (cause == GCCause::_java_lang_system_gc) {
 467         gc_cause_str = "Full GC (System) ";
 468       } else {
 469         gc_cause_str = "Full GC ";
 470       }
 471     }
 472     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 473     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 474     TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);
 475 
 476     gc_prologue(complete);
 477     increment_total_collections(complete);
 478 
 479     size_t gch_prev_used = used();
 480 
 481     int starting_level = 0;
 482     if (full) {
 483       // Search for the oldest generation which will collect all younger
 484       // generations, and start collection loop there.
 485       for (int i = max_level; i >= 0; i--) {
 486         if (_gens[i]->full_collects_younger_generations()) {
 487           starting_level = i;
 488           break;
 489         }
 490       }
 491     }
 492 
 493     bool must_restore_marks_for_biased_locking = false;
 494 
 495     int max_level_collected = starting_level;
 496     for (int i = starting_level; i <= max_level; i++) {
 497       if (_gens[i]->should_collect(full, size, is_tlab)) {
 498         if (i == n_gens() - 1) {  // a major collection is to happen
 499           if (!complete) {
 500             // The full_collections increment was missed above.
 501             increment_total_full_collections();
 502           }
 503           pre_full_gc_dump();    // do any pre full gc dumps
 504         }
 505         // Timer for individual generations. Last argument is false: no CR
 506         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
 507         TraceCollectorStats tcs(_gens[i]->counters());
 508         TraceMemoryManagerStats tmms(_gens[i]->kind());
 509 
 510         size_t prev_used = _gens[i]->used();
 511         _gens[i]->stat_record()->invocations++;
 512         _gens[i]->stat_record()->accumulated_time.start();
 513 
 514         // Must be done anew before each collection because
 515         // a previous collection will do mangling and will
 516         // change top of some spaces.
 517         record_gen_tops_before_GC();
 518 
 519         if (PrintGC && Verbose) {
 520           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 521                      i,
 522                      _gens[i]->stat_record()->invocations,
 523                      size*HeapWordSize);
 524         }
 525 
 526         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 527             total_collections() >= VerifyGCStartAt) {
 528           HandleMark hm;  // Discard invalid handles created during verification
 529           if (!prepared_for_verification) {
 530             prepare_for_verify();
 531             prepared_for_verification = true;
 532           }
 533           gclog_or_tty->print(" VerifyBeforeGC:");
 534           Universe::verify(true);
 535         }
 536         COMPILER2_PRESENT(DerivedPointerTable::clear());
 537 
 538         if (!must_restore_marks_for_biased_locking &&
 539             _gens[i]->performs_in_place_marking()) {
 540           // We perform this mark word preservation work lazily
 541           // because it's only at this point that we know whether we
 542           // absolutely have to do it; we want to avoid doing it for
 543           // scavenge-only collections where it's unnecessary
 544           must_restore_marks_for_biased_locking = true;
 545           BiasedLocking::preserve_marks();
 546         }
 547 
 548         // Do collection work
 549         {
 550           // Note on ref discovery: For what appear to be historical reasons,
 551           // GCH enables and disabled (by enqueing) refs discovery.
 552           // In the future this should be moved into the generation's
 553           // collect method so that ref discovery and enqueueing concerns
 554           // are local to a generation. The collect method could return
 555           // an appropriate indication in the case that notification on
 556           // the ref lock was needed. This will make the treatment of
 557           // weak refs more uniform (and indeed remove such concerns
 558           // from GCH). XXX
 559 
 560           HandleMark hm;  // Discard invalid handles created during gc
 561           save_marks();   // save marks for all gens
 562           // We want to discover references, but not process them yet.
 563           // This mode is disabled in process_discovered_references if the
 564           // generation does some collection work, or in
 565           // enqueue_discovered_references if the generation returns
 566           // without doing any work.
 567           ReferenceProcessor* rp = _gens[i]->ref_processor();
 568           // If the discovery of ("weak") refs in this generation is
 569           // atomic wrt other collectors in this configuration, we
 570           // are guaranteed to have empty discovered ref lists.
 571           if (rp->discovery_is_atomic()) {
 572             rp->verify_no_references_recorded();
 573             rp->enable_discovery();
 574             rp->setup_policy(do_clear_all_soft_refs);
 575           } else {
 576             // collect() below will enable discovery as appropriate
 577           }
 578           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 579           if (!rp->enqueuing_is_done()) {
 580             rp->enqueue_discovered_references();
 581           } else {
 582             rp->set_enqueuing_is_done(false);
 583           }
 584           rp->verify_no_references_recorded();
 585         }
 586         max_level_collected = i;
 587 
 588         // Determine if allocation request was met.
 589         if (size > 0) {
 590           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 591             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 592               size = 0;
 593             }
 594           }
 595         }
 596 
 597         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 598 
 599         _gens[i]->stat_record()->accumulated_time.stop();
 600 
 601         update_gc_stats(i, full);
 602 
 603         if (VerifyAfterGC && i >= VerifyGCLevel &&
 604             total_collections() >= VerifyGCStartAt) {
 605           HandleMark hm;  // Discard invalid handles created during verification
 606           gclog_or_tty->print(" VerifyAfterGC:");
 607           Universe::verify(false);
 608         }
 609 
 610         if (PrintGCDetails) {
 611           gclog_or_tty->print(":");
 612           _gens[i]->print_heap_change(prev_used);
 613         }
 614       }
 615     }
 616 
 617     // Update "complete" boolean wrt what actually transpired --
 618     // for instance, a promotion failure could have led to
 619     // a whole heap collection.
 620     complete = complete || (max_level_collected == n_gens() - 1);
 621 
 622     if (complete) { // We did a "major" collection
 623       post_full_gc_dump();   // do any post full gc dumps
 624     }
 625 
 626     if (PrintGCDetails) {
 627       print_heap_change(gch_prev_used);
 628 
 629       // Print perm gen info for full GC with PrintGCDetails flag.
 630       if (complete) {
 631         print_perm_heap_change(perm_prev_used);
 632       }
 633     }
 634 
 635     for (int j = max_level_collected; j >= 0; j -= 1) {
 636       // Adjust generation sizes.
 637       _gens[j]->compute_new_size();
 638     }
 639 
 640     if (complete) {
 641       // Ask the permanent generation to adjust size for full collections
 642       perm()->compute_new_size();
 643       update_full_collections_completed();
 644     }
 645 
 646     // Track memory usage and detect low memory after GC finishes
 647     MemoryService::track_memory_usage();
 648 
 649     gc_epilogue(complete);
 650 
 651     if (must_restore_marks_for_biased_locking) {
 652       BiasedLocking::restore_marks();
 653     }
 654   }
 655 
 656   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
 657   AdaptiveSizePolicyOutput(sp, total_collections());
 658 
 659   if (PrintHeapAtGC) {
 660     Universe::print_heap_after_gc();
 661   }
 662 
 663 #ifdef TRACESPINNING
 664   ParallelTaskTerminator::print_termination_counts();
 665 #endif
 666 
 667   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
 668     tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
 669     vm_exit(-1);
 670   }
 671 }
 672 
 673 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 674   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 675 }
 676 
 677 void GenCollectedHeap::set_par_threads(int t) {
 678   SharedHeap::set_par_threads(t);
 679   _gen_process_strong_tasks->set_n_threads(t);
 680 }
 681 
 682 class AssertIsPermClosure: public OopClosure {
 683 public:
 684   void do_oop(oop* p) {
 685     assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm.");
 686   }
 687   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 688 };
 689 static AssertIsPermClosure assert_is_perm_closure;
 690 
 691 void GenCollectedHeap::
 692 gen_process_strong_roots(int level,
 693                          bool younger_gens_as_roots,
 694                          bool activate_scope,
 695                          bool collecting_perm_gen,
 696                          SharedHeap::ScanningOption so,
 697                          OopsInGenClosure* not_older_gens,
 698                          bool do_code_roots,
 699                          OopsInGenClosure* older_gens) {
 700   // General strong roots.
 701 
 702   if (!do_code_roots) {
 703     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
 704                                      not_older_gens, NULL, older_gens);
 705   } else {
 706     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
 707     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
 708     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
 709                                      not_older_gens, &code_roots, older_gens);
 710   }
 711 
 712   if (younger_gens_as_roots) {
 713     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 714       for (int i = 0; i < level; i++) {
 715         not_older_gens->set_generation(_gens[i]);
 716         _gens[i]->oop_iterate(not_older_gens);
 717       }
 718       not_older_gens->reset_generation();
 719     }
 720   }
 721   // When collection is parallel, all threads get to cooperate to do
 722   // older-gen scanning.
 723   for (int i = level+1; i < _n_gens; i++) {
 724     older_gens->set_generation(_gens[i]);
 725     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 726     older_gens->reset_generation();
 727   }
 728 
 729   _gen_process_strong_tasks->all_tasks_completed();
 730 }
 731 
 732 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
 733                                               CodeBlobClosure* code_roots,
 734                                               OopClosure* non_root_closure) {
 735   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
 736   // "Local" "weak" refs
 737   for (int i = 0; i < _n_gens; i++) {
 738     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 739   }
 740 }
 741 
 742 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 743 void GenCollectedHeap::                                                 \
 744 oop_since_save_marks_iterate(int level,                                 \
 745                              OopClosureType* cur,                       \
 746                              OopClosureType* older) {                   \
 747   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 748   for (int i = level+1; i < n_gens(); i++) {                            \
 749     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 750   }                                                                     \
 751   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
 752 }
 753 
 754 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 755 
 756 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 757 
 758 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 759   for (int i = level; i < _n_gens; i++) {
 760     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 761   }
 762   return perm_gen()->no_allocs_since_save_marks();
 763 }
 764 
 765 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 766   return _gens[0]->supports_inline_contig_alloc();
 767 }
 768 
 769 HeapWord** GenCollectedHeap::top_addr() const {
 770   return _gens[0]->top_addr();
 771 }
 772 
 773 HeapWord** GenCollectedHeap::end_addr() const {
 774   return _gens[0]->end_addr();
 775 }
 776 
 777 size_t GenCollectedHeap::unsafe_max_alloc() {
 778   return _gens[0]->unsafe_max_alloc_nogc();
 779 }
 780 
 781 // public collection interfaces
 782 
 783 void GenCollectedHeap::collect(GCCause::Cause cause) {
 784   if (should_do_concurrent_full_gc(cause)) {
 785 #ifndef SERIALGC
 786     // mostly concurrent full collection
 787     collect_mostly_concurrent(cause);
 788 #else  // SERIALGC
 789     ShouldNotReachHere();
 790 #endif // SERIALGC
 791   } else {
 792 #ifdef ASSERT
 793     if (cause == GCCause::_scavenge_alot) {
 794       // minor collection only
 795       collect(cause, 0);
 796     } else {
 797       // Stop-the-world full collection
 798       collect(cause, n_gens() - 1);
 799     }
 800 #else
 801     // Stop-the-world full collection
 802     collect(cause, n_gens() - 1);
 803 #endif
 804   }
 805 }
 806 
 807 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 808   // The caller doesn't have the Heap_lock
 809   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 810   MutexLocker ml(Heap_lock);
 811   collect_locked(cause, max_level);
 812 }
 813 
 814 // This interface assumes that it's being called by the
 815 // vm thread. It collects the heap assuming that the
 816 // heap lock is already held and that we are executing in
 817 // the context of the vm thread.
 818 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 819   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 820   assert(Heap_lock->is_locked(), "Precondition#2");
 821   GCCauseSetter gcs(this, cause);
 822   switch (cause) {
 823     case GCCause::_heap_inspection:
 824     case GCCause::_heap_dump: {
 825       HandleMark hm;
 826       do_full_collection(false,         // don't clear all soft refs
 827                          n_gens() - 1);
 828       break;
 829     }
 830     default: // XXX FIX ME
 831       ShouldNotReachHere(); // Unexpected use of this function
 832   }
 833 }
 834 
 835 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 836   // The caller has the Heap_lock
 837   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 838   collect_locked(cause, n_gens() - 1);
 839 }
 840 
 841 // this is the private collection interface
 842 // The Heap_lock is expected to be held on entry.
 843 
 844 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 845   if (_preloading_shared_classes) {
 846     warning("\nThe permanent generation is not large enough to preload "
 847             "requested classes.\nUse -XX:PermSize= to increase the initial "
 848             "size of the permanent generation.\n");
 849     vm_exit(2);
 850   }
 851   // Read the GC count while holding the Heap_lock
 852   unsigned int gc_count_before      = total_collections();
 853   unsigned int full_gc_count_before = total_full_collections();
 854   {
 855     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 856     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 857                          cause, max_level);
 858     VMThread::execute(&op);
 859   }
 860 }
 861 
 862 #ifndef SERIALGC
 863 bool GenCollectedHeap::create_cms_collector() {
 864 
 865   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
 866          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
 867          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
 868          "Unexpected generation kinds");
 869   // Skip two header words in the block content verification
 870   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 871   CMSCollector* collector = new CMSCollector(
 872     (ConcurrentMarkSweepGeneration*)_gens[1],
 873     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
 874     _rem_set->as_CardTableRS(),
 875     (ConcurrentMarkSweepPolicy*) collector_policy());
 876 
 877   if (collector == NULL || !collector->completed_initialization()) {
 878     if (collector) {
 879       delete collector;  // Be nice in embedded situation
 880     }
 881     vm_shutdown_during_initialization("Could not create CMS collector");
 882     return false;
 883   }
 884   return true;  // success
 885 }
 886 
 887 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 888   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 889 
 890   MutexLocker ml(Heap_lock);
 891   // Read the GC counts while holding the Heap_lock
 892   unsigned int full_gc_count_before = total_full_collections();
 893   unsigned int gc_count_before      = total_collections();
 894   {
 895     MutexUnlocker mu(Heap_lock);
 896     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 897     VMThread::execute(&op);
 898   }
 899 }
 900 #endif // SERIALGC
 901 
 902 
 903 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 904                                           int max_level) {
 905   int local_max_level;
 906   if (!incremental_collection_will_fail() &&
 907       gc_cause() == GCCause::_gc_locker) {
 908     local_max_level = 0;
 909   } else {
 910     local_max_level = max_level;
 911   }
 912 
 913   do_collection(true                 /* full */,
 914                 clear_all_soft_refs  /* clear_all_soft_refs */,
 915                 0                    /* size */,
 916                 false                /* is_tlab */,
 917                 local_max_level      /* max_level */);
 918   // Hack XXX FIX ME !!!
 919   // A scavenge may not have been attempted, or may have
 920   // been attempted and failed, because the old gen was too full
 921   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 922       incremental_collection_will_fail()) {
 923     if (PrintGCDetails) {
 924       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 925                              "because scavenge failed");
 926     }
 927     // This time allow the old gen to be collected as well
 928     do_collection(true                 /* full */,
 929                   clear_all_soft_refs  /* clear_all_soft_refs */,
 930                   0                    /* size */,
 931                   false                /* is_tlab */,
 932                   n_gens() - 1         /* max_level */);
 933   }
 934 }
 935 
 936 // Returns "TRUE" iff "p" points into the allocated area of the heap.
 937 bool GenCollectedHeap::is_in(const void* p) const {
 938   #ifndef ASSERT
 939   guarantee(VerifyBeforeGC   ||
 940             VerifyDuringGC   ||
 941             VerifyBeforeExit ||
 942             PrintAssembly    ||
 943             tty->count() != 0 ||   // already printing
 944             VerifyAfterGC    ||
 945     VMError::fatal_error_in_progress(), "too expensive");
 946 
 947   #endif
 948   // This might be sped up with a cache of the last generation that
 949   // answered yes.
 950   for (int i = 0; i < _n_gens; i++) {
 951     if (_gens[i]->is_in(p)) return true;
 952   }
 953   if (_perm_gen->as_gen()->is_in(p)) return true;
 954   // Otherwise...
 955   return false;
 956 }
 957 
 958 // Returns "TRUE" iff "p" points into the allocated area of the heap.
 959 bool GenCollectedHeap::is_in_youngest(void* p) {
 960   return _gens[0]->is_in(p);
 961 }
 962 
 963 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
 964   for (int i = 0; i < _n_gens; i++) {
 965     _gens[i]->oop_iterate(cl);
 966   }
 967 }
 968 
 969 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
 970   for (int i = 0; i < _n_gens; i++) {
 971     _gens[i]->oop_iterate(mr, cl);
 972   }
 973 }
 974 
 975 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 976   for (int i = 0; i < _n_gens; i++) {
 977     _gens[i]->object_iterate(cl);
 978   }
 979   perm_gen()->object_iterate(cl);
 980 }
 981 
 982 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 983   for (int i = 0; i < _n_gens; i++) {
 984     _gens[i]->safe_object_iterate(cl);
 985   }
 986   perm_gen()->safe_object_iterate(cl);
 987 }
 988 
 989 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
 990   for (int i = 0; i < _n_gens; i++) {
 991     _gens[i]->object_iterate_since_last_GC(cl);
 992   }
 993 }
 994 
 995 Space* GenCollectedHeap::space_containing(const void* addr) const {
 996   for (int i = 0; i < _n_gens; i++) {
 997     Space* res = _gens[i]->space_containing(addr);
 998     if (res != NULL) return res;
 999   }
1000   Space* res = perm_gen()->space_containing(addr);
1001   if (res != NULL) return res;
1002   // Otherwise...
1003   assert(false, "Could not find containing space");
1004   return NULL;
1005 }
1006 
1007 
1008 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1009   assert(is_in_reserved(addr), "block_start of address outside of heap");
1010   for (int i = 0; i < _n_gens; i++) {
1011     if (_gens[i]->is_in_reserved(addr)) {
1012       assert(_gens[i]->is_in(addr),
1013              "addr should be in allocated part of generation");
1014       return _gens[i]->block_start(addr);
1015     }
1016   }
1017   if (perm_gen()->is_in_reserved(addr)) {
1018     assert(perm_gen()->is_in(addr),
1019            "addr should be in allocated part of perm gen");
1020     return perm_gen()->block_start(addr);
1021   }
1022   assert(false, "Some generation should contain the address");
1023   return NULL;
1024 }
1025 
1026 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1027   assert(is_in_reserved(addr), "block_size of address outside of heap");
1028   for (int i = 0; i < _n_gens; i++) {
1029     if (_gens[i]->is_in_reserved(addr)) {
1030       assert(_gens[i]->is_in(addr),
1031              "addr should be in allocated part of generation");
1032       return _gens[i]->block_size(addr);
1033     }
1034   }
1035   if (perm_gen()->is_in_reserved(addr)) {
1036     assert(perm_gen()->is_in(addr),
1037            "addr should be in allocated part of perm gen");
1038     return perm_gen()->block_size(addr);
1039   }
1040   assert(false, "Some generation should contain the address");
1041   return 0;
1042 }
1043 
1044 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1045   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1046   assert(block_start(addr) == addr, "addr must be a block start");
1047   for (int i = 0; i < _n_gens; i++) {
1048     if (_gens[i]->is_in_reserved(addr)) {
1049       return _gens[i]->block_is_obj(addr);
1050     }
1051   }
1052   if (perm_gen()->is_in_reserved(addr)) {
1053     return perm_gen()->block_is_obj(addr);
1054   }
1055   assert(false, "Some generation should contain the address");
1056   return false;
1057 }
1058 
1059 bool GenCollectedHeap::supports_tlab_allocation() const {
1060   for (int i = 0; i < _n_gens; i += 1) {
1061     if (_gens[i]->supports_tlab_allocation()) {
1062       return true;
1063     }
1064   }
1065   return false;
1066 }
1067 
1068 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1069   size_t result = 0;
1070   for (int i = 0; i < _n_gens; i += 1) {
1071     if (_gens[i]->supports_tlab_allocation()) {
1072       result += _gens[i]->tlab_capacity();
1073     }
1074   }
1075   return result;
1076 }
1077 
1078 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1079   size_t result = 0;
1080   for (int i = 0; i < _n_gens; i += 1) {
1081     if (_gens[i]->supports_tlab_allocation()) {
1082       result += _gens[i]->unsafe_max_tlab_alloc();
1083     }
1084   }
1085   return result;
1086 }
1087 
1088 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1089   bool gc_overhead_limit_was_exceeded;
1090   HeapWord* result = mem_allocate(size   /* size */,
1091                                   false  /* is_large_noref */,
1092                                   true   /* is_tlab */,
1093                                   &gc_overhead_limit_was_exceeded);
1094   return result;
1095 }
1096 
1097 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1098 // from the list headed by "*prev_ptr".
1099 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1100   bool first = true;
1101   size_t min_size = 0;   // "first" makes this conceptually infinite.
1102   ScratchBlock **smallest_ptr, *smallest;
1103   ScratchBlock  *cur = *prev_ptr;
1104   while (cur) {
1105     assert(*prev_ptr == cur, "just checking");
1106     if (first || cur->num_words < min_size) {
1107       smallest_ptr = prev_ptr;
1108       smallest     = cur;
1109       min_size     = smallest->num_words;
1110       first        = false;
1111     }
1112     prev_ptr = &cur->next;
1113     cur     =  cur->next;
1114   }
1115   smallest      = *smallest_ptr;
1116   *smallest_ptr = smallest->next;
1117   return smallest;
1118 }
1119 
1120 // Sort the scratch block list headed by res into decreasing size order,
1121 // and set "res" to the result.
1122 static void sort_scratch_list(ScratchBlock*& list) {
1123   ScratchBlock* sorted = NULL;
1124   ScratchBlock* unsorted = list;
1125   while (unsorted) {
1126     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1127     smallest->next  = sorted;
1128     sorted          = smallest;
1129   }
1130   list = sorted;
1131 }
1132 
1133 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1134                                                size_t max_alloc_words) {
1135   ScratchBlock* res = NULL;
1136   for (int i = 0; i < _n_gens; i++) {
1137     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1138   }
1139   sort_scratch_list(res);
1140   return res;
1141 }
1142 
1143 void GenCollectedHeap::release_scratch() {
1144   for (int i = 0; i < _n_gens; i++) {
1145     _gens[i]->reset_scratch();
1146   }
1147 }
1148 
1149 size_t GenCollectedHeap::large_typearray_limit() {
1150   return gen_policy()->large_typearray_limit();
1151 }
1152 
1153 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1154   void do_generation(Generation* gen) {
1155     gen->prepare_for_verify();
1156   }
1157 };
1158 
1159 void GenCollectedHeap::prepare_for_verify() {
1160   ensure_parsability(false);        // no need to retire TLABs
1161   GenPrepareForVerifyClosure blk;
1162   generation_iterate(&blk, false);
1163   perm_gen()->prepare_for_verify();
1164 }
1165 
1166 
1167 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1168                                           bool old_to_young) {
1169   if (old_to_young) {
1170     for (int i = _n_gens-1; i >= 0; i--) {
1171       cl->do_generation(_gens[i]);
1172     }
1173   } else {
1174     for (int i = 0; i < _n_gens; i++) {
1175       cl->do_generation(_gens[i]);
1176     }
1177   }
1178 }
1179 
1180 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1181   for (int i = 0; i < _n_gens; i++) {
1182     _gens[i]->space_iterate(cl, true);
1183   }
1184   perm_gen()->space_iterate(cl, true);
1185 }
1186 
1187 bool GenCollectedHeap::is_maximal_no_gc() const {
1188   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
1189     if (!_gens[i]->is_maximal_no_gc()) {
1190       return false;
1191     }
1192   }
1193   return true;
1194 }
1195 
1196 void GenCollectedHeap::save_marks() {
1197   for (int i = 0; i < _n_gens; i++) {
1198     _gens[i]->save_marks();
1199   }
1200   perm_gen()->save_marks();
1201 }
1202 
1203 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
1204   for (int i = 0; i <= collectedGen; i++) {
1205     _gens[i]->compute_new_size();
1206   }
1207 }
1208 
1209 GenCollectedHeap* GenCollectedHeap::heap() {
1210   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1211   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1212   return _gch;
1213 }
1214 
1215 
1216 void GenCollectedHeap::prepare_for_compaction() {
1217   Generation* scanning_gen = _gens[_n_gens-1];
1218   // Start by compacting into same gen.
1219   CompactPoint cp(scanning_gen, NULL, NULL);
1220   while (scanning_gen != NULL) {
1221     scanning_gen->prepare_for_compaction(&cp);
1222     scanning_gen = prev_gen(scanning_gen);
1223   }
1224 }
1225 
1226 GCStats* GenCollectedHeap::gc_stats(int level) const {
1227   return _gens[level]->gc_stats();
1228 }
1229 
1230 void GenCollectedHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
1231   if (!silent) {
1232     gclog_or_tty->print("permgen ");
1233   }
1234   perm_gen()->verify(allow_dirty);
1235   for (int i = _n_gens-1; i >= 0; i--) {
1236     Generation* g = _gens[i];
1237     if (!silent) {
1238       gclog_or_tty->print(g->name());
1239       gclog_or_tty->print(" ");
1240     }
1241     g->verify(allow_dirty);
1242   }
1243   if (!silent) {
1244     gclog_or_tty->print("remset ");
1245   }
1246   rem_set()->verify();
1247   if (!silent) {
1248      gclog_or_tty->print("ref_proc ");
1249   }
1250   ReferenceProcessor::verify();
1251 }
1252 
1253 void GenCollectedHeap::print() const { print_on(tty); }
1254 void GenCollectedHeap::print_on(outputStream* st) const {
1255   for (int i = 0; i < _n_gens; i++) {
1256     _gens[i]->print_on(st);
1257   }
1258   perm_gen()->print_on(st);
1259 }
1260 
1261 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1262   if (workers() != NULL) {
1263     workers()->threads_do(tc);
1264   }
1265 #ifndef SERIALGC
1266   if (UseConcMarkSweepGC) {
1267     ConcurrentMarkSweepThread::threads_do(tc);
1268   }
1269 #endif // SERIALGC
1270 }
1271 
1272 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1273 #ifndef SERIALGC
1274   if (UseParNewGC) {
1275     workers()->print_worker_threads_on(st);
1276   }
1277   if (UseConcMarkSweepGC) {
1278     ConcurrentMarkSweepThread::print_all_on(st);
1279   }
1280 #endif // SERIALGC
1281 }
1282 
1283 void GenCollectedHeap::print_tracing_info() const {
1284   if (TraceGen0Time) {
1285     get_gen(0)->print_summary_info();
1286   }
1287   if (TraceGen1Time) {
1288     get_gen(1)->print_summary_info();
1289   }
1290 }
1291 
1292 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1293   if (PrintGCDetails && Verbose) {
1294     gclog_or_tty->print(" "  SIZE_FORMAT
1295                         "->" SIZE_FORMAT
1296                         "("  SIZE_FORMAT ")",
1297                         prev_used, used(), capacity());
1298   } else {
1299     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1300                         "->" SIZE_FORMAT "K"
1301                         "("  SIZE_FORMAT "K)",
1302                         prev_used / K, used() / K, capacity() / K);
1303   }
1304 }
1305 
1306 //New method to print perm gen info with PrintGCDetails flag
1307 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
1308   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
1309   perm_gen()->print_heap_change(perm_prev_used);
1310   gclog_or_tty->print("]");
1311 }
1312 
1313 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1314  private:
1315   bool _full;
1316  public:
1317   void do_generation(Generation* gen) {
1318     gen->gc_prologue(_full);
1319   }
1320   GenGCPrologueClosure(bool full) : _full(full) {};
1321 };
1322 
1323 void GenCollectedHeap::gc_prologue(bool full) {
1324   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1325 
1326   always_do_update_barrier = false;
1327   // Fill TLAB's and such
1328   CollectedHeap::accumulate_statistics_all_tlabs();
1329   ensure_parsability(true);   // retire TLABs
1330 
1331   // Call allocation profiler
1332   AllocationProfiler::iterate_since_last_gc();
1333   // Walk generations
1334   GenGCPrologueClosure blk(full);
1335   generation_iterate(&blk, false);  // not old-to-young.
1336   perm_gen()->gc_prologue(full);
1337 };
1338 
1339 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1340  private:
1341   bool _full;
1342  public:
1343   void do_generation(Generation* gen) {
1344     gen->gc_epilogue(_full);
1345   }
1346   GenGCEpilogueClosure(bool full) : _full(full) {};
1347 };
1348 
1349 void GenCollectedHeap::gc_epilogue(bool full) {
1350   // Remember if a partial collection of the heap failed, and
1351   // we did a complete collection.
1352   if (full && incremental_collection_will_fail()) {
1353     set_last_incremental_collection_failed();
1354   } else {
1355     clear_last_incremental_collection_failed();
1356   }
1357   // Clear the flag, if set; the generation gc_epilogues will set the
1358   // flag again if the condition persists despite the collection.
1359   clear_incremental_collection_will_fail();
1360 
1361 #ifdef COMPILER2
1362   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1363   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1364   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1365 #endif /* COMPILER2 */
1366 
1367   resize_all_tlabs();
1368 
1369   GenGCEpilogueClosure blk(full);
1370   generation_iterate(&blk, false);  // not old-to-young.
1371   perm_gen()->gc_epilogue(full);
1372 
1373   always_do_update_barrier = UseConcMarkSweepGC;
1374 };
1375 
1376 #ifndef PRODUCT
1377 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1378  private:
1379  public:
1380   void do_generation(Generation* gen) {
1381     gen->record_spaces_top();
1382   }
1383 };
1384 
1385 void GenCollectedHeap::record_gen_tops_before_GC() {
1386   if (ZapUnusedHeapArea) {
1387     GenGCSaveTopsBeforeGCClosure blk;
1388     generation_iterate(&blk, false);  // not old-to-young.
1389     perm_gen()->record_spaces_top();
1390   }
1391 }
1392 #endif  // not PRODUCT
1393 
1394 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1395  public:
1396   void do_generation(Generation* gen) {
1397     gen->ensure_parsability();
1398   }
1399 };
1400 
1401 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1402   CollectedHeap::ensure_parsability(retire_tlabs);
1403   GenEnsureParsabilityClosure ep_cl;
1404   generation_iterate(&ep_cl, false);
1405   perm_gen()->ensure_parsability();
1406 }
1407 
1408 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
1409                                               oop obj,
1410                                               size_t obj_size) {
1411   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1412   HeapWord* result = NULL;
1413 
1414   // First give each higher generation a chance to allocate the promoted object.
1415   Generation* allocator = next_gen(gen);
1416   if (allocator != NULL) {
1417     do {
1418       result = allocator->allocate(obj_size, false);
1419     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
1420   }
1421 
1422   if (result == NULL) {
1423     // Then give gen and higher generations a chance to expand and allocate the
1424     // object.
1425     do {
1426       result = gen->expand_and_allocate(obj_size, false);
1427     } while (result == NULL && (gen = next_gen(gen)) != NULL);
1428   }
1429 
1430   if (result != NULL) {
1431     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1432   }
1433   return oop(result);
1434 }
1435 
1436 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1437   jlong _time;   // in ms
1438   jlong _now;    // in ms
1439 
1440  public:
1441   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1442 
1443   jlong time() { return _time; }
1444 
1445   void do_generation(Generation* gen) {
1446     _time = MIN2(_time, gen->time_of_last_gc(_now));
1447   }
1448 };
1449 
1450 jlong GenCollectedHeap::millis_since_last_gc() {
1451   jlong now = os::javaTimeMillis();
1452   GenTimeOfLastGCClosure tolgc_cl(now);
1453   // iterate over generations getting the oldest
1454   // time that a generation was collected
1455   generation_iterate(&tolgc_cl, false);
1456   tolgc_cl.do_generation(perm_gen());
1457   // XXX Despite the assert above, since javaTimeMillis()
1458   // doesnot guarantee monotonically increasing return
1459   // values (note, i didn't say "strictly monotonic"),
1460   // we need to guard against getting back a time
1461   // later than now. This should be fixed by basing
1462   // on someting like gethrtime() which guarantees
1463   // monotonicity. Note that cond_wait() is susceptible
1464   // to a similar problem, because its interface is
1465   // based on absolute time in the form of the
1466   // system time's notion of UCT. See also 4506635
1467   // for yet another problem of similar nature. XXX
1468   jlong retVal = now - tolgc_cl.time();
1469   if (retVal < 0) {
1470     NOT_PRODUCT(warning("time warp: %d", retVal);)
1471     return 0;
1472   }
1473   return retVal;
1474 }