1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Thread-Local Edens support
  26 
  27 # include "incls/_precompiled.incl"
  28 # include "incls/_threadLocalAllocBuffer.cpp.incl"
  29 
  30 // static member initialization
  31 unsigned         ThreadLocalAllocBuffer::_target_refills = 0;
  32 GlobalTLABStats* ThreadLocalAllocBuffer::_global_stats   = NULL;
  33 
  34 void ThreadLocalAllocBuffer::clear_before_allocation() {
  35   _slow_refill_waste += (unsigned)remaining();
  36   make_parsable(true);   // also retire the TLAB
  37 }
  38 
  39 void ThreadLocalAllocBuffer::accumulate_statistics_before_gc() {
  40   global_stats()->initialize();
  41 
  42   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
  43     thread->tlab().accumulate_statistics();
  44     thread->tlab().initialize_statistics();
  45   }
  46 
  47   // Publish new stats if some allocation occurred.
  48   if (global_stats()->allocation() != 0) {
  49     global_stats()->publish();
  50     if (PrintTLAB) {
  51       global_stats()->print();
  52     }
  53   }
  54 }
  55 
  56 void ThreadLocalAllocBuffer::accumulate_statistics() {
  57   size_t capacity = Universe::heap()->tlab_capacity(myThread()) / HeapWordSize;
  58   size_t unused   = Universe::heap()->unsafe_max_tlab_alloc(myThread()) / HeapWordSize;
  59   size_t used     = capacity - unused;
  60 
  61   // Update allocation history if a reasonable amount of eden was allocated.
  62   bool update_allocation_history = used > 0.5 * capacity;
  63 
  64   _gc_waste += (unsigned)remaining();
  65 
  66   if (PrintTLAB && (_number_of_refills > 0 || Verbose)) {
  67     print_stats("gc");
  68   }
  69 
  70   if (_number_of_refills > 0) {
  71 
  72     if (update_allocation_history) {
  73       // Average the fraction of eden allocated in a tlab by this
  74       // thread for use in the next resize operation.
  75       // _gc_waste is not subtracted because it's included in
  76       // "used".
  77       size_t allocation = _number_of_refills * desired_size();
  78       double alloc_frac = allocation / (double) used;
  79       _allocation_fraction.sample(alloc_frac);
  80     }
  81     global_stats()->update_allocating_threads();
  82     global_stats()->update_number_of_refills(_number_of_refills);
  83     global_stats()->update_allocation(_number_of_refills * desired_size());
  84     global_stats()->update_gc_waste(_gc_waste);
  85     global_stats()->update_slow_refill_waste(_slow_refill_waste);
  86     global_stats()->update_fast_refill_waste(_fast_refill_waste);
  87 
  88   } else {
  89     assert(_number_of_refills == 0 && _fast_refill_waste == 0 &&
  90            _slow_refill_waste == 0 && _gc_waste          == 0,
  91            "tlab stats == 0");
  92   }
  93   global_stats()->update_slow_allocations(_slow_allocations);
  94 }
  95 
  96 // Fills the current tlab with a dummy filler array to create
  97 // an illusion of a contiguous Eden and optionally retires the tlab.
  98 // Waste accounting should be done in caller as appropriate; see,
  99 // for example, clear_before_allocation().
 100 void ThreadLocalAllocBuffer::make_parsable(bool retire) {
 101   if (end() != NULL) {
 102     invariants();
 103     CollectedHeap::fill_with_object(top(), hard_end(), retire);
 104 
 105     if (retire || ZeroTLAB) {  // "Reset" the TLAB
 106       set_start(NULL);
 107       set_top(NULL);
 108       set_pf_top(NULL);
 109       set_end(NULL);
 110     }
 111   }
 112   assert(!(retire || ZeroTLAB)  ||
 113          (start() == NULL && end() == NULL && top() == NULL),
 114          "TLAB must be reset");
 115 }
 116 
 117 void ThreadLocalAllocBuffer::resize_all_tlabs() {
 118   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 119     thread->tlab().resize();
 120   }
 121 }
 122 
 123 void ThreadLocalAllocBuffer::resize() {
 124 
 125   if (ResizeTLAB) {
 126     // Compute the next tlab size using expected allocation amount
 127     size_t alloc = (size_t)(_allocation_fraction.average() *
 128                             (Universe::heap()->tlab_capacity(myThread()) / HeapWordSize));
 129     size_t new_size = alloc / _target_refills;
 130 
 131     new_size = MIN2(MAX2(new_size, min_size()), max_size());
 132 
 133     size_t aligned_new_size = align_object_size(new_size);
 134 
 135     if (PrintTLAB && Verbose) {
 136       gclog_or_tty->print("TLAB new size: thread: " INTPTR_FORMAT " [id: %2d]"
 137                           " refills %d  alloc: %8.6f desired_size: " SIZE_FORMAT " -> " SIZE_FORMAT "\n",
 138                           myThread(), myThread()->osthread()->thread_id(),
 139                           _target_refills, _allocation_fraction.average(), desired_size(), aligned_new_size);
 140     }
 141     set_desired_size(aligned_new_size);
 142 
 143     set_refill_waste_limit(initial_refill_waste_limit());
 144   }
 145 }
 146 
 147 void ThreadLocalAllocBuffer::initialize_statistics() {
 148     _number_of_refills = 0;
 149     _fast_refill_waste = 0;
 150     _slow_refill_waste = 0;
 151     _gc_waste          = 0;
 152     _slow_allocations  = 0;
 153 }
 154 
 155 void ThreadLocalAllocBuffer::fill(HeapWord* start,
 156                                   HeapWord* top,
 157                                   size_t    new_size) {
 158   _number_of_refills++;
 159   if (PrintTLAB && Verbose) {
 160     print_stats("fill");
 161   }
 162   assert(top <= start + new_size - alignment_reserve(), "size too small");
 163   initialize(start, top, start + new_size - alignment_reserve());
 164 
 165   // Reset amount of internal fragmentation
 166   set_refill_waste_limit(initial_refill_waste_limit());
 167 }
 168 
 169 void ThreadLocalAllocBuffer::initialize(HeapWord* start,
 170                                         HeapWord* top,
 171                                         HeapWord* end) {
 172   set_start(start);
 173   set_top(top);
 174   set_pf_top(top);
 175   set_end(end);
 176   invariants();
 177 }
 178 
 179 void ThreadLocalAllocBuffer::initialize() {
 180   initialize(NULL,                    // start
 181              NULL,                    // top
 182              NULL);                   // end
 183 
 184   set_desired_size(initial_desired_size());
 185 
 186   // Following check is needed because at startup the main (primordial)
 187   // thread is initialized before the heap is.  The initialization for
 188   // this thread is redone in startup_initialization below.
 189   if (Universe::heap() != NULL) {
 190     size_t capacity   = Universe::heap()->tlab_capacity(myThread()) / HeapWordSize;
 191     double alloc_frac = desired_size() * target_refills() / (double) capacity;
 192     _allocation_fraction.sample(alloc_frac);
 193   }
 194 
 195   set_refill_waste_limit(initial_refill_waste_limit());
 196 
 197   initialize_statistics();
 198 }
 199 
 200 void ThreadLocalAllocBuffer::startup_initialization() {
 201 
 202   // Assuming each thread's active tlab is, on average,
 203   // 1/2 full at a GC
 204   _target_refills = 100 / (2 * TLABWasteTargetPercent);
 205   _target_refills = MAX2(_target_refills, (unsigned)1U);
 206 
 207   _global_stats = new GlobalTLABStats();
 208 
 209   // During jvm startup, the main (primordial) thread is initialized
 210   // before the heap is initialized.  So reinitialize it now.
 211   guarantee(Thread::current()->is_Java_thread(), "tlab initialization thread not Java thread");
 212   Thread::current()->tlab().initialize();
 213 
 214   if (PrintTLAB && Verbose) {
 215     gclog_or_tty->print("TLAB min: " SIZE_FORMAT " initial: " SIZE_FORMAT " max: " SIZE_FORMAT "\n",
 216                         min_size(), Thread::current()->tlab().initial_desired_size(), max_size());
 217   }
 218 }
 219 
 220 size_t ThreadLocalAllocBuffer::initial_desired_size() {
 221   size_t init_sz;
 222 
 223   if (TLABSize > 0) {
 224     init_sz = MIN2(TLABSize / HeapWordSize, max_size());
 225   } else if (global_stats() == NULL) {
 226     // Startup issue - main thread initialized before heap initialized.
 227     init_sz = min_size();
 228   } else {
 229     // Initial size is a function of the average number of allocating threads.
 230     unsigned nof_threads = global_stats()->allocating_threads_avg();
 231 
 232     init_sz  = (Universe::heap()->tlab_capacity(myThread()) / HeapWordSize) /
 233                       (nof_threads * target_refills());
 234     init_sz = align_object_size(init_sz);
 235     init_sz = MIN2(MAX2(init_sz, min_size()), max_size());
 236   }
 237   return init_sz;
 238 }
 239 
 240 const size_t ThreadLocalAllocBuffer::max_size() {
 241 
 242   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
 243   // This restriction could be removed by enabling filling with multiple arrays.
 244   // If we compute that the reasonable way as
 245   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
 246   // we'll overflow on the multiply, so we do the divide first.
 247   // We actually lose a little by dividing first,
 248   // but that just makes the TLAB  somewhat smaller than the biggest array,
 249   // which is fine, since we'll be able to fill that.
 250 
 251   size_t unaligned_max_size = typeArrayOopDesc::header_size(T_INT) +
 252                               sizeof(jint) *
 253                               ((juint) max_jint / (size_t) HeapWordSize);
 254   return align_size_down(unaligned_max_size, MinObjAlignment);
 255 }
 256 
 257 void ThreadLocalAllocBuffer::print_stats(const char* tag) {
 258   Thread* thrd = myThread();
 259   size_t waste = _gc_waste + _slow_refill_waste + _fast_refill_waste;
 260   size_t alloc = _number_of_refills * _desired_size;
 261   double waste_percent = alloc == 0 ? 0.0 :
 262                       100.0 * waste / alloc;
 263   size_t tlab_used  = Universe::heap()->tlab_capacity(thrd) -
 264                       Universe::heap()->unsafe_max_tlab_alloc(thrd);
 265   gclog_or_tty->print("TLAB: %s thread: " INTPTR_FORMAT " [id: %2d]"
 266                       " desired_size: " SIZE_FORMAT "KB"
 267                       " slow allocs: %d  refill waste: " SIZE_FORMAT "B"
 268                       " alloc:%8.5f %8.0fKB refills: %d waste %4.1f%% gc: %dB"
 269                       " slow: %dB fast: %dB\n",
 270                       tag, thrd, thrd->osthread()->thread_id(),
 271                       _desired_size / (K / HeapWordSize),
 272                       _slow_allocations, _refill_waste_limit * HeapWordSize,
 273                       _allocation_fraction.average(),
 274                       _allocation_fraction.average() * tlab_used / K,
 275                       _number_of_refills, waste_percent,
 276                       _gc_waste * HeapWordSize,
 277                       _slow_refill_waste * HeapWordSize,
 278                       _fast_refill_waste * HeapWordSize);
 279 }
 280 
 281 void ThreadLocalAllocBuffer::verify() {
 282   HeapWord* p = start();
 283   HeapWord* t = top();
 284   HeapWord* prev_p = NULL;
 285   while (p < t) {
 286     oop(p)->verify();
 287     prev_p = p;
 288     p += oop(p)->size();
 289   }
 290   guarantee(p == top(), "end of last object must match end of space");
 291 }
 292 
 293 Thread* ThreadLocalAllocBuffer::myThread() {
 294   return (Thread*)(((char *)this) +
 295                    in_bytes(start_offset()) -
 296                    in_bytes(Thread::tlab_start_offset()));
 297 }
 298 
 299 
 300 GlobalTLABStats::GlobalTLABStats() :
 301   _allocating_threads_avg(TLABAllocationWeight) {
 302 
 303   initialize();
 304 
 305   _allocating_threads_avg.sample(1); // One allocating thread at startup
 306 
 307   if (UsePerfData) {
 308 
 309     EXCEPTION_MARK;
 310     ResourceMark rm;
 311 
 312     char* cname = PerfDataManager::counter_name("tlab", "allocThreads");
 313     _perf_allocating_threads =
 314       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
 315 
 316     cname = PerfDataManager::counter_name("tlab", "fills");
 317     _perf_total_refills =
 318       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
 319 
 320     cname = PerfDataManager::counter_name("tlab", "maxFills");
 321     _perf_max_refills =
 322       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
 323 
 324     cname = PerfDataManager::counter_name("tlab", "alloc");
 325     _perf_allocation =
 326       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
 327 
 328     cname = PerfDataManager::counter_name("tlab", "gcWaste");
 329     _perf_gc_waste =
 330       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
 331 
 332     cname = PerfDataManager::counter_name("tlab", "maxGcWaste");
 333     _perf_max_gc_waste =
 334       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
 335 
 336     cname = PerfDataManager::counter_name("tlab", "slowWaste");
 337     _perf_slow_refill_waste =
 338       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
 339 
 340     cname = PerfDataManager::counter_name("tlab", "maxSlowWaste");
 341     _perf_max_slow_refill_waste =
 342       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
 343 
 344     cname = PerfDataManager::counter_name("tlab", "fastWaste");
 345     _perf_fast_refill_waste =
 346       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
 347 
 348     cname = PerfDataManager::counter_name("tlab", "maxFastWaste");
 349     _perf_max_fast_refill_waste =
 350       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
 351 
 352     cname = PerfDataManager::counter_name("tlab", "slowAlloc");
 353     _perf_slow_allocations =
 354       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
 355 
 356     cname = PerfDataManager::counter_name("tlab", "maxSlowAlloc");
 357     _perf_max_slow_allocations =
 358       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
 359   }
 360 }
 361 
 362 void GlobalTLABStats::initialize() {
 363   // Clear counters summarizing info from all threads
 364   _allocating_threads      = 0;
 365   _total_refills           = 0;
 366   _max_refills             = 0;
 367   _total_allocation        = 0;
 368   _total_gc_waste          = 0;
 369   _max_gc_waste            = 0;
 370   _total_slow_refill_waste = 0;
 371   _max_slow_refill_waste   = 0;
 372   _total_fast_refill_waste = 0;
 373   _max_fast_refill_waste   = 0;
 374   _total_slow_allocations  = 0;
 375   _max_slow_allocations    = 0;
 376 }
 377 
 378 void GlobalTLABStats::publish() {
 379   _allocating_threads_avg.sample(_allocating_threads);
 380   if (UsePerfData) {
 381     _perf_allocating_threads   ->set_value(_allocating_threads);
 382     _perf_total_refills        ->set_value(_total_refills);
 383     _perf_max_refills          ->set_value(_max_refills);
 384     _perf_allocation           ->set_value(_total_allocation);
 385     _perf_gc_waste             ->set_value(_total_gc_waste);
 386     _perf_max_gc_waste         ->set_value(_max_gc_waste);
 387     _perf_slow_refill_waste    ->set_value(_total_slow_refill_waste);
 388     _perf_max_slow_refill_waste->set_value(_max_slow_refill_waste);
 389     _perf_fast_refill_waste    ->set_value(_total_fast_refill_waste);
 390     _perf_max_fast_refill_waste->set_value(_max_fast_refill_waste);
 391     _perf_slow_allocations     ->set_value(_total_slow_allocations);
 392     _perf_max_slow_allocations ->set_value(_max_slow_allocations);
 393   }
 394 }
 395 
 396 void GlobalTLABStats::print() {
 397   size_t waste = _total_gc_waste + _total_slow_refill_waste + _total_fast_refill_waste;
 398   double waste_percent = _total_allocation == 0 ? 0.0 :
 399                          100.0 * waste / _total_allocation;
 400   gclog_or_tty->print("TLAB totals: thrds: %d  refills: %d max: %d"
 401                       " slow allocs: %d max %d waste: %4.1f%%"
 402                       " gc: " SIZE_FORMAT "B max: " SIZE_FORMAT "B"
 403                       " slow: " SIZE_FORMAT "B max: " SIZE_FORMAT "B"
 404                       " fast: " SIZE_FORMAT "B max: " SIZE_FORMAT "B\n",
 405                       _allocating_threads,
 406                       _total_refills, _max_refills,
 407                       _total_slow_allocations, _max_slow_allocations,
 408                       waste_percent,
 409                       _total_gc_waste * HeapWordSize,
 410                       _max_gc_waste * HeapWordSize,
 411                       _total_slow_refill_waste * HeapWordSize,
 412                       _max_slow_refill_waste * HeapWordSize,
 413                       _total_fast_refill_waste * HeapWordSize,
 414                       _max_fast_refill_waste * HeapWordSize);
 415 }