1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_universe.cpp.incl"
  27 
  28 // Known objects
  29 klassOop Universe::_boolArrayKlassObj                 = NULL;
  30 klassOop Universe::_byteArrayKlassObj                 = NULL;
  31 klassOop Universe::_charArrayKlassObj                 = NULL;
  32 klassOop Universe::_intArrayKlassObj                  = NULL;
  33 klassOop Universe::_shortArrayKlassObj                = NULL;
  34 klassOop Universe::_longArrayKlassObj                 = NULL;
  35 klassOop Universe::_singleArrayKlassObj               = NULL;
  36 klassOop Universe::_doubleArrayKlassObj               = NULL;
  37 klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
  38 klassOop Universe::_objectArrayKlassObj               = NULL;
  39 klassOop Universe::_symbolKlassObj                    = NULL;
  40 klassOop Universe::_methodKlassObj                    = NULL;
  41 klassOop Universe::_constMethodKlassObj               = NULL;
  42 klassOop Universe::_methodDataKlassObj                = NULL;
  43 klassOop Universe::_klassKlassObj                     = NULL;
  44 klassOop Universe::_arrayKlassKlassObj                = NULL;
  45 klassOop Universe::_objArrayKlassKlassObj             = NULL;
  46 klassOop Universe::_typeArrayKlassKlassObj            = NULL;
  47 klassOop Universe::_instanceKlassKlassObj             = NULL;
  48 klassOop Universe::_constantPoolKlassObj              = NULL;
  49 klassOop Universe::_constantPoolCacheKlassObj         = NULL;
  50 klassOop Universe::_compiledICHolderKlassObj          = NULL;
  51 klassOop Universe::_systemObjArrayKlassObj            = NULL;
  52 oop Universe::_int_mirror                             = NULL;
  53 oop Universe::_float_mirror                           = NULL;
  54 oop Universe::_double_mirror                          = NULL;
  55 oop Universe::_byte_mirror                            = NULL;
  56 oop Universe::_bool_mirror                            = NULL;
  57 oop Universe::_char_mirror                            = NULL;
  58 oop Universe::_long_mirror                            = NULL;
  59 oop Universe::_short_mirror                           = NULL;
  60 oop Universe::_void_mirror                            = NULL;
  61 oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
  62 oop Universe::_main_thread_group                      = NULL;
  63 oop Universe::_system_thread_group                    = NULL;
  64 typeArrayOop Universe::_the_empty_byte_array          = NULL;
  65 typeArrayOop Universe::_the_empty_short_array         = NULL;
  66 typeArrayOop Universe::_the_empty_int_array           = NULL;
  67 objArrayOop Universe::_the_empty_system_obj_array     = NULL;
  68 objArrayOop Universe::_the_empty_class_klass_array    = NULL;
  69 objArrayOop Universe::_the_array_interfaces_array     = NULL;
  70 oop Universe::_the_null_string                        = NULL;
  71 oop Universe::_the_min_jint_string                   = NULL;
  72 LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
  73 LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
  74 ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
  75 oop Universe::_out_of_memory_error_java_heap          = NULL;
  76 oop Universe::_out_of_memory_error_perm_gen           = NULL;
  77 oop Universe::_out_of_memory_error_array_size         = NULL;
  78 oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
  79 objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
  80 volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
  81 bool Universe::_verify_in_progress                    = false;
  82 oop Universe::_null_ptr_exception_instance            = NULL;
  83 oop Universe::_arithmetic_exception_instance          = NULL;
  84 oop Universe::_virtual_machine_error_instance         = NULL;
  85 oop Universe::_vm_exception                           = NULL;
  86 oop Universe::_emptySymbol                            = NULL;
  87 
  88 // These variables are guarded by FullGCALot_lock.
  89 debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
  90 debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
  91 
  92 
  93 // Heap
  94 int             Universe::_verify_count = 0;
  95 
  96 int             Universe::_base_vtable_size = 0;
  97 bool            Universe::_bootstrapping = false;
  98 bool            Universe::_fully_initialized = false;
  99 
 100 size_t          Universe::_heap_capacity_at_last_gc;
 101 size_t          Universe::_heap_used_at_last_gc = 0;
 102 
 103 CollectedHeap*  Universe::_collectedHeap = NULL;
 104 
 105 NarrowOopStruct Universe::_narrow_oop = { NULL, 0, true };
 106 
 107 
 108 void Universe::basic_type_classes_do(void f(klassOop)) {
 109   f(boolArrayKlassObj());
 110   f(byteArrayKlassObj());
 111   f(charArrayKlassObj());
 112   f(intArrayKlassObj());
 113   f(shortArrayKlassObj());
 114   f(longArrayKlassObj());
 115   f(singleArrayKlassObj());
 116   f(doubleArrayKlassObj());
 117 }
 118 
 119 
 120 void Universe::system_classes_do(void f(klassOop)) {
 121   f(symbolKlassObj());
 122   f(methodKlassObj());
 123   f(constMethodKlassObj());
 124   f(methodDataKlassObj());
 125   f(klassKlassObj());
 126   f(arrayKlassKlassObj());
 127   f(objArrayKlassKlassObj());
 128   f(typeArrayKlassKlassObj());
 129   f(instanceKlassKlassObj());
 130   f(constantPoolKlassObj());
 131   f(systemObjArrayKlassObj());
 132 }
 133 
 134 void Universe::oops_do(OopClosure* f, bool do_all) {
 135 
 136   f->do_oop((oop*) &_int_mirror);
 137   f->do_oop((oop*) &_float_mirror);
 138   f->do_oop((oop*) &_double_mirror);
 139   f->do_oop((oop*) &_byte_mirror);
 140   f->do_oop((oop*) &_bool_mirror);
 141   f->do_oop((oop*) &_char_mirror);
 142   f->do_oop((oop*) &_long_mirror);
 143   f->do_oop((oop*) &_short_mirror);
 144   f->do_oop((oop*) &_void_mirror);
 145 
 146   // It's important to iterate over these guys even if they are null,
 147   // since that's how shared heaps are restored.
 148   for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
 149     f->do_oop((oop*) &_mirrors[i]);
 150   }
 151   assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
 152 
 153   // %%% Consider moving those "shared oops" over here with the others.
 154   f->do_oop((oop*)&_boolArrayKlassObj);
 155   f->do_oop((oop*)&_byteArrayKlassObj);
 156   f->do_oop((oop*)&_charArrayKlassObj);
 157   f->do_oop((oop*)&_intArrayKlassObj);
 158   f->do_oop((oop*)&_shortArrayKlassObj);
 159   f->do_oop((oop*)&_longArrayKlassObj);
 160   f->do_oop((oop*)&_singleArrayKlassObj);
 161   f->do_oop((oop*)&_doubleArrayKlassObj);
 162   f->do_oop((oop*)&_objectArrayKlassObj);
 163   {
 164     for (int i = 0; i < T_VOID+1; i++) {
 165       if (_typeArrayKlassObjs[i] != NULL) {
 166         assert(i >= T_BOOLEAN, "checking");
 167         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
 168       } else if (do_all) {
 169         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
 170       }
 171     }
 172   }
 173   f->do_oop((oop*)&_symbolKlassObj);
 174   f->do_oop((oop*)&_methodKlassObj);
 175   f->do_oop((oop*)&_constMethodKlassObj);
 176   f->do_oop((oop*)&_methodDataKlassObj);
 177   f->do_oop((oop*)&_klassKlassObj);
 178   f->do_oop((oop*)&_arrayKlassKlassObj);
 179   f->do_oop((oop*)&_objArrayKlassKlassObj);
 180   f->do_oop((oop*)&_typeArrayKlassKlassObj);
 181   f->do_oop((oop*)&_instanceKlassKlassObj);
 182   f->do_oop((oop*)&_constantPoolKlassObj);
 183   f->do_oop((oop*)&_constantPoolCacheKlassObj);
 184   f->do_oop((oop*)&_compiledICHolderKlassObj);
 185   f->do_oop((oop*)&_systemObjArrayKlassObj);
 186   f->do_oop((oop*)&_the_empty_byte_array);
 187   f->do_oop((oop*)&_the_empty_short_array);
 188   f->do_oop((oop*)&_the_empty_int_array);
 189   f->do_oop((oop*)&_the_empty_system_obj_array);
 190   f->do_oop((oop*)&_the_empty_class_klass_array);
 191   f->do_oop((oop*)&_the_array_interfaces_array);
 192   f->do_oop((oop*)&_the_null_string);
 193   f->do_oop((oop*)&_the_min_jint_string);
 194   _finalizer_register_cache->oops_do(f);
 195   _loader_addClass_cache->oops_do(f);
 196   _reflect_invoke_cache->oops_do(f);
 197   f->do_oop((oop*)&_out_of_memory_error_java_heap);
 198   f->do_oop((oop*)&_out_of_memory_error_perm_gen);
 199   f->do_oop((oop*)&_out_of_memory_error_array_size);
 200   f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
 201   if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
 202     f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
 203   }
 204   f->do_oop((oop*)&_null_ptr_exception_instance);
 205   f->do_oop((oop*)&_arithmetic_exception_instance);
 206   f->do_oop((oop*)&_virtual_machine_error_instance);
 207   f->do_oop((oop*)&_main_thread_group);
 208   f->do_oop((oop*)&_system_thread_group);
 209   f->do_oop((oop*)&_vm_exception);
 210   f->do_oop((oop*)&_emptySymbol);
 211   debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
 212 }
 213 
 214 
 215 void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
 216   if (size < alignment || size % alignment != 0) {
 217     ResourceMark rm;
 218     stringStream st;
 219     st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
 220     char* error = st.as_string();
 221     vm_exit_during_initialization(error);
 222   }
 223 }
 224 
 225 
 226 void Universe::genesis(TRAPS) {
 227   ResourceMark rm;
 228   { FlagSetting fs(_bootstrapping, true);
 229 
 230     { MutexLocker mc(Compile_lock);
 231 
 232       // determine base vtable size; without that we cannot create the array klasses
 233       compute_base_vtable_size();
 234 
 235       if (!UseSharedSpaces) {
 236         _klassKlassObj          = klassKlass::create_klass(CHECK);
 237         _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
 238 
 239         _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
 240         _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
 241         _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
 242 
 243         _symbolKlassObj         = symbolKlass::create_klass(CHECK);
 244 
 245         _emptySymbol            = oopFactory::new_symbol("", CHECK);
 246 
 247         _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
 248         _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
 249         _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
 250         _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
 251         _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
 252         _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
 253         _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
 254         _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
 255 
 256         _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
 257         _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
 258         _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
 259         _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
 260         _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
 261         _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
 262         _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
 263         _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
 264 
 265         _methodKlassObj             = methodKlass::create_klass(CHECK);
 266         _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
 267         _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
 268         _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
 269         _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
 270 
 271         _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
 272         _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
 273 
 274         _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
 275         _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
 276         _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
 277         _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
 278 
 279         _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
 280         _vm_exception               = oopFactory::new_symbol("vm exception holder", CHECK);
 281       } else {
 282         FileMapInfo *mapinfo = FileMapInfo::current_info();
 283         char* buffer = mapinfo->region_base(CompactingPermGenGen::md);
 284         void** vtbl_list = (void**)buffer;
 285         init_self_patching_vtbl_list(vtbl_list,
 286                                      CompactingPermGenGen::vtbl_list_size);
 287       }
 288     }
 289 
 290     vmSymbols::initialize(CHECK);
 291 
 292     SystemDictionary::initialize(CHECK);
 293 
 294     klassOop ok = SystemDictionary::Object_klass();
 295 
 296     _the_null_string            = StringTable::intern("null", CHECK);
 297     _the_min_jint_string       = StringTable::intern("-2147483648", CHECK);
 298 
 299     if (UseSharedSpaces) {
 300       // Verify shared interfaces array.
 301       assert(_the_array_interfaces_array->obj_at(0) ==
 302              SystemDictionary::Cloneable_klass(), "u3");
 303       assert(_the_array_interfaces_array->obj_at(1) ==
 304              SystemDictionary::Serializable_klass(), "u3");
 305 
 306       // Verify element klass for system obj array klass
 307       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
 308       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
 309 
 310       // Verify super class for the classes created above
 311       assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
 312       assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
 313       assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
 314       assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
 315       assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
 316       assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
 317       assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
 318       assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
 319       assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
 320       assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
 321     } else {
 322       // Set up shared interfaces array.  (Do this before supers are set up.)
 323       _the_array_interfaces_array->obj_at_put(0, SystemDictionary::Cloneable_klass());
 324       _the_array_interfaces_array->obj_at_put(1, SystemDictionary::Serializable_klass());
 325 
 326       // Set element klass for system obj array klass
 327       objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
 328       objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
 329 
 330       // Set super class for the classes created above
 331       Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
 332       Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
 333       Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
 334       Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
 335       Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
 336       Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
 337       Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
 338       Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
 339       Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
 340       Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
 341       Klass::cast(boolArrayKlassObj()     )->set_super(ok);
 342       Klass::cast(charArrayKlassObj()     )->set_super(ok);
 343       Klass::cast(singleArrayKlassObj()   )->set_super(ok);
 344       Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
 345       Klass::cast(byteArrayKlassObj()     )->set_super(ok);
 346       Klass::cast(shortArrayKlassObj()    )->set_super(ok);
 347       Klass::cast(intArrayKlassObj()      )->set_super(ok);
 348       Klass::cast(longArrayKlassObj()     )->set_super(ok);
 349       Klass::cast(constantPoolKlassObj()  )->set_super(ok);
 350       Klass::cast(systemObjArrayKlassObj())->set_super(ok);
 351     }
 352 
 353     Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
 354     Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
 355     Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
 356     Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
 357     Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
 358     Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
 359     Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
 360     Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
 361     Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
 362     Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
 363   } // end of core bootstrapping
 364 
 365   // Initialize _objectArrayKlass after core bootstraping to make
 366   // sure the super class is set up properly for _objectArrayKlass.
 367   _objectArrayKlassObj = instanceKlass::
 368     cast(SystemDictionary::Object_klass())->array_klass(1, CHECK);
 369   // Add the class to the class hierarchy manually to make sure that
 370   // its vtable is initialized after core bootstrapping is completed.
 371   Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
 372 
 373   // Compute is_jdk version flags.
 374   // Only 1.3 or later has the java.lang.Shutdown class.
 375   // Only 1.4 or later has the java.lang.CharSequence interface.
 376   // Only 1.5 or later has the java.lang.management.MemoryUsage class.
 377   if (JDK_Version::is_partially_initialized()) {
 378     uint8_t jdk_version;
 379     klassOop k = SystemDictionary::resolve_or_null(
 380         vmSymbolHandles::java_lang_management_MemoryUsage(), THREAD);
 381     CLEAR_PENDING_EXCEPTION; // ignore exceptions
 382     if (k == NULL) {
 383       k = SystemDictionary::resolve_or_null(
 384           vmSymbolHandles::java_lang_CharSequence(), THREAD);
 385       CLEAR_PENDING_EXCEPTION; // ignore exceptions
 386       if (k == NULL) {
 387         k = SystemDictionary::resolve_or_null(
 388             vmSymbolHandles::java_lang_Shutdown(), THREAD);
 389         CLEAR_PENDING_EXCEPTION; // ignore exceptions
 390         if (k == NULL) {
 391           jdk_version = 2;
 392         } else {
 393           jdk_version = 3;
 394         }
 395       } else {
 396         jdk_version = 4;
 397       }
 398     } else {
 399       jdk_version = 5;
 400     }
 401     JDK_Version::fully_initialize(jdk_version);
 402   }
 403 
 404   #ifdef ASSERT
 405   if (FullGCALot) {
 406     // Allocate an array of dummy objects.
 407     // We'd like these to be at the bottom of the old generation,
 408     // so that when we free one and then collect,
 409     // (almost) the whole heap moves
 410     // and we find out if we actually update all the oops correctly.
 411     // But we can't allocate directly in the old generation,
 412     // so we allocate wherever, and hope that the first collection
 413     // moves these objects to the bottom of the old generation.
 414     // We can allocate directly in the permanent generation, so we do.
 415     int size;
 416     if (UseConcMarkSweepGC) {
 417       warning("Using +FullGCALot with concurrent mark sweep gc "
 418               "will not force all objects to relocate");
 419       size = FullGCALotDummies;
 420     } else {
 421       size = FullGCALotDummies * 2;
 422     }
 423     objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
 424     objArrayHandle dummy_array(THREAD, naked_array);
 425     int i = 0;
 426     while (i < size) {
 427       if (!UseConcMarkSweepGC) {
 428         // Allocate dummy in old generation
 429         oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_instance(CHECK);
 430         dummy_array->obj_at_put(i++, dummy);
 431       }
 432       // Allocate dummy in permanent generation
 433       oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_permanent_instance(CHECK);
 434       dummy_array->obj_at_put(i++, dummy);
 435     }
 436     {
 437       // Only modify the global variable inside the mutex.
 438       // If we had a race to here, the other dummy_array instances
 439       // and their elements just get dropped on the floor, which is fine.
 440       MutexLocker ml(FullGCALot_lock);
 441       if (_fullgc_alot_dummy_array == NULL) {
 442         _fullgc_alot_dummy_array = dummy_array();
 443       }
 444     }
 445     assert(i == _fullgc_alot_dummy_array->length(), "just checking");
 446   }
 447   #endif
 448 }
 449 
 450 
 451 static inline void add_vtable(void** list, int* n, Klass* o, int count) {
 452   list[(*n)++] = *(void**)&o->vtbl_value();
 453   guarantee((*n) <= count, "vtable list too small.");
 454 }
 455 
 456 
 457 void Universe::init_self_patching_vtbl_list(void** list, int count) {
 458   int n = 0;
 459   { klassKlass o;             add_vtable(list, &n, &o, count); }
 460   { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
 461   { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
 462   { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
 463   { instanceKlass o;          add_vtable(list, &n, &o, count); }
 464   { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
 465   { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
 466   { symbolKlass o;            add_vtable(list, &n, &o, count); }
 467   { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
 468   { methodKlass o;            add_vtable(list, &n, &o, count); }
 469   { constMethodKlass o;       add_vtable(list, &n, &o, count); }
 470   { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
 471   { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
 472   { objArrayKlass o;          add_vtable(list, &n, &o, count); }
 473   { methodDataKlass o;        add_vtable(list, &n, &o, count); }
 474   { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
 475 }
 476 
 477 
 478 class FixupMirrorClosure: public ObjectClosure {
 479  public:
 480   virtual void do_object(oop obj) {
 481     if (obj->is_klass()) {
 482       EXCEPTION_MARK;
 483       KlassHandle k(THREAD, klassOop(obj));
 484       // We will never reach the CATCH below since Exceptions::_throw will cause
 485       // the VM to exit if an exception is thrown during initialization
 486       java_lang_Class::create_mirror(k, CATCH);
 487       // This call unconditionally creates a new mirror for k,
 488       // and links in k's component_mirror field if k is an array.
 489       // If k is an objArray, k's element type must already have
 490       // a mirror.  In other words, this closure must process
 491       // the component type of an objArray k before it processes k.
 492       // This works because the permgen iterator presents arrays
 493       // and their component types in order of creation.
 494     }
 495   }
 496 };
 497 
 498 void Universe::initialize_basic_type_mirrors(TRAPS) {
 499   if (UseSharedSpaces) {
 500     assert(_int_mirror != NULL, "already loaded");
 501     assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
 502   } else {
 503 
 504     assert(_int_mirror==NULL, "basic type mirrors already initialized");
 505     _int_mirror     =
 506       java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
 507     _float_mirror   =
 508       java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
 509     _double_mirror  =
 510       java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
 511     _byte_mirror    =
 512       java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
 513     _bool_mirror    =
 514       java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
 515     _char_mirror    =
 516       java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
 517     _long_mirror    =
 518       java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
 519     _short_mirror   =
 520       java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
 521     _void_mirror    =
 522       java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
 523 
 524     _mirrors[T_INT]     = _int_mirror;
 525     _mirrors[T_FLOAT]   = _float_mirror;
 526     _mirrors[T_DOUBLE]  = _double_mirror;
 527     _mirrors[T_BYTE]    = _byte_mirror;
 528     _mirrors[T_BOOLEAN] = _bool_mirror;
 529     _mirrors[T_CHAR]    = _char_mirror;
 530     _mirrors[T_LONG]    = _long_mirror;
 531     _mirrors[T_SHORT]   = _short_mirror;
 532     _mirrors[T_VOID]    = _void_mirror;
 533     //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
 534     //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
 535   }
 536 }
 537 
 538 void Universe::fixup_mirrors(TRAPS) {
 539   // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
 540   // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
 541   // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
 542   // that the number of objects allocated at this point is very small.
 543   assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded");
 544   FixupMirrorClosure blk;
 545   Universe::heap()->permanent_object_iterate(&blk);
 546 }
 547 
 548 
 549 static bool has_run_finalizers_on_exit = false;
 550 
 551 void Universe::run_finalizers_on_exit() {
 552   if (has_run_finalizers_on_exit) return;
 553   has_run_finalizers_on_exit = true;
 554 
 555   // Called on VM exit. This ought to be run in a separate thread.
 556   if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
 557   {
 558     PRESERVE_EXCEPTION_MARK;
 559     KlassHandle finalizer_klass(THREAD, SystemDictionary::Finalizer_klass());
 560     JavaValue result(T_VOID);
 561     JavaCalls::call_static(
 562       &result,
 563       finalizer_klass,
 564       vmSymbolHandles::run_finalizers_on_exit_name(),
 565       vmSymbolHandles::void_method_signature(),
 566       THREAD
 567     );
 568     // Ignore any pending exceptions
 569     CLEAR_PENDING_EXCEPTION;
 570   }
 571 }
 572 
 573 
 574 // initialize_vtable could cause gc if
 575 // 1) we specified true to initialize_vtable and
 576 // 2) this ran after gc was enabled
 577 // In case those ever change we use handles for oops
 578 void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
 579   // init vtable of k and all subclasses
 580   Klass* ko = k_h()->klass_part();
 581   klassVtable* vt = ko->vtable();
 582   if (vt) vt->initialize_vtable(false, CHECK);
 583   if (ko->oop_is_instance()) {
 584     instanceKlass* ik = (instanceKlass*)ko;
 585     for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
 586       reinitialize_vtable_of(s_h, CHECK);
 587     }
 588   }
 589 }
 590 
 591 
 592 void initialize_itable_for_klass(klassOop k, TRAPS) {
 593   instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
 594 }
 595 
 596 
 597 void Universe::reinitialize_itables(TRAPS) {
 598   SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
 599 
 600 }
 601 
 602 
 603 bool Universe::on_page_boundary(void* addr) {
 604   return ((uintptr_t) addr) % os::vm_page_size() == 0;
 605 }
 606 
 607 
 608 bool Universe::should_fill_in_stack_trace(Handle throwable) {
 609   // never attempt to fill in the stack trace of preallocated errors that do not have
 610   // backtrace. These errors are kept alive forever and may be "re-used" when all
 611   // preallocated errors with backtrace have been consumed. Also need to avoid
 612   // a potential loop which could happen if an out of memory occurs when attempting
 613   // to allocate the backtrace.
 614   return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
 615           (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
 616           (throwable() != Universe::_out_of_memory_error_array_size) &&
 617           (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
 618 }
 619 
 620 
 621 oop Universe::gen_out_of_memory_error(oop default_err) {
 622   // generate an out of memory error:
 623   // - if there is a preallocated error with backtrace available then return it wth
 624   //   a filled in stack trace.
 625   // - if there are no preallocated errors with backtrace available then return
 626   //   an error without backtrace.
 627   int next;
 628   if (_preallocated_out_of_memory_error_avail_count > 0) {
 629     next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
 630     assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
 631   } else {
 632     next = -1;
 633   }
 634   if (next < 0) {
 635     // all preallocated errors have been used.
 636     // return default
 637     return default_err;
 638   } else {
 639     // get the error object at the slot and set set it to NULL so that the
 640     // array isn't keeping it alive anymore.
 641     oop exc = preallocated_out_of_memory_errors()->obj_at(next);
 642     assert(exc != NULL, "slot has been used already");
 643     preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
 644 
 645     // use the message from the default error
 646     oop msg = java_lang_Throwable::message(default_err);
 647     assert(msg != NULL, "no message");
 648     java_lang_Throwable::set_message(exc, msg);
 649 
 650     // populate the stack trace and return it.
 651     java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
 652     return exc;
 653   }
 654 }
 655 
 656 static intptr_t non_oop_bits = 0;
 657 
 658 void* Universe::non_oop_word() {
 659   // Neither the high bits nor the low bits of this value is allowed
 660   // to look like (respectively) the high or low bits of a real oop.
 661   //
 662   // High and low are CPU-specific notions, but low always includes
 663   // the low-order bit.  Since oops are always aligned at least mod 4,
 664   // setting the low-order bit will ensure that the low half of the
 665   // word will never look like that of a real oop.
 666   //
 667   // Using the OS-supplied non-memory-address word (usually 0 or -1)
 668   // will take care of the high bits, however many there are.
 669 
 670   if (non_oop_bits == 0) {
 671     non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
 672   }
 673 
 674   return (void*)non_oop_bits;
 675 }
 676 
 677 jint universe_init() {
 678   assert(!Universe::_fully_initialized, "called after initialize_vtables");
 679   guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
 680          "LogHeapWordSize is incorrect.");
 681   guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
 682   guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
 683             "oop size is not not a multiple of HeapWord size");
 684   TraceTime timer("Genesis", TraceStartupTime);
 685   GC_locker::lock();  // do not allow gc during bootstrapping
 686   JavaClasses::compute_hard_coded_offsets();
 687 
 688   // Get map info from shared archive file.
 689   if (DumpSharedSpaces)
 690     UseSharedSpaces = false;
 691 
 692   FileMapInfo* mapinfo = NULL;
 693   if (UseSharedSpaces) {
 694     mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
 695     memset(mapinfo, 0, sizeof(FileMapInfo));
 696 
 697     // Open the shared archive file, read and validate the header. If
 698     // initialization files, shared spaces [UseSharedSpaces] are
 699     // disabled and the file is closed.
 700 
 701     if (mapinfo->initialize()) {
 702       FileMapInfo::set_current_info(mapinfo);
 703     } else {
 704       assert(!mapinfo->is_open() && !UseSharedSpaces,
 705              "archive file not closed or shared spaces not disabled.");
 706     }
 707   }
 708 
 709   jint status = Universe::initialize_heap();
 710   if (status != JNI_OK) {
 711     return status;
 712   }
 713 
 714   // We have a heap so create the methodOop caches before
 715   // CompactingPermGenGen::initialize_oops() tries to populate them.
 716   Universe::_finalizer_register_cache = new LatestMethodOopCache();
 717   Universe::_loader_addClass_cache    = new LatestMethodOopCache();
 718   Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
 719 
 720   if (UseSharedSpaces) {
 721 
 722     // Read the data structures supporting the shared spaces (shared
 723     // system dictionary, symbol table, etc.).  After that, access to
 724     // the file (other than the mapped regions) is no longer needed, and
 725     // the file is closed. Closing the file does not affect the
 726     // currently mapped regions.
 727 
 728     CompactingPermGenGen::initialize_oops();
 729     mapinfo->close();
 730 
 731   } else {
 732     SymbolTable::create_table();
 733     StringTable::create_table();
 734     ClassLoader::create_package_info_table();
 735   }
 736 
 737   return JNI_OK;
 738 }
 739 
 740 // Choose the heap base address and oop encoding mode
 741 // when compressed oops are used:
 742 // Unscaled  - Use 32-bits oops without encoding when
 743 //     NarrowOopHeapBaseMin + heap_size < 4Gb
 744 // ZeroBased - Use zero based compressed oops with encoding when
 745 //     NarrowOopHeapBaseMin + heap_size < 32Gb
 746 // HeapBased - Use compressed oops with heap base + encoding.
 747 
 748 // 4Gb
 749 static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
 750 // 32Gb
 751 // OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes;
 752 
 753 char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
 754   size_t base = 0;
 755 #ifdef _LP64
 756   if (UseCompressedOops) {
 757     assert(mode == UnscaledNarrowOop  ||
 758            mode == ZeroBasedNarrowOop ||
 759            mode == HeapBasedNarrowOop, "mode is invalid");
 760     const size_t total_size = heap_size + HeapBaseMinAddress;
 761     // Return specified base for the first request.
 762     if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
 763       base = HeapBaseMinAddress;
 764     } else if (total_size <= OopEncodingHeapMax && (mode != HeapBasedNarrowOop)) {
 765       if (total_size <= NarrowOopHeapMax && (mode == UnscaledNarrowOop) &&
 766           (Universe::narrow_oop_shift() == 0)) {
 767         // Use 32-bits oops without encoding and
 768         // place heap's top on the 4Gb boundary
 769         base = (NarrowOopHeapMax - heap_size);
 770       } else {
 771         // Can't reserve with NarrowOopShift == 0
 772         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 773         if (mode == UnscaledNarrowOop ||
 774             mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
 775           // Use zero based compressed oops with encoding and
 776           // place heap's top on the 32Gb boundary in case
 777           // total_size > 4Gb or failed to reserve below 4Gb.
 778           base = (OopEncodingHeapMax - heap_size);
 779         }
 780       }
 781     } else {
 782       // Can't reserve below 32Gb.
 783       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 784     }
 785     // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
 786     // used in ReservedHeapSpace() constructors.
 787     // The final values will be set in initialize_heap() below.
 788     if (base != 0 && (base + heap_size) <= OopEncodingHeapMax) {
 789       // Use zero based compressed oops
 790       Universe::set_narrow_oop_base(NULL);
 791       // Don't need guard page for implicit checks in indexed
 792       // addressing mode with zero based Compressed Oops.
 793       Universe::set_narrow_oop_use_implicit_null_checks(true);
 794     } else {
 795       // Set to a non-NULL value so the ReservedSpace ctor computes
 796       // the correct no-access prefix.
 797       // The final value will be set in initialize_heap() below.
 798       Universe::set_narrow_oop_base((address)NarrowOopHeapMax);
 799 #ifdef _WIN64
 800       if (UseLargePages) {
 801         // Cannot allocate guard pages for implicit checks in indexed
 802         // addressing mode when large pages are specified on windows.
 803         Universe::set_narrow_oop_use_implicit_null_checks(false);
 804       }
 805 #endif //  _WIN64
 806     }
 807   }
 808 #endif
 809   return (char*)base; // also return NULL (don't care) for 32-bit VM
 810 }
 811 
 812 jint Universe::initialize_heap() {
 813 
 814   if (UseParallelGC) {
 815 #ifndef SERIALGC
 816     Universe::_collectedHeap = new ParallelScavengeHeap();
 817 #else  // SERIALGC
 818     fatal("UseParallelGC not supported in java kernel vm.");
 819 #endif // SERIALGC
 820 
 821   } else if (UseG1GC) {
 822 #ifndef SERIALGC
 823     G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst();
 824     G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
 825     Universe::_collectedHeap = g1h;
 826 #else  // SERIALGC
 827     fatal("UseG1GC not supported in java kernel vm.");
 828 #endif // SERIALGC
 829 
 830   } else {
 831     GenCollectorPolicy *gc_policy;
 832 
 833     if (UseSerialGC) {
 834       gc_policy = new MarkSweepPolicy();
 835     } else if (UseConcMarkSweepGC) {
 836 #ifndef SERIALGC
 837       if (UseAdaptiveSizePolicy) {
 838         gc_policy = new ASConcurrentMarkSweepPolicy();
 839       } else {
 840         gc_policy = new ConcurrentMarkSweepPolicy();
 841       }
 842 #else   // SERIALGC
 843     fatal("UseConcMarkSweepGC not supported in java kernel vm.");
 844 #endif // SERIALGC
 845     } else { // default old generation
 846       gc_policy = new MarkSweepPolicy();
 847     }
 848 
 849     Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
 850   }
 851 
 852   jint status = Universe::heap()->initialize();
 853   if (status != JNI_OK) {
 854     return status;
 855   }
 856 
 857 #ifdef _LP64
 858   if (UseCompressedOops) {
 859     // Subtract a page because something can get allocated at heap base.
 860     // This also makes implicit null checking work, because the
 861     // memory+1 page below heap_base needs to cause a signal.
 862     // See needs_explicit_null_check.
 863     // Only set the heap base for compressed oops because it indicates
 864     // compressed oops for pstack code.
 865     if (PrintCompressedOopsMode) {
 866       tty->cr();
 867       tty->print("heap address: "PTR_FORMAT, Universe::heap()->base());
 868     }
 869     if ((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) {
 870       // Can't reserve heap below 32Gb.
 871       Universe::set_narrow_oop_base(Universe::heap()->base() - os::vm_page_size());
 872       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 873       if (PrintCompressedOopsMode) {
 874         tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
 875       }
 876     } else {
 877       Universe::set_narrow_oop_base(0);
 878       if (PrintCompressedOopsMode) {
 879         tty->print(", zero based Compressed Oops");
 880       }
 881 #ifdef _WIN64
 882       if (!Universe::narrow_oop_use_implicit_null_checks()) {
 883         // Don't need guard page for implicit checks in indexed addressing
 884         // mode with zero based Compressed Oops.
 885         Universe::set_narrow_oop_use_implicit_null_checks(true);
 886       }
 887 #endif //  _WIN64
 888       if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
 889         // Can't reserve heap below 4Gb.
 890         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 891       } else {
 892         Universe::set_narrow_oop_shift(0);
 893         if (PrintCompressedOopsMode) {
 894           tty->print(", 32-bits Oops");
 895         }
 896       }
 897     }
 898     if (PrintCompressedOopsMode) {
 899       tty->cr();
 900       tty->cr();
 901     }
 902   }
 903   assert(Universe::narrow_oop_base() == (Universe::heap()->base() - os::vm_page_size()) ||
 904          Universe::narrow_oop_base() == NULL, "invalid value");
 905   assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
 906          Universe::narrow_oop_shift() == 0, "invalid value");
 907 #endif
 908 
 909   // We will never reach the CATCH below since Exceptions::_throw will cause
 910   // the VM to exit if an exception is thrown during initialization
 911 
 912   if (UseTLAB) {
 913     assert(Universe::heap()->supports_tlab_allocation(),
 914            "Should support thread-local allocation buffers");
 915     ThreadLocalAllocBuffer::startup_initialization();
 916   }
 917   return JNI_OK;
 918 }
 919 
 920 // It's the caller's repsonsibility to ensure glitch-freedom
 921 // (if required).
 922 void Universe::update_heap_info_at_gc() {
 923   _heap_capacity_at_last_gc = heap()->capacity();
 924   _heap_used_at_last_gc     = heap()->used();
 925 }
 926 
 927 
 928 
 929 void universe2_init() {
 930   EXCEPTION_MARK;
 931   Universe::genesis(CATCH);
 932   // Although we'd like to verify here that the state of the heap
 933   // is good, we can't because the main thread has not yet added
 934   // itself to the threads list (so, using current interfaces
 935   // we can't "fill" its TLAB), unless TLABs are disabled.
 936   if (VerifyBeforeGC && !UseTLAB &&
 937       Universe::heap()->total_collections() >= VerifyGCStartAt) {
 938      Universe::heap()->prepare_for_verify();
 939      Universe::verify();   // make sure we're starting with a clean slate
 940   }
 941 }
 942 
 943 
 944 // This function is defined in JVM.cpp
 945 extern void initialize_converter_functions();
 946 
 947 bool universe_post_init() {
 948   Universe::_fully_initialized = true;
 949   EXCEPTION_MARK;
 950   { ResourceMark rm;
 951     Interpreter::initialize();      // needed for interpreter entry points
 952     if (!UseSharedSpaces) {
 953       KlassHandle ok_h(THREAD, SystemDictionary::Object_klass());
 954       Universe::reinitialize_vtable_of(ok_h, CHECK_false);
 955       Universe::reinitialize_itables(CHECK_false);
 956     }
 957   }
 958 
 959   klassOop k;
 960   instanceKlassHandle k_h;
 961   if (!UseSharedSpaces) {
 962     // Setup preallocated empty java.lang.Class array
 963     Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false);
 964     // Setup preallocated OutOfMemoryError errors
 965     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_OutOfMemoryError(), true, CHECK_false);
 966     k_h = instanceKlassHandle(THREAD, k);
 967     Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
 968     Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
 969     Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
 970     Universe::_out_of_memory_error_gc_overhead_limit =
 971       k_h->allocate_permanent_instance(CHECK_false);
 972 
 973     // Setup preallocated NullPointerException
 974     // (this is currently used for a cheap & dirty solution in compiler exception handling)
 975     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_NullPointerException(), true, CHECK_false);
 976     Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
 977     // Setup preallocated ArithmeticException
 978     // (this is currently used for a cheap & dirty solution in compiler exception handling)
 979     k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ArithmeticException(), true, CHECK_false);
 980     Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
 981     // Virtual Machine Error for when we get into a situation we can't resolve
 982     k = SystemDictionary::resolve_or_fail(
 983       vmSymbolHandles::java_lang_VirtualMachineError(), true, CHECK_false);
 984     bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
 985     if (!linked) {
 986       tty->print_cr("Unable to link/verify VirtualMachineError class");
 987       return false; // initialization failed
 988     }
 989     Universe::_virtual_machine_error_instance =
 990       instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
 991   }
 992   if (!DumpSharedSpaces) {
 993     // These are the only Java fields that are currently set during shared space dumping.
 994     // We prefer to not handle this generally, so we always reinitialize these detail messages.
 995     Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
 996     java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
 997 
 998     msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
 999     java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
1000 
1001     msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
1002     java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
1003 
1004     msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
1005     java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
1006 
1007     msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
1008     java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
1009 
1010     // Setup the array of errors that have preallocated backtrace
1011     k = Universe::_out_of_memory_error_java_heap->klass();
1012     assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
1013     k_h = instanceKlassHandle(THREAD, k);
1014 
1015     int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
1016     Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
1017     for (int i=0; i<len; i++) {
1018       oop err = k_h->allocate_permanent_instance(CHECK_false);
1019       Handle err_h = Handle(THREAD, err);
1020       java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
1021       Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
1022     }
1023     Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
1024   }
1025 
1026 
1027   // Setup static method for registering finalizers
1028   // The finalizer klass must be linked before looking up the method, in
1029   // case it needs to get rewritten.
1030   instanceKlass::cast(SystemDictionary::Finalizer_klass())->link_class(CHECK_false);
1031   methodOop m = instanceKlass::cast(SystemDictionary::Finalizer_klass())->find_method(
1032                                   vmSymbols::register_method_name(),
1033                                   vmSymbols::register_method_signature());
1034   if (m == NULL || !m->is_static()) {
1035     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1036       "java.lang.ref.Finalizer.register", false);
1037   }
1038   Universe::_finalizer_register_cache->init(
1039     SystemDictionary::Finalizer_klass(), m, CHECK_false);
1040 
1041   // Resolve on first use and initialize class.
1042   // Note: No race-condition here, since a resolve will always return the same result
1043 
1044   // Setup method for security checks
1045   k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_reflect_Method(), true, CHECK_false);
1046   k_h = instanceKlassHandle(THREAD, k);
1047   k_h->link_class(CHECK_false);
1048   m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_object_array_object_signature());
1049   if (m == NULL || m->is_static()) {
1050     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1051       "java.lang.reflect.Method.invoke", false);
1052   }
1053   Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
1054 
1055   // Setup method for registering loaded classes in class loader vector
1056   instanceKlass::cast(SystemDictionary::ClassLoader_klass())->link_class(CHECK_false);
1057   m = instanceKlass::cast(SystemDictionary::ClassLoader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
1058   if (m == NULL || m->is_static()) {
1059     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1060       "java.lang.ClassLoader.addClass", false);
1061   }
1062   Universe::_loader_addClass_cache->init(
1063     SystemDictionary::ClassLoader_klass(), m, CHECK_false);
1064 
1065   // The folowing is initializing converter functions for serialization in
1066   // JVM.cpp. If we clean up the StrictMath code above we may want to find
1067   // a better solution for this as well.
1068   initialize_converter_functions();
1069 
1070   // This needs to be done before the first scavenge/gc, since
1071   // it's an input to soft ref clearing policy.
1072   {
1073     MutexLocker x(Heap_lock);
1074     Universe::update_heap_info_at_gc();
1075   }
1076 
1077   // ("weak") refs processing infrastructure initialization
1078   Universe::heap()->post_initialize();
1079 
1080   GC_locker::unlock();  // allow gc after bootstrapping
1081 
1082   MemoryService::set_universe_heap(Universe::_collectedHeap);
1083   return true;
1084 }
1085 
1086 
1087 void Universe::compute_base_vtable_size() {
1088   _base_vtable_size = ClassLoader::compute_Object_vtable();
1089 }
1090 
1091 
1092 // %%% The Universe::flush_foo methods belong in CodeCache.
1093 
1094 // Flushes compiled methods dependent on dependee.
1095 void Universe::flush_dependents_on(instanceKlassHandle dependee) {
1096   assert_lock_strong(Compile_lock);
1097 
1098   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1099 
1100   // CodeCache can only be updated by a thread_in_VM and they will all be
1101   // stopped dring the safepoint so CodeCache will be safe to update without
1102   // holding the CodeCache_lock.
1103 
1104   DepChange changes(dependee);
1105 
1106   // Compute the dependent nmethods
1107   if (CodeCache::mark_for_deoptimization(changes) > 0) {
1108     // At least one nmethod has been marked for deoptimization
1109     VM_Deoptimize op;
1110     VMThread::execute(&op);
1111   }
1112 }
1113 
1114 #ifdef HOTSWAP
1115 // Flushes compiled methods dependent on dependee in the evolutionary sense
1116 void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1117   // --- Compile_lock is not held. However we are at a safepoint.
1118   assert_locked_or_safepoint(Compile_lock);
1119   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1120 
1121   // CodeCache can only be updated by a thread_in_VM and they will all be
1122   // stopped dring the safepoint so CodeCache will be safe to update without
1123   // holding the CodeCache_lock.
1124 
1125   // Compute the dependent nmethods
1126   if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
1127     // At least one nmethod has been marked for deoptimization
1128 
1129     // All this already happens inside a VM_Operation, so we'll do all the work here.
1130     // Stuff copied from VM_Deoptimize and modified slightly.
1131 
1132     // We do not want any GCs to happen while we are in the middle of this VM operation
1133     ResourceMark rm;
1134     DeoptimizationMarker dm;
1135 
1136     // Deoptimize all activations depending on marked nmethods
1137     Deoptimization::deoptimize_dependents();
1138 
1139     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1140     CodeCache::make_marked_nmethods_not_entrant();
1141   }
1142 }
1143 #endif // HOTSWAP
1144 
1145 
1146 // Flushes compiled methods dependent on dependee
1147 void Universe::flush_dependents_on_method(methodHandle m_h) {
1148   // --- Compile_lock is not held. However we are at a safepoint.
1149   assert_locked_or_safepoint(Compile_lock);
1150 
1151   // CodeCache can only be updated by a thread_in_VM and they will all be
1152   // stopped dring the safepoint so CodeCache will be safe to update without
1153   // holding the CodeCache_lock.
1154 
1155   // Compute the dependent nmethods
1156   if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
1157     // At least one nmethod has been marked for deoptimization
1158 
1159     // All this already happens inside a VM_Operation, so we'll do all the work here.
1160     // Stuff copied from VM_Deoptimize and modified slightly.
1161 
1162     // We do not want any GCs to happen while we are in the middle of this VM operation
1163     ResourceMark rm;
1164     DeoptimizationMarker dm;
1165 
1166     // Deoptimize all activations depending on marked nmethods
1167     Deoptimization::deoptimize_dependents();
1168 
1169     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1170     CodeCache::make_marked_nmethods_not_entrant();
1171   }
1172 }
1173 
1174 void Universe::print() { print_on(gclog_or_tty); }
1175 
1176 void Universe::print_on(outputStream* st) {
1177   st->print_cr("Heap");
1178   heap()->print_on(st);
1179 }
1180 
1181 void Universe::print_heap_at_SIGBREAK() {
1182   if (PrintHeapAtSIGBREAK) {
1183     MutexLocker hl(Heap_lock);
1184     print_on(tty);
1185     tty->cr();
1186     tty->flush();
1187   }
1188 }
1189 
1190 void Universe::print_heap_before_gc(outputStream* st) {
1191   st->print_cr("{Heap before GC invocations=%u (full %u):",
1192                heap()->total_collections(),
1193                heap()->total_full_collections());
1194   heap()->print_on(st);
1195 }
1196 
1197 void Universe::print_heap_after_gc(outputStream* st) {
1198   st->print_cr("Heap after GC invocations=%u (full %u):",
1199                heap()->total_collections(),
1200                heap()->total_full_collections());
1201   heap()->print_on(st);
1202   st->print_cr("}");
1203 }
1204 
1205 void Universe::verify(bool allow_dirty, bool silent, bool option) {
1206   if (SharedSkipVerify) {
1207     return;
1208   }
1209 
1210   // The use of _verify_in_progress is a temporary work around for
1211   // 6320749.  Don't bother with a creating a class to set and clear
1212   // it since it is only used in this method and the control flow is
1213   // straight forward.
1214   _verify_in_progress = true;
1215 
1216   COMPILER2_PRESENT(
1217     assert(!DerivedPointerTable::is_active(),
1218          "DPT should not be active during verification "
1219          "(of thread stacks below)");
1220   )
1221 
1222   ResourceMark rm;
1223   HandleMark hm;  // Handles created during verification can be zapped
1224   _verify_count++;
1225 
1226   if (!silent) gclog_or_tty->print("[Verifying ");
1227   if (!silent) gclog_or_tty->print("threads ");
1228   Threads::verify();
1229   heap()->verify(allow_dirty, silent, option);
1230 
1231   if (!silent) gclog_or_tty->print("syms ");
1232   SymbolTable::verify();
1233   if (!silent) gclog_or_tty->print("strs ");
1234   StringTable::verify();
1235   {
1236     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1237     if (!silent) gclog_or_tty->print("zone ");
1238     CodeCache::verify();
1239   }
1240   if (!silent) gclog_or_tty->print("dict ");
1241   SystemDictionary::verify();
1242   if (!silent) gclog_or_tty->print("hand ");
1243   JNIHandles::verify();
1244   if (!silent) gclog_or_tty->print("C-heap ");
1245   os::check_heap();
1246   if (!silent) gclog_or_tty->print_cr("]");
1247 
1248   _verify_in_progress = false;
1249 }
1250 
1251 // Oop verification (see MacroAssembler::verify_oop)
1252 
1253 static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
1254 static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
1255 
1256 
1257 static void calculate_verify_data(uintptr_t verify_data[2],
1258                                   HeapWord* low_boundary,
1259                                   HeapWord* high_boundary) {
1260   assert(low_boundary < high_boundary, "bad interval");
1261 
1262   // decide which low-order bits we require to be clear:
1263   size_t alignSize = MinObjAlignmentInBytes;
1264   size_t min_object_size = CollectedHeap::min_fill_size();
1265 
1266   // make an inclusive limit:
1267   uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
1268   uintptr_t min = (uintptr_t)low_boundary;
1269   assert(min < max, "bad interval");
1270   uintptr_t diff = max ^ min;
1271 
1272   // throw away enough low-order bits to make the diff vanish
1273   uintptr_t mask = (uintptr_t)(-1);
1274   while ((mask & diff) != 0)
1275     mask <<= 1;
1276   uintptr_t bits = (min & mask);
1277   assert(bits == (max & mask), "correct mask");
1278   // check an intermediate value between min and max, just to make sure:
1279   assert(bits == ((min + (max-min)/2) & mask), "correct mask");
1280 
1281   // require address alignment, too:
1282   mask |= (alignSize - 1);
1283 
1284   if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
1285     assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
1286   }
1287   verify_data[0] = mask;
1288   verify_data[1] = bits;
1289 }
1290 
1291 
1292 // Oop verification (see MacroAssembler::verify_oop)
1293 #ifndef PRODUCT
1294 
1295 uintptr_t Universe::verify_oop_mask() {
1296   MemRegion m = heap()->reserved_region();
1297   calculate_verify_data(_verify_oop_data,
1298                         m.start(),
1299                         m.end());
1300   return _verify_oop_data[0];
1301 }
1302 
1303 
1304 
1305 uintptr_t Universe::verify_oop_bits() {
1306   verify_oop_mask();
1307   return _verify_oop_data[1];
1308 }
1309 
1310 
1311 uintptr_t Universe::verify_klass_mask() {
1312   /* $$$
1313   // A klass can never live in the new space.  Since the new and old
1314   // spaces can change size, we must settle for bounds-checking against
1315   // the bottom of the world, plus the smallest possible new and old
1316   // space sizes that may arise during execution.
1317   size_t min_new_size = Universe::new_size();   // in bytes
1318   size_t min_old_size = Universe::old_size();   // in bytes
1319   calculate_verify_data(_verify_klass_data,
1320           (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
1321           _perm_gen->high_boundary);
1322                         */
1323   // Why doesn't the above just say that klass's always live in the perm
1324   // gen?  I'll see if that seems to work...
1325   MemRegion permanent_reserved;
1326   switch (Universe::heap()->kind()) {
1327   default:
1328     // ???: What if a CollectedHeap doesn't have a permanent generation?
1329     ShouldNotReachHere();
1330     break;
1331   case CollectedHeap::GenCollectedHeap:
1332   case CollectedHeap::G1CollectedHeap: {
1333     SharedHeap* sh = (SharedHeap*) Universe::heap();
1334     permanent_reserved = sh->perm_gen()->reserved();
1335    break;
1336   }
1337 #ifndef SERIALGC
1338   case CollectedHeap::ParallelScavengeHeap: {
1339     ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
1340     permanent_reserved = psh->perm_gen()->reserved();
1341     break;
1342   }
1343 #endif // SERIALGC
1344   }
1345   calculate_verify_data(_verify_klass_data,
1346                         permanent_reserved.start(),
1347                         permanent_reserved.end());
1348 
1349   return _verify_klass_data[0];
1350 }
1351 
1352 
1353 
1354 uintptr_t Universe::verify_klass_bits() {
1355   verify_klass_mask();
1356   return _verify_klass_data[1];
1357 }
1358 
1359 
1360 uintptr_t Universe::verify_mark_mask() {
1361   return markOopDesc::lock_mask_in_place;
1362 }
1363 
1364 
1365 
1366 uintptr_t Universe::verify_mark_bits() {
1367   intptr_t mask = verify_mark_mask();
1368   intptr_t bits = (intptr_t)markOopDesc::prototype();
1369   assert((bits & ~mask) == 0, "no stray header bits");
1370   return bits;
1371 }
1372 #endif // PRODUCT
1373 
1374 
1375 void Universe::compute_verify_oop_data() {
1376   verify_oop_mask();
1377   verify_oop_bits();
1378   verify_mark_mask();
1379   verify_mark_bits();
1380   verify_klass_mask();
1381   verify_klass_bits();
1382 }
1383 
1384 
1385 void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
1386   if (!UseSharedSpaces) {
1387     _klass = k;
1388   }
1389 #ifndef PRODUCT
1390   else {
1391     // sharing initilization should have already set up _klass
1392     assert(_klass != NULL, "just checking");
1393   }
1394 #endif
1395 
1396   _method_idnum = m->method_idnum();
1397   assert(_method_idnum >= 0, "sanity check");
1398 }
1399 
1400 
1401 ActiveMethodOopsCache::~ActiveMethodOopsCache() {
1402   if (_prev_methods != NULL) {
1403     for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1404       jweak method_ref = _prev_methods->at(i);
1405       if (method_ref != NULL) {
1406         JNIHandles::destroy_weak_global(method_ref);
1407       }
1408     }
1409     delete _prev_methods;
1410     _prev_methods = NULL;
1411   }
1412 }
1413 
1414 
1415 void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
1416   assert(Thread::current()->is_VM_thread(),
1417     "only VMThread can add previous versions");
1418 
1419   if (_prev_methods == NULL) {
1420     // This is the first previous version so make some space.
1421     // Start with 2 elements under the assumption that the class
1422     // won't be redefined much.
1423     _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
1424   }
1425 
1426   // RC_TRACE macro has an embedded ResourceMark
1427   RC_TRACE(0x00000100,
1428     ("add: %s(%s): adding prev version ref for cached method @%d",
1429     method->name()->as_C_string(), method->signature()->as_C_string(),
1430     _prev_methods->length()));
1431 
1432   methodHandle method_h(method);
1433   jweak method_ref = JNIHandles::make_weak_global(method_h);
1434   _prev_methods->append(method_ref);
1435 
1436   // Using weak references allows previous versions of the cached
1437   // method to be GC'ed when they are no longer needed. Since the
1438   // caller is the VMThread and we are at a safepoint, this is a good
1439   // time to clear out unused weak references.
1440 
1441   for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1442     jweak method_ref = _prev_methods->at(i);
1443     assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1444     if (method_ref == NULL) {
1445       _prev_methods->remove_at(i);
1446       // Since we are traversing the array backwards, we don't have to
1447       // do anything special with the index.
1448       continue;  // robustness
1449     }
1450 
1451     methodOop m = (methodOop)JNIHandles::resolve(method_ref);
1452     if (m == NULL) {
1453       // this method entry has been GC'ed so remove it
1454       JNIHandles::destroy_weak_global(method_ref);
1455       _prev_methods->remove_at(i);
1456     } else {
1457       // RC_TRACE macro has an embedded ResourceMark
1458       RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
1459         m->name()->as_C_string(), m->signature()->as_C_string(), i));
1460     }
1461   }
1462 } // end add_previous_version()
1463 
1464 
1465 bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
1466   instanceKlass* ik = instanceKlass::cast(klass());
1467   methodOop check_method = ik->method_with_idnum(method_idnum());
1468   assert(check_method != NULL, "sanity check");
1469   if (check_method == method) {
1470     // done with the easy case
1471     return true;
1472   }
1473 
1474   if (_prev_methods != NULL) {
1475     // The cached method has been redefined at least once so search
1476     // the previous versions for a match.
1477     for (int i = 0; i < _prev_methods->length(); i++) {
1478       jweak method_ref = _prev_methods->at(i);
1479       assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1480       if (method_ref == NULL) {
1481         continue;  // robustness
1482       }
1483 
1484       check_method = (methodOop)JNIHandles::resolve(method_ref);
1485       if (check_method == method) {
1486         // a previous version matches
1487         return true;
1488       }
1489     }
1490   }
1491 
1492   // either no previous versions or no previous version matched
1493   return false;
1494 }
1495 
1496 
1497 methodOop LatestMethodOopCache::get_methodOop() {
1498   instanceKlass* ik = instanceKlass::cast(klass());
1499   methodOop m = ik->method_with_idnum(method_idnum());
1500   assert(m != NULL, "sanity check");
1501   return m;
1502 }
1503 
1504 
1505 #ifdef ASSERT
1506 // Release dummy object(s) at bottom of heap
1507 bool Universe::release_fullgc_alot_dummy() {
1508   MutexLocker ml(FullGCALot_lock);
1509   if (_fullgc_alot_dummy_array != NULL) {
1510     if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
1511       // No more dummies to release, release entire array instead
1512       _fullgc_alot_dummy_array = NULL;
1513       return false;
1514     }
1515     if (!UseConcMarkSweepGC) {
1516       // Release dummy at bottom of old generation
1517       _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1518     }
1519     // Release dummy at bottom of permanent generation
1520     _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1521   }
1522   return true;
1523 }
1524 
1525 #endif // ASSERT