1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // A Klass is the part of the klassOop that provides:
  26 //  1: language level class object (method dictionary etc.)
  27 //  2: provide vm dispatch behavior for the object
  28 // Both functions are combined into one C++ class. The toplevel class "Klass"
  29 // implements purpose 1 whereas all subclasses provide extra virtual functions
  30 // for purpose 2.
  31 
  32 // One reason for the oop/klass dichotomy in the implementation is
  33 // that we don't want a C++ vtbl pointer in every object.  Thus,
  34 // normal oops don't have any virtual functions.  Instead, they
  35 // forward all "virtual" functions to their klass, which does have
  36 // a vtbl and does the C++ dispatch depending on the object's
  37 // actual type.  (See oop.inline.hpp for some of the forwarding code.)
  38 // ALL FUNCTIONS IMPLEMENTING THIS DISPATCH ARE PREFIXED WITH "oop_"!
  39 
  40 //  Klass layout:
  41 //    [header        ] klassOop
  42 //    [klass pointer ] klassOop
  43 //    [C++ vtbl ptr  ] (contained in Klass_vtbl)
  44 //    [layout_helper ]
  45 //    [super_check_offset   ] for fast subtype checks
  46 //    [secondary_super_cache] for fast subtype checks
  47 //    [secondary_supers     ] array of 2ndary supertypes
  48 //    [primary_supers 0]
  49 //    [primary_supers 1]
  50 //    [primary_supers 2]
  51 //    ...
  52 //    [primary_supers 7]
  53 //    [java_mirror   ]
  54 //    [super         ]
  55 //    [name          ]
  56 //    [first subklass]
  57 //    [next_sibling  ] link to chain additional subklasses
  58 //    [modifier_flags]
  59 //    [access_flags  ]
  60 //    [verify_count  ] - not in product
  61 //    [alloc_count   ]
  62 //    [last_biased_lock_bulk_revocation_time] (64 bits)
  63 //    [prototype_header]
  64 //    [biased_lock_revocation_count]
  65 
  66 
  67 // Forward declarations.
  68 class klassVtable;
  69 class KlassHandle;
  70 class OrderAccess;
  71 
  72 // Holder (or cage) for the C++ vtable of each kind of Klass.
  73 // We want to tightly constrain the location of the C++ vtable in the overall layout.
  74 class Klass_vtbl {
  75  protected:
  76   // The following virtual exists only to force creation of a C++ vtable,
  77   // so that this class truly is the location of the vtable of all Klasses.
  78   virtual void unused_initial_virtual() { }
  79 
  80  public:
  81   // The following virtual makes Klass_vtbl play a second role as a
  82   // factory protocol for subclasses of Klass ("sub-Klasses").
  83   // Here's how it works....
  84   //
  85   // This VM uses metaobjects as factories for their instances.
  86   //
  87   // In order to initialize the C++ vtable of a new instance, its
  88   // metaobject is forced to use the C++ placed new operator to
  89   // allocate the instance.  In a typical C++-based system, each
  90   // sub-class would have its own factory routine which
  91   // directly uses the placed new operator on the desired class,
  92   // and then calls the appropriate chain of C++ constructors.
  93   //
  94   // However, this system uses shared code to performs the first
  95   // allocation and initialization steps for all sub-Klasses.
  96   // (See base_create_klass() and base_create_array_klass().)
  97   // This does not factor neatly into a hierarchy of C++ constructors.
  98   // Each caller of these shared "base_create" routines knows
  99   // exactly which sub-Klass it is creating, but the shared routine
 100   // does not, even though it must perform the actual allocation.
 101   //
 102   // Therefore, the caller of the shared "base_create" must wrap
 103   // the specific placed new call in a virtual function which
 104   // performs the actual allocation and vtable set-up.  That
 105   // virtual function is here, Klass_vtbl::allocate_permanent.
 106   //
 107   // The arguments to Universe::allocate_permanent() are passed
 108   // straight through the placed new operator, which in turn
 109   // obtains them directly from this virtual call.
 110   //
 111   // This virtual is called on a temporary "example instance" of the
 112   // sub-Klass being instantiated, a C++ auto variable.  The "real"
 113   // instance created by this virtual is on the VM heap, where it is
 114   // equipped with a klassOopDesc header.
 115   //
 116   // It is merely an accident of implementation that we use "example
 117   // instances", but that is why the virtual function which implements
 118   // each sub-Klass factory happens to be defined by the same sub-Klass
 119   // for which it creates instances.
 120   //
 121   // The vtbl_value() call (see below) is used to strip away the
 122   // accidental Klass-ness from an "example instance" and present it as
 123   // a factory.  Think of each factory object as a mere container of the
 124   // C++ vtable for the desired sub-Klass.  Since C++ does not allow
 125   // direct references to vtables, the factory must also be delegated
 126   // the task of allocating the instance, but the essential point is
 127   // that the factory knows how to initialize the C++ vtable with the
 128   // right pointer value.  All other common initializations are handled
 129   // by the shared "base_create" subroutines.
 130   //
 131   virtual void* allocate_permanent(KlassHandle& klass, int size, TRAPS) const = 0;
 132   void post_new_init_klass(KlassHandle& klass, klassOop obj, int size) const;
 133 
 134   // Every subclass on which vtbl_value is called must include this macro.
 135   // Delay the installation of the klassKlass pointer until after the
 136   // the vtable for a new klass has been installed (after the call to new()).
 137 #define DEFINE_ALLOCATE_PERMANENT(thisKlass)                                  \
 138   void* allocate_permanent(KlassHandle& klass_klass, int size, TRAPS) const { \
 139     void* result = new(klass_klass, size, THREAD) thisKlass();                \
 140     if (HAS_PENDING_EXCEPTION) return NULL;                                   \
 141     klassOop new_klass = ((Klass*) result)->as_klassOop();                    \
 142     OrderAccess::storestore();                                                \
 143     post_new_init_klass(klass_klass, new_klass, size);                        \
 144     return result;                                                            \
 145   }
 146 
 147   bool null_vtbl() { return *(intptr_t*)this == 0; }
 148 
 149  protected:
 150   void* operator new(size_t ignored, KlassHandle& klass, int size, TRAPS);
 151 };
 152 
 153 
 154 class Klass : public Klass_vtbl {
 155   friend class VMStructs;
 156  protected:
 157   // note: put frequently-used fields together at start of klass structure
 158   // for better cache behavior (may not make much of a difference but sure won't hurt)
 159   enum { _primary_super_limit = 8 };
 160 
 161   // The "layout helper" is a combined descriptor of object layout.
 162   // For klasses which are neither instance nor array, the value is zero.
 163   //
 164   // For instances, layout helper is a positive number, the instance size.
 165   // This size is already passed through align_object_size and scaled to bytes.
 166   // The low order bit is set if instances of this class cannot be
 167   // allocated using the fastpath.
 168   //
 169   // For arrays, layout helper is a negative number, containing four
 170   // distinct bytes, as follows:
 171   //    MSB:[tag, hsz, ebt, log2(esz)]:LSB
 172   // where:
 173   //    tag is 0x80 if the elements are oops, 0xC0 if non-oops
 174   //    hsz is array header size in bytes (i.e., offset of first element)
 175   //    ebt is the BasicType of the elements
 176   //    esz is the element size in bytes
 177   // This packed word is arranged so as to be quickly unpacked by the
 178   // various fast paths that use the various subfields.
 179   //
 180   // The esz bits can be used directly by a SLL instruction, without masking.
 181   //
 182   // Note that the array-kind tag looks like 0x00 for instance klasses,
 183   // since their length in bytes is always less than 24Mb.
 184   //
 185   // Final note:  This comes first, immediately after Klass_vtbl,
 186   // because it is frequently queried.
 187   jint        _layout_helper;
 188 
 189   // The fields _super_check_offset, _secondary_super_cache, _secondary_supers
 190   // and _primary_supers all help make fast subtype checks.  See big discussion
 191   // in doc/server_compiler/checktype.txt
 192   //
 193   // Where to look to observe a supertype (it is &_secondary_super_cache for
 194   // secondary supers, else is &_primary_supers[depth()].
 195   juint       _super_check_offset;
 196 
 197  public:
 198   oop* oop_block_beg() const { return adr_secondary_super_cache(); }
 199   oop* oop_block_end() const { return adr_next_sibling() + 1; }
 200 
 201  protected:
 202   //
 203   // The oop block.  All oop fields must be declared here and only oop fields
 204   // may be declared here.  In addition, the first and last fields in this block
 205   // must remain first and last, unless oop_block_beg() and/or oop_block_end()
 206   // are updated.  Grouping the oop fields in a single block simplifies oop
 207   // iteration.
 208   //
 209 
 210   // Cache of last observed secondary supertype
 211   klassOop    _secondary_super_cache;
 212   // Array of all secondary supertypes
 213   objArrayOop _secondary_supers;
 214   // Ordered list of all primary supertypes
 215   klassOop    _primary_supers[_primary_super_limit];
 216   // java/lang/Class instance mirroring this class
 217   oop       _java_mirror;
 218   // Superclass
 219   klassOop  _super;
 220   // Class name.  Instance classes: java/lang/String, etc.  Array classes: [I,
 221   // [Ljava/lang/String;, etc.  Set to zero for all other kinds of classes.
 222   symbolOop _name;
 223   // First subclass (NULL if none); _subklass->next_sibling() is next one
 224   klassOop _subklass;
 225   // Sibling link (or NULL); links all subklasses of a klass
 226   klassOop _next_sibling;
 227 
 228   //
 229   // End of the oop block.
 230   //
 231 
 232   jint        _modifier_flags;  // Processed access flags, for use by Class.getModifiers.
 233   AccessFlags _access_flags;    // Access flags. The class/interface distinction is stored here.
 234 
 235 #ifndef PRODUCT
 236   int           _verify_count;  // to avoid redundant verifies
 237 #endif
 238 
 239   juint    _alloc_count;        // allocation profiling support - update klass_size_in_bytes() if moved/deleted
 240 
 241   // Biased locking implementation and statistics
 242   // (the 64-bit chunk goes first, to avoid some fragmentation)
 243   jlong    _last_biased_lock_bulk_revocation_time;
 244   markOop  _prototype_header;   // Used when biased locking is both enabled and disabled for this type
 245   jint     _biased_lock_revocation_count;
 246 
 247  public:
 248 
 249   // returns the enclosing klassOop
 250   klassOop as_klassOop() const {
 251     // see klassOop.hpp for layout.
 252     return (klassOop) (((char*) this) - sizeof(klassOopDesc));
 253   }
 254 
 255  public:
 256   // Allocation
 257   const Klass_vtbl& vtbl_value() const { return *this; }  // used only on "example instances"
 258   static KlassHandle base_create_klass(KlassHandle& klass, int size, const Klass_vtbl& vtbl, TRAPS);
 259   static klassOop base_create_klass_oop(KlassHandle& klass, int size, const Klass_vtbl& vtbl, TRAPS);
 260 
 261   // super
 262   klassOop super() const               { return _super; }
 263   void set_super(klassOop k)           { oop_store_without_check((oop*) &_super, (oop) k); }
 264 
 265   // initializes _super link, _primary_supers & _secondary_supers arrays
 266   void initialize_supers(klassOop k, TRAPS);
 267   void initialize_supers_impl1(klassOop k);
 268   void initialize_supers_impl2(klassOop k);
 269 
 270   // klass-specific helper for initializing _secondary_supers
 271   virtual objArrayOop compute_secondary_supers(int num_extra_slots, TRAPS);
 272 
 273   // java_super is the Java-level super type as specified by Class.getSuperClass.
 274   virtual klassOop java_super() const  { return NULL; }
 275 
 276   juint    super_check_offset() const  { return _super_check_offset; }
 277   void set_super_check_offset(juint o) { _super_check_offset = o; }
 278 
 279   klassOop secondary_super_cache() const     { return _secondary_super_cache; }
 280   void set_secondary_super_cache(klassOop k) { oop_store_without_check((oop*) &_secondary_super_cache, (oop) k); }
 281 
 282   objArrayOop secondary_supers() const { return _secondary_supers; }
 283   void set_secondary_supers(objArrayOop k) { oop_store_without_check((oop*) &_secondary_supers, (oop) k); }
 284 
 285   // Return the element of the _super chain of the given depth.
 286   // If there is no such element, return either NULL or this.
 287   klassOop primary_super_of_depth(juint i) const {
 288     assert(i < primary_super_limit(), "oob");
 289     klassOop super = _primary_supers[i];
 290     assert(super == NULL || super->klass_part()->super_depth() == i, "correct display");
 291     return super;
 292   }
 293 
 294   // Can this klass be a primary super?  False for interfaces and arrays of
 295   // interfaces.  False also for arrays or classes with long super chains.
 296   bool can_be_primary_super() const {
 297     const juint secondary_offset = secondary_super_cache_offset_in_bytes() + sizeof(oopDesc);
 298     return super_check_offset() != secondary_offset;
 299   }
 300   virtual bool can_be_primary_super_slow() const;
 301 
 302   // Returns number of primary supers; may be a number in the inclusive range [0, primary_super_limit].
 303   juint super_depth() const {
 304     if (!can_be_primary_super()) {
 305       return primary_super_limit();
 306     } else {
 307       juint d = (super_check_offset() - (primary_supers_offset_in_bytes() + sizeof(oopDesc))) / sizeof(klassOop);
 308       assert(d < primary_super_limit(), "oob");
 309       assert(_primary_supers[d] == as_klassOop(), "proper init");
 310       return d;
 311     }
 312   }
 313 
 314   // java mirror
 315   oop java_mirror() const              { return _java_mirror; }
 316   void set_java_mirror(oop m)          { oop_store((oop*) &_java_mirror, m); }
 317 
 318   // modifier flags
 319   jint modifier_flags() const          { return _modifier_flags; }
 320   void set_modifier_flags(jint flags)  { _modifier_flags = flags; }
 321 
 322   // size helper
 323   int layout_helper() const            { return _layout_helper; }
 324   void set_layout_helper(int lh)       { _layout_helper = lh; }
 325 
 326   // Note: for instances layout_helper() may include padding.
 327   // Use instanceKlass::contains_field_offset to classify field offsets.
 328 
 329   // sub/superklass links
 330   instanceKlass* superklass() const;
 331   Klass* subklass() const;
 332   Klass* next_sibling() const;
 333   void append_to_sibling_list();           // add newly created receiver to superklass' subklass list
 334   void remove_from_sibling_list();         // remove receiver from sibling list
 335  protected:                                // internal accessors
 336   klassOop subklass_oop() const            { return _subklass; }
 337   klassOop next_sibling_oop() const        { return _next_sibling; }
 338   void     set_subklass(klassOop s);
 339   void     set_next_sibling(klassOop s);
 340 
 341   oop* adr_super()           const { return (oop*)&_super;             }
 342   oop* adr_primary_supers()  const { return (oop*)&_primary_supers[0]; }
 343   oop* adr_secondary_super_cache() const { return (oop*)&_secondary_super_cache; }
 344   oop* adr_secondary_supers()const { return (oop*)&_secondary_supers;  }
 345   oop* adr_java_mirror()     const { return (oop*)&_java_mirror;       }
 346   oop* adr_name()            const { return (oop*)&_name;              }
 347   oop* adr_subklass()        const { return (oop*)&_subklass;          }
 348   oop* adr_next_sibling()    const { return (oop*)&_next_sibling;      }
 349 
 350  public:
 351   // Allocation profiling support
 352   juint alloc_count() const          { return _alloc_count; }
 353   void set_alloc_count(juint n)      { _alloc_count = n; }
 354   virtual juint alloc_size() const = 0;
 355   virtual void set_alloc_size(juint n) = 0;
 356 
 357   // Compiler support
 358   static int super_offset_in_bytes()         { return offset_of(Klass, _super); }
 359   static int super_check_offset_offset_in_bytes() { return offset_of(Klass, _super_check_offset); }
 360   static int primary_supers_offset_in_bytes(){ return offset_of(Klass, _primary_supers); }
 361   static int secondary_super_cache_offset_in_bytes() { return offset_of(Klass, _secondary_super_cache); }
 362   static int secondary_supers_offset_in_bytes() { return offset_of(Klass, _secondary_supers); }
 363   static int java_mirror_offset_in_bytes()   { return offset_of(Klass, _java_mirror); }
 364   static int modifier_flags_offset_in_bytes(){ return offset_of(Klass, _modifier_flags); }
 365   static int layout_helper_offset_in_bytes() { return offset_of(Klass, _layout_helper); }
 366   static int access_flags_offset_in_bytes()  { return offset_of(Klass, _access_flags); }
 367 
 368   // Unpacking layout_helper:
 369   enum {
 370     _lh_neutral_value           = 0,  // neutral non-array non-instance value
 371     _lh_instance_slow_path_bit  = 0x01,
 372     _lh_log2_element_size_shift = BitsPerByte*0,
 373     _lh_log2_element_size_mask  = BitsPerLong-1,
 374     _lh_element_type_shift      = BitsPerByte*1,
 375     _lh_element_type_mask       = right_n_bits(BitsPerByte),  // shifted mask
 376     _lh_header_size_shift       = BitsPerByte*2,
 377     _lh_header_size_mask        = right_n_bits(BitsPerByte),  // shifted mask
 378     _lh_array_tag_bits          = 2,
 379     _lh_array_tag_shift         = BitsPerInt - _lh_array_tag_bits,
 380     _lh_array_tag_type_value    = ~0x00,  // 0xC0000000 >> 30
 381     _lh_array_tag_obj_value     = ~0x01   // 0x80000000 >> 30
 382   };
 383 
 384   static int layout_helper_size_in_bytes(jint lh) {
 385     assert(lh > (jint)_lh_neutral_value, "must be instance");
 386     return (int) lh & ~_lh_instance_slow_path_bit;
 387   }
 388   static bool layout_helper_needs_slow_path(jint lh) {
 389     assert(lh > (jint)_lh_neutral_value, "must be instance");
 390     return (lh & _lh_instance_slow_path_bit) != 0;
 391   }
 392   static bool layout_helper_is_instance(jint lh) {
 393     return (jint)lh > (jint)_lh_neutral_value;
 394   }
 395   static bool layout_helper_is_javaArray(jint lh) {
 396     return (jint)lh < (jint)_lh_neutral_value;
 397   }
 398   static bool layout_helper_is_typeArray(jint lh) {
 399     // _lh_array_tag_type_value == (lh >> _lh_array_tag_shift);
 400     return (juint)lh >= (juint)(_lh_array_tag_type_value << _lh_array_tag_shift);
 401   }
 402   static bool layout_helper_is_objArray(jint lh) {
 403     // _lh_array_tag_obj_value == (lh >> _lh_array_tag_shift);
 404     return (jint)lh < (jint)(_lh_array_tag_type_value << _lh_array_tag_shift);
 405   }
 406   static int layout_helper_header_size(jint lh) {
 407     assert(lh < (jint)_lh_neutral_value, "must be array");
 408     int hsize = (lh >> _lh_header_size_shift) & _lh_header_size_mask;
 409     assert(hsize > 0 && hsize < (int)sizeof(oopDesc)*3, "sanity");
 410     return hsize;
 411   }
 412   static BasicType layout_helper_element_type(jint lh) {
 413     assert(lh < (jint)_lh_neutral_value, "must be array");
 414     int btvalue = (lh >> _lh_element_type_shift) & _lh_element_type_mask;
 415     assert(btvalue >= T_BOOLEAN && btvalue <= T_OBJECT, "sanity");
 416     return (BasicType) btvalue;
 417   }
 418   static int layout_helper_log2_element_size(jint lh) {
 419     assert(lh < (jint)_lh_neutral_value, "must be array");
 420     int l2esz = (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
 421     assert(l2esz <= LogBitsPerLong, "sanity");
 422     return l2esz;
 423   }
 424   static jint array_layout_helper(jint tag, int hsize, BasicType etype, int log2_esize) {
 425     return (tag        << _lh_array_tag_shift)
 426       |    (hsize      << _lh_header_size_shift)
 427       |    ((int)etype << _lh_element_type_shift)
 428       |    (log2_esize << _lh_log2_element_size_shift);
 429   }
 430   static jint instance_layout_helper(jint size, bool slow_path_flag) {
 431     return (size << LogHeapWordSize)
 432       |    (slow_path_flag ? _lh_instance_slow_path_bit : 0);
 433   }
 434   static int layout_helper_to_size_helper(jint lh) {
 435     assert(lh > (jint)_lh_neutral_value, "must be instance");
 436     // Note that the following expression discards _lh_instance_slow_path_bit.
 437     return lh >> LogHeapWordSize;
 438   }
 439   // Out-of-line version computes everything based on the etype:
 440   static jint array_layout_helper(BasicType etype);
 441 
 442   // What is the maximum number of primary superclasses any klass can have?
 443 #ifdef PRODUCT
 444   static juint primary_super_limit()         { return _primary_super_limit; }
 445 #else
 446   static juint primary_super_limit() {
 447     assert(FastSuperclassLimit <= _primary_super_limit, "parameter oob");
 448     return FastSuperclassLimit;
 449   }
 450 #endif
 451 
 452   // vtables
 453   virtual klassVtable* vtable() const        { return NULL; }
 454 
 455   static int klass_size_in_bytes()           { return offset_of(Klass, _alloc_count) + sizeof(juint); }  // all "visible" fields
 456 
 457   // subclass check
 458   bool is_subclass_of(klassOop k) const;
 459   // subtype check: true if is_subclass_of, or if k is interface and receiver implements it
 460   bool is_subtype_of(klassOop k) const {
 461     juint    off = k->klass_part()->super_check_offset();
 462     klassOop sup = *(klassOop*)( (address)as_klassOop() + off );
 463     const juint secondary_offset = secondary_super_cache_offset_in_bytes() + sizeof(oopDesc);
 464     if (sup == k) {
 465       return true;
 466     } else if (off != secondary_offset) {
 467       return false;
 468     } else {
 469       return search_secondary_supers(k);
 470     }
 471   }
 472   bool search_secondary_supers(klassOop k) const;
 473 
 474   // Find LCA in class hierarchy
 475   Klass *LCA( Klass *k );
 476 
 477   // Check whether reflection/jni/jvm code is allowed to instantiate this class;
 478   // if not, throw either an Error or an Exception.
 479   virtual void check_valid_for_instantiation(bool throwError, TRAPS);
 480 
 481   // Casting
 482   static Klass* cast(klassOop k) {
 483     assert(k->is_klass(), "cast to Klass");
 484     return k->klass_part();
 485   }
 486 
 487   // array copying
 488   virtual void  copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS);
 489 
 490   // tells if the class should be initialized
 491   virtual bool should_be_initialized() const    { return false; }
 492   // initializes the klass
 493   virtual void initialize(TRAPS);
 494   // lookup operation for MethodLookupCache
 495   friend class MethodLookupCache;
 496   virtual methodOop uncached_lookup_method(symbolOop name, symbolOop signature) const;
 497  public:
 498   methodOop lookup_method(symbolOop name, symbolOop signature) const {
 499     return uncached_lookup_method(name, signature);
 500   }
 501 
 502   // array class with specific rank
 503   klassOop array_klass(int rank, TRAPS)         {  return array_klass_impl(false, rank, THREAD); }
 504 
 505   // array class with this klass as element type
 506   klassOop array_klass(TRAPS)                   {  return array_klass_impl(false, THREAD); }
 507 
 508   // These will return NULL instead of allocating on the heap:
 509   // NB: these can block for a mutex, like other functions with TRAPS arg.
 510   klassOop array_klass_or_null(int rank);
 511   klassOop array_klass_or_null();
 512 
 513   virtual oop protection_domain()       { return NULL; }
 514   virtual oop class_loader()  const     { return NULL; }
 515 
 516  protected:
 517   virtual klassOop array_klass_impl(bool or_null, int rank, TRAPS);
 518   virtual klassOop array_klass_impl(bool or_null, TRAPS);
 519 
 520  public:
 521   virtual void remove_unshareable_info();
 522 
 523  protected:
 524   // computes the subtype relationship
 525   virtual bool compute_is_subtype_of(klassOop k);
 526  public:
 527   // subclass accessor (here for convenience; undefined for non-klass objects)
 528   virtual bool is_leaf_class() const { fatal("not a class"); return false; }
 529  public:
 530   // ALL FUNCTIONS BELOW THIS POINT ARE DISPATCHED FROM AN OOP
 531   // These functions describe behavior for the oop not the KLASS.
 532 
 533   // actual oop size of obj in memory
 534   virtual int oop_size(oop obj) const = 0;
 535 
 536   // actual oop size of this klass in memory
 537   virtual int klass_oop_size() const = 0;
 538 
 539   // Returns the Java name for a class (Resource allocated)
 540   // For arrays, this returns the name of the element with a leading '['.
 541   // For classes, this returns the name with the package separators
 542   //     turned into '.'s.
 543   const char* external_name() const;
 544   // Returns the name for a class (Resource allocated) as the class
 545   // would appear in a signature.
 546   // For arrays, this returns the name of the element with a leading '['.
 547   // For classes, this returns the name with a leading 'L' and a trailing ';'
 548   //     and the package separators as '/'.
 549   virtual const char* signature_name() const;
 550 
 551   // garbage collection support
 552   virtual void oop_follow_contents(oop obj) = 0;
 553   virtual int  oop_adjust_pointers(oop obj) = 0;
 554 
 555   // Parallel Scavenge and Parallel Old
 556   PARALLEL_GC_DECLS_PV
 557 
 558  public:
 559   // type testing operations
 560   virtual bool oop_is_instance_slow()       const { return false; }
 561   virtual bool oop_is_instanceRef()         const { return false; }
 562   virtual bool oop_is_array()               const { return false; }
 563   virtual bool oop_is_objArray_slow()       const { return false; }
 564   virtual bool oop_is_symbol()              const { return false; }
 565   virtual bool oop_is_klass()               const { return false; }
 566   virtual bool oop_is_thread()              const { return false; }
 567   virtual bool oop_is_method()              const { return false; }
 568   virtual bool oop_is_constMethod()         const { return false; }
 569   virtual bool oop_is_methodData()          const { return false; }
 570   virtual bool oop_is_constantPool()        const { return false; }
 571   virtual bool oop_is_constantPoolCache()   const { return false; }
 572   virtual bool oop_is_typeArray_slow()      const { return false; }
 573   virtual bool oop_is_arrayKlass()          const { return false; }
 574   virtual bool oop_is_objArrayKlass()       const { return false; }
 575   virtual bool oop_is_typeArrayKlass()      const { return false; }
 576   virtual bool oop_is_compiledICHolder()    const { return false; }
 577   virtual bool oop_is_instanceKlass()       const { return false; }
 578 
 579   bool oop_is_javaArray_slow() const {
 580     return oop_is_objArray_slow() || oop_is_typeArray_slow();
 581   }
 582 
 583   // Fast non-virtual versions, used by oop.inline.hpp and elsewhere:
 584   #ifndef ASSERT
 585   #define assert_same_query(xval, xcheck) xval
 586   #else
 587  private:
 588   static bool assert_same_query(bool xval, bool xslow) {
 589     assert(xval == xslow, "slow and fast queries agree");
 590     return xval;
 591   }
 592  public:
 593   #endif
 594   inline  bool oop_is_instance()            const { return assert_same_query(
 595                                                     layout_helper_is_instance(layout_helper()),
 596                                                     oop_is_instance_slow()); }
 597   inline  bool oop_is_javaArray()           const { return assert_same_query(
 598                                                     layout_helper_is_javaArray(layout_helper()),
 599                                                     oop_is_javaArray_slow()); }
 600   inline  bool oop_is_objArray()            const { return assert_same_query(
 601                                                     layout_helper_is_objArray(layout_helper()),
 602                                                     oop_is_objArray_slow()); }
 603   inline  bool oop_is_typeArray()           const { return assert_same_query(
 604                                                     layout_helper_is_typeArray(layout_helper()),
 605                                                     oop_is_typeArray_slow()); }
 606   #undef assert_same_query
 607 
 608   // Unless overridden, oop is parsable if it has a klass pointer.
 609   // Parsability of an object is object specific.
 610   virtual bool oop_is_parsable(oop obj) const { return true; }
 611 
 612   // Unless overridden, oop is safe for concurrent GC processing
 613   // after its allocation is complete.  The exception to
 614   // this is the case where objects are changed after allocation.
 615   // Class redefinition is one of the known exceptions. During
 616   // class redefinition, an allocated class can changed in order
 617   // order to create a merged class (the combiniation of the
 618   // old class definition that has to be perserved and the new class
 619   // definition which is being created.
 620   virtual bool oop_is_conc_safe(oop obj) const { return true; }
 621 
 622   // Access flags
 623   AccessFlags access_flags() const         { return _access_flags;  }
 624   void set_access_flags(AccessFlags flags) { _access_flags = flags; }
 625 
 626   bool is_public() const                { return _access_flags.is_public(); }
 627   bool is_final() const                 { return _access_flags.is_final(); }
 628   bool is_interface() const             { return _access_flags.is_interface(); }
 629   bool is_abstract() const              { return _access_flags.is_abstract(); }
 630   bool is_super() const                 { return _access_flags.is_super(); }
 631   bool is_synthetic() const             { return _access_flags.is_synthetic(); }
 632   void set_is_synthetic()               { _access_flags.set_is_synthetic(); }
 633   bool has_finalizer() const            { return _access_flags.has_finalizer(); }
 634   bool has_final_method() const         { return _access_flags.has_final_method(); }
 635   void set_has_finalizer()              { _access_flags.set_has_finalizer(); }
 636   void set_has_final_method()           { _access_flags.set_has_final_method(); }
 637   bool is_cloneable() const             { return _access_flags.is_cloneable(); }
 638   void set_is_cloneable()               { _access_flags.set_is_cloneable(); }
 639   bool has_vanilla_constructor() const  { return _access_flags.has_vanilla_constructor(); }
 640   void set_has_vanilla_constructor()    { _access_flags.set_has_vanilla_constructor(); }
 641   bool has_miranda_methods () const     { return access_flags().has_miranda_methods(); }
 642   void set_has_miranda_methods()        { _access_flags.set_has_miranda_methods(); }
 643 
 644   // Biased locking support
 645   // Note: the prototype header is always set up to be at least the
 646   // prototype markOop. If biased locking is enabled it may further be
 647   // biasable and have an epoch.
 648   markOop prototype_header() const      { return _prototype_header; }
 649   // NOTE: once instances of this klass are floating around in the
 650   // system, this header must only be updated at a safepoint.
 651   // NOTE 2: currently we only ever set the prototype header to the
 652   // biasable prototype for instanceKlasses. There is no technical
 653   // reason why it could not be done for arrayKlasses aside from
 654   // wanting to reduce the initial scope of this optimization. There
 655   // are potential problems in setting the bias pattern for
 656   // JVM-internal oops.
 657   inline void set_prototype_header(markOop header);
 658   static int prototype_header_offset_in_bytes() { return offset_of(Klass, _prototype_header); }
 659 
 660   int  biased_lock_revocation_count() const { return (int) _biased_lock_revocation_count; }
 661   // Atomically increments biased_lock_revocation_count and returns updated value
 662   int atomic_incr_biased_lock_revocation_count();
 663   void set_biased_lock_revocation_count(int val) { _biased_lock_revocation_count = (jint) val; }
 664   jlong last_biased_lock_bulk_revocation_time() { return _last_biased_lock_bulk_revocation_time; }
 665   void  set_last_biased_lock_bulk_revocation_time(jlong cur_time) { _last_biased_lock_bulk_revocation_time = cur_time; }
 666 
 667 
 668   // garbage collection support
 669   virtual void follow_weak_klass_links(
 670     BoolObjectClosure* is_alive, OopClosure* keep_alive);
 671 
 672   // Prefetch within oop iterators.  This is a macro because we
 673   // can't guarantee that the compiler will inline it.  In 64-bit
 674   // it generally doesn't.  Signature is
 675   //
 676   // static void prefetch_beyond(oop* const start,
 677   //                             oop* const end,
 678   //                             const intx foffset,
 679   //                             const Prefetch::style pstyle);
 680 #define prefetch_beyond(start, end, foffset, pstyle) {   \
 681     const intx foffset_ = (foffset);                     \
 682     const Prefetch::style pstyle_ = (pstyle);            \
 683     assert(foffset_ > 0, "prefetch beyond, not behind"); \
 684     if (pstyle_ != Prefetch::do_none) {                  \
 685       oop* ref = (start);                                \
 686       if (ref < (end)) {                                 \
 687         switch (pstyle_) {                               \
 688         case Prefetch::do_read:                          \
 689           Prefetch::read(*ref, foffset_);                \
 690           break;                                         \
 691         case Prefetch::do_write:                         \
 692           Prefetch::write(*ref, foffset_);               \
 693           break;                                         \
 694         default:                                         \
 695           ShouldNotReachHere();                          \
 696           break;                                         \
 697         }                                                \
 698       }                                                  \
 699     }                                                    \
 700   }
 701 
 702   // iterators
 703   virtual int oop_oop_iterate(oop obj, OopClosure* blk) = 0;
 704   virtual int oop_oop_iterate_v(oop obj, OopClosure* blk) {
 705     return oop_oop_iterate(obj, blk);
 706   }
 707 
 708 #ifndef SERIALGC
 709   // In case we don't have a specialized backward scanner use forward
 710   // iteration.
 711   virtual int oop_oop_iterate_backwards_v(oop obj, OopClosure* blk) {
 712     return oop_oop_iterate_v(obj, blk);
 713   }
 714 #endif // !SERIALGC
 715 
 716   // Iterates "blk" over all the oops in "obj" (of type "this") within "mr".
 717   // (I don't see why the _m should be required, but without it the Solaris
 718   // C++ gives warning messages about overridings of the "oop_oop_iterate"
 719   // defined above "hiding" this virtual function.  (DLD, 6/20/00)) */
 720   virtual int oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) = 0;
 721   virtual int oop_oop_iterate_v_m(oop obj, OopClosure* blk, MemRegion mr) {
 722     return oop_oop_iterate_m(obj, blk, mr);
 723   }
 724 
 725   // Versions of the above iterators specialized to particular subtypes
 726   // of OopClosure, to avoid closure virtual calls.
 727 #define Klass_OOP_OOP_ITERATE_DECL(OopClosureType, nv_suffix)                \
 728   virtual int oop_oop_iterate##nv_suffix(oop obj, OopClosureType* blk) {     \
 729     /* Default implementation reverts to general version. */                 \
 730     return oop_oop_iterate(obj, blk);                                        \
 731   }                                                                          \
 732                                                                              \
 733   /* Iterates "blk" over all the oops in "obj" (of type "this") within "mr". \
 734      (I don't see why the _m should be required, but without it the Solaris  \
 735      C++ gives warning messages about overridings of the "oop_oop_iterate"   \
 736      defined above "hiding" this virtual function.  (DLD, 6/20/00)) */       \
 737   virtual int oop_oop_iterate##nv_suffix##_m(oop obj,                        \
 738                                              OopClosureType* blk,            \
 739                                              MemRegion mr) {                 \
 740     return oop_oop_iterate_m(obj, blk, mr);                                  \
 741   }
 742 
 743   SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_DECL)
 744   SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_DECL)
 745 
 746 #ifndef SERIALGC
 747 #define Klass_OOP_OOP_ITERATE_BACKWARDS_DECL(OopClosureType, nv_suffix)      \
 748   virtual int oop_oop_iterate_backwards##nv_suffix(oop obj,                  \
 749                                                    OopClosureType* blk) {    \
 750     /* Default implementation reverts to general version. */                 \
 751     return oop_oop_iterate_backwards_v(obj, blk);                            \
 752   }
 753 
 754   SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL)
 755   SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL)
 756 #endif // !SERIALGC
 757 
 758   virtual void array_klasses_do(void f(klassOop k)) {}
 759   virtual void with_array_klasses_do(void f(klassOop k));
 760 
 761   // Return self, except for abstract classes with exactly 1
 762   // implementor.  Then return the 1 concrete implementation.
 763   Klass *up_cast_abstract();
 764 
 765   // klass name
 766   symbolOop name() const                   { return _name; }
 767   void set_name(symbolOop n)               { oop_store_without_check((oop*) &_name, (oop) n); }
 768 
 769   friend class klassKlass;
 770 
 771  public:
 772   // jvm support
 773   virtual jint compute_modifier_flags(TRAPS) const;
 774 
 775   // JVMTI support
 776   virtual jint jvmti_class_status() const;
 777 
 778   // Printing
 779   virtual void oop_print_value_on(oop obj, outputStream* st);
 780   virtual void oop_print_on      (oop obj, outputStream* st);
 781 
 782   // Verification
 783   virtual const char* internal_name() const = 0;
 784   virtual void oop_verify_on(oop obj, outputStream* st);
 785   virtual void oop_verify_old_oop(oop obj, oop* p, bool allow_dirty);
 786   virtual void oop_verify_old_oop(oop obj, narrowOop* p, bool allow_dirty);
 787   // tells whether obj is partially constructed (gc during class loading)
 788   virtual bool oop_partially_loaded(oop obj) const { return false; }
 789   virtual void oop_set_partially_loaded(oop obj) {};
 790 
 791 #ifndef PRODUCT
 792   void verify_vtable_index(int index);
 793 #endif
 794 };