1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Optimization - Graph Style
  26 
  27 #include "incls/_precompiled.incl"
  28 #include "incls/_block.cpp.incl"
  29 
  30 
  31 //-----------------------------------------------------------------------------
  32 void Block_Array::grow( uint i ) {
  33   assert(i >= Max(), "must be an overflow");
  34   debug_only(_limit = i+1);
  35   if( i < _size )  return;
  36   if( !_size ) {
  37     _size = 1;
  38     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  39     _blocks[0] = NULL;
  40   }
  41   uint old = _size;
  42   while( i >= _size ) _size <<= 1;      // Double to fit
  43   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  44   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  45 }
  46 
  47 //=============================================================================
  48 void Block_List::remove(uint i) {
  49   assert(i < _cnt, "index out of bounds");
  50   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  51   pop(); // shrink list by one block
  52 }
  53 
  54 void Block_List::insert(uint i, Block *b) {
  55   push(b); // grow list by one block
  56   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  57   _blocks[i] = b;
  58 }
  59 
  60 #ifndef PRODUCT
  61 void Block_List::print() {
  62   for (uint i=0; i < size(); i++) {
  63     tty->print("B%d ", _blocks[i]->_pre_order);
  64   }
  65   tty->print("size = %d\n", size());
  66 }
  67 #endif
  68 
  69 //=============================================================================
  70 
  71 uint Block::code_alignment() {
  72   // Check for Root block
  73   if( _pre_order == 0 ) return CodeEntryAlignment;
  74   // Check for Start block
  75   if( _pre_order == 1 ) return InteriorEntryAlignment;
  76   // Check for loop alignment
  77   if (has_loop_alignment())  return loop_alignment();
  78 
  79   return 1;                     // no particular alignment
  80 }
  81 
  82 uint Block::compute_loop_alignment() {
  83   Node *h = head();
  84   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
  85     // Pre- and post-loops have low trip count so do not bother with
  86     // NOPs for align loop head.  The constants are hidden from tuning
  87     // but only because my "divide by 4" heuristic surely gets nearly
  88     // all possible gain (a "do not align at all" heuristic has a
  89     // chance of getting a really tiny gain).
  90     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
  91                                 h->as_CountedLoop()->is_post_loop()) )
  92       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
  93     // Loops with low backedge frequency should not be aligned.
  94     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
  95     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
  96       return 1;             // Loop does not loop, more often than not!
  97     }
  98     return OptoLoopAlignment; // Otherwise align loop head
  99   }
 100 
 101   return 1;                     // no particular alignment
 102 }
 103 
 104 //-----------------------------------------------------------------------------
 105 // Compute the size of first 'inst_cnt' instructions in this block.
 106 // Return the number of instructions left to compute if the block has
 107 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 108 // exceeds OptoLoopAlignment.
 109 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 110                                     PhaseRegAlloc* ra) {
 111   uint last_inst = _nodes.size();
 112   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 113     uint inst_size = _nodes[j]->size(ra);
 114     if( inst_size > 0 ) {
 115       inst_cnt--;
 116       uint sz = sum_size + inst_size;
 117       if( sz <= (uint)OptoLoopAlignment ) {
 118         // Compute size of instructions which fit into fetch buffer only
 119         // since all inst_cnt instructions will not fit even if we align them.
 120         sum_size = sz;
 121       } else {
 122         return 0;
 123       }
 124     }
 125   }
 126   return inst_cnt;
 127 }
 128 
 129 //-----------------------------------------------------------------------------
 130 uint Block::find_node( const Node *n ) const {
 131   for( uint i = 0; i < _nodes.size(); i++ ) {
 132     if( _nodes[i] == n )
 133       return i;
 134   }
 135   ShouldNotReachHere();
 136   return 0;
 137 }
 138 
 139 // Find and remove n from block list
 140 void Block::find_remove( const Node *n ) {
 141   _nodes.remove(find_node(n));
 142 }
 143 
 144 //------------------------------is_Empty---------------------------------------
 145 // Return empty status of a block.  Empty blocks contain only the head, other
 146 // ideal nodes, and an optional trailing goto.
 147 int Block::is_Empty() const {
 148 
 149   // Root or start block is not considered empty
 150   if (head()->is_Root() || head()->is_Start()) {
 151     return not_empty;
 152   }
 153 
 154   int success_result = completely_empty;
 155   int end_idx = _nodes.size()-1;
 156 
 157   // Check for ending goto
 158   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
 159     success_result = empty_with_goto;
 160     end_idx--;
 161   }
 162 
 163   // Unreachable blocks are considered empty
 164   if (num_preds() <= 1) {
 165     return success_result;
 166   }
 167 
 168   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 169   // turn directly into code, because only MachNodes have non-trivial
 170   // emit() functions.
 171   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
 172     end_idx--;
 173   }
 174 
 175   // No room for any interesting instructions?
 176   if (end_idx == 0) {
 177     return success_result;
 178   }
 179 
 180   return not_empty;
 181 }
 182 
 183 //------------------------------has_uncommon_code------------------------------
 184 // Return true if the block's code implies that it is likely to be
 185 // executed infrequently.  Check to see if the block ends in a Halt or
 186 // a low probability call.
 187 bool Block::has_uncommon_code() const {
 188   Node* en = end();
 189 
 190   if (en->is_Goto())
 191     en = en->in(0);
 192   if (en->is_Catch())
 193     en = en->in(0);
 194   if (en->is_Proj() && en->in(0)->is_MachCall()) {
 195     MachCallNode* call = en->in(0)->as_MachCall();
 196     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 197       // This is true for slow-path stubs like new_{instance,array},
 198       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 199       // The magic number corresponds to the probability of an uncommon_trap,
 200       // even though it is a count not a probability.
 201       return true;
 202     }
 203   }
 204 
 205   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 206   return op == Op_Halt;
 207 }
 208 
 209 //------------------------------is_uncommon------------------------------------
 210 // True if block is low enough frequency or guarded by a test which
 211 // mostly does not go here.
 212 bool Block::is_uncommon( Block_Array &bbs ) const {
 213   // Initial blocks must never be moved, so are never uncommon.
 214   if (head()->is_Root() || head()->is_Start())  return false;
 215 
 216   // Check for way-low freq
 217   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 218 
 219   // Look for code shape indicating uncommon_trap or slow path
 220   if (has_uncommon_code()) return true;
 221 
 222   const float epsilon = 0.05f;
 223   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 224   uint uncommon_preds = 0;
 225   uint freq_preds = 0;
 226   uint uncommon_for_freq_preds = 0;
 227 
 228   for( uint i=1; i<num_preds(); i++ ) {
 229     Block* guard = bbs[pred(i)->_idx];
 230     // Check to see if this block follows its guard 1 time out of 10000
 231     // or less.
 232     //
 233     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 234     // we intend to be "uncommon", such as slow-path TLE allocation,
 235     // predicted call failure, and uncommon trap triggers.
 236     //
 237     // Use an epsilon value of 5% to allow for variability in frequency
 238     // predictions and floating point calculations. The net effect is
 239     // that guard_factor is set to 9500.
 240     //
 241     // Ignore low-frequency blocks.
 242     // The next check is (guard->_freq < 1.e-5 * 9500.).
 243     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 244       uncommon_preds++;
 245     } else {
 246       freq_preds++;
 247       if( _freq < guard->_freq * guard_factor ) {
 248         uncommon_for_freq_preds++;
 249       }
 250     }
 251   }
 252   if( num_preds() > 1 &&
 253       // The block is uncommon if all preds are uncommon or
 254       (uncommon_preds == (num_preds()-1) ||
 255       // it is uncommon for all frequent preds.
 256        uncommon_for_freq_preds == freq_preds) ) {
 257     return true;
 258   }
 259   return false;
 260 }
 261 
 262 //------------------------------dump-------------------------------------------
 263 #ifndef PRODUCT
 264 void Block::dump_bidx(const Block* orig) const {
 265   if (_pre_order) tty->print("B%d",_pre_order);
 266   else tty->print("N%d", head()->_idx);
 267 
 268   if (Verbose && orig != this) {
 269     // Dump the original block's idx
 270     tty->print(" (");
 271     orig->dump_bidx(orig);
 272     tty->print(")");
 273   }
 274 }
 275 
 276 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
 277   if (is_connector()) {
 278     for (uint i=1; i<num_preds(); i++) {
 279       Block *p = ((*bbs)[pred(i)->_idx]);
 280       p->dump_pred(bbs, orig);
 281     }
 282   } else {
 283     dump_bidx(orig);
 284     tty->print(" ");
 285   }
 286 }
 287 
 288 void Block::dump_head( const Block_Array *bbs ) const {
 289   // Print the basic block
 290   dump_bidx(this);
 291   tty->print(": #\t");
 292 
 293   // Print the incoming CFG edges and the outgoing CFG edges
 294   for( uint i=0; i<_num_succs; i++ ) {
 295     non_connector_successor(i)->dump_bidx(_succs[i]);
 296     tty->print(" ");
 297   }
 298   tty->print("<- ");
 299   if( head()->is_block_start() ) {
 300     for (uint i=1; i<num_preds(); i++) {
 301       Node *s = pred(i);
 302       if (bbs) {
 303         Block *p = (*bbs)[s->_idx];
 304         p->dump_pred(bbs, p);
 305       } else {
 306         while (!s->is_block_start())
 307           s = s->in(0);
 308         tty->print("N%d ", s->_idx );
 309       }
 310     }
 311   } else
 312     tty->print("BLOCK HEAD IS JUNK  ");
 313 
 314   // Print loop, if any
 315   const Block *bhead = this;    // Head of self-loop
 316   Node *bh = bhead->head();
 317   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
 318     LoopNode *loop = bh->as_Loop();
 319     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
 320     while (bx->is_connector()) {
 321       bx = (*bbs)[bx->pred(1)->_idx];
 322     }
 323     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 324     // Dump any loop-specific bits, especially for CountedLoops.
 325     loop->dump_spec(tty);
 326   } else if (has_loop_alignment()) {
 327     tty->print(" top-of-loop");
 328   }
 329   tty->print(" Freq: %g",_freq);
 330   if( Verbose || WizardMode ) {
 331     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 332     tty->print(" RegPressure: %d",_reg_pressure);
 333     tty->print(" IHRP Index: %d",_ihrp_index);
 334     tty->print(" FRegPressure: %d",_freg_pressure);
 335     tty->print(" FHRP Index: %d",_fhrp_index);
 336   }
 337   tty->print_cr("");
 338 }
 339 
 340 void Block::dump() const { dump(0); }
 341 
 342 void Block::dump( const Block_Array *bbs ) const {
 343   dump_head(bbs);
 344   uint cnt = _nodes.size();
 345   for( uint i=0; i<cnt; i++ )
 346     _nodes[i]->dump();
 347   tty->print("\n");
 348 }
 349 #endif
 350 
 351 //=============================================================================
 352 //------------------------------PhaseCFG---------------------------------------
 353 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
 354   Phase(CFG),
 355   _bbs(a),
 356   _root(r),
 357   _node_latency(NULL)
 358 #ifndef PRODUCT
 359   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
 360 #endif
 361 #ifdef ASSERT
 362   , _raw_oops(a)
 363 #endif
 364 {
 365   ResourceMark rm;
 366   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 367   // then Match it into a machine-specific Node.  Then clone the machine
 368   // Node on demand.
 369   Node *x = new (C, 1) GotoNode(NULL);
 370   x->init_req(0, x);
 371   _goto = m.match_tree(x);
 372   assert(_goto != NULL, "");
 373   _goto->set_req(0,_goto);
 374 
 375   // Build the CFG in Reverse Post Order
 376   _num_blocks = build_cfg();
 377   _broot = _bbs[_root->_idx];
 378 }
 379 
 380 //------------------------------build_cfg--------------------------------------
 381 // Build a proper looking CFG.  Make every block begin with either a StartNode
 382 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 383 // The RootNode both starts and ends it's own block.  Do this with a recursive
 384 // backwards walk over the control edges.
 385 uint PhaseCFG::build_cfg() {
 386   Arena *a = Thread::current()->resource_area();
 387   VectorSet visited(a);
 388 
 389   // Allocate stack with enough space to avoid frequent realloc
 390   Node_Stack nstack(a, C->unique() >> 1);
 391   nstack.push(_root, 0);
 392   uint sum = 0;                 // Counter for blocks
 393 
 394   while (nstack.is_nonempty()) {
 395     // node and in's index from stack's top
 396     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 397     // only nodes which point to the start of basic block (see below).
 398     Node *np = nstack.node();
 399     // idx > 0, except for the first node (_root) pushed on stack
 400     // at the beginning when idx == 0.
 401     // We will use the condition (idx == 0) later to end the build.
 402     uint idx = nstack.index();
 403     Node *proj = np->in(idx);
 404     const Node *x = proj->is_block_proj();
 405     // Does the block end with a proper block-ending Node?  One of Return,
 406     // If or Goto? (This check should be done for visited nodes also).
 407     if (x == NULL) {                    // Does not end right...
 408       Node *g = _goto->clone(); // Force it to end in a Goto
 409       g->set_req(0, proj);
 410       np->set_req(idx, g);
 411       x = proj = g;
 412     }
 413     if (!visited.test_set(x->_idx)) { // Visit this block once
 414       // Skip any control-pinned middle'in stuff
 415       Node *p = proj;
 416       do {
 417         proj = p;                   // Update pointer to last Control
 418         p = p->in(0);               // Move control forward
 419       } while( !p->is_block_proj() &&
 420                !p->is_block_start() );
 421       // Make the block begin with one of Region or StartNode.
 422       if( !p->is_block_start() ) {
 423         RegionNode *r = new (C, 2) RegionNode( 2 );
 424         r->init_req(1, p);         // Insert RegionNode in the way
 425         proj->set_req(0, r);        // Insert RegionNode in the way
 426         p = r;
 427       }
 428       // 'p' now points to the start of this basic block
 429 
 430       // Put self in array of basic blocks
 431       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
 432       _bbs.map(p->_idx,bb);
 433       _bbs.map(x->_idx,bb);
 434       if( x != p )                  // Only for root is x == p
 435         bb->_nodes.push((Node*)x);
 436 
 437       // Now handle predecessors
 438       ++sum;                        // Count 1 for self block
 439       uint cnt = bb->num_preds();
 440       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 441         Node *prevproj = p->in(i);  // Get prior input
 442         assert( !prevproj->is_Con(), "dead input not removed" );
 443         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 444         // i.e., it splits at the source (via an IF or SWITCH) and merges
 445         // at the destination (via a many-input Region).
 446         // This breaks critical edges.  The RegionNode to start the block
 447         // will be added when <p,i> is pulled off the node stack
 448         if ( cnt > 2 ) {             // Merging many things?
 449           assert( prevproj== bb->pred(i),"");
 450           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 451             // Force a block on the control-dependent edge
 452             Node *g = _goto->clone();       // Force it to end in a Goto
 453             g->set_req(0,prevproj);
 454             p->set_req(i,g);
 455           }
 456         }
 457         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 458       }
 459     } else { // Post-processing visited nodes
 460       nstack.pop();                 // remove node from stack
 461       // Check if it the fist node pushed on stack at the beginning.
 462       if (idx == 0) break;          // end of the build
 463       // Find predecessor basic block
 464       Block *pb = _bbs[x->_idx];
 465       // Insert into nodes array, if not already there
 466       if( !_bbs.lookup(proj->_idx) ) {
 467         assert( x != proj, "" );
 468         // Map basic block of projection
 469         _bbs.map(proj->_idx,pb);
 470         pb->_nodes.push(proj);
 471       }
 472       // Insert self as a child of my predecessor block
 473       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
 474       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
 475               "too many control users, not a CFG?" );
 476     }
 477   }
 478   // Return number of basic blocks for all children and self
 479   return sum;
 480 }
 481 
 482 //------------------------------insert_goto_at---------------------------------
 483 // Inserts a goto & corresponding basic block between
 484 // block[block_no] and its succ_no'th successor block
 485 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 486   // get block with block_no
 487   assert(block_no < _num_blocks, "illegal block number");
 488   Block* in  = _blocks[block_no];
 489   // get successor block succ_no
 490   assert(succ_no < in->_num_succs, "illegal successor number");
 491   Block* out = in->_succs[succ_no];
 492   // Compute frequency of the new block. Do this before inserting
 493   // new block in case succ_prob() needs to infer the probability from
 494   // surrounding blocks.
 495   float freq = in->_freq * in->succ_prob(succ_no);
 496   // get ProjNode corresponding to the succ_no'th successor of the in block
 497   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
 498   // create region for basic block
 499   RegionNode* region = new (C, 2) RegionNode(2);
 500   region->init_req(1, proj);
 501   // setup corresponding basic block
 502   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
 503   _bbs.map(region->_idx, block);
 504   C->regalloc()->set_bad(region->_idx);
 505   // add a goto node
 506   Node* gto = _goto->clone(); // get a new goto node
 507   gto->set_req(0, region);
 508   // add it to the basic block
 509   block->_nodes.push(gto);
 510   _bbs.map(gto->_idx, block);
 511   C->regalloc()->set_bad(gto->_idx);
 512   // hook up successor block
 513   block->_succs.map(block->_num_succs++, out);
 514   // remap successor's predecessors if necessary
 515   for (uint i = 1; i < out->num_preds(); i++) {
 516     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 517   }
 518   // remap predecessor's successor to new block
 519   in->_succs.map(succ_no, block);
 520   // Set the frequency of the new block
 521   block->_freq = freq;
 522   // add new basic block to basic block list
 523   _blocks.insert(block_no + 1, block);
 524   _num_blocks++;
 525 }
 526 
 527 //------------------------------no_flip_branch---------------------------------
 528 // Does this block end in a multiway branch that cannot have the default case
 529 // flipped for another case?
 530 static bool no_flip_branch( Block *b ) {
 531   int branch_idx = b->_nodes.size() - b->_num_succs-1;
 532   if( branch_idx < 1 ) return false;
 533   Node *bra = b->_nodes[branch_idx];
 534   if( bra->is_Catch() )
 535     return true;
 536   if( bra->is_Mach() ) {
 537     if( bra->is_MachNullCheck() )
 538       return true;
 539     int iop = bra->as_Mach()->ideal_Opcode();
 540     if( iop == Op_FastLock || iop == Op_FastUnlock )
 541       return true;
 542   }
 543   return false;
 544 }
 545 
 546 //------------------------------convert_NeverBranch_to_Goto--------------------
 547 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 548 // true target.  NeverBranch are treated as a conditional branch that always
 549 // goes the same direction for most of the optimizer and are used to give a
 550 // fake exit path to infinite loops.  At this late stage they need to turn
 551 // into Goto's so that when you enter the infinite loop you indeed hang.
 552 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 553   // Find true target
 554   int end_idx = b->end_idx();
 555   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
 556   Block *succ = b->_succs[idx];
 557   Node* gto = _goto->clone(); // get a new goto node
 558   gto->set_req(0, b->head());
 559   Node *bp = b->_nodes[end_idx];
 560   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
 561   _bbs.map(gto->_idx, b);
 562   C->regalloc()->set_bad(gto->_idx);
 563   b->_nodes.pop();              // Yank projections
 564   b->_nodes.pop();              // Yank projections
 565   b->_succs.map(0,succ);        // Map only successor
 566   b->_num_succs = 1;
 567   // remap successor's predecessors if necessary
 568   uint j;
 569   for( j = 1; j < succ->num_preds(); j++)
 570     if( succ->pred(j)->in(0) == bp )
 571       succ->head()->set_req(j, gto);
 572   // Kill alternate exit path
 573   Block *dead = b->_succs[1-idx];
 574   for( j = 1; j < dead->num_preds(); j++)
 575     if( dead->pred(j)->in(0) == bp )
 576       break;
 577   // Scan through block, yanking dead path from
 578   // all regions and phis.
 579   dead->head()->del_req(j);
 580   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
 581     dead->_nodes[k]->del_req(j);
 582 }
 583 
 584 //------------------------------move_to_next-----------------------------------
 585 // Helper function to move block bx to the slot following b_index. Return
 586 // true if the move is successful, otherwise false
 587 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 588   if (bx == NULL) return false;
 589 
 590   // Return false if bx is already scheduled.
 591   uint bx_index = bx->_pre_order;
 592   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
 593     return false;
 594   }
 595 
 596   // Find the current index of block bx on the block list
 597   bx_index = b_index + 1;
 598   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
 599   assert(_blocks[bx_index] == bx, "block not found");
 600 
 601   // If the previous block conditionally falls into bx, return false,
 602   // because moving bx will create an extra jump.
 603   for(uint k = 1; k < bx->num_preds(); k++ ) {
 604     Block* pred = _bbs[bx->pred(k)->_idx];
 605     if (pred == _blocks[bx_index-1]) {
 606       if (pred->_num_succs != 1) {
 607         return false;
 608       }
 609     }
 610   }
 611 
 612   // Reinsert bx just past block 'b'
 613   _blocks.remove(bx_index);
 614   _blocks.insert(b_index + 1, bx);
 615   return true;
 616 }
 617 
 618 //------------------------------move_to_end------------------------------------
 619 // Move empty and uncommon blocks to the end.
 620 void PhaseCFG::move_to_end(Block *b, uint i) {
 621   int e = b->is_Empty();
 622   if (e != Block::not_empty) {
 623     if (e == Block::empty_with_goto) {
 624       // Remove the goto, but leave the block.
 625       b->_nodes.pop();
 626     }
 627     // Mark this block as a connector block, which will cause it to be
 628     // ignored in certain functions such as non_connector_successor().
 629     b->set_connector();
 630   }
 631   // Move the empty block to the end, and don't recheck.
 632   _blocks.remove(i);
 633   _blocks.push(b);
 634 }
 635 
 636 //---------------------------set_loop_alignment--------------------------------
 637 // Set loop alignment for every block
 638 void PhaseCFG::set_loop_alignment() {
 639   uint last = _num_blocks;
 640   assert( _blocks[0] == _broot, "" );
 641 
 642   for (uint i = 1; i < last; i++ ) {
 643     Block *b = _blocks[i];
 644     if (b->head()->is_Loop()) {
 645       b->set_loop_alignment(b);
 646     }
 647   }
 648 }
 649 
 650 //-----------------------------remove_empty------------------------------------
 651 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 652 // to the end.
 653 void PhaseCFG::remove_empty() {
 654   // Move uncommon blocks to the end
 655   uint last = _num_blocks;
 656   assert( _blocks[0] == _broot, "" );
 657 
 658   for (uint i = 1; i < last; i++) {
 659     Block *b = _blocks[i];
 660     if (b->is_connector()) break;
 661 
 662     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 663     // true target.  NeverBranch are treated as a conditional branch that
 664     // always goes the same direction for most of the optimizer and are used
 665     // to give a fake exit path to infinite loops.  At this late stage they
 666     // need to turn into Goto's so that when you enter the infinite loop you
 667     // indeed hang.
 668     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
 669       convert_NeverBranch_to_Goto(b);
 670 
 671     // Look for uncommon blocks and move to end.
 672     if (!C->do_freq_based_layout()) {
 673       if( b->is_uncommon(_bbs) ) {
 674         move_to_end(b, i);
 675         last--;                   // No longer check for being uncommon!
 676         if( no_flip_branch(b) ) { // Fall-thru case must follow?
 677           b = _blocks[i];         // Find the fall-thru block
 678           move_to_end(b, i);
 679           last--;
 680         }
 681         i--;                      // backup block counter post-increment
 682       }
 683     }
 684   }
 685 
 686   // Move empty blocks to the end
 687   last = _num_blocks;
 688   for (uint i = 1; i < last; i++) {
 689     Block *b = _blocks[i];
 690     if (b->is_Empty() != Block::not_empty) {
 691       move_to_end(b, i);
 692       last--;
 693       i--;
 694     }
 695   } // End of for all blocks
 696 }
 697 
 698 //-----------------------------fixup_flow--------------------------------------
 699 // Fix up the final control flow for basic blocks.
 700 void PhaseCFG::fixup_flow() {
 701   // Fixup final control flow for the blocks.  Remove jump-to-next
 702   // block.  If neither arm of a IF follows the conditional branch, we
 703   // have to add a second jump after the conditional.  We place the
 704   // TRUE branch target in succs[0] for both GOTOs and IFs.
 705   for (uint i=0; i < _num_blocks; i++) {
 706     Block *b = _blocks[i];
 707     b->_pre_order = i;          // turn pre-order into block-index
 708 
 709     // Connector blocks need no further processing.
 710     if (b->is_connector()) {
 711       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
 712              "All connector blocks should sink to the end");
 713       continue;
 714     }
 715     assert(b->is_Empty() != Block::completely_empty,
 716            "Empty blocks should be connectors");
 717 
 718     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
 719     Block *bs0 = b->non_connector_successor(0);
 720 
 721     // Check for multi-way branches where I cannot negate the test to
 722     // exchange the true and false targets.
 723     if( no_flip_branch( b ) ) {
 724       // Find fall through case - if must fall into its target
 725       int branch_idx = b->_nodes.size() - b->_num_succs;
 726       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
 727         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
 728         if (p->_con == 0) {
 729           // successor j2 is fall through case
 730           if (b->non_connector_successor(j2) != bnext) {
 731             // but it is not the next block => insert a goto
 732             insert_goto_at(i, j2);
 733           }
 734           // Put taken branch in slot 0
 735           if( j2 == 0 && b->_num_succs == 2) {
 736             // Flip targets in succs map
 737             Block *tbs0 = b->_succs[0];
 738             Block *tbs1 = b->_succs[1];
 739             b->_succs.map( 0, tbs1 );
 740             b->_succs.map( 1, tbs0 );
 741           }
 742           break;
 743         }
 744       }
 745       // Remove all CatchProjs
 746       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
 747 
 748     } else if (b->_num_succs == 1) {
 749       // Block ends in a Goto?
 750       if (bnext == bs0) {
 751         // We fall into next block; remove the Goto
 752         b->_nodes.pop();
 753       }
 754 
 755     } else if( b->_num_succs == 2 ) { // Block ends in a If?
 756       // Get opcode of 1st projection (matches _succs[0])
 757       // Note: Since this basic block has 2 exits, the last 2 nodes must
 758       //       be projections (in any order), the 3rd last node must be
 759       //       the IfNode (we have excluded other 2-way exits such as
 760       //       CatchNodes already).
 761       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
 762       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
 763       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
 764 
 765       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 766       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
 767       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
 768 
 769       Block *bs1 = b->non_connector_successor(1);
 770 
 771       // Check for neither successor block following the current
 772       // block ending in a conditional. If so, move one of the
 773       // successors after the current one, provided that the
 774       // successor was previously unscheduled, but moveable
 775       // (i.e., all paths to it involve a branch).
 776       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
 777         // Choose the more common successor based on the probability
 778         // of the conditional branch.
 779         Block *bx = bs0;
 780         Block *by = bs1;
 781 
 782         // _prob is the probability of taking the true path. Make
 783         // p the probability of taking successor #1.
 784         float p = iff->as_MachIf()->_prob;
 785         if( proj0->Opcode() == Op_IfTrue ) {
 786           p = 1.0 - p;
 787         }
 788 
 789         // Prefer successor #1 if p > 0.5
 790         if (p > PROB_FAIR) {
 791           bx = bs1;
 792           by = bs0;
 793         }
 794 
 795         // Attempt the more common successor first
 796         if (move_to_next(bx, i)) {
 797           bnext = bx;
 798         } else if (move_to_next(by, i)) {
 799           bnext = by;
 800         }
 801       }
 802 
 803       // Check for conditional branching the wrong way.  Negate
 804       // conditional, if needed, so it falls into the following block
 805       // and branches to the not-following block.
 806 
 807       // Check for the next block being in succs[0].  We are going to branch
 808       // to succs[0], so we want the fall-thru case as the next block in
 809       // succs[1].
 810       if (bnext == bs0) {
 811         // Fall-thru case in succs[0], so flip targets in succs map
 812         Block *tbs0 = b->_succs[0];
 813         Block *tbs1 = b->_succs[1];
 814         b->_succs.map( 0, tbs1 );
 815         b->_succs.map( 1, tbs0 );
 816         // Flip projection for each target
 817         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
 818 
 819       } else if( bnext != bs1 ) {
 820         // Need a double-branch
 821         // The existing conditional branch need not change.
 822         // Add a unconditional branch to the false target.
 823         // Alas, it must appear in its own block and adding a
 824         // block this late in the game is complicated.  Sigh.
 825         insert_goto_at(i, 1);
 826       }
 827 
 828       // Make sure we TRUE branch to the target
 829       if( proj0->Opcode() == Op_IfFalse ) {
 830         iff->negate();
 831       }
 832 
 833       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
 834       b->_nodes.pop();
 835 
 836     } else {
 837       // Multi-exit block, e.g. a switch statement
 838       // But we don't need to do anything here
 839     }
 840   } // End of for all blocks
 841 }
 842 
 843 
 844 //------------------------------dump-------------------------------------------
 845 #ifndef PRODUCT
 846 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
 847   const Node *x = end->is_block_proj();
 848   assert( x, "not a CFG" );
 849 
 850   // Do not visit this block again
 851   if( visited.test_set(x->_idx) ) return;
 852 
 853   // Skip through this block
 854   const Node *p = x;
 855   do {
 856     p = p->in(0);               // Move control forward
 857     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
 858   } while( !p->is_block_start() );
 859 
 860   // Recursively visit
 861   for( uint i=1; i<p->req(); i++ )
 862     _dump_cfg(p->in(i),visited);
 863 
 864   // Dump the block
 865   _bbs[p->_idx]->dump(&_bbs);
 866 }
 867 
 868 void PhaseCFG::dump( ) const {
 869   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
 870   if( _blocks.size() ) {        // Did we do basic-block layout?
 871     for( uint i=0; i<_num_blocks; i++ )
 872       _blocks[i]->dump(&_bbs);
 873   } else {                      // Else do it with a DFS
 874     VectorSet visited(_bbs._arena);
 875     _dump_cfg(_root,visited);
 876   }
 877 }
 878 
 879 void PhaseCFG::dump_headers() {
 880   for( uint i = 0; i < _num_blocks; i++ ) {
 881     if( _blocks[i] == NULL ) continue;
 882     _blocks[i]->dump_head(&_bbs);
 883   }
 884 }
 885 
 886 void PhaseCFG::verify( ) const {
 887 #ifdef ASSERT
 888   // Verify sane CFG
 889   for( uint i = 0; i < _num_blocks; i++ ) {
 890     Block *b = _blocks[i];
 891     uint cnt = b->_nodes.size();
 892     uint j;
 893     for( j = 0; j < cnt; j++ ) {
 894       Node *n = b->_nodes[j];
 895       assert( _bbs[n->_idx] == b, "" );
 896       if( j >= 1 && n->is_Mach() &&
 897           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 898         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
 899                 "CreateEx must be first instruction in block" );
 900       }
 901       for( uint k = 0; k < n->req(); k++ ) {
 902         Node *def = n->in(k);
 903         if( def && def != n ) {
 904           assert( _bbs[def->_idx] || def->is_Con(),
 905                   "must have block; constants for debug info ok" );
 906           // Verify that instructions in the block is in correct order.
 907           // Uses must follow their definition if they are at the same block.
 908           // Mostly done to check that MachSpillCopy nodes are placed correctly
 909           // when CreateEx node is moved in build_ifg_physical().
 910           if( _bbs[def->_idx] == b &&
 911               !(b->head()->is_Loop() && n->is_Phi()) &&
 912               // See (+++) comment in reg_split.cpp
 913               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
 914             bool is_loop = false;
 915             if (n->is_Phi()) {
 916               for( uint l = 1; l < def->req(); l++ ) {
 917                 if (n == def->in(l)) {
 918                   is_loop = true;
 919                   break; // Some kind of loop
 920                 }
 921               }
 922             }
 923             assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
 924           }
 925           if( def->is_SafePointScalarObject() ) {
 926             assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
 927             assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
 928           }
 929         }
 930       }
 931     }
 932 
 933     j = b->end_idx();
 934     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
 935     assert( bp, "last instruction must be a block proj" );
 936     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
 937     if( bp->is_Catch() ) {
 938       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
 939       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
 940     }
 941     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
 942       assert( b->_num_succs == 2, "Conditional branch must have two targets");
 943     }
 944   }
 945 #endif
 946 }
 947 #endif
 948 
 949 //=============================================================================
 950 //------------------------------UnionFind--------------------------------------
 951 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
 952   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
 953 }
 954 
 955 void UnionFind::extend( uint from_idx, uint to_idx ) {
 956   _nesting.check();
 957   if( from_idx >= _max ) {
 958     uint size = 16;
 959     while( size <= from_idx ) size <<=1;
 960     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
 961     _max = size;
 962   }
 963   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
 964   _indices[from_idx] = to_idx;
 965 }
 966 
 967 void UnionFind::reset( uint max ) {
 968   assert( max <= max_uint, "Must fit within uint" );
 969   // Force the Union-Find mapping to be at least this large
 970   extend(max,0);
 971   // Initialize to be the ID mapping.
 972   for( uint i=0; i<max; i++ ) map(i,i);
 973 }
 974 
 975 //------------------------------Find_compress----------------------------------
 976 // Straight out of Tarjan's union-find algorithm
 977 uint UnionFind::Find_compress( uint idx ) {
 978   uint cur  = idx;
 979   uint next = lookup(cur);
 980   while( next != cur ) {        // Scan chain of equivalences
 981     assert( next < cur, "always union smaller" );
 982     cur = next;                 // until find a fixed-point
 983     next = lookup(cur);
 984   }
 985   // Core of union-find algorithm: update chain of
 986   // equivalences to be equal to the root.
 987   while( idx != next ) {
 988     uint tmp = lookup(idx);
 989     map(idx, next);
 990     idx = tmp;
 991   }
 992   return idx;
 993 }
 994 
 995 //------------------------------Find_const-------------------------------------
 996 // Like Find above, but no path compress, so bad asymptotic behavior
 997 uint UnionFind::Find_const( uint idx ) const {
 998   if( idx == 0 ) return idx;    // Ignore the zero idx
 999   // Off the end?  This can happen during debugging dumps
1000   // when data structures have not finished being updated.
1001   if( idx >= _max ) return idx;
1002   uint next = lookup(idx);
1003   while( next != idx ) {        // Scan chain of equivalences
1004     idx = next;                 // until find a fixed-point
1005     next = lookup(idx);
1006   }
1007   return next;
1008 }
1009 
1010 //------------------------------Union------------------------------------------
1011 // union 2 sets together.
1012 void UnionFind::Union( uint idx1, uint idx2 ) {
1013   uint src = Find(idx1);
1014   uint dst = Find(idx2);
1015   assert( src, "" );
1016   assert( dst, "" );
1017   assert( src < _max, "oob" );
1018   assert( dst < _max, "oob" );
1019   assert( src < dst, "always union smaller" );
1020   map(dst,src);
1021 }
1022 
1023 #ifndef PRODUCT
1024 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
1025   tty->print_cr("---- Edges ----");
1026   for (int i = 0; i < edges->length(); i++) {
1027     CFGEdge *e = edges->at(i);
1028     if (e != NULL) {
1029       edges->at(i)->dump();
1030     }
1031   }
1032 }
1033 
1034 static void trace_dump(Trace *traces[], int count) {
1035   tty->print_cr("---- Traces ----");
1036   for (int i = 0; i < count; i++) {
1037     Trace *tr = traces[i];
1038     if (tr != NULL) {
1039       tr->dump();
1040     }
1041   }
1042 }
1043 
1044 void Trace::dump( ) const {
1045   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1046   for (Block *b = first_block(); b != NULL; b = next(b)) {
1047     tty->print("  B%d", b->_pre_order);
1048     if (b->head()->is_Loop()) {
1049       tty->print(" (L%d)", b->compute_loop_alignment());
1050     }
1051     if (b->has_loop_alignment()) {
1052       tty->print(" (T%d)", b->code_alignment());
1053     }
1054   }
1055   tty->cr();
1056 }
1057 
1058 void CFGEdge::dump( ) const {
1059   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1060              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1061   switch(state()) {
1062   case connected:
1063     tty->print("connected");
1064     break;
1065   case open:
1066     tty->print("open");
1067     break;
1068   case interior:
1069     tty->print("interior");
1070     break;
1071   }
1072   if (infrequent()) {
1073     tty->print("  infrequent");
1074   }
1075   tty->cr();
1076 }
1077 #endif
1078 
1079 //=============================================================================
1080 
1081 //------------------------------edge_order-------------------------------------
1082 // Comparison function for edges
1083 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1084   float freq0 = (*e0)->freq();
1085   float freq1 = (*e1)->freq();
1086   if (freq0 != freq1) {
1087     return freq0 > freq1 ? -1 : 1;
1088   }
1089 
1090   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1091   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1092 
1093   return dist1 - dist0;
1094 }
1095 
1096 //------------------------------trace_frequency_order--------------------------
1097 // Comparison function for edges
1098 static int trace_frequency_order(const void *p0, const void *p1) {
1099   Trace *tr0 = *(Trace **) p0;
1100   Trace *tr1 = *(Trace **) p1;
1101   Block *b0 = tr0->first_block();
1102   Block *b1 = tr1->first_block();
1103 
1104   // The trace of connector blocks goes at the end;
1105   // we only expect one such trace
1106   if (b0->is_connector() != b1->is_connector()) {
1107     return b1->is_connector() ? -1 : 1;
1108   }
1109 
1110   // Pull more frequently executed blocks to the beginning
1111   float freq0 = b0->_freq;
1112   float freq1 = b1->_freq;
1113   if (freq0 != freq1) {
1114     return freq0 > freq1 ? -1 : 1;
1115   }
1116 
1117   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1118 
1119   return diff;
1120 }
1121 
1122 //------------------------------find_edges-------------------------------------
1123 // Find edges of interest, i.e, those which can fall through. Presumes that
1124 // edges which don't fall through are of low frequency and can be generally
1125 // ignored.  Initialize the list of traces.
1126 void PhaseBlockLayout::find_edges()
1127 {
1128   // Walk the blocks, creating edges and Traces
1129   uint i;
1130   Trace *tr = NULL;
1131   for (i = 0; i < _cfg._num_blocks; i++) {
1132     Block *b = _cfg._blocks[i];
1133     tr = new Trace(b, next, prev);
1134     traces[tr->id()] = tr;
1135 
1136     // All connector blocks should be at the end of the list
1137     if (b->is_connector()) break;
1138 
1139     // If this block and the next one have a one-to-one successor
1140     // predecessor relationship, simply append the next block
1141     int nfallthru = b->num_fall_throughs();
1142     while (nfallthru == 1 &&
1143            b->succ_fall_through(0)) {
1144       Block *n = b->_succs[0];
1145 
1146       // Skip over single-entry connector blocks, we don't want to
1147       // add them to the trace.
1148       while (n->is_connector() && n->num_preds() == 1) {
1149         n = n->_succs[0];
1150       }
1151 
1152       // We see a merge point, so stop search for the next block
1153       if (n->num_preds() != 1) break;
1154 
1155       i++;
1156       assert(n = _cfg._blocks[i], "expecting next block");
1157       tr->append(n);
1158       uf->map(n->_pre_order, tr->id());
1159       traces[n->_pre_order] = NULL;
1160       nfallthru = b->num_fall_throughs();
1161       b = n;
1162     }
1163 
1164     if (nfallthru > 0) {
1165       // Create a CFGEdge for each outgoing
1166       // edge that could be a fall-through.
1167       for (uint j = 0; j < b->_num_succs; j++ ) {
1168         if (b->succ_fall_through(j)) {
1169           Block *target = b->non_connector_successor(j);
1170           float freq = b->_freq * b->succ_prob(j);
1171           int from_pct = (int) ((100 * freq) / b->_freq);
1172           int to_pct = (int) ((100 * freq) / target->_freq);
1173           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1174         }
1175       }
1176     }
1177   }
1178 
1179   // Group connector blocks into one trace
1180   for (i++; i < _cfg._num_blocks; i++) {
1181     Block *b = _cfg._blocks[i];
1182     assert(b->is_connector(), "connector blocks at the end");
1183     tr->append(b);
1184     uf->map(b->_pre_order, tr->id());
1185     traces[b->_pre_order] = NULL;
1186   }
1187 }
1188 
1189 //------------------------------union_traces----------------------------------
1190 // Union two traces together in uf, and null out the trace in the list
1191 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
1192 {
1193   uint old_id = old_trace->id();
1194   uint updated_id = updated_trace->id();
1195 
1196   uint lo_id = updated_id;
1197   uint hi_id = old_id;
1198 
1199   // If from is greater than to, swap values to meet
1200   // UnionFind guarantee.
1201   if (updated_id > old_id) {
1202     lo_id = old_id;
1203     hi_id = updated_id;
1204 
1205     // Fix up the trace ids
1206     traces[lo_id] = traces[updated_id];
1207     updated_trace->set_id(lo_id);
1208   }
1209 
1210   // Union the lower with the higher and remove the pointer
1211   // to the higher.
1212   uf->Union(lo_id, hi_id);
1213   traces[hi_id] = NULL;
1214 }
1215 
1216 //------------------------------grow_traces-------------------------------------
1217 // Append traces together via the most frequently executed edges
1218 void PhaseBlockLayout::grow_traces()
1219 {
1220   // Order the edges, and drive the growth of Traces via the most
1221   // frequently executed edges.
1222   edges->sort(edge_order);
1223   for (int i = 0; i < edges->length(); i++) {
1224     CFGEdge *e = edges->at(i);
1225 
1226     if (e->state() != CFGEdge::open) continue;
1227 
1228     Block *src_block = e->from();
1229     Block *targ_block = e->to();
1230 
1231     // Don't grow traces along backedges?
1232     if (!BlockLayoutRotateLoops) {
1233       if (targ_block->_rpo <= src_block->_rpo) {
1234         targ_block->set_loop_alignment(targ_block);
1235         continue;
1236       }
1237     }
1238 
1239     Trace *src_trace = trace(src_block);
1240     Trace *targ_trace = trace(targ_block);
1241 
1242     // If the edge in question can join two traces at their ends,
1243     // append one trace to the other.
1244    if (src_trace->last_block() == src_block) {
1245       if (src_trace == targ_trace) {
1246         e->set_state(CFGEdge::interior);
1247         if (targ_trace->backedge(e)) {
1248           // Reset i to catch any newly eligible edge
1249           // (Or we could remember the first "open" edge, and reset there)
1250           i = 0;
1251         }
1252       } else if (targ_trace->first_block() == targ_block) {
1253         e->set_state(CFGEdge::connected);
1254         src_trace->append(targ_trace);
1255         union_traces(src_trace, targ_trace);
1256       }
1257     }
1258   }
1259 }
1260 
1261 //------------------------------merge_traces-----------------------------------
1262 // Embed one trace into another, if the fork or join points are sufficiently
1263 // balanced.
1264 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
1265 {
1266   // Walk the edge list a another time, looking at unprocessed edges.
1267   // Fold in diamonds
1268   for (int i = 0; i < edges->length(); i++) {
1269     CFGEdge *e = edges->at(i);
1270 
1271     if (e->state() != CFGEdge::open) continue;
1272     if (fall_thru_only) {
1273       if (e->infrequent()) continue;
1274     }
1275 
1276     Block *src_block = e->from();
1277     Trace *src_trace = trace(src_block);
1278     bool src_at_tail = src_trace->last_block() == src_block;
1279 
1280     Block *targ_block  = e->to();
1281     Trace *targ_trace  = trace(targ_block);
1282     bool targ_at_start = targ_trace->first_block() == targ_block;
1283 
1284     if (src_trace == targ_trace) {
1285       // This may be a loop, but we can't do much about it.
1286       e->set_state(CFGEdge::interior);
1287       continue;
1288     }
1289 
1290     if (fall_thru_only) {
1291       // If the edge links the middle of two traces, we can't do anything.
1292       // Mark the edge and continue.
1293       if (!src_at_tail & !targ_at_start) {
1294         continue;
1295       }
1296 
1297       // Don't grow traces along backedges?
1298       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1299           continue;
1300       }
1301 
1302       // If both ends of the edge are available, why didn't we handle it earlier?
1303       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1304 
1305       if (targ_at_start) {
1306         // Insert the "targ" trace in the "src" trace if the insertion point
1307         // is a two way branch.
1308         // Better profitability check possible, but may not be worth it.
1309         // Someday, see if the this "fork" has an associated "join";
1310         // then make a policy on merging this trace at the fork or join.
1311         // For example, other things being equal, it may be better to place this
1312         // trace at the join point if the "src" trace ends in a two-way, but
1313         // the insertion point is one-way.
1314         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1315         e->set_state(CFGEdge::connected);
1316         src_trace->insert_after(src_block, targ_trace);
1317         union_traces(src_trace, targ_trace);
1318       } else if (src_at_tail) {
1319         if (src_trace != trace(_cfg._broot)) {
1320           e->set_state(CFGEdge::connected);
1321           targ_trace->insert_before(targ_block, src_trace);
1322           union_traces(targ_trace, src_trace);
1323         }
1324       }
1325     } else if (e->state() == CFGEdge::open) {
1326       // Append traces, even without a fall-thru connection.
1327       // But leave root entry at the beginning of the block list.
1328       if (targ_trace != trace(_cfg._broot)) {
1329         e->set_state(CFGEdge::connected);
1330         src_trace->append(targ_trace);
1331         union_traces(src_trace, targ_trace);
1332       }
1333     }
1334   }
1335 }
1336 
1337 //----------------------------reorder_traces-----------------------------------
1338 // Order the sequence of the traces in some desirable way, and fixup the
1339 // jumps at the end of each block.
1340 void PhaseBlockLayout::reorder_traces(int count)
1341 {
1342   ResourceArea *area = Thread::current()->resource_area();
1343   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1344   Block_List worklist;
1345   int new_count = 0;
1346 
1347   // Compact the traces.
1348   for (int i = 0; i < count; i++) {
1349     Trace *tr = traces[i];
1350     if (tr != NULL) {
1351       new_traces[new_count++] = tr;
1352     }
1353   }
1354 
1355   // The entry block should be first on the new trace list.
1356   Trace *tr = trace(_cfg._broot);
1357   assert(tr == new_traces[0], "entry trace misplaced");
1358 
1359   // Sort the new trace list by frequency
1360   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1361 
1362   // Patch up the successor blocks
1363   _cfg._blocks.reset();
1364   _cfg._num_blocks = 0;
1365   for (int i = 0; i < new_count; i++) {
1366     Trace *tr = new_traces[i];
1367     if (tr != NULL) {
1368       tr->fixup_blocks(_cfg);
1369     }
1370   }
1371 }
1372 
1373 //------------------------------PhaseBlockLayout-------------------------------
1374 // Order basic blocks based on frequency
1375 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
1376   Phase(BlockLayout),
1377   _cfg(cfg)
1378 {
1379   ResourceMark rm;
1380   ResourceArea *area = Thread::current()->resource_area();
1381 
1382   // List of traces
1383   int size = _cfg._num_blocks + 1;
1384   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1385   memset(traces, 0, size*sizeof(Trace*));
1386   next = NEW_ARENA_ARRAY(area, Block *, size);
1387   memset(next,   0, size*sizeof(Block *));
1388   prev = NEW_ARENA_ARRAY(area, Block *, size);
1389   memset(prev  , 0, size*sizeof(Block *));
1390 
1391   // List of edges
1392   edges = new GrowableArray<CFGEdge*>;
1393 
1394   // Mapping block index --> block_trace
1395   uf = new UnionFind(size);
1396   uf->reset(size);
1397 
1398   // Find edges and create traces.
1399   find_edges();
1400 
1401   // Grow traces at their ends via most frequent edges.
1402   grow_traces();
1403 
1404   // Merge one trace into another, but only at fall-through points.
1405   // This may make diamonds and other related shapes in a trace.
1406   merge_traces(true);
1407 
1408   // Run merge again, allowing two traces to be catenated, even if
1409   // one does not fall through into the other. This appends loosely
1410   // related traces to be near each other.
1411   merge_traces(false);
1412 
1413   // Re-order all the remaining traces by frequency
1414   reorder_traces(size);
1415 
1416   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
1417 }
1418 
1419 
1420 //------------------------------backedge---------------------------------------
1421 // Edge e completes a loop in a trace. If the target block is head of the
1422 // loop, rotate the loop block so that the loop ends in a conditional branch.
1423 bool Trace::backedge(CFGEdge *e) {
1424   bool loop_rotated = false;
1425   Block *src_block  = e->from();
1426   Block *targ_block    = e->to();
1427 
1428   assert(last_block() == src_block, "loop discovery at back branch");
1429   if (first_block() == targ_block) {
1430     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1431       // Find the last block in the trace that has a conditional
1432       // branch.
1433       Block *b;
1434       for (b = last_block(); b != NULL; b = prev(b)) {
1435         if (b->num_fall_throughs() == 2) {
1436           break;
1437         }
1438       }
1439 
1440       if (b != last_block() && b != NULL) {
1441         loop_rotated = true;
1442 
1443         // Rotate the loop by doing two-part linked-list surgery.
1444         append(first_block());
1445         break_loop_after(b);
1446       }
1447     }
1448 
1449     // Backbranch to the top of a trace
1450     // Scroll forward through the trace from the targ_block. If we find
1451     // a loop head before another loop top, use the the loop head alignment.
1452     for (Block *b = targ_block; b != NULL; b = next(b)) {
1453       if (b->has_loop_alignment()) {
1454         break;
1455       }
1456       if (b->head()->is_Loop()) {
1457         targ_block = b;
1458         break;
1459       }
1460     }
1461 
1462     first_block()->set_loop_alignment(targ_block);
1463 
1464   } else {
1465     // Backbranch into the middle of a trace
1466     targ_block->set_loop_alignment(targ_block);
1467   }
1468 
1469   return loop_rotated;
1470 }
1471 
1472 //------------------------------fixup_blocks-----------------------------------
1473 // push blocks onto the CFG list
1474 // ensure that blocks have the correct two-way branch sense
1475 void Trace::fixup_blocks(PhaseCFG &cfg) {
1476   Block *last = last_block();
1477   for (Block *b = first_block(); b != NULL; b = next(b)) {
1478     cfg._blocks.push(b);
1479     cfg._num_blocks++;
1480     if (!b->is_connector()) {
1481       int nfallthru = b->num_fall_throughs();
1482       if (b != last) {
1483         if (nfallthru == 2) {
1484           // Ensure that the sense of the branch is correct
1485           Block *bnext = next(b);
1486           Block *bs0 = b->non_connector_successor(0);
1487 
1488           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
1489           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
1490           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
1491 
1492           if (bnext == bs0) {
1493             // Fall-thru case in succs[0], should be in succs[1]
1494 
1495             // Flip targets in _succs map
1496             Block *tbs0 = b->_succs[0];
1497             Block *tbs1 = b->_succs[1];
1498             b->_succs.map( 0, tbs1 );
1499             b->_succs.map( 1, tbs0 );
1500 
1501             // Flip projections to match targets
1502             b->_nodes.map(b->_nodes.size()-2, proj1);
1503             b->_nodes.map(b->_nodes.size()-1, proj0);
1504           }
1505         }
1506       }
1507     }
1508   }
1509 }