1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_gcm.cpp.incl"
  31 
  32 // To avoid float value underflow
  33 #define MIN_BLOCK_FREQUENCY 1.e-35f
  34 
  35 //----------------------------schedule_node_into_block-------------------------
  36 // Insert node n into block b. Look for projections of n and make sure they
  37 // are in b also.
  38 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  39   // Set basic block of n, Add n to b,
  40   _bbs.map(n->_idx, b);
  41   b->add_inst(n);
  42 
  43   // After Matching, nearly any old Node may have projections trailing it.
  44   // These are usually machine-dependent flags.  In any case, they might
  45   // float to another block below this one.  Move them up.
  46   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  47     Node*  use  = n->fast_out(i);
  48     if (use->is_Proj()) {
  49       Block* buse = _bbs[use->_idx];
  50       if (buse != b) {              // In wrong block?
  51         if (buse != NULL)
  52           buse->find_remove(use);   // Remove from wrong block
  53         _bbs.map(use->_idx, b);     // Re-insert in this block
  54         b->add_inst(use);
  55       }
  56     }
  57   }
  58 }
  59 
  60 //----------------------------replace_block_proj_ctrl-------------------------
  61 // Nodes that have is_block_proj() nodes as their control need to use
  62 // the appropriate Region for their actual block as their control since
  63 // the projection will be in a predecessor block.
  64 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  65   const Node *in0 = n->in(0);
  66   assert(in0 != NULL, "Only control-dependent");
  67   const Node *p = in0->is_block_proj();
  68   if (p != NULL && p != n) {    // Control from a block projection?
  69     assert(!n->pinned() || n->is_SafePointScalarObject(), "only SafePointScalarObject pinned node is expected here");
  70     // Find trailing Region
  71     Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
  72     uint j = 0;
  73     if (pb->_num_succs != 1) {  // More then 1 successor?
  74       // Search for successor
  75       uint max = pb->_nodes.size();
  76       assert( max > 1, "" );
  77       uint start = max - pb->_num_succs;
  78       // Find which output path belongs to projection
  79       for (j = start; j < max; j++) {
  80         if( pb->_nodes[j] == in0 )
  81           break;
  82       }
  83       assert( j < max, "must find" );
  84       // Change control to match head of successor basic block
  85       j -= start;
  86     }
  87     n->set_req(0, pb->_succs[j]->head());
  88   }
  89 }
  90 
  91 
  92 //------------------------------schedule_pinned_nodes--------------------------
  93 // Set the basic block for Nodes pinned into blocks
  94 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
  95   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
  96   GrowableArray <Node *> spstack(C->unique()+8);
  97   spstack.push(_root);
  98   while ( spstack.is_nonempty() ) {
  99     Node *n = spstack.pop();
 100     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
 101       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
 102         assert( n->in(0), "pinned Node must have Control" );
 103         // Before setting block replace block_proj control edge
 104         replace_block_proj_ctrl(n);
 105         Node *input = n->in(0);
 106         while( !input->is_block_start() )
 107           input = input->in(0);
 108         Block *b = _bbs[input->_idx];  // Basic block of controlling input
 109         schedule_node_into_block(n, b);
 110       }
 111       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
 112         if( n->in(i) != NULL )
 113           spstack.push(n->in(i));
 114       }
 115     }
 116   }
 117 }
 118 
 119 #ifdef ASSERT
 120 // Assert that new input b2 is dominated by all previous inputs.
 121 // Check this by by seeing that it is dominated by b1, the deepest
 122 // input observed until b2.
 123 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
 124   if (b1 == NULL)  return;
 125   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 126   Block* tmp = b2;
 127   while (tmp != b1 && tmp != NULL) {
 128     tmp = tmp->_idom;
 129   }
 130   if (tmp != b1) {
 131     // Detected an unschedulable graph.  Print some nice stuff and die.
 132     tty->print_cr("!!! Unschedulable graph !!!");
 133     for (uint j=0; j<n->len(); j++) { // For all inputs
 134       Node* inn = n->in(j); // Get input
 135       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 136       Block* inb = bbs[inn->_idx];
 137       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 138                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 139       inn->dump();
 140     }
 141     tty->print("Failing node: ");
 142     n->dump();
 143     assert(false, "unscheduable graph");
 144   }
 145 }
 146 #endif
 147 
 148 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
 149   // Find the last input dominated by all other inputs.
 150   Block* deepb           = NULL;        // Deepest block so far
 151   int    deepb_dom_depth = 0;
 152   for (uint k = 0; k < n->len(); k++) { // For all inputs
 153     Node* inn = n->in(k);               // Get input
 154     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 155     Block* inb = bbs[inn->_idx];
 156     assert(inb != NULL, "must already have scheduled this input");
 157     if (deepb_dom_depth < (int) inb->_dom_depth) {
 158       // The new inb must be dominated by the previous deepb.
 159       // The various inputs must be linearly ordered in the dom
 160       // tree, or else there will not be a unique deepest block.
 161       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
 162       deepb = inb;                      // Save deepest block
 163       deepb_dom_depth = deepb->_dom_depth;
 164     }
 165   }
 166   assert(deepb != NULL, "must be at least one input to n");
 167   return deepb;
 168 }
 169 
 170 
 171 //------------------------------schedule_early---------------------------------
 172 // Find the earliest Block any instruction can be placed in.  Some instructions
 173 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 174 // which all their inputs occur.
 175 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 176   // Allocate stack with enough space to avoid frequent realloc
 177   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
 178   // roots.push(_root); _root will be processed among C->top() inputs
 179   roots.push(C->top());
 180   visited.set(C->top()->_idx);
 181 
 182   while (roots.size() != 0) {
 183     // Use local variables nstack_top_n & nstack_top_i to cache values
 184     // on stack's top.
 185     Node *nstack_top_n = roots.pop();
 186     uint  nstack_top_i = 0;
 187 //while_nstack_nonempty:
 188     while (true) {
 189       // Get parent node and next input's index from stack's top.
 190       Node *n = nstack_top_n;
 191       uint  i = nstack_top_i;
 192 
 193       if (i == 0) {
 194         // Fixup some control.  Constants without control get attached
 195         // to root and nodes that use is_block_proj() nodes should be attached
 196         // to the region that starts their block.
 197         const Node *in0 = n->in(0);
 198         if (in0 != NULL) {              // Control-dependent?
 199           replace_block_proj_ctrl(n);
 200         } else {               // n->in(0) == NULL
 201           if (n->req() == 1) { // This guy is a constant with NO inputs?
 202             n->set_req(0, _root);
 203           }
 204         }
 205       }
 206 
 207       // First, visit all inputs and force them to get a block.  If an
 208       // input is already in a block we quit following inputs (to avoid
 209       // cycles). Instead we put that Node on a worklist to be handled
 210       // later (since IT'S inputs may not have a block yet).
 211       bool done = true;              // Assume all n's inputs will be processed
 212       while (i < n->len()) {         // For all inputs
 213         Node *in = n->in(i);         // Get input
 214         ++i;
 215         if (in == NULL) continue;    // Ignore NULL, missing inputs
 216         int is_visited = visited.test_set(in->_idx);
 217         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
 218           if (is_visited) {
 219             // assert( !visited.test(in->_idx), "did not schedule early" );
 220             return false;
 221           }
 222           nstack.push(n, i);         // Save parent node and next input's index.
 223           nstack_top_n = in;         // Process current input now.
 224           nstack_top_i = 0;
 225           done = false;              // Not all n's inputs processed.
 226           break; // continue while_nstack_nonempty;
 227         } else if (!is_visited) {    // Input not yet visited?
 228           roots.push(in);            // Visit this guy later, using worklist
 229         }
 230       }
 231       if (done) {
 232         // All of n's inputs have been processed, complete post-processing.
 233 
 234         // Some instructions are pinned into a block.  These include Region,
 235         // Phi, Start, Return, and other control-dependent instructions and
 236         // any projections which depend on them.
 237         if (!n->pinned()) {
 238           // Set earliest legal block.
 239           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
 240         } else {
 241           assert(_bbs[n->_idx] == _bbs[n->in(0)->_idx], "Pinned Node should be at the same block as its control edge");
 242         }
 243 
 244         if (nstack.is_empty()) {
 245           // Finished all nodes on stack.
 246           // Process next node on the worklist 'roots'.
 247           break;
 248         }
 249         // Get saved parent node and next input's index.
 250         nstack_top_n = nstack.node();
 251         nstack_top_i = nstack.index();
 252         nstack.pop();
 253       } //    if (done)
 254     }   // while (true)
 255   }     // while (roots.size() != 0)
 256   return true;
 257 }
 258 
 259 //------------------------------dom_lca----------------------------------------
 260 // Find least common ancestor in dominator tree
 261 // LCA is a current notion of LCA, to be raised above 'this'.
 262 // As a convenient boundary condition, return 'this' if LCA is NULL.
 263 // Find the LCA of those two nodes.
 264 Block* Block::dom_lca(Block* LCA) {
 265   if (LCA == NULL || LCA == this)  return this;
 266 
 267   Block* anc = this;
 268   while (anc->_dom_depth > LCA->_dom_depth)
 269     anc = anc->_idom;           // Walk up till anc is as high as LCA
 270 
 271   while (LCA->_dom_depth > anc->_dom_depth)
 272     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 273 
 274   while (LCA != anc) {          // Walk both up till they are the same
 275     LCA = LCA->_idom;
 276     anc = anc->_idom;
 277   }
 278 
 279   return LCA;
 280 }
 281 
 282 //--------------------------raise_LCA_above_use--------------------------------
 283 // We are placing a definition, and have been given a def->use edge.
 284 // The definition must dominate the use, so move the LCA upward in the
 285 // dominator tree to dominate the use.  If the use is a phi, adjust
 286 // the LCA only with the phi input paths which actually use this def.
 287 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
 288   Block* buse = bbs[use->_idx];
 289   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 290   if (!use->is_Phi())  return buse->dom_lca(LCA);
 291   uint pmax = use->req();       // Number of Phi inputs
 292   // Why does not this loop just break after finding the matching input to
 293   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 294   // chains.  Means I cannot distinguish, from the def-use direction, which
 295   // of many use-defs lead from the same use to the same def.  That is, this
 296   // Phi might have several uses of the same def.  Each use appears in a
 297   // different predecessor block.  But when I enter here, I cannot distinguish
 298   // which use-def edge I should find the predecessor block for.  So I find
 299   // them all.  Means I do a little extra work if a Phi uses the same value
 300   // more than once.
 301   for (uint j=1; j<pmax; j++) { // For all inputs
 302     if (use->in(j) == def) {    // Found matching input?
 303       Block* pred = bbs[buse->pred(j)->_idx];
 304       LCA = pred->dom_lca(LCA);
 305     }
 306   }
 307   return LCA;
 308 }
 309 
 310 //----------------------------raise_LCA_above_marks----------------------------
 311 // Return a new LCA that dominates LCA and any of its marked predecessors.
 312 // Search all my parents up to 'early' (exclusive), looking for predecessors
 313 // which are marked with the given index.  Return the LCA (in the dom tree)
 314 // of all marked blocks.  If there are none marked, return the original
 315 // LCA.
 316 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
 317                                     Block* early, Block_Array &bbs) {
 318   Block_List worklist;
 319   worklist.push(LCA);
 320   while (worklist.size() > 0) {
 321     Block* mid = worklist.pop();
 322     if (mid == early)  continue;  // stop searching here
 323 
 324     // Test and set the visited bit.
 325     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 326 
 327     // Don't process the current LCA, otherwise the search may terminate early
 328     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 329       // Raise the LCA.
 330       LCA = mid->dom_lca(LCA);
 331       if (LCA == early)  break;   // stop searching everywhere
 332       assert(early->dominates(LCA), "early is high enough");
 333       // Resume searching at that point, skipping intermediate levels.
 334       worklist.push(LCA);
 335       if (LCA == mid)
 336         continue; // Don't mark as visited to avoid early termination.
 337     } else {
 338       // Keep searching through this block's predecessors.
 339       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 340         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
 341         worklist.push(mid_parent);
 342       }
 343     }
 344     mid->set_raise_LCA_visited(mark);
 345   }
 346   return LCA;
 347 }
 348 
 349 //--------------------------memory_early_block--------------------------------
 350 // This is a variation of find_deepest_input, the heart of schedule_early.
 351 // Find the "early" block for a load, if we considered only memory and
 352 // address inputs, that is, if other data inputs were ignored.
 353 //
 354 // Because a subset of edges are considered, the resulting block will
 355 // be earlier (at a shallower dom_depth) than the true schedule_early
 356 // point of the node. We compute this earlier block as a more permissive
 357 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 358 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
 359   Node* base;
 360   Node* index;
 361   Node* store = load->in(MemNode::Memory);
 362   load->as_Mach()->memory_inputs(base, index);
 363 
 364   assert(base != NodeSentinel && index != NodeSentinel,
 365          "unexpected base/index inputs");
 366 
 367   Node* mem_inputs[4];
 368   int mem_inputs_length = 0;
 369   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 370   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 371   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 372 
 373   // In the comparision below, add one to account for the control input,
 374   // which may be null, but always takes up a spot in the in array.
 375   if (mem_inputs_length + 1 < (int) load->req()) {
 376     // This "load" has more inputs than just the memory, base and index inputs.
 377     // For purposes of checking anti-dependences, we need to start
 378     // from the early block of only the address portion of the instruction,
 379     // and ignore other blocks that may have factored into the wider
 380     // schedule_early calculation.
 381     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 382 
 383     Block* deepb           = NULL;        // Deepest block so far
 384     int    deepb_dom_depth = 0;
 385     for (int i = 0; i < mem_inputs_length; i++) {
 386       Block* inb = bbs[mem_inputs[i]->_idx];
 387       if (deepb_dom_depth < (int) inb->_dom_depth) {
 388         // The new inb must be dominated by the previous deepb.
 389         // The various inputs must be linearly ordered in the dom
 390         // tree, or else there will not be a unique deepest block.
 391         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
 392         deepb = inb;                      // Save deepest block
 393         deepb_dom_depth = deepb->_dom_depth;
 394       }
 395     }
 396     early = deepb;
 397   }
 398 
 399   return early;
 400 }
 401 
 402 //--------------------------insert_anti_dependences---------------------------
 403 // A load may need to witness memory that nearby stores can overwrite.
 404 // For each nearby store, either insert an "anti-dependence" edge
 405 // from the load to the store, or else move LCA upward to force the
 406 // load to (eventually) be scheduled in a block above the store.
 407 //
 408 // Do not add edges to stores on distinct control-flow paths;
 409 // only add edges to stores which might interfere.
 410 //
 411 // Return the (updated) LCA.  There will not be any possibly interfering
 412 // store between the load's "early block" and the updated LCA.
 413 // Any stores in the updated LCA will have new precedence edges
 414 // back to the load.  The caller is expected to schedule the load
 415 // in the LCA, in which case the precedence edges will make LCM
 416 // preserve anti-dependences.  The caller may also hoist the load
 417 // above the LCA, if it is not the early block.
 418 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 419   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 420   assert(LCA != NULL, "");
 421   DEBUG_ONLY(Block* LCA_orig = LCA);
 422 
 423   // Compute the alias index.  Loads and stores with different alias indices
 424   // do not need anti-dependence edges.
 425   uint load_alias_idx = C->get_alias_index(load->adr_type());
 426 #ifdef ASSERT
 427   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 428       (PrintOpto || VerifyAliases ||
 429        PrintMiscellaneous && (WizardMode || Verbose))) {
 430     // Load nodes should not consume all of memory.
 431     // Reporting a bottom type indicates a bug in adlc.
 432     // If some particular type of node validly consumes all of memory,
 433     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 434     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 435     load->dump(2);
 436     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 437   }
 438 #endif
 439   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 440          "String compare is only known 'load' that does not conflict with any stores");
 441   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 442          "String equals is a 'load' that does not conflict with any stores");
 443   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 444          "String indexOf is a 'load' that does not conflict with any stores");
 445   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 446          "Arrays equals is a 'load' that do not conflict with any stores");
 447 
 448   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 449     // It is impossible to spoil this load by putting stores before it,
 450     // because we know that the stores will never update the value
 451     // which 'load' must witness.
 452     return LCA;
 453   }
 454 
 455   node_idx_t load_index = load->_idx;
 456 
 457   // Note the earliest legal placement of 'load', as determined by
 458   // by the unique point in the dom tree where all memory effects
 459   // and other inputs are first available.  (Computed by schedule_early.)
 460   // For normal loads, 'early' is the shallowest place (dom graph wise)
 461   // to look for anti-deps between this load and any store.
 462   Block* early = _bbs[load_index];
 463 
 464   // If we are subsuming loads, compute an "early" block that only considers
 465   // memory or address inputs. This block may be different than the
 466   // schedule_early block in that it could be at an even shallower depth in the
 467   // dominator tree, and allow for a broader discovery of anti-dependences.
 468   if (C->subsume_loads()) {
 469     early = memory_early_block(load, early, _bbs);
 470   }
 471 
 472   ResourceArea *area = Thread::current()->resource_area();
 473   Node_List worklist_mem(area);     // prior memory state to store
 474   Node_List worklist_store(area);   // possible-def to explore
 475   Node_List worklist_visited(area); // visited mergemem nodes
 476   Node_List non_early_stores(area); // all relevant stores outside of early
 477   bool must_raise_LCA = false;
 478 
 479 #ifdef TRACK_PHI_INPUTS
 480   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 481   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 482   // original memory state.  This indicates a PhiNode for which should not
 483   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 484   // may be overly conservative.
 485   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 486   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 487 #endif
 488 
 489   // 'load' uses some memory state; look for users of the same state.
 490   // Recurse through MergeMem nodes to the stores that use them.
 491 
 492   // Each of these stores is a possible definition of memory
 493   // that 'load' needs to use.  We need to force 'load'
 494   // to occur before each such store.  When the store is in
 495   // the same block as 'load', we insert an anti-dependence
 496   // edge load->store.
 497 
 498   // The relevant stores "nearby" the load consist of a tree rooted
 499   // at initial_mem, with internal nodes of type MergeMem.
 500   // Therefore, the branches visited by the worklist are of this form:
 501   //    initial_mem -> (MergeMem ->)* store
 502   // The anti-dependence constraints apply only to the fringe of this tree.
 503 
 504   Node* initial_mem = load->in(MemNode::Memory);
 505   worklist_store.push(initial_mem);
 506   worklist_visited.push(initial_mem);
 507   worklist_mem.push(NULL);
 508   while (worklist_store.size() > 0) {
 509     // Examine a nearby store to see if it might interfere with our load.
 510     Node* mem   = worklist_mem.pop();
 511     Node* store = worklist_store.pop();
 512     uint op = store->Opcode();
 513 
 514     // MergeMems do not directly have anti-deps.
 515     // Treat them as internal nodes in a forward tree of memory states,
 516     // the leaves of which are each a 'possible-def'.
 517     if (store == initial_mem    // root (exclusive) of tree we are searching
 518         || op == Op_MergeMem    // internal node of tree we are searching
 519         ) {
 520       mem = store;   // It's not a possibly interfering store.
 521       if (store == initial_mem)
 522         initial_mem = NULL;  // only process initial memory once
 523 
 524       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 525         store = mem->fast_out(i);
 526         if (store->is_MergeMem()) {
 527           // Be sure we don't get into combinatorial problems.
 528           // (Allow phis to be repeated; they can merge two relevant states.)
 529           uint j = worklist_visited.size();
 530           for (; j > 0; j--) {
 531             if (worklist_visited.at(j-1) == store)  break;
 532           }
 533           if (j > 0)  continue; // already on work list; do not repeat
 534           worklist_visited.push(store);
 535         }
 536         worklist_mem.push(mem);
 537         worklist_store.push(store);
 538       }
 539       continue;
 540     }
 541 
 542     if (op == Op_MachProj || op == Op_Catch)   continue;
 543     if (store->needs_anti_dependence_check())  continue;  // not really a store
 544 
 545     // Compute the alias index.  Loads and stores with different alias
 546     // indices do not need anti-dependence edges.  Wide MemBar's are
 547     // anti-dependent on everything (except immutable memories).
 548     const TypePtr* adr_type = store->adr_type();
 549     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 550 
 551     // Most slow-path runtime calls do NOT modify Java memory, but
 552     // they can block and so write Raw memory.
 553     if (store->is_Mach()) {
 554       MachNode* mstore = store->as_Mach();
 555       if (load_alias_idx != Compile::AliasIdxRaw) {
 556         // Check for call into the runtime using the Java calling
 557         // convention (and from there into a wrapper); it has no
 558         // _method.  Can't do this optimization for Native calls because
 559         // they CAN write to Java memory.
 560         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 561           assert(mstore->is_MachSafePoint(), "");
 562           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 563           assert(ms->is_MachCallJava(), "");
 564           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 565           if (mcj->_method == NULL) {
 566             // These runtime calls do not write to Java visible memory
 567             // (other than Raw) and so do not require anti-dependence edges.
 568             continue;
 569           }
 570         }
 571         // Same for SafePoints: they read/write Raw but only read otherwise.
 572         // This is basically a workaround for SafePoints only defining control
 573         // instead of control + memory.
 574         if (mstore->ideal_Opcode() == Op_SafePoint)
 575           continue;
 576       } else {
 577         // Some raw memory, such as the load of "top" at an allocation,
 578         // can be control dependent on the previous safepoint. See
 579         // comments in GraphKit::allocate_heap() about control input.
 580         // Inserting an anti-dep between such a safepoint and a use
 581         // creates a cycle, and will cause a subsequent failure in
 582         // local scheduling.  (BugId 4919904)
 583         // (%%% How can a control input be a safepoint and not a projection??)
 584         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 585           continue;
 586       }
 587     }
 588 
 589     // Identify a block that the current load must be above,
 590     // or else observe that 'store' is all the way up in the
 591     // earliest legal block for 'load'.  In the latter case,
 592     // immediately insert an anti-dependence edge.
 593     Block* store_block = _bbs[store->_idx];
 594     assert(store_block != NULL, "unused killing projections skipped above");
 595 
 596     if (store->is_Phi()) {
 597       // 'load' uses memory which is one (or more) of the Phi's inputs.
 598       // It must be scheduled not before the Phi, but rather before
 599       // each of the relevant Phi inputs.
 600       //
 601       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 602       // we mark each corresponding predecessor block and do a combined
 603       // hoisting operation later (raise_LCA_above_marks).
 604       //
 605       // Do not assert(store_block != early, "Phi merging memory after access")
 606       // PhiNode may be at start of block 'early' with backedge to 'early'
 607       DEBUG_ONLY(bool found_match = false);
 608       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 609         if (store->in(j) == mem) {   // Found matching input?
 610           DEBUG_ONLY(found_match = true);
 611           Block* pred_block = _bbs[store_block->pred(j)->_idx];
 612           if (pred_block != early) {
 613             // If any predecessor of the Phi matches the load's "early block",
 614             // we do not need a precedence edge between the Phi and 'load'
 615             // since the load will be forced into a block preceding the Phi.
 616             pred_block->set_raise_LCA_mark(load_index);
 617             assert(!LCA_orig->dominates(pred_block) ||
 618                    early->dominates(pred_block), "early is high enough");
 619             must_raise_LCA = true;
 620           } else {
 621             // anti-dependent upon PHI pinned below 'early', no edge needed
 622             LCA = early;             // but can not schedule below 'early'
 623           }
 624         }
 625       }
 626       assert(found_match, "no worklist bug");
 627 #ifdef TRACK_PHI_INPUTS
 628 #ifdef ASSERT
 629       // This assert asks about correct handling of PhiNodes, which may not
 630       // have all input edges directly from 'mem'. See BugId 4621264
 631       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 632       // Increment by exactly one even if there are multiple copies of 'mem'
 633       // coming into the phi, because we will run this block several times
 634       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 635       phi_inputs.at_put(store->_idx, num_mem_inputs);
 636       assert(PhiNode::Input + num_mem_inputs < store->req(),
 637              "Expect at least one phi input will not be from original memory state");
 638 #endif //ASSERT
 639 #endif //TRACK_PHI_INPUTS
 640     } else if (store_block != early) {
 641       // 'store' is between the current LCA and earliest possible block.
 642       // Label its block, and decide later on how to raise the LCA
 643       // to include the effect on LCA of this store.
 644       // If this store's block gets chosen as the raised LCA, we
 645       // will find him on the non_early_stores list and stick him
 646       // with a precedence edge.
 647       // (But, don't bother if LCA is already raised all the way.)
 648       if (LCA != early) {
 649         store_block->set_raise_LCA_mark(load_index);
 650         must_raise_LCA = true;
 651         non_early_stores.push(store);
 652       }
 653     } else {
 654       // Found a possibly-interfering store in the load's 'early' block.
 655       // This means 'load' cannot sink at all in the dominator tree.
 656       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 657       assert(store != load->in(0), "dependence cycle found");
 658       if (verify) {
 659         assert(store->find_edge(load) != -1, "missing precedence edge");
 660       } else {
 661         store->add_prec(load);
 662       }
 663       LCA = early;
 664       // This turns off the process of gathering non_early_stores.
 665     }
 666   }
 667   // (Worklist is now empty; all nearby stores have been visited.)
 668 
 669   // Finished if 'load' must be scheduled in its 'early' block.
 670   // If we found any stores there, they have already been given
 671   // precedence edges.
 672   if (LCA == early)  return LCA;
 673 
 674   // We get here only if there are no possibly-interfering stores
 675   // in the load's 'early' block.  Move LCA up above all predecessors
 676   // which contain stores we have noted.
 677   //
 678   // The raised LCA block can be a home to such interfering stores,
 679   // but its predecessors must not contain any such stores.
 680   //
 681   // The raised LCA will be a lower bound for placing the load,
 682   // preventing the load from sinking past any block containing
 683   // a store that may invalidate the memory state required by 'load'.
 684   if (must_raise_LCA)
 685     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
 686   if (LCA == early)  return LCA;
 687 
 688   // Insert anti-dependence edges from 'load' to each store
 689   // in the non-early LCA block.
 690   // Mine the non_early_stores list for such stores.
 691   if (LCA->raise_LCA_mark() == load_index) {
 692     while (non_early_stores.size() > 0) {
 693       Node* store = non_early_stores.pop();
 694       Block* store_block = _bbs[store->_idx];
 695       if (store_block == LCA) {
 696         // add anti_dependence from store to load in its own block
 697         assert(store != load->in(0), "dependence cycle found");
 698         if (verify) {
 699           assert(store->find_edge(load) != -1, "missing precedence edge");
 700         } else {
 701           store->add_prec(load);
 702         }
 703       } else {
 704         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 705         // Any other stores we found must be either inside the new LCA
 706         // or else outside the original LCA.  In the latter case, they
 707         // did not interfere with any use of 'load'.
 708         assert(LCA->dominates(store_block)
 709                || !LCA_orig->dominates(store_block), "no stray stores");
 710       }
 711     }
 712   }
 713 
 714   // Return the highest block containing stores; any stores
 715   // within that block have been given anti-dependence edges.
 716   return LCA;
 717 }
 718 
 719 // This class is used to iterate backwards over the nodes in the graph.
 720 
 721 class Node_Backward_Iterator {
 722 
 723 private:
 724   Node_Backward_Iterator();
 725 
 726 public:
 727   // Constructor for the iterator
 728   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
 729 
 730   // Postincrement operator to iterate over the nodes
 731   Node *next();
 732 
 733 private:
 734   VectorSet   &_visited;
 735   Node_List   &_stack;
 736   Block_Array &_bbs;
 737 };
 738 
 739 // Constructor for the Node_Backward_Iterator
 740 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
 741   : _visited(visited), _stack(stack), _bbs(bbs) {
 742   // The stack should contain exactly the root
 743   stack.clear();
 744   stack.push(root);
 745 
 746   // Clear the visited bits
 747   visited.Clear();
 748 }
 749 
 750 // Iterator for the Node_Backward_Iterator
 751 Node *Node_Backward_Iterator::next() {
 752 
 753   // If the _stack is empty, then just return NULL: finished.
 754   if ( !_stack.size() )
 755     return NULL;
 756 
 757   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 758   // made stateless, so I do not need to record the index 'i' on my _stack.
 759   // Instead I visit all users each time, scanning for unvisited users.
 760   // I visit unvisited not-anti-dependence users first, then anti-dependent
 761   // children next.
 762   Node *self = _stack.pop();
 763 
 764   // I cycle here when I am entering a deeper level of recursion.
 765   // The key variable 'self' was set prior to jumping here.
 766   while( 1 ) {
 767 
 768     _visited.set(self->_idx);
 769 
 770     // Now schedule all uses as late as possible.
 771     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
 772     uint src_rpo = _bbs[src]->_rpo;
 773 
 774     // Schedule all nodes in a post-order visit
 775     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 776 
 777     // Scan for unvisited nodes
 778     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 779       // For all uses, schedule late
 780       Node* n = self->fast_out(i); // Use
 781 
 782       // Skip already visited children
 783       if ( _visited.test(n->_idx) )
 784         continue;
 785 
 786       // do not traverse backward control edges
 787       Node *use = n->is_Proj() ? n->in(0) : n;
 788       uint use_rpo = _bbs[use->_idx]->_rpo;
 789 
 790       if ( use_rpo < src_rpo )
 791         continue;
 792 
 793       // Phi nodes always precede uses in a basic block
 794       if ( use_rpo == src_rpo && use->is_Phi() )
 795         continue;
 796 
 797       unvisited = n;      // Found unvisited
 798 
 799       // Check for possible-anti-dependent
 800       if( !n->needs_anti_dependence_check() )
 801         break;            // Not visited, not anti-dep; schedule it NOW
 802     }
 803 
 804     // Did I find an unvisited not-anti-dependent Node?
 805     if ( !unvisited )
 806       break;                  // All done with children; post-visit 'self'
 807 
 808     // Visit the unvisited Node.  Contains the obvious push to
 809     // indicate I'm entering a deeper level of recursion.  I push the
 810     // old state onto the _stack and set a new state and loop (recurse).
 811     _stack.push(self);
 812     self = unvisited;
 813   } // End recursion loop
 814 
 815   return self;
 816 }
 817 
 818 //------------------------------ComputeLatenciesBackwards----------------------
 819 // Compute the latency of all the instructions.
 820 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
 821 #ifndef PRODUCT
 822   if (trace_opto_pipelining())
 823     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 824 #endif
 825 
 826   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
 827   Node *n;
 828 
 829   // Walk over all the nodes from last to first
 830   while (n = iter.next()) {
 831     // Set the latency for the definitions of this instruction
 832     partial_latency_of_defs(n);
 833   }
 834 } // end ComputeLatenciesBackwards
 835 
 836 //------------------------------partial_latency_of_defs------------------------
 837 // Compute the latency impact of this node on all defs.  This computes
 838 // a number that increases as we approach the beginning of the routine.
 839 void PhaseCFG::partial_latency_of_defs(Node *n) {
 840   // Set the latency for this instruction
 841 #ifndef PRODUCT
 842   if (trace_opto_pipelining()) {
 843     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
 844                n->_idx, _node_latency->at_grow(n->_idx));
 845     dump();
 846   }
 847 #endif
 848 
 849   if (n->is_Proj())
 850     n = n->in(0);
 851 
 852   if (n->is_Root())
 853     return;
 854 
 855   uint nlen = n->len();
 856   uint use_latency = _node_latency->at_grow(n->_idx);
 857   uint use_pre_order = _bbs[n->_idx]->_pre_order;
 858 
 859   for ( uint j=0; j<nlen; j++ ) {
 860     Node *def = n->in(j);
 861 
 862     if (!def || def == n)
 863       continue;
 864 
 865     // Walk backwards thru projections
 866     if (def->is_Proj())
 867       def = def->in(0);
 868 
 869 #ifndef PRODUCT
 870     if (trace_opto_pipelining()) {
 871       tty->print("#    in(%2d): ", j);
 872       def->dump();
 873     }
 874 #endif
 875 
 876     // If the defining block is not known, assume it is ok
 877     Block *def_block = _bbs[def->_idx];
 878     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 879 
 880     if ( (use_pre_order <  def_pre_order) ||
 881          (use_pre_order == def_pre_order && n->is_Phi()) )
 882       continue;
 883 
 884     uint delta_latency = n->latency(j);
 885     uint current_latency = delta_latency + use_latency;
 886 
 887     if (_node_latency->at_grow(def->_idx) < current_latency) {
 888       _node_latency->at_put_grow(def->_idx, current_latency);
 889     }
 890 
 891 #ifndef PRODUCT
 892     if (trace_opto_pipelining()) {
 893       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
 894                     use_latency, j, delta_latency, current_latency, def->_idx,
 895                     _node_latency->at_grow(def->_idx));
 896     }
 897 #endif
 898   }
 899 }
 900 
 901 //------------------------------latency_from_use-------------------------------
 902 // Compute the latency of a specific use
 903 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 904   // If self-reference, return no latency
 905   if (use == n || use->is_Root())
 906     return 0;
 907 
 908   uint def_pre_order = _bbs[def->_idx]->_pre_order;
 909   uint latency = 0;
 910 
 911   // If the use is not a projection, then it is simple...
 912   if (!use->is_Proj()) {
 913 #ifndef PRODUCT
 914     if (trace_opto_pipelining()) {
 915       tty->print("#    out(): ");
 916       use->dump();
 917     }
 918 #endif
 919 
 920     uint use_pre_order = _bbs[use->_idx]->_pre_order;
 921 
 922     if (use_pre_order < def_pre_order)
 923       return 0;
 924 
 925     if (use_pre_order == def_pre_order && use->is_Phi())
 926       return 0;
 927 
 928     uint nlen = use->len();
 929     uint nl = _node_latency->at_grow(use->_idx);
 930 
 931     for ( uint j=0; j<nlen; j++ ) {
 932       if (use->in(j) == n) {
 933         // Change this if we want local latencies
 934         uint ul = use->latency(j);
 935         uint  l = ul + nl;
 936         if (latency < l) latency = l;
 937 #ifndef PRODUCT
 938         if (trace_opto_pipelining()) {
 939           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 940                         nl, j, ul, l, latency);
 941         }
 942 #endif
 943       }
 944     }
 945   } else {
 946     // This is a projection, just grab the latency of the use(s)
 947     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
 948       uint l = latency_from_use(use, def, use->fast_out(j));
 949       if (latency < l) latency = l;
 950     }
 951   }
 952 
 953   return latency;
 954 }
 955 
 956 //------------------------------latency_from_uses------------------------------
 957 // Compute the latency of this instruction relative to all of it's uses.
 958 // This computes a number that increases as we approach the beginning of the
 959 // routine.
 960 void PhaseCFG::latency_from_uses(Node *n) {
 961   // Set the latency for this instruction
 962 #ifndef PRODUCT
 963   if (trace_opto_pipelining()) {
 964     tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
 965                n->_idx, _node_latency->at_grow(n->_idx));
 966     dump();
 967   }
 968 #endif
 969   uint latency=0;
 970   const Node *def = n->is_Proj() ? n->in(0): n;
 971 
 972   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 973     uint l = latency_from_use(n, def, n->fast_out(i));
 974 
 975     if (latency < l) latency = l;
 976   }
 977 
 978   _node_latency->at_put_grow(n->_idx, latency);
 979 }
 980 
 981 //------------------------------hoist_to_cheaper_block-------------------------
 982 // Pick a block for node self, between early and LCA, that is a cheaper
 983 // alternative to LCA.
 984 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
 985   const double delta = 1+PROB_UNLIKELY_MAG(4);
 986   Block* least       = LCA;
 987   double least_freq  = least->_freq;
 988   uint target        = _node_latency->at_grow(self->_idx);
 989   uint start_latency = _node_latency->at_grow(LCA->_nodes[0]->_idx);
 990   uint end_latency   = _node_latency->at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
 991   bool in_latency    = (target <= start_latency);
 992   const Block* root_block = _bbs[_root->_idx];
 993 
 994   // Turn off latency scheduling if scheduling is just plain off
 995   if (!C->do_scheduling())
 996     in_latency = true;
 997 
 998   // Do not hoist (to cover latency) instructions which target a
 999   // single register.  Hoisting stretches the live range of the
1000   // single register and may force spilling.
1001   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1002   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1003     in_latency = true;
1004 
1005 #ifndef PRODUCT
1006   if (trace_opto_pipelining()) {
1007     tty->print("# Find cheaper block for latency %d: ",
1008       _node_latency->at_grow(self->_idx));
1009     self->dump();
1010     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1011       LCA->_pre_order,
1012       LCA->_nodes[0]->_idx,
1013       start_latency,
1014       LCA->_nodes[LCA->end_idx()]->_idx,
1015       end_latency,
1016       least_freq);
1017   }
1018 #endif
1019 
1020   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1021   // the earliest legal location.  Capture the least execution frequency.
1022   while (LCA != early) {
1023     LCA = LCA->_idom;         // Follow up the dominator tree
1024 
1025     if (LCA == NULL) {
1026       // Bailout without retry
1027       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1028       return least;
1029     }
1030 
1031     // Don't hoist machine instructions to the root basic block
1032     if (mach && LCA == root_block)
1033       break;
1034 
1035     uint start_lat = _node_latency->at_grow(LCA->_nodes[0]->_idx);
1036     uint end_idx   = LCA->end_idx();
1037     uint end_lat   = _node_latency->at_grow(LCA->_nodes[end_idx]->_idx);
1038     double LCA_freq = LCA->_freq;
1039 #ifndef PRODUCT
1040     if (trace_opto_pipelining()) {
1041       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1042         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1043     }
1044 #endif
1045     if (LCA_freq < least_freq              || // Better Frequency
1046         ( !in_latency                   &&    // No block containing latency
1047           LCA_freq < least_freq * delta &&    // No worse frequency
1048           target >= end_lat             &&    // within latency range
1049           !self->is_iteratively_computed() )  // But don't hoist IV increments
1050              // because they may end up above other uses of their phi forcing
1051              // their result register to be different from their input.
1052        ) {
1053       least = LCA;            // Found cheaper block
1054       least_freq = LCA_freq;
1055       start_latency = start_lat;
1056       end_latency = end_lat;
1057       if (target <= start_lat)
1058         in_latency = true;
1059     }
1060   }
1061 
1062 #ifndef PRODUCT
1063   if (trace_opto_pipelining()) {
1064     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1065       least->_pre_order, start_latency, least_freq);
1066   }
1067 #endif
1068 
1069   // See if the latency needs to be updated
1070   if (target < end_latency) {
1071 #ifndef PRODUCT
1072     if (trace_opto_pipelining()) {
1073       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1074     }
1075 #endif
1076     _node_latency->at_put_grow(self->_idx, end_latency);
1077     partial_latency_of_defs(self);
1078   }
1079 
1080   return least;
1081 }
1082 
1083 
1084 //------------------------------schedule_late-----------------------------------
1085 // Now schedule all codes as LATE as possible.  This is the LCA in the
1086 // dominator tree of all USES of a value.  Pick the block with the least
1087 // loop nesting depth that is lowest in the dominator tree.
1088 extern const char must_clone[];
1089 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1090 #ifndef PRODUCT
1091   if (trace_opto_pipelining())
1092     tty->print("\n#---- schedule_late ----\n");
1093 #endif
1094 
1095   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1096   Node *self;
1097 
1098   // Walk over all the nodes from last to first
1099   while (self = iter.next()) {
1100     Block* early = _bbs[self->_idx];   // Earliest legal placement
1101 
1102     if (self->is_top()) {
1103       // Top node goes in bb #2 with other constants.
1104       // It must be special-cased, because it has no out edges.
1105       early->add_inst(self);
1106       continue;
1107     }
1108 
1109     // No uses, just terminate
1110     if (self->outcnt() == 0) {
1111       assert(self->Opcode() == Op_MachProj, "sanity");
1112       continue;                   // Must be a dead machine projection
1113     }
1114 
1115     // If node is pinned in the block, then no scheduling can be done.
1116     if( self->pinned() )          // Pinned in block?
1117       continue;
1118 
1119     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1120     if (mach) {
1121       switch (mach->ideal_Opcode()) {
1122       case Op_CreateEx:
1123         // Don't move exception creation
1124         early->add_inst(self);
1125         continue;
1126         break;
1127       case Op_CheckCastPP:
1128         // Don't move CheckCastPP nodes away from their input, if the input
1129         // is a rawptr (5071820).
1130         Node *def = self->in(1);
1131         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1132           early->add_inst(self);
1133 #ifdef ASSERT
1134           _raw_oops.push(def);
1135 #endif
1136           continue;
1137         }
1138         break;
1139       }
1140     }
1141 
1142     // Gather LCA of all uses
1143     Block *LCA = NULL;
1144     {
1145       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1146         // For all uses, find LCA
1147         Node* use = self->fast_out(i);
1148         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1149       }
1150     }  // (Hide defs of imax, i from rest of block.)
1151 
1152     // Place temps in the block of their use.  This isn't a
1153     // requirement for correctness but it reduces useless
1154     // interference between temps and other nodes.
1155     if (mach != NULL && mach->is_MachTemp()) {
1156       _bbs.map(self->_idx, LCA);
1157       LCA->add_inst(self);
1158       continue;
1159     }
1160 
1161     // Check if 'self' could be anti-dependent on memory
1162     if (self->needs_anti_dependence_check()) {
1163       // Hoist LCA above possible-defs and insert anti-dependences to
1164       // defs in new LCA block.
1165       LCA = insert_anti_dependences(LCA, self);
1166     }
1167 
1168     if (early->_dom_depth > LCA->_dom_depth) {
1169       // Somehow the LCA has moved above the earliest legal point.
1170       // (One way this can happen is via memory_early_block.)
1171       if (C->subsume_loads() == true && !C->failing()) {
1172         // Retry with subsume_loads == false
1173         // If this is the first failure, the sentinel string will "stick"
1174         // to the Compile object, and the C2Compiler will see it and retry.
1175         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1176       } else {
1177         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1178         C->record_method_not_compilable("late schedule failed: incorrect graph");
1179       }
1180       return;
1181     }
1182 
1183     // If there is no opportunity to hoist, then we're done.
1184     bool try_to_hoist = (LCA != early);
1185 
1186     // Must clone guys stay next to use; no hoisting allowed.
1187     // Also cannot hoist guys that alter memory or are otherwise not
1188     // allocatable (hoisting can make a value live longer, leading to
1189     // anti and output dependency problems which are normally resolved
1190     // by the register allocator giving everyone a different register).
1191     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1192       try_to_hoist = false;
1193 
1194     Block* late = NULL;
1195     if (try_to_hoist) {
1196       // Now find the block with the least execution frequency.
1197       // Start at the latest schedule and work up to the earliest schedule
1198       // in the dominator tree.  Thus the Node will dominate all its uses.
1199       late = hoist_to_cheaper_block(LCA, early, self);
1200     } else {
1201       // Just use the LCA of the uses.
1202       late = LCA;
1203     }
1204 
1205     // Put the node into target block
1206     schedule_node_into_block(self, late);
1207 
1208 #ifdef ASSERT
1209     if (self->needs_anti_dependence_check()) {
1210       // since precedence edges are only inserted when we're sure they
1211       // are needed make sure that after placement in a block we don't
1212       // need any new precedence edges.
1213       verify_anti_dependences(late, self);
1214     }
1215 #endif
1216   } // Loop until all nodes have been visited
1217 
1218 } // end ScheduleLate
1219 
1220 //------------------------------GlobalCodeMotion-------------------------------
1221 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1222   ResourceMark rm;
1223 
1224 #ifndef PRODUCT
1225   if (trace_opto_pipelining()) {
1226     tty->print("\n---- Start GlobalCodeMotion ----\n");
1227   }
1228 #endif
1229 
1230   // Initialize the bbs.map for things on the proj_list
1231   uint i;
1232   for( i=0; i < proj_list.size(); i++ )
1233     _bbs.map(proj_list[i]->_idx, NULL);
1234 
1235   // Set the basic block for Nodes pinned into blocks
1236   Arena *a = Thread::current()->resource_area();
1237   VectorSet visited(a);
1238   schedule_pinned_nodes( visited );
1239 
1240   // Find the earliest Block any instruction can be placed in.  Some
1241   // instructions are pinned into Blocks.  Unpinned instructions can
1242   // appear in last block in which all their inputs occur.
1243   visited.Clear();
1244   Node_List stack(a);
1245   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1246   if (!schedule_early(visited, stack)) {
1247     // Bailout without retry
1248     C->record_method_not_compilable("early schedule failed");
1249     return;
1250   }
1251 
1252   // Build Def-Use edges.
1253   proj_list.push(_root);        // Add real root as another root
1254   proj_list.pop();
1255 
1256   // Compute the latency information (via backwards walk) for all the
1257   // instructions in the graph
1258   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1259 
1260   if( C->do_scheduling() )
1261     ComputeLatenciesBackwards(visited, stack);
1262 
1263   // Now schedule all codes as LATE as possible.  This is the LCA in the
1264   // dominator tree of all USES of a value.  Pick the block with the least
1265   // loop nesting depth that is lowest in the dominator tree.
1266   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1267   schedule_late(visited, stack);
1268   if( C->failing() ) {
1269     // schedule_late fails only when graph is incorrect.
1270     assert(!VerifyGraphEdges, "verification should have failed");
1271     return;
1272   }
1273 
1274   unique = C->unique();
1275 
1276 #ifndef PRODUCT
1277   if (trace_opto_pipelining()) {
1278     tty->print("\n---- Detect implicit null checks ----\n");
1279   }
1280 #endif
1281 
1282   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1283   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1284   // I can generate a memory op if there is not one nearby.
1285   if (C->is_method_compilation()) {
1286     // Don't do it for natives, adapters, or runtime stubs
1287     int allowed_reasons = 0;
1288     // ...and don't do it when there have been too many traps, globally.
1289     for (int reason = (int)Deoptimization::Reason_none+1;
1290          reason < Compile::trapHistLength; reason++) {
1291       assert(reason < BitsPerInt, "recode bit map");
1292       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1293         allowed_reasons |= nth_bit(reason);
1294     }
1295     // By reversing the loop direction we get a very minor gain on mpegaudio.
1296     // Feel free to revert to a forward loop for clarity.
1297     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1298     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1299       Node *proj = matcher._null_check_tests[i  ];
1300       Node *val  = matcher._null_check_tests[i+1];
1301       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1302       // The implicit_null_check will only perform the transformation
1303       // if the null branch is truly uncommon, *and* it leads to an
1304       // uncommon trap.  Combined with the too_many_traps guards
1305       // above, this prevents SEGV storms reported in 6366351,
1306       // by recompiling offending methods without this optimization.
1307     }
1308   }
1309 
1310 #ifndef PRODUCT
1311   if (trace_opto_pipelining()) {
1312     tty->print("\n---- Start Local Scheduling ----\n");
1313   }
1314 #endif
1315 
1316   // Schedule locally.  Right now a simple topological sort.
1317   // Later, do a real latency aware scheduler.
1318   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1319   memset( ready_cnt, -1, C->unique() * sizeof(int) );
1320   visited.Clear();
1321   for (i = 0; i < _num_blocks; i++) {
1322     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1323       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1324         C->record_method_not_compilable("local schedule failed");
1325       }
1326       return;
1327     }
1328   }
1329 
1330   // If we inserted any instructions between a Call and his CatchNode,
1331   // clone the instructions on all paths below the Catch.
1332   for( i=0; i < _num_blocks; i++ )
1333     _blocks[i]->call_catch_cleanup(_bbs);
1334 
1335 #ifndef PRODUCT
1336   if (trace_opto_pipelining()) {
1337     tty->print("\n---- After GlobalCodeMotion ----\n");
1338     for (uint i = 0; i < _num_blocks; i++) {
1339       _blocks[i]->dump();
1340     }
1341   }
1342 #endif
1343   // Dead.
1344   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1345 }
1346 
1347 
1348 //------------------------------Estimate_Block_Frequency-----------------------
1349 // Estimate block frequencies based on IfNode probabilities.
1350 void PhaseCFG::Estimate_Block_Frequency() {
1351 
1352   // Force conditional branches leading to uncommon traps to be unlikely,
1353   // not because we get to the uncommon_trap with less relative frequency,
1354   // but because an uncommon_trap typically causes a deopt, so we only get
1355   // there once.
1356   if (C->do_freq_based_layout()) {
1357     Block_List worklist;
1358     Block* root_blk = _blocks[0];
1359     for (uint i = 1; i < root_blk->num_preds(); i++) {
1360       Block *pb = _bbs[root_blk->pred(i)->_idx];
1361       if (pb->has_uncommon_code()) {
1362         worklist.push(pb);
1363       }
1364     }
1365     while (worklist.size() > 0) {
1366       Block* uct = worklist.pop();
1367       if (uct == _broot) continue;
1368       for (uint i = 1; i < uct->num_preds(); i++) {
1369         Block *pb = _bbs[uct->pred(i)->_idx];
1370         if (pb->_num_succs == 1) {
1371           worklist.push(pb);
1372         } else if (pb->num_fall_throughs() == 2) {
1373           pb->update_uncommon_branch(uct);
1374         }
1375       }
1376     }
1377   }
1378 
1379   // Create the loop tree and calculate loop depth.
1380   _root_loop = create_loop_tree();
1381   _root_loop->compute_loop_depth(0);
1382 
1383   // Compute block frequency of each block, relative to a single loop entry.
1384   _root_loop->compute_freq();
1385 
1386   // Adjust all frequencies to be relative to a single method entry
1387   _root_loop->_freq = 1.0;
1388   _root_loop->scale_freq();
1389 
1390   // Save outmost loop frequency for LRG frequency threshold
1391   _outer_loop_freq = _root_loop->outer_loop_freq();
1392 
1393   // force paths ending at uncommon traps to be infrequent
1394   if (!C->do_freq_based_layout()) {
1395     Block_List worklist;
1396     Block* root_blk = _blocks[0];
1397     for (uint i = 1; i < root_blk->num_preds(); i++) {
1398       Block *pb = _bbs[root_blk->pred(i)->_idx];
1399       if (pb->has_uncommon_code()) {
1400         worklist.push(pb);
1401       }
1402     }
1403     while (worklist.size() > 0) {
1404       Block* uct = worklist.pop();
1405       uct->_freq = PROB_MIN;
1406       for (uint i = 1; i < uct->num_preds(); i++) {
1407         Block *pb = _bbs[uct->pred(i)->_idx];
1408         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1409           worklist.push(pb);
1410         }
1411       }
1412     }
1413   }
1414 
1415 #ifdef ASSERT
1416   for (uint i = 0; i < _num_blocks; i++ ) {
1417     Block *b = _blocks[i];
1418     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1419   }
1420 #endif
1421 
1422 #ifndef PRODUCT
1423   if (PrintCFGBlockFreq) {
1424     tty->print_cr("CFG Block Frequencies");
1425     _root_loop->dump_tree();
1426     if (Verbose) {
1427       tty->print_cr("PhaseCFG dump");
1428       dump();
1429       tty->print_cr("Node dump");
1430       _root->dump(99999);
1431     }
1432   }
1433 #endif
1434 }
1435 
1436 //----------------------------create_loop_tree--------------------------------
1437 // Create a loop tree from the CFG
1438 CFGLoop* PhaseCFG::create_loop_tree() {
1439 
1440 #ifdef ASSERT
1441   assert( _blocks[0] == _broot, "" );
1442   for (uint i = 0; i < _num_blocks; i++ ) {
1443     Block *b = _blocks[i];
1444     // Check that _loop field are clear...we could clear them if not.
1445     assert(b->_loop == NULL, "clear _loop expected");
1446     // Sanity check that the RPO numbering is reflected in the _blocks array.
1447     // It doesn't have to be for the loop tree to be built, but if it is not,
1448     // then the blocks have been reordered since dom graph building...which
1449     // may question the RPO numbering
1450     assert(b->_rpo == i, "unexpected reverse post order number");
1451   }
1452 #endif
1453 
1454   int idct = 0;
1455   CFGLoop* root_loop = new CFGLoop(idct++);
1456 
1457   Block_List worklist;
1458 
1459   // Assign blocks to loops
1460   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1461     Block *b = _blocks[i];
1462 
1463     if (b->head()->is_Loop()) {
1464       Block* loop_head = b;
1465       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1466       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1467       Block* tail = _bbs[tail_n->_idx];
1468 
1469       // Defensively filter out Loop nodes for non-single-entry loops.
1470       // For all reasonable loops, the head occurs before the tail in RPO.
1471       if (i <= tail->_rpo) {
1472 
1473         // The tail and (recursive) predecessors of the tail
1474         // are made members of a new loop.
1475 
1476         assert(worklist.size() == 0, "nonempty worklist");
1477         CFGLoop* nloop = new CFGLoop(idct++);
1478         assert(loop_head->_loop == NULL, "just checking");
1479         loop_head->_loop = nloop;
1480         // Add to nloop so push_pred() will skip over inner loops
1481         nloop->add_member(loop_head);
1482         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1483 
1484         while (worklist.size() > 0) {
1485           Block* member = worklist.pop();
1486           if (member != loop_head) {
1487             for (uint j = 1; j < member->num_preds(); j++) {
1488               nloop->push_pred(member, j, worklist, _bbs);
1489             }
1490           }
1491         }
1492       }
1493     }
1494   }
1495 
1496   // Create a member list for each loop consisting
1497   // of both blocks and (immediate child) loops.
1498   for (uint i = 0; i < _num_blocks; i++) {
1499     Block *b = _blocks[i];
1500     CFGLoop* lp = b->_loop;
1501     if (lp == NULL) {
1502       // Not assigned to a loop. Add it to the method's pseudo loop.
1503       b->_loop = root_loop;
1504       lp = root_loop;
1505     }
1506     if (lp == root_loop || b != lp->head()) { // loop heads are already members
1507       lp->add_member(b);
1508     }
1509     if (lp != root_loop) {
1510       if (lp->parent() == NULL) {
1511         // Not a nested loop. Make it a child of the method's pseudo loop.
1512         root_loop->add_nested_loop(lp);
1513       }
1514       if (b == lp->head()) {
1515         // Add nested loop to member list of parent loop.
1516         lp->parent()->add_member(lp);
1517       }
1518     }
1519   }
1520 
1521   return root_loop;
1522 }
1523 
1524 //------------------------------push_pred--------------------------------------
1525 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1526   Node* pred_n = blk->pred(i);
1527   Block* pred = node_to_blk[pred_n->_idx];
1528   CFGLoop *pred_loop = pred->_loop;
1529   if (pred_loop == NULL) {
1530     // Filter out blocks for non-single-entry loops.
1531     // For all reasonable loops, the head occurs before the tail in RPO.
1532     if (pred->_rpo > head()->_rpo) {
1533       pred->_loop = this;
1534       worklist.push(pred);
1535     }
1536   } else if (pred_loop != this) {
1537     // Nested loop.
1538     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1539       pred_loop = pred_loop->_parent;
1540     }
1541     // Make pred's loop be a child
1542     if (pred_loop->_parent == NULL) {
1543       add_nested_loop(pred_loop);
1544       // Continue with loop entry predecessor.
1545       Block* pred_head = pred_loop->head();
1546       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1547       assert(pred_head != head(), "loop head in only one loop");
1548       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1549     } else {
1550       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1551     }
1552   }
1553 }
1554 
1555 //------------------------------add_nested_loop--------------------------------
1556 // Make cl a child of the current loop in the loop tree.
1557 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1558   assert(_parent == NULL, "no parent yet");
1559   assert(cl != this, "not my own parent");
1560   cl->_parent = this;
1561   CFGLoop* ch = _child;
1562   if (ch == NULL) {
1563     _child = cl;
1564   } else {
1565     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1566     ch->_sibling = cl;
1567   }
1568 }
1569 
1570 //------------------------------compute_loop_depth-----------------------------
1571 // Store the loop depth in each CFGLoop object.
1572 // Recursively walk the children to do the same for them.
1573 void CFGLoop::compute_loop_depth(int depth) {
1574   _depth = depth;
1575   CFGLoop* ch = _child;
1576   while (ch != NULL) {
1577     ch->compute_loop_depth(depth + 1);
1578     ch = ch->_sibling;
1579   }
1580 }
1581 
1582 //------------------------------compute_freq-----------------------------------
1583 // Compute the frequency of each block and loop, relative to a single entry
1584 // into the dominating loop head.
1585 void CFGLoop::compute_freq() {
1586   // Bottom up traversal of loop tree (visit inner loops first.)
1587   // Set loop head frequency to 1.0, then transitively
1588   // compute frequency for all successors in the loop,
1589   // as well as for each exit edge.  Inner loops are
1590   // treated as single blocks with loop exit targets
1591   // as the successor blocks.
1592 
1593   // Nested loops first
1594   CFGLoop* ch = _child;
1595   while (ch != NULL) {
1596     ch->compute_freq();
1597     ch = ch->_sibling;
1598   }
1599   assert (_members.length() > 0, "no empty loops");
1600   Block* hd = head();
1601   hd->_freq = 1.0f;
1602   for (int i = 0; i < _members.length(); i++) {
1603     CFGElement* s = _members.at(i);
1604     float freq = s->_freq;
1605     if (s->is_block()) {
1606       Block* b = s->as_Block();
1607       for (uint j = 0; j < b->_num_succs; j++) {
1608         Block* sb = b->_succs[j];
1609         update_succ_freq(sb, freq * b->succ_prob(j));
1610       }
1611     } else {
1612       CFGLoop* lp = s->as_CFGLoop();
1613       assert(lp->_parent == this, "immediate child");
1614       for (int k = 0; k < lp->_exits.length(); k++) {
1615         Block* eb = lp->_exits.at(k).get_target();
1616         float prob = lp->_exits.at(k).get_prob();
1617         update_succ_freq(eb, freq * prob);
1618       }
1619     }
1620   }
1621 
1622   // For all loops other than the outer, "method" loop,
1623   // sum and normalize the exit probability. The "method" loop
1624   // should keep the initial exit probability of 1, so that
1625   // inner blocks do not get erroneously scaled.
1626   if (_depth != 0) {
1627     // Total the exit probabilities for this loop.
1628     float exits_sum = 0.0f;
1629     for (int i = 0; i < _exits.length(); i++) {
1630       exits_sum += _exits.at(i).get_prob();
1631     }
1632 
1633     // Normalize the exit probabilities. Until now, the
1634     // probabilities estimate the possibility of exit per
1635     // a single loop iteration; afterward, they estimate
1636     // the probability of exit per loop entry.
1637     for (int i = 0; i < _exits.length(); i++) {
1638       Block* et = _exits.at(i).get_target();
1639       float new_prob = 0.0f;
1640       if (_exits.at(i).get_prob() > 0.0f) {
1641         new_prob = _exits.at(i).get_prob() / exits_sum;
1642       }
1643       BlockProbPair bpp(et, new_prob);
1644       _exits.at_put(i, bpp);
1645     }
1646 
1647     // Save the total, but guard against unreasonable probability,
1648     // as the value is used to estimate the loop trip count.
1649     // An infinite trip count would blur relative block
1650     // frequencies.
1651     if (exits_sum > 1.0f) exits_sum = 1.0;
1652     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1653     _exit_prob = exits_sum;
1654   }
1655 }
1656 
1657 //------------------------------succ_prob-------------------------------------
1658 // Determine the probability of reaching successor 'i' from the receiver block.
1659 float Block::succ_prob(uint i) {
1660   int eidx = end_idx();
1661   Node *n = _nodes[eidx];  // Get ending Node
1662 
1663   int op = n->Opcode();
1664   if (n->is_Mach()) {
1665     if (n->is_MachNullCheck()) {
1666       // Can only reach here if called after lcm. The original Op_If is gone,
1667       // so we attempt to infer the probability from one or both of the
1668       // successor blocks.
1669       assert(_num_succs == 2, "expecting 2 successors of a null check");
1670       // If either successor has only one predecessor, then the
1671       // probability estimate can be derived using the
1672       // relative frequency of the successor and this block.
1673       if (_succs[i]->num_preds() == 2) {
1674         return _succs[i]->_freq / _freq;
1675       } else if (_succs[1-i]->num_preds() == 2) {
1676         return 1 - (_succs[1-i]->_freq / _freq);
1677       } else {
1678         // Estimate using both successor frequencies
1679         float freq = _succs[i]->_freq;
1680         return freq / (freq + _succs[1-i]->_freq);
1681       }
1682     }
1683     op = n->as_Mach()->ideal_Opcode();
1684   }
1685 
1686 
1687   // Switch on branch type
1688   switch( op ) {
1689   case Op_CountedLoopEnd:
1690   case Op_If: {
1691     assert (i < 2, "just checking");
1692     // Conditionals pass on only part of their frequency
1693     float prob  = n->as_MachIf()->_prob;
1694     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1695     // If succ[i] is the FALSE branch, invert path info
1696     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1697       return 1.0f - prob; // not taken
1698     } else {
1699       return prob; // taken
1700     }
1701   }
1702 
1703   case Op_Jump:
1704     // Divide the frequency between all successors evenly
1705     return 1.0f/_num_succs;
1706 
1707   case Op_Catch: {
1708     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1709     if (ci->_con == CatchProjNode::fall_through_index) {
1710       // Fall-thru path gets the lion's share.
1711       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1712     } else {
1713       // Presume exceptional paths are equally unlikely
1714       return PROB_UNLIKELY_MAG(5);
1715     }
1716   }
1717 
1718   case Op_Root:
1719   case Op_Goto:
1720     // Pass frequency straight thru to target
1721     return 1.0f;
1722 
1723   case Op_NeverBranch:
1724     return 0.0f;
1725 
1726   case Op_TailCall:
1727   case Op_TailJump:
1728   case Op_Return:
1729   case Op_Halt:
1730   case Op_Rethrow:
1731     // Do not push out freq to root block
1732     return 0.0f;
1733 
1734   default:
1735     ShouldNotReachHere();
1736   }
1737 
1738   return 0.0f;
1739 }
1740 
1741 //------------------------------num_fall_throughs-----------------------------
1742 // Return the number of fall-through candidates for a block
1743 int Block::num_fall_throughs() {
1744   int eidx = end_idx();
1745   Node *n = _nodes[eidx];  // Get ending Node
1746 
1747   int op = n->Opcode();
1748   if (n->is_Mach()) {
1749     if (n->is_MachNullCheck()) {
1750       // In theory, either side can fall-thru, for simplicity sake,
1751       // let's say only the false branch can now.
1752       return 1;
1753     }
1754     op = n->as_Mach()->ideal_Opcode();
1755   }
1756 
1757   // Switch on branch type
1758   switch( op ) {
1759   case Op_CountedLoopEnd:
1760   case Op_If:
1761     return 2;
1762 
1763   case Op_Root:
1764   case Op_Goto:
1765     return 1;
1766 
1767   case Op_Catch: {
1768     for (uint i = 0; i < _num_succs; i++) {
1769       const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1770       if (ci->_con == CatchProjNode::fall_through_index) {
1771         return 1;
1772       }
1773     }
1774     return 0;
1775   }
1776 
1777   case Op_Jump:
1778   case Op_NeverBranch:
1779   case Op_TailCall:
1780   case Op_TailJump:
1781   case Op_Return:
1782   case Op_Halt:
1783   case Op_Rethrow:
1784     return 0;
1785 
1786   default:
1787     ShouldNotReachHere();
1788   }
1789 
1790   return 0;
1791 }
1792 
1793 //------------------------------succ_fall_through-----------------------------
1794 // Return true if a specific successor could be fall-through target.
1795 bool Block::succ_fall_through(uint i) {
1796   int eidx = end_idx();
1797   Node *n = _nodes[eidx];  // Get ending Node
1798 
1799   int op = n->Opcode();
1800   if (n->is_Mach()) {
1801     if (n->is_MachNullCheck()) {
1802       // In theory, either side can fall-thru, for simplicity sake,
1803       // let's say only the false branch can now.
1804       return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
1805     }
1806     op = n->as_Mach()->ideal_Opcode();
1807   }
1808 
1809   // Switch on branch type
1810   switch( op ) {
1811   case Op_CountedLoopEnd:
1812   case Op_If:
1813   case Op_Root:
1814   case Op_Goto:
1815     return true;
1816 
1817   case Op_Catch: {
1818     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1819     return ci->_con == CatchProjNode::fall_through_index;
1820   }
1821 
1822   case Op_Jump:
1823   case Op_NeverBranch:
1824   case Op_TailCall:
1825   case Op_TailJump:
1826   case Op_Return:
1827   case Op_Halt:
1828   case Op_Rethrow:
1829     return false;
1830 
1831   default:
1832     ShouldNotReachHere();
1833   }
1834 
1835   return false;
1836 }
1837 
1838 //------------------------------update_uncommon_branch------------------------
1839 // Update the probability of a two-branch to be uncommon
1840 void Block::update_uncommon_branch(Block* ub) {
1841   int eidx = end_idx();
1842   Node *n = _nodes[eidx];  // Get ending Node
1843 
1844   int op = n->as_Mach()->ideal_Opcode();
1845 
1846   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1847   assert(num_fall_throughs() == 2, "must be a two way branch block");
1848 
1849   // Which successor is ub?
1850   uint s;
1851   for (s = 0; s <_num_succs; s++) {
1852     if (_succs[s] == ub) break;
1853   }
1854   assert(s < 2, "uncommon successor must be found");
1855 
1856   // If ub is the true path, make the proability small, else
1857   // ub is the false path, and make the probability large
1858   bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);
1859 
1860   // Get existing probability
1861   float p = n->as_MachIf()->_prob;
1862 
1863   if (invert) p = 1.0 - p;
1864   if (p > PROB_MIN) {
1865     p = PROB_MIN;
1866   }
1867   if (invert) p = 1.0 - p;
1868 
1869   n->as_MachIf()->_prob = p;
1870 }
1871 
1872 //------------------------------update_succ_freq-------------------------------
1873 // Update the appropriate frequency associated with block 'b', a successor of
1874 // a block in this loop.
1875 void CFGLoop::update_succ_freq(Block* b, float freq) {
1876   if (b->_loop == this) {
1877     if (b == head()) {
1878       // back branch within the loop
1879       // Do nothing now, the loop carried frequency will be
1880       // adjust later in scale_freq().
1881     } else {
1882       // simple branch within the loop
1883       b->_freq += freq;
1884     }
1885   } else if (!in_loop_nest(b)) {
1886     // branch is exit from this loop
1887     BlockProbPair bpp(b, freq);
1888     _exits.append(bpp);
1889   } else {
1890     // branch into nested loop
1891     CFGLoop* ch = b->_loop;
1892     ch->_freq += freq;
1893   }
1894 }
1895 
1896 //------------------------------in_loop_nest-----------------------------------
1897 // Determine if block b is in the receiver's loop nest.
1898 bool CFGLoop::in_loop_nest(Block* b) {
1899   int depth = _depth;
1900   CFGLoop* b_loop = b->_loop;
1901   int b_depth = b_loop->_depth;
1902   if (depth == b_depth) {
1903     return true;
1904   }
1905   while (b_depth > depth) {
1906     b_loop = b_loop->_parent;
1907     b_depth = b_loop->_depth;
1908   }
1909   return b_loop == this;
1910 }
1911 
1912 //------------------------------scale_freq-------------------------------------
1913 // Scale frequency of loops and blocks by trip counts from outer loops
1914 // Do a top down traversal of loop tree (visit outer loops first.)
1915 void CFGLoop::scale_freq() {
1916   float loop_freq = _freq * trip_count();
1917   _freq = loop_freq;
1918   for (int i = 0; i < _members.length(); i++) {
1919     CFGElement* s = _members.at(i);
1920     float block_freq = s->_freq * loop_freq;
1921     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
1922       block_freq = MIN_BLOCK_FREQUENCY;
1923     s->_freq = block_freq;
1924   }
1925   CFGLoop* ch = _child;
1926   while (ch != NULL) {
1927     ch->scale_freq();
1928     ch = ch->_sibling;
1929   }
1930 }
1931 
1932 // Frequency of outer loop
1933 float CFGLoop::outer_loop_freq() const {
1934   if (_child != NULL) {
1935     return _child->_freq;
1936   }
1937   return _freq;
1938 }
1939 
1940 #ifndef PRODUCT
1941 //------------------------------dump_tree--------------------------------------
1942 void CFGLoop::dump_tree() const {
1943   dump();
1944   if (_child != NULL)   _child->dump_tree();
1945   if (_sibling != NULL) _sibling->dump_tree();
1946 }
1947 
1948 //------------------------------dump-------------------------------------------
1949 void CFGLoop::dump() const {
1950   for (int i = 0; i < _depth; i++) tty->print("   ");
1951   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1952              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1953   for (int i = 0; i < _depth; i++) tty->print("   ");
1954   tty->print("         members:", _id);
1955   int k = 0;
1956   for (int i = 0; i < _members.length(); i++) {
1957     if (k++ >= 6) {
1958       tty->print("\n              ");
1959       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1960       k = 0;
1961     }
1962     CFGElement *s = _members.at(i);
1963     if (s->is_block()) {
1964       Block *b = s->as_Block();
1965       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1966     } else {
1967       CFGLoop* lp = s->as_CFGLoop();
1968       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1969     }
1970   }
1971   tty->print("\n");
1972   for (int i = 0; i < _depth; i++) tty->print("   ");
1973   tty->print("         exits:  ");
1974   k = 0;
1975   for (int i = 0; i < _exits.length(); i++) {
1976     if (k++ >= 7) {
1977       tty->print("\n              ");
1978       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1979       k = 0;
1980     }
1981     Block *blk = _exits.at(i).get_target();
1982     float prob = _exits.at(i).get_prob();
1983     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
1984   }
1985   tty->print("\n");
1986 }
1987 #endif