1 /*
   2  * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 class PhaseTransform;
  28 
  29 //------------------------------MulNode----------------------------------------
  30 // Classic MULTIPLY functionality.  This covers all the usual 'multiply'
  31 // behaviors for an algebraic ring.  Multiply-integer, multiply-float,
  32 // multiply-double, and binary-and are all inherited from this class.  The
  33 // various identity values are supplied by virtual functions.
  34 class MulNode : public Node {
  35   virtual uint hash() const;
  36 public:
  37   MulNode( Node *in1, Node *in2 ): Node(0,in1,in2) {
  38     init_class_id(Class_Mul);
  39   }
  40 
  41   // Handle algebraic identities here.  If we have an identity, return the Node
  42   // we are equivalent to.  We look for "add of zero" as an identity.
  43   virtual Node *Identity( PhaseTransform *phase );
  44 
  45   // We also canonicalize the Node, moving constants to the right input,
  46   // and flatten expressions (so that 1+x+2 becomes x+3).
  47   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  48 
  49   // Compute a new Type for this node.  Basically we just do the pre-check,
  50   // then call the virtual add() to set the type.
  51   virtual const Type *Value( PhaseTransform *phase ) const;
  52 
  53   // Supplied function returns the product of the inputs.
  54   // This also type-checks the inputs for sanity.  Guaranteed never to
  55   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
  56   // This call recognizes the multiplicative zero type.
  57   virtual const Type *mul_ring( const Type *, const Type * ) const = 0;
  58 
  59   // Supplied function to return the multiplicative identity type
  60   virtual const Type *mul_id() const = 0;
  61 
  62   // Supplied function to return the additive identity type
  63   virtual const Type *add_id() const = 0;
  64 
  65   // Supplied function to return the additive opcode
  66   virtual int add_opcode() const = 0;
  67 
  68   // Supplied function to return the multiplicative opcode
  69   virtual int mul_opcode() const = 0;
  70 
  71 };
  72 
  73 //------------------------------MulINode---------------------------------------
  74 // Multiply 2 integers
  75 class MulINode : public MulNode {
  76 public:
  77   MulINode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
  78   virtual int Opcode() const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual const Type *mul_ring( const Type *, const Type * ) const;
  81   const Type *mul_id() const { return TypeInt::ONE; }
  82   const Type *add_id() const { return TypeInt::ZERO; }
  83   int add_opcode() const { return Op_AddI; }
  84   int mul_opcode() const { return Op_MulI; }
  85   const Type *bottom_type() const { return TypeInt::INT; }
  86   virtual uint ideal_reg() const { return Op_RegI; }
  87 };
  88 
  89 //------------------------------MulLNode---------------------------------------
  90 // Multiply 2 longs
  91 class MulLNode : public MulNode {
  92 public:
  93   MulLNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
  94   virtual int Opcode() const;
  95   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  96   virtual const Type *mul_ring( const Type *, const Type * ) const;
  97   const Type *mul_id() const { return TypeLong::ONE; }
  98   const Type *add_id() const { return TypeLong::ZERO; }
  99   int add_opcode() const { return Op_AddL; }
 100   int mul_opcode() const { return Op_MulL; }
 101   const Type *bottom_type() const { return TypeLong::LONG; }
 102   virtual uint ideal_reg() const { return Op_RegL; }
 103 };
 104 
 105 
 106 //------------------------------MulFNode---------------------------------------
 107 // Multiply 2 floats
 108 class MulFNode : public MulNode {
 109 public:
 110   MulFNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
 111   virtual int Opcode() const;
 112   virtual const Type *mul_ring( const Type *, const Type * ) const;
 113   const Type *mul_id() const { return TypeF::ONE; }
 114   const Type *add_id() const { return TypeF::ZERO; }
 115   int add_opcode() const { return Op_AddF; }
 116   int mul_opcode() const { return Op_MulF; }
 117   const Type *bottom_type() const { return Type::FLOAT; }
 118   virtual uint ideal_reg() const { return Op_RegF; }
 119 };
 120 
 121 //------------------------------MulDNode---------------------------------------
 122 // Multiply 2 doubles
 123 class MulDNode : public MulNode {
 124 public:
 125   MulDNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
 126   virtual int Opcode() const;
 127   virtual const Type *mul_ring( const Type *, const Type * ) const;
 128   const Type *mul_id() const { return TypeD::ONE; }
 129   const Type *add_id() const { return TypeD::ZERO; }
 130   int add_opcode() const { return Op_AddD; }
 131   int mul_opcode() const { return Op_MulD; }
 132   const Type *bottom_type() const { return Type::DOUBLE; }
 133   virtual uint ideal_reg() const { return Op_RegD; }
 134 };
 135 
 136 //-------------------------------MulHiLNode------------------------------------
 137 // Upper 64 bits of a 64 bit by 64 bit multiply
 138 class MulHiLNode : public Node {
 139 public:
 140   MulHiLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 141   virtual int Opcode() const;
 142   virtual const Type *Value( PhaseTransform *phase ) const;
 143   const Type *bottom_type() const { return TypeLong::LONG; }
 144   virtual uint ideal_reg() const { return Op_RegL; }
 145 };
 146 
 147 //------------------------------AndINode---------------------------------------
 148 // Logically AND 2 integers.  Included with the MUL nodes because it inherits
 149 // all the behavior of multiplication on a ring.
 150 class AndINode : public MulINode {
 151 public:
 152   AndINode( Node *in1, Node *in2 ) : MulINode(in1,in2) {}
 153   virtual int Opcode() const;
 154   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 155   virtual Node *Identity( PhaseTransform *phase );
 156   virtual const Type *mul_ring( const Type *, const Type * ) const;
 157   const Type *mul_id() const { return TypeInt::MINUS_1; }
 158   const Type *add_id() const { return TypeInt::ZERO; }
 159   int add_opcode() const { return Op_OrI; }
 160   int mul_opcode() const { return Op_AndI; }
 161   virtual uint ideal_reg() const { return Op_RegI; }
 162 };
 163 
 164 //------------------------------AndINode---------------------------------------
 165 // Logically AND 2 longs.  Included with the MUL nodes because it inherits
 166 // all the behavior of multiplication on a ring.
 167 class AndLNode : public MulLNode {
 168 public:
 169   AndLNode( Node *in1, Node *in2 ) : MulLNode(in1,in2) {}
 170   virtual int Opcode() const;
 171   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 172   virtual Node *Identity( PhaseTransform *phase );
 173   virtual const Type *mul_ring( const Type *, const Type * ) const;
 174   const Type *mul_id() const { return TypeLong::MINUS_1; }
 175   const Type *add_id() const { return TypeLong::ZERO; }
 176   int add_opcode() const { return Op_OrL; }
 177   int mul_opcode() const { return Op_AndL; }
 178   virtual uint ideal_reg() const { return Op_RegL; }
 179 };
 180 
 181 //------------------------------LShiftINode------------------------------------
 182 // Logical shift left
 183 class LShiftINode : public Node {
 184 public:
 185   LShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 186   virtual int Opcode() const;
 187   virtual Node *Identity( PhaseTransform *phase );
 188   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 189   virtual const Type *Value( PhaseTransform *phase ) const;
 190   const Type *bottom_type() const { return TypeInt::INT; }
 191   virtual uint ideal_reg() const { return Op_RegI; }
 192 };
 193 
 194 //------------------------------LShiftLNode------------------------------------
 195 // Logical shift left
 196 class LShiftLNode : public Node {
 197 public:
 198   LShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 199   virtual int Opcode() const;
 200   virtual Node *Identity( PhaseTransform *phase );
 201   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 202   virtual const Type *Value( PhaseTransform *phase ) const;
 203   const Type *bottom_type() const { return TypeLong::LONG; }
 204   virtual uint ideal_reg() const { return Op_RegL; }
 205 };
 206 
 207 //------------------------------RShiftINode------------------------------------
 208 // Signed shift right
 209 class RShiftINode : public Node {
 210 public:
 211   RShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 212   virtual int Opcode() const;
 213   virtual Node *Identity( PhaseTransform *phase );
 214   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 215   virtual const Type *Value( PhaseTransform *phase ) const;
 216   const Type *bottom_type() const { return TypeInt::INT; }
 217   virtual uint ideal_reg() const { return Op_RegI; }
 218 };
 219 
 220 //------------------------------RShiftLNode------------------------------------
 221 // Signed shift right
 222 class RShiftLNode : public Node {
 223 public:
 224   RShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 225   virtual int Opcode() const;
 226   virtual Node *Identity( PhaseTransform *phase );
 227   virtual const Type *Value( PhaseTransform *phase ) const;
 228   const Type *bottom_type() const { return TypeLong::LONG; }
 229   virtual uint ideal_reg() const { return Op_RegL; }
 230 };
 231 
 232 
 233 //------------------------------URShiftINode-----------------------------------
 234 // Logical shift right
 235 class URShiftINode : public Node {
 236 public:
 237   URShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 238   virtual int Opcode() const;
 239   virtual Node *Identity( PhaseTransform *phase );
 240   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 241   virtual const Type *Value( PhaseTransform *phase ) const;
 242   const Type *bottom_type() const { return TypeInt::INT; }
 243   virtual uint ideal_reg() const { return Op_RegI; }
 244 };
 245 
 246 //------------------------------URShiftLNode-----------------------------------
 247 // Logical shift right
 248 class URShiftLNode : public Node {
 249 public:
 250   URShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 251   virtual int Opcode() const;
 252   virtual Node *Identity( PhaseTransform *phase );
 253   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 254   virtual const Type *Value( PhaseTransform *phase ) const;
 255   const Type *bottom_type() const { return TypeLong::LONG; }
 256   virtual uint ideal_reg() const { return Op_RegL; }
 257 };