1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/node.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/type.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 class RegMask;
  39 // #include "phase.hpp"
  40 class PhaseTransform;
  41 class PhaseGVN;
  42 
  43 // Arena we are currently building Nodes in
  44 const uint Node::NotAMachineReg = 0xffff0000;
  45 
  46 #ifndef PRODUCT
  47 extern int nodes_created;
  48 #endif
  49 
  50 #ifdef ASSERT
  51 
  52 //-------------------------- construct_node------------------------------------
  53 // Set a breakpoint here to identify where a particular node index is built.
  54 void Node::verify_construction() {
  55   _debug_orig = NULL;
  56   int old_debug_idx = Compile::debug_idx();
  57   int new_debug_idx = old_debug_idx+1;
  58   if (new_debug_idx > 0) {
  59     // Arrange that the lowest five decimal digits of _debug_idx
  60     // will repeat thos of _idx.  In case this is somehow pathological,
  61     // we continue to assign negative numbers (!) consecutively.
  62     const int mod = 100000;
  63     int bump = (int)(_idx - new_debug_idx) % mod;
  64     if (bump < 0)  bump += mod;
  65     assert(bump >= 0 && bump < mod, "");
  66     new_debug_idx += bump;
  67   }
  68   Compile::set_debug_idx(new_debug_idx);
  69   set_debug_idx( new_debug_idx );
  70   assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
  71   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  72     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  73     BREAKPOINT;
  74   }
  75 #if OPTO_DU_ITERATOR_ASSERT
  76   _last_del = NULL;
  77   _del_tick = 0;
  78 #endif
  79   _hash_lock = 0;
  80 }
  81 
  82 
  83 // #ifdef ASSERT ...
  84 
  85 #if OPTO_DU_ITERATOR_ASSERT
  86 void DUIterator_Common::sample(const Node* node) {
  87   _vdui     = VerifyDUIterators;
  88   _node     = node;
  89   _outcnt   = node->_outcnt;
  90   _del_tick = node->_del_tick;
  91   _last     = NULL;
  92 }
  93 
  94 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  95   assert(_node     == node, "consistent iterator source");
  96   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  97 }
  98 
  99 void DUIterator_Common::verify_resync() {
 100   // Ensure that the loop body has just deleted the last guy produced.
 101   const Node* node = _node;
 102   // Ensure that at least one copy of the last-seen edge was deleted.
 103   // Note:  It is OK to delete multiple copies of the last-seen edge.
 104   // Unfortunately, we have no way to verify that all the deletions delete
 105   // that same edge.  On this point we must use the Honor System.
 106   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 107   assert(node->_last_del == _last, "must have deleted the edge just produced");
 108   // We liked this deletion, so accept the resulting outcnt and tick.
 109   _outcnt   = node->_outcnt;
 110   _del_tick = node->_del_tick;
 111 }
 112 
 113 void DUIterator_Common::reset(const DUIterator_Common& that) {
 114   if (this == &that)  return;  // ignore assignment to self
 115   if (!_vdui) {
 116     // We need to initialize everything, overwriting garbage values.
 117     _last = that._last;
 118     _vdui = that._vdui;
 119   }
 120   // Note:  It is legal (though odd) for an iterator over some node x
 121   // to be reassigned to iterate over another node y.  Some doubly-nested
 122   // progress loops depend on being able to do this.
 123   const Node* node = that._node;
 124   // Re-initialize everything, except _last.
 125   _node     = node;
 126   _outcnt   = node->_outcnt;
 127   _del_tick = node->_del_tick;
 128 }
 129 
 130 void DUIterator::sample(const Node* node) {
 131   DUIterator_Common::sample(node);      // Initialize the assertion data.
 132   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 133 }
 134 
 135 void DUIterator::verify(const Node* node, bool at_end_ok) {
 136   DUIterator_Common::verify(node, at_end_ok);
 137   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 138 }
 139 
 140 void DUIterator::verify_increment() {
 141   if (_refresh_tick & 1) {
 142     // We have refreshed the index during this loop.
 143     // Fix up _idx to meet asserts.
 144     if (_idx > _outcnt)  _idx = _outcnt;
 145   }
 146   verify(_node, true);
 147 }
 148 
 149 void DUIterator::verify_resync() {
 150   // Note:  We do not assert on _outcnt, because insertions are OK here.
 151   DUIterator_Common::verify_resync();
 152   // Make sure we are still in sync, possibly with no more out-edges:
 153   verify(_node, true);
 154 }
 155 
 156 void DUIterator::reset(const DUIterator& that) {
 157   if (this == &that)  return;  // self assignment is always a no-op
 158   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 159   assert(that._idx          == 0, "assign only the result of Node::outs()");
 160   assert(_idx               == that._idx, "already assigned _idx");
 161   if (!_vdui) {
 162     // We need to initialize everything, overwriting garbage values.
 163     sample(that._node);
 164   } else {
 165     DUIterator_Common::reset(that);
 166     if (_refresh_tick & 1) {
 167       _refresh_tick++;                  // Clear the "was refreshed" flag.
 168     }
 169     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 170   }
 171 }
 172 
 173 void DUIterator::refresh() {
 174   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 175   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 176 }
 177 
 178 void DUIterator::verify_finish() {
 179   // If the loop has killed the node, do not require it to re-run.
 180   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 181   // If this assert triggers, it means that a loop used refresh_out_pos
 182   // to re-synch an iteration index, but the loop did not correctly
 183   // re-run itself, using a "while (progress)" construct.
 184   // This iterator enforces the rule that you must keep trying the loop
 185   // until it "runs clean" without any need for refreshing.
 186   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 187 }
 188 
 189 
 190 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 191   DUIterator_Common::verify(node, at_end_ok);
 192   Node** out    = node->_out;
 193   uint   cnt    = node->_outcnt;
 194   assert(cnt == _outcnt, "no insertions allowed");
 195   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 196   // This last check is carefully designed to work for NO_OUT_ARRAY.
 197 }
 198 
 199 void DUIterator_Fast::verify_limit() {
 200   const Node* node = _node;
 201   verify(node, true);
 202   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 203 }
 204 
 205 void DUIterator_Fast::verify_resync() {
 206   const Node* node = _node;
 207   if (_outp == node->_out + _outcnt) {
 208     // Note that the limit imax, not the pointer i, gets updated with the
 209     // exact count of deletions.  (For the pointer it's always "--i".)
 210     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 211     // This is a limit pointer, with a name like "imax".
 212     // Fudge the _last field so that the common assert will be happy.
 213     _last = (Node*) node->_last_del;
 214     DUIterator_Common::verify_resync();
 215   } else {
 216     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 217     // A normal internal pointer.
 218     DUIterator_Common::verify_resync();
 219     // Make sure we are still in sync, possibly with no more out-edges:
 220     verify(node, true);
 221   }
 222 }
 223 
 224 void DUIterator_Fast::verify_relimit(uint n) {
 225   const Node* node = _node;
 226   assert((int)n > 0, "use imax -= n only with a positive count");
 227   // This must be a limit pointer, with a name like "imax".
 228   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 229   // The reported number of deletions must match what the node saw.
 230   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 231   // Fudge the _last field so that the common assert will be happy.
 232   _last = (Node*) node->_last_del;
 233   DUIterator_Common::verify_resync();
 234 }
 235 
 236 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 237   assert(_outp              == that._outp, "already assigned _outp");
 238   DUIterator_Common::reset(that);
 239 }
 240 
 241 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 242   // at_end_ok means the _outp is allowed to underflow by 1
 243   _outp += at_end_ok;
 244   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 245   _outp -= at_end_ok;
 246   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 247 }
 248 
 249 void DUIterator_Last::verify_limit() {
 250   // Do not require the limit address to be resynched.
 251   //verify(node, true);
 252   assert(_outp == _node->_out, "limit still correct");
 253 }
 254 
 255 void DUIterator_Last::verify_step(uint num_edges) {
 256   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 257   _outcnt   -= num_edges;
 258   _del_tick += num_edges;
 259   // Make sure we are still in sync, possibly with no more out-edges:
 260   const Node* node = _node;
 261   verify(node, true);
 262   assert(node->_last_del == _last, "must have deleted the edge just produced");
 263 }
 264 
 265 #endif //OPTO_DU_ITERATOR_ASSERT
 266 
 267 
 268 #endif //ASSERT
 269 
 270 
 271 // This constant used to initialize _out may be any non-null value.
 272 // The value NULL is reserved for the top node only.
 273 #define NO_OUT_ARRAY ((Node**)-1)
 274 
 275 // This funny expression handshakes with Node::operator new
 276 // to pull Compile::current out of the new node's _out field,
 277 // and then calls a subroutine which manages most field
 278 // initializations.  The only one which is tricky is the
 279 // _idx field, which is const, and so must be initialized
 280 // by a return value, not an assignment.
 281 //
 282 // (Aren't you thankful that Java finals don't require so many tricks?)
 283 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 284 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 285 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 286 #endif
 287 
 288 // Out-of-line code from node constructors.
 289 // Executed only when extra debug info. is being passed around.
 290 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 291   C->set_node_notes_at(idx, nn);
 292 }
 293 
 294 // Shared initialization code.
 295 inline int Node::Init(int req, Compile* C) {
 296   assert(Compile::current() == C, "must use operator new(Compile*)");
 297   int idx = C->next_unique();
 298 
 299   // If there are default notes floating around, capture them:
 300   Node_Notes* nn = C->default_node_notes();
 301   if (nn != NULL)  init_node_notes(C, idx, nn);
 302 
 303   // Note:  At this point, C is dead,
 304   // and we begin to initialize the new Node.
 305 
 306   _cnt = _max = req;
 307   _outcnt = _outmax = 0;
 308   _class_id = Class_Node;
 309   _flags = 0;
 310   _out = NO_OUT_ARRAY;
 311   return idx;
 312 }
 313 
 314 //------------------------------Node-------------------------------------------
 315 // Create a Node, with a given number of required edges.
 316 Node::Node(uint req)
 317   : _idx(IDX_INIT(req))
 318 {
 319   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
 320   debug_only( verify_construction() );
 321   NOT_PRODUCT(nodes_created++);
 322   if (req == 0) {
 323     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 324     _in = NULL;
 325   } else {
 326     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 327     Node** to = _in;
 328     for(uint i = 0; i < req; i++) {
 329       to[i] = NULL;
 330     }
 331   }
 332 }
 333 
 334 //------------------------------Node-------------------------------------------
 335 Node::Node(Node *n0)
 336   : _idx(IDX_INIT(1))
 337 {
 338   debug_only( verify_construction() );
 339   NOT_PRODUCT(nodes_created++);
 340   // Assert we allocated space for input array already
 341   assert( _in[0] == this, "Must pass arg count to 'new'" );
 342   assert( is_not_dead(n0), "can not use dead node");
 343   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 344 }
 345 
 346 //------------------------------Node-------------------------------------------
 347 Node::Node(Node *n0, Node *n1)
 348   : _idx(IDX_INIT(2))
 349 {
 350   debug_only( verify_construction() );
 351   NOT_PRODUCT(nodes_created++);
 352   // Assert we allocated space for input array already
 353   assert( _in[1] == this, "Must pass arg count to 'new'" );
 354   assert( is_not_dead(n0), "can not use dead node");
 355   assert( is_not_dead(n1), "can not use dead node");
 356   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 357   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 358 }
 359 
 360 //------------------------------Node-------------------------------------------
 361 Node::Node(Node *n0, Node *n1, Node *n2)
 362   : _idx(IDX_INIT(3))
 363 {
 364   debug_only( verify_construction() );
 365   NOT_PRODUCT(nodes_created++);
 366   // Assert we allocated space for input array already
 367   assert( _in[2] == this, "Must pass arg count to 'new'" );
 368   assert( is_not_dead(n0), "can not use dead node");
 369   assert( is_not_dead(n1), "can not use dead node");
 370   assert( is_not_dead(n2), "can not use dead node");
 371   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 372   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 373   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 374 }
 375 
 376 //------------------------------Node-------------------------------------------
 377 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 378   : _idx(IDX_INIT(4))
 379 {
 380   debug_only( verify_construction() );
 381   NOT_PRODUCT(nodes_created++);
 382   // Assert we allocated space for input array already
 383   assert( _in[3] == this, "Must pass arg count to 'new'" );
 384   assert( is_not_dead(n0), "can not use dead node");
 385   assert( is_not_dead(n1), "can not use dead node");
 386   assert( is_not_dead(n2), "can not use dead node");
 387   assert( is_not_dead(n3), "can not use dead node");
 388   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 389   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 390   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 391   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 392 }
 393 
 394 //------------------------------Node-------------------------------------------
 395 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 396   : _idx(IDX_INIT(5))
 397 {
 398   debug_only( verify_construction() );
 399   NOT_PRODUCT(nodes_created++);
 400   // Assert we allocated space for input array already
 401   assert( _in[4] == this, "Must pass arg count to 'new'" );
 402   assert( is_not_dead(n0), "can not use dead node");
 403   assert( is_not_dead(n1), "can not use dead node");
 404   assert( is_not_dead(n2), "can not use dead node");
 405   assert( is_not_dead(n3), "can not use dead node");
 406   assert( is_not_dead(n4), "can not use dead node");
 407   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 408   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 409   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 410   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 411   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 412 }
 413 
 414 //------------------------------Node-------------------------------------------
 415 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 416                      Node *n4, Node *n5)
 417   : _idx(IDX_INIT(6))
 418 {
 419   debug_only( verify_construction() );
 420   NOT_PRODUCT(nodes_created++);
 421   // Assert we allocated space for input array already
 422   assert( _in[5] == this, "Must pass arg count to 'new'" );
 423   assert( is_not_dead(n0), "can not use dead node");
 424   assert( is_not_dead(n1), "can not use dead node");
 425   assert( is_not_dead(n2), "can not use dead node");
 426   assert( is_not_dead(n3), "can not use dead node");
 427   assert( is_not_dead(n4), "can not use dead node");
 428   assert( is_not_dead(n5), "can not use dead node");
 429   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 430   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 431   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 432   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 433   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 434   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 435 }
 436 
 437 //------------------------------Node-------------------------------------------
 438 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 439                      Node *n4, Node *n5, Node *n6)
 440   : _idx(IDX_INIT(7))
 441 {
 442   debug_only( verify_construction() );
 443   NOT_PRODUCT(nodes_created++);
 444   // Assert we allocated space for input array already
 445   assert( _in[6] == this, "Must pass arg count to 'new'" );
 446   assert( is_not_dead(n0), "can not use dead node");
 447   assert( is_not_dead(n1), "can not use dead node");
 448   assert( is_not_dead(n2), "can not use dead node");
 449   assert( is_not_dead(n3), "can not use dead node");
 450   assert( is_not_dead(n4), "can not use dead node");
 451   assert( is_not_dead(n5), "can not use dead node");
 452   assert( is_not_dead(n6), "can not use dead node");
 453   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 454   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 455   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 456   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 457   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 458   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 459   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 460 }
 461 
 462 
 463 //------------------------------clone------------------------------------------
 464 // Clone a Node.
 465 Node *Node::clone() const {
 466   Compile *compile = Compile::current();
 467   uint s = size_of();           // Size of inherited Node
 468   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 469   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 470   // Set the new input pointer array
 471   n->_in = (Node**)(((char*)n)+s);
 472   // Cannot share the old output pointer array, so kill it
 473   n->_out = NO_OUT_ARRAY;
 474   // And reset the counters to 0
 475   n->_outcnt = 0;
 476   n->_outmax = 0;
 477   // Unlock this guy, since he is not in any hash table.
 478   debug_only(n->_hash_lock = 0);
 479   // Walk the old node's input list to duplicate its edges
 480   uint i;
 481   for( i = 0; i < len(); i++ ) {
 482     Node *x = in(i);
 483     n->_in[i] = x;
 484     if (x != NULL) x->add_out(n);
 485   }
 486   if (is_macro())
 487     compile->add_macro_node(n);
 488 
 489   n->set_idx(compile->next_unique()); // Get new unique index as well
 490   debug_only( n->verify_construction() );
 491   NOT_PRODUCT(nodes_created++);
 492   // Do not patch over the debug_idx of a clone, because it makes it
 493   // impossible to break on the clone's moment of creation.
 494   //debug_only( n->set_debug_idx( debug_idx() ) );
 495 
 496   compile->copy_node_notes_to(n, (Node*) this);
 497 
 498   // MachNode clone
 499   uint nopnds;
 500   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 501     MachNode *mach  = n->as_Mach();
 502     MachNode *mthis = this->as_Mach();
 503     // Get address of _opnd_array.
 504     // It should be the same offset since it is the clone of this node.
 505     MachOper **from = mthis->_opnds;
 506     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 507                     pointer_delta((const void*)from,
 508                                   (const void*)(&mthis->_opnds), 1));
 509     mach->_opnds = to;
 510     for ( uint i = 0; i < nopnds; ++i ) {
 511       to[i] = from[i]->clone(compile);
 512     }
 513   }
 514   // cloning CallNode may need to clone JVMState
 515   if (n->is_Call()) {
 516     CallNode *call = n->as_Call();
 517     call->clone_jvms();
 518   }
 519   return n;                     // Return the clone
 520 }
 521 
 522 //---------------------------setup_is_top--------------------------------------
 523 // Call this when changing the top node, to reassert the invariants
 524 // required by Node::is_top.  See Compile::set_cached_top_node.
 525 void Node::setup_is_top() {
 526   if (this == (Node*)Compile::current()->top()) {
 527     // This node has just become top.  Kill its out array.
 528     _outcnt = _outmax = 0;
 529     _out = NULL;                           // marker value for top
 530     assert(is_top(), "must be top");
 531   } else {
 532     if (_out == NULL)  _out = NO_OUT_ARRAY;
 533     assert(!is_top(), "must not be top");
 534   }
 535 }
 536 
 537 
 538 //------------------------------~Node------------------------------------------
 539 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 540 extern int reclaim_idx ;
 541 extern int reclaim_in  ;
 542 extern int reclaim_node;
 543 void Node::destruct() {
 544   // Eagerly reclaim unique Node numberings
 545   Compile* compile = Compile::current();
 546   if ((uint)_idx+1 == compile->unique()) {
 547     compile->set_unique(compile->unique()-1);
 548 #ifdef ASSERT
 549     reclaim_idx++;
 550 #endif
 551   }
 552   // Clear debug info:
 553   Node_Notes* nn = compile->node_notes_at(_idx);
 554   if (nn != NULL)  nn->clear();
 555   // Walk the input array, freeing the corresponding output edges
 556   _cnt = _max;  // forget req/prec distinction
 557   uint i;
 558   for( i = 0; i < _max; i++ ) {
 559     set_req(i, NULL);
 560     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 561   }
 562   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 563   // See if the input array was allocated just prior to the object
 564   int edge_size = _max*sizeof(void*);
 565   int out_edge_size = _outmax*sizeof(void*);
 566   char *edge_end = ((char*)_in) + edge_size;
 567   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 568   char *out_edge_end = out_array + out_edge_size;
 569   int node_size = size_of();
 570 
 571   // Free the output edge array
 572   if (out_edge_size > 0) {
 573 #ifdef ASSERT
 574     if( out_edge_end == compile->node_arena()->hwm() )
 575       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 576 #endif
 577     compile->node_arena()->Afree(out_array, out_edge_size);
 578   }
 579 
 580   // Free the input edge array and the node itself
 581   if( edge_end == (char*)this ) {
 582 #ifdef ASSERT
 583     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 584       reclaim_in  += edge_size;
 585       reclaim_node+= node_size;
 586     }
 587 #else
 588     // It was; free the input array and object all in one hit
 589     compile->node_arena()->Afree(_in,edge_size+node_size);
 590 #endif
 591   } else {
 592 
 593     // Free just the input array
 594 #ifdef ASSERT
 595     if( edge_end == compile->node_arena()->hwm() )
 596       reclaim_in  += edge_size;
 597 #endif
 598     compile->node_arena()->Afree(_in,edge_size);
 599 
 600     // Free just the object
 601 #ifdef ASSERT
 602     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 603       reclaim_node+= node_size;
 604 #else
 605     compile->node_arena()->Afree(this,node_size);
 606 #endif
 607   }
 608   if (is_macro()) {
 609     compile->remove_macro_node(this);
 610   }
 611 #ifdef ASSERT
 612   // We will not actually delete the storage, but we'll make the node unusable.
 613   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 614   _in = _out = (Node**) badAddress;
 615   _max = _cnt = _outmax = _outcnt = 0;
 616 #endif
 617 }
 618 
 619 //------------------------------grow-------------------------------------------
 620 // Grow the input array, making space for more edges
 621 void Node::grow( uint len ) {
 622   Arena* arena = Compile::current()->node_arena();
 623   uint new_max = _max;
 624   if( new_max == 0 ) {
 625     _max = 4;
 626     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 627     Node** to = _in;
 628     to[0] = NULL;
 629     to[1] = NULL;
 630     to[2] = NULL;
 631     to[3] = NULL;
 632     return;
 633   }
 634   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 635   // Trimming to limit allows a uint8 to handle up to 255 edges.
 636   // Previously I was using only powers-of-2 which peaked at 128 edges.
 637   //if( new_max >= limit ) new_max = limit-1;
 638   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 639   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 640   _max = new_max;               // Record new max length
 641   // This assertion makes sure that Node::_max is wide enough to
 642   // represent the numerical value of new_max.
 643   assert(_max == new_max && _max > len, "int width of _max is too small");
 644 }
 645 
 646 //-----------------------------out_grow----------------------------------------
 647 // Grow the input array, making space for more edges
 648 void Node::out_grow( uint len ) {
 649   assert(!is_top(), "cannot grow a top node's out array");
 650   Arena* arena = Compile::current()->node_arena();
 651   uint new_max = _outmax;
 652   if( new_max == 0 ) {
 653     _outmax = 4;
 654     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 655     return;
 656   }
 657   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 658   // Trimming to limit allows a uint8 to handle up to 255 edges.
 659   // Previously I was using only powers-of-2 which peaked at 128 edges.
 660   //if( new_max >= limit ) new_max = limit-1;
 661   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 662   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 663   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 664   _outmax = new_max;               // Record new max length
 665   // This assertion makes sure that Node::_max is wide enough to
 666   // represent the numerical value of new_max.
 667   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 668 }
 669 
 670 #ifdef ASSERT
 671 //------------------------------is_dead----------------------------------------
 672 bool Node::is_dead() const {
 673   // Mach and pinch point nodes may look like dead.
 674   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 675     return false;
 676   for( uint i = 0; i < _max; i++ )
 677     if( _in[i] != NULL )
 678       return false;
 679   dump();
 680   return true;
 681 }
 682 #endif
 683 
 684 //------------------------------add_req----------------------------------------
 685 // Add a new required input at the end
 686 void Node::add_req( Node *n ) {
 687   assert( is_not_dead(n), "can not use dead node");
 688 
 689   // Look to see if I can move precedence down one without reallocating
 690   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 691     grow( _max+1 );
 692 
 693   // Find a precedence edge to move
 694   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 695     uint i;
 696     for( i=_cnt; i<_max; i++ )
 697       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 698         break;                  // There must be one, since we grew the array
 699     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 700   }
 701   _in[_cnt++] = n;            // Stuff over old prec edge
 702   if (n != NULL) n->add_out((Node *)this);
 703 }
 704 
 705 //---------------------------add_req_batch-------------------------------------
 706 // Add a new required input at the end
 707 void Node::add_req_batch( Node *n, uint m ) {
 708   assert( is_not_dead(n), "can not use dead node");
 709   // check various edge cases
 710   if ((int)m <= 1) {
 711     assert((int)m >= 0, "oob");
 712     if (m != 0)  add_req(n);
 713     return;
 714   }
 715 
 716   // Look to see if I can move precedence down one without reallocating
 717   if( (_cnt+m) > _max || _in[_max-m] )
 718     grow( _max+m );
 719 
 720   // Find a precedence edge to move
 721   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 722     uint i;
 723     for( i=_cnt; i<_max; i++ )
 724       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 725         break;                  // There must be one, since we grew the array
 726     // Slide all the precs over by m positions (assume #prec << m).
 727     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 728   }
 729 
 730   // Stuff over the old prec edges
 731   for(uint i=0; i<m; i++ ) {
 732     _in[_cnt++] = n;
 733   }
 734 
 735   // Insert multiple out edges on the node.
 736   if (n != NULL && !n->is_top()) {
 737     for(uint i=0; i<m; i++ ) {
 738       n->add_out((Node *)this);
 739     }
 740   }
 741 }
 742 
 743 //------------------------------del_req----------------------------------------
 744 // Delete the required edge and compact the edge array
 745 void Node::del_req( uint idx ) {
 746   // First remove corresponding def-use edge
 747   Node *n = in(idx);
 748   if (n != NULL) n->del_out((Node *)this);
 749   _in[idx] = in(--_cnt);  // Compact the array
 750   _in[_cnt] = NULL;       // NULL out emptied slot
 751 }
 752 
 753 //------------------------------ins_req----------------------------------------
 754 // Insert a new required input at the end
 755 void Node::ins_req( uint idx, Node *n ) {
 756   assert( is_not_dead(n), "can not use dead node");
 757   add_req(NULL);                // Make space
 758   assert( idx < _max, "Must have allocated enough space");
 759   // Slide over
 760   if(_cnt-idx-1 > 0) {
 761     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 762   }
 763   _in[idx] = n;                            // Stuff over old required edge
 764   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 765 }
 766 
 767 //-----------------------------find_edge---------------------------------------
 768 int Node::find_edge(Node* n) {
 769   for (uint i = 0; i < len(); i++) {
 770     if (_in[i] == n)  return i;
 771   }
 772   return -1;
 773 }
 774 
 775 //----------------------------replace_edge-------------------------------------
 776 int Node::replace_edge(Node* old, Node* neww) {
 777   if (old == neww)  return 0;  // nothing to do
 778   uint nrep = 0;
 779   for (uint i = 0; i < len(); i++) {
 780     if (in(i) == old) {
 781       if (i < req())
 782         set_req(i, neww);
 783       else
 784         set_prec(i, neww);
 785       nrep++;
 786     }
 787   }
 788   return nrep;
 789 }
 790 
 791 //-------------------------disconnect_inputs-----------------------------------
 792 // NULL out all inputs to eliminate incoming Def-Use edges.
 793 // Return the number of edges between 'n' and 'this'
 794 int Node::disconnect_inputs(Node *n) {
 795   int edges_to_n = 0;
 796 
 797   uint cnt = req();
 798   for( uint i = 0; i < cnt; ++i ) {
 799     if( in(i) == 0 ) continue;
 800     if( in(i) == n ) ++edges_to_n;
 801     set_req(i, NULL);
 802   }
 803   // Remove precedence edges if any exist
 804   // Note: Safepoints may have precedence edges, even during parsing
 805   if( (req() != len()) && (in(req()) != NULL) ) {
 806     uint max = len();
 807     for( uint i = 0; i < max; ++i ) {
 808       if( in(i) == 0 ) continue;
 809       if( in(i) == n ) ++edges_to_n;
 810       set_prec(i, NULL);
 811     }
 812   }
 813 
 814   // Node::destruct requires all out edges be deleted first
 815   // debug_only(destruct();)   // no reuse benefit expected
 816   return edges_to_n;
 817 }
 818 
 819 //-----------------------------uncast---------------------------------------
 820 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 821 // Strip away casting.  (It is depth-limited.)
 822 Node* Node::uncast() const {
 823   // Should be inline:
 824   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 825   if (is_ConstraintCast() || is_CheckCastPP())
 826     return uncast_helper(this);
 827   else
 828     return (Node*) this;
 829 }
 830 
 831 //---------------------------uncast_helper-------------------------------------
 832 Node* Node::uncast_helper(const Node* p) {
 833   uint max_depth = 3;
 834   for (uint i = 0; i < max_depth; i++) {
 835     if (p == NULL || p->req() != 2) {
 836       break;
 837     } else if (p->is_ConstraintCast()) {
 838       p = p->in(1);
 839     } else if (p->is_CheckCastPP()) {
 840       p = p->in(1);
 841     } else {
 842       break;
 843     }
 844   }
 845   return (Node*) p;
 846 }
 847 
 848 //------------------------------add_prec---------------------------------------
 849 // Add a new precedence input.  Precedence inputs are unordered, with
 850 // duplicates removed and NULLs packed down at the end.
 851 void Node::add_prec( Node *n ) {
 852   assert( is_not_dead(n), "can not use dead node");
 853 
 854   // Check for NULL at end
 855   if( _cnt >= _max || in(_max-1) )
 856     grow( _max+1 );
 857 
 858   // Find a precedence edge to move
 859   uint i = _cnt;
 860   while( in(i) != NULL ) i++;
 861   _in[i] = n;                                // Stuff prec edge over NULL
 862   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 863 }
 864 
 865 //------------------------------rm_prec----------------------------------------
 866 // Remove a precedence input.  Precedence inputs are unordered, with
 867 // duplicates removed and NULLs packed down at the end.
 868 void Node::rm_prec( uint j ) {
 869 
 870   // Find end of precedence list to pack NULLs
 871   uint i;
 872   for( i=j; i<_max; i++ )
 873     if( !_in[i] )               // Find the NULL at end of prec edge list
 874       break;
 875   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 876   _in[j] = _in[--i];            // Move last element over removed guy
 877   _in[i] = NULL;                // NULL out last element
 878 }
 879 
 880 //------------------------------size_of----------------------------------------
 881 uint Node::size_of() const { return sizeof(*this); }
 882 
 883 //------------------------------ideal_reg--------------------------------------
 884 uint Node::ideal_reg() const { return 0; }
 885 
 886 //------------------------------jvms-------------------------------------------
 887 JVMState* Node::jvms() const { return NULL; }
 888 
 889 #ifdef ASSERT
 890 //------------------------------jvms-------------------------------------------
 891 bool Node::verify_jvms(const JVMState* using_jvms) const {
 892   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 893     if (jvms == using_jvms)  return true;
 894   }
 895   return false;
 896 }
 897 
 898 //------------------------------init_NodeProperty------------------------------
 899 void Node::init_NodeProperty() {
 900   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
 901   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
 902 }
 903 #endif
 904 
 905 //------------------------------format-----------------------------------------
 906 // Print as assembly
 907 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
 908 //------------------------------emit-------------------------------------------
 909 // Emit bytes starting at parameter 'ptr'.
 910 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
 911 //------------------------------size-------------------------------------------
 912 // Size of instruction in bytes
 913 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
 914 
 915 //------------------------------CFG Construction-------------------------------
 916 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
 917 // Goto and Return.
 918 const Node *Node::is_block_proj() const { return 0; }
 919 
 920 // Minimum guaranteed type
 921 const Type *Node::bottom_type() const { return Type::BOTTOM; }
 922 
 923 
 924 //------------------------------raise_bottom_type------------------------------
 925 // Get the worst-case Type output for this Node.
 926 void Node::raise_bottom_type(const Type* new_type) {
 927   if (is_Type()) {
 928     TypeNode *n = this->as_Type();
 929     if (VerifyAliases) {
 930       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 931     }
 932     n->set_type(new_type);
 933   } else if (is_Load()) {
 934     LoadNode *n = this->as_Load();
 935     if (VerifyAliases) {
 936       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 937     }
 938     n->set_type(new_type);
 939   }
 940 }
 941 
 942 //------------------------------Identity---------------------------------------
 943 // Return a node that the given node is equivalent to.
 944 Node *Node::Identity( PhaseTransform * ) {
 945   return this;                  // Default to no identities
 946 }
 947 
 948 //------------------------------Value------------------------------------------
 949 // Compute a new Type for a node using the Type of the inputs.
 950 const Type *Node::Value( PhaseTransform * ) const {
 951   return bottom_type();         // Default to worst-case Type
 952 }
 953 
 954 //------------------------------Ideal------------------------------------------
 955 //
 956 // 'Idealize' the graph rooted at this Node.
 957 //
 958 // In order to be efficient and flexible there are some subtle invariants
 959 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
 960 // these invariants, although its too slow to have on by default.  If you are
 961 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
 962 //
 963 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
 964 // pointer.  If ANY change is made, it must return the root of the reshaped
 965 // graph - even if the root is the same Node.  Example: swapping the inputs
 966 // to an AddINode gives the same answer and same root, but you still have to
 967 // return the 'this' pointer instead of NULL.
 968 //
 969 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
 970 // Identity call to return an old Node; basically if Identity can find
 971 // another Node have the Ideal call make no change and return NULL.
 972 // Example: AddINode::Ideal must check for add of zero; in this case it
 973 // returns NULL instead of doing any graph reshaping.
 974 //
 975 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
 976 // sharing there may be other users of the old Nodes relying on their current
 977 // semantics.  Modifying them will break the other users.
 978 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
 979 // "X+3" unchanged in case it is shared.
 980 //
 981 // If you modify the 'this' pointer's inputs, you should use
 982 // 'set_req'.  If you are making a new Node (either as the new root or
 983 // some new internal piece) you may use 'init_req' to set the initial
 984 // value.  You can make a new Node with either 'new' or 'clone'.  In
 985 // either case, def-use info is correctly maintained.
 986 //
 987 // Example: reshape "(X+3)+4" into "X+7":
 988 //    set_req(1, in(1)->in(1));
 989 //    set_req(2, phase->intcon(7));
 990 //    return this;
 991 // Example: reshape "X*4" into "X<<2"
 992 //    return new (C,3) LShiftINode(in(1), phase->intcon(2));
 993 //
 994 // You must call 'phase->transform(X)' on any new Nodes X you make, except
 995 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
 996 //    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
 997 //    return new (C,3) AddINode(shift, in(1));
 998 //
 999 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1000 // These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
1001 // The Right Thing with def-use info.
1002 //
1003 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1004 // graph uses the 'this' Node it must be the root.  If you want a Node with
1005 // the same Opcode as the 'this' pointer use 'clone'.
1006 //
1007 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1008   return NULL;                  // Default to being Ideal already
1009 }
1010 
1011 // Some nodes have specific Ideal subgraph transformations only if they are
1012 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1013 // for the transformations to happen.
1014 bool Node::has_special_unique_user() const {
1015   assert(outcnt() == 1, "match only for unique out");
1016   Node* n = unique_out();
1017   int op  = Opcode();
1018   if( this->is_Store() ) {
1019     // Condition for back-to-back stores folding.
1020     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1021   } else if( op == Op_AddL ) {
1022     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1023     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1024   } else if( op == Op_SubI || op == Op_SubL ) {
1025     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1026     return n->Opcode() == op && n->in(2) == this;
1027   }
1028   return false;
1029 };
1030 
1031 //--------------------------find_exact_control---------------------------------
1032 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1033 Node* Node::find_exact_control(Node* ctrl) {
1034   if (ctrl == NULL && this->is_Region())
1035     ctrl = this->as_Region()->is_copy();
1036 
1037   if (ctrl != NULL && ctrl->is_CatchProj()) {
1038     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1039       ctrl = ctrl->in(0);
1040     if (ctrl != NULL && !ctrl->is_top())
1041       ctrl = ctrl->in(0);
1042   }
1043 
1044   if (ctrl != NULL && ctrl->is_Proj())
1045     ctrl = ctrl->in(0);
1046 
1047   return ctrl;
1048 }
1049 
1050 //--------------------------dominates------------------------------------------
1051 // Helper function for MemNode::all_controls_dominate().
1052 // Check if 'this' control node dominates or equal to 'sub' control node.
1053 // We already know that if any path back to Root or Start reaches 'this',
1054 // then all paths so, so this is a simple search for one example,
1055 // not an exhaustive search for a counterexample.
1056 bool Node::dominates(Node* sub, Node_List &nlist) {
1057   assert(this->is_CFG(), "expecting control");
1058   assert(sub != NULL && sub->is_CFG(), "expecting control");
1059 
1060   // detect dead cycle without regions
1061   int iterations_without_region_limit = DominatorSearchLimit;
1062 
1063   Node* orig_sub = sub;
1064   Node* dom      = this;
1065   bool  met_dom  = false;
1066   nlist.clear();
1067 
1068   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1069   // After seeing 'dom', continue up to Root or Start.
1070   // If we hit a region (backward split point), it may be a loop head.
1071   // Keep going through one of the region's inputs.  If we reach the
1072   // same region again, go through a different input.  Eventually we
1073   // will either exit through the loop head, or give up.
1074   // (If we get confused, break out and return a conservative 'false'.)
1075   while (sub != NULL) {
1076     if (sub->is_top())  break; // Conservative answer for dead code.
1077     if (sub == dom) {
1078       if (nlist.size() == 0) {
1079         // No Region nodes except loops were visited before and the EntryControl
1080         // path was taken for loops: it did not walk in a cycle.
1081         return true;
1082       } else if (met_dom) {
1083         break;          // already met before: walk in a cycle
1084       } else {
1085         // Region nodes were visited. Continue walk up to Start or Root
1086         // to make sure that it did not walk in a cycle.
1087         met_dom = true; // first time meet
1088         iterations_without_region_limit = DominatorSearchLimit; // Reset
1089      }
1090     }
1091     if (sub->is_Start() || sub->is_Root()) {
1092       // Success if we met 'dom' along a path to Start or Root.
1093       // We assume there are no alternative paths that avoid 'dom'.
1094       // (This assumption is up to the caller to ensure!)
1095       return met_dom;
1096     }
1097     Node* up = sub->in(0);
1098     // Normalize simple pass-through regions and projections:
1099     up = sub->find_exact_control(up);
1100     // If sub == up, we found a self-loop.  Try to push past it.
1101     if (sub == up && sub->is_Loop()) {
1102       // Take loop entry path on the way up to 'dom'.
1103       up = sub->in(1); // in(LoopNode::EntryControl);
1104     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1105       // Always take in(1) path on the way up to 'dom' for clone regions
1106       // (with only one input) or regions which merge > 2 paths
1107       // (usually used to merge fast/slow paths).
1108       up = sub->in(1);
1109     } else if (sub == up && sub->is_Region()) {
1110       // Try both paths for Regions with 2 input paths (it may be a loop head).
1111       // It could give conservative 'false' answer without information
1112       // which region's input is the entry path.
1113       iterations_without_region_limit = DominatorSearchLimit; // Reset
1114 
1115       bool region_was_visited_before = false;
1116       // Was this Region node visited before?
1117       // If so, we have reached it because we accidentally took a
1118       // loop-back edge from 'sub' back into the body of the loop,
1119       // and worked our way up again to the loop header 'sub'.
1120       // So, take the first unexplored path on the way up to 'dom'.
1121       for (int j = nlist.size() - 1; j >= 0; j--) {
1122         intptr_t ni = (intptr_t)nlist.at(j);
1123         Node* visited = (Node*)(ni & ~1);
1124         bool  visited_twice_already = ((ni & 1) != 0);
1125         if (visited == sub) {
1126           if (visited_twice_already) {
1127             // Visited 2 paths, but still stuck in loop body.  Give up.
1128             return false;
1129           }
1130           // The Region node was visited before only once.
1131           // (We will repush with the low bit set, below.)
1132           nlist.remove(j);
1133           // We will find a new edge and re-insert.
1134           region_was_visited_before = true;
1135           break;
1136         }
1137       }
1138 
1139       // Find an incoming edge which has not been seen yet; walk through it.
1140       assert(up == sub, "");
1141       uint skip = region_was_visited_before ? 1 : 0;
1142       for (uint i = 1; i < sub->req(); i++) {
1143         Node* in = sub->in(i);
1144         if (in != NULL && !in->is_top() && in != sub) {
1145           if (skip == 0) {
1146             up = in;
1147             break;
1148           }
1149           --skip;               // skip this nontrivial input
1150         }
1151       }
1152 
1153       // Set 0 bit to indicate that both paths were taken.
1154       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1155     }
1156 
1157     if (up == sub) {
1158       break;    // some kind of tight cycle
1159     }
1160     if (up == orig_sub && met_dom) {
1161       // returned back after visiting 'dom'
1162       break;    // some kind of cycle
1163     }
1164     if (--iterations_without_region_limit < 0) {
1165       break;    // dead cycle
1166     }
1167     sub = up;
1168   }
1169 
1170   // Did not meet Root or Start node in pred. chain.
1171   // Conservative answer for dead code.
1172   return false;
1173 }
1174 
1175 //------------------------------remove_dead_region-----------------------------
1176 // This control node is dead.  Follow the subgraph below it making everything
1177 // using it dead as well.  This will happen normally via the usual IterGVN
1178 // worklist but this call is more efficient.  Do not update use-def info
1179 // inside the dead region, just at the borders.
1180 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1181   // Con's are a popular node to re-hit in the hash table again.
1182   if( dead->is_Con() ) return;
1183 
1184   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1185   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1186   Node_List  nstack(Thread::current()->resource_area());
1187 
1188   Node *top = igvn->C->top();
1189   nstack.push(dead);
1190 
1191   while (nstack.size() > 0) {
1192     dead = nstack.pop();
1193     if (dead->outcnt() > 0) {
1194       // Keep dead node on stack until all uses are processed.
1195       nstack.push(dead);
1196       // For all Users of the Dead...    ;-)
1197       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1198         Node* use = dead->last_out(k);
1199         igvn->hash_delete(use);       // Yank from hash table prior to mod
1200         if (use->in(0) == dead) {     // Found another dead node
1201           assert (!use->is_Con(), "Control for Con node should be Root node.");
1202           use->set_req(0, top);       // Cut dead edge to prevent processing
1203           nstack.push(use);           // the dead node again.
1204         } else {                      // Else found a not-dead user
1205           for (uint j = 1; j < use->req(); j++) {
1206             if (use->in(j) == dead) { // Turn all dead inputs into TOP
1207               use->set_req(j, top);
1208             }
1209           }
1210           igvn->_worklist.push(use);
1211         }
1212         // Refresh the iterator, since any number of kills might have happened.
1213         k = dead->last_outs(kmin);
1214       }
1215     } else { // (dead->outcnt() == 0)
1216       // Done with outputs.
1217       igvn->hash_delete(dead);
1218       igvn->_worklist.remove(dead);
1219       igvn->set_type(dead, Type::TOP);
1220       if (dead->is_macro()) {
1221         igvn->C->remove_macro_node(dead);
1222       }
1223       // Kill all inputs to the dead guy
1224       for (uint i=0; i < dead->req(); i++) {
1225         Node *n = dead->in(i);      // Get input to dead guy
1226         if (n != NULL && !n->is_top()) { // Input is valid?
1227           dead->set_req(i, top);    // Smash input away
1228           if (n->outcnt() == 0) {   // Input also goes dead?
1229             if (!n->is_Con())
1230               nstack.push(n);       // Clear it out as well
1231           } else if (n->outcnt() == 1 &&
1232                      n->has_special_unique_user()) {
1233             igvn->add_users_to_worklist( n );
1234           } else if (n->outcnt() <= 2 && n->is_Store()) {
1235             // Push store's uses on worklist to enable folding optimization for
1236             // store/store and store/load to the same address.
1237             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1238             // and remove_globally_dead_node().
1239             igvn->add_users_to_worklist( n );
1240           }
1241         }
1242       }
1243     } // (dead->outcnt() == 0)
1244   }   // while (nstack.size() > 0) for outputs
1245   return;
1246 }
1247 
1248 //------------------------------remove_dead_region-----------------------------
1249 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1250   Node *n = in(0);
1251   if( !n ) return false;
1252   // Lost control into this guy?  I.e., it became unreachable?
1253   // Aggressively kill all unreachable code.
1254   if (can_reshape && n->is_top()) {
1255     kill_dead_code(this, phase->is_IterGVN());
1256     return false; // Node is dead.
1257   }
1258 
1259   if( n->is_Region() && n->as_Region()->is_copy() ) {
1260     Node *m = n->nonnull_req();
1261     set_req(0, m);
1262     return true;
1263   }
1264   return false;
1265 }
1266 
1267 //------------------------------Ideal_DU_postCCP-------------------------------
1268 // Idealize graph, using DU info.  Must clone result into new-space
1269 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1270   return NULL;                 // Default to no change
1271 }
1272 
1273 //------------------------------hash-------------------------------------------
1274 // Hash function over Nodes.
1275 uint Node::hash() const {
1276   uint sum = 0;
1277   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1278     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1279   return (sum>>2) + _cnt + Opcode();
1280 }
1281 
1282 //------------------------------cmp--------------------------------------------
1283 // Compare special parts of simple Nodes
1284 uint Node::cmp( const Node &n ) const {
1285   return 1;                     // Must be same
1286 }
1287 
1288 //------------------------------rematerialize-----------------------------------
1289 // Should we clone rather than spill this instruction?
1290 bool Node::rematerialize() const {
1291   if ( is_Mach() )
1292     return this->as_Mach()->rematerialize();
1293   else
1294     return (_flags & Flag_rematerialize) != 0;
1295 }
1296 
1297 //------------------------------needs_anti_dependence_check---------------------
1298 // Nodes which use memory without consuming it, hence need antidependences.
1299 bool Node::needs_anti_dependence_check() const {
1300   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1301     return false;
1302   else
1303     return in(1)->bottom_type()->has_memory();
1304 }
1305 
1306 
1307 // Get an integer constant from a ConNode (or CastIINode).
1308 // Return a default value if there is no apparent constant here.
1309 const TypeInt* Node::find_int_type() const {
1310   if (this->is_Type()) {
1311     return this->as_Type()->type()->isa_int();
1312   } else if (this->is_Con()) {
1313     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1314     return this->bottom_type()->isa_int();
1315   }
1316   return NULL;
1317 }
1318 
1319 // Get a pointer constant from a ConstNode.
1320 // Returns the constant if it is a pointer ConstNode
1321 intptr_t Node::get_ptr() const {
1322   assert( Opcode() == Op_ConP, "" );
1323   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1324 }
1325 
1326 // Get a narrow oop constant from a ConNNode.
1327 intptr_t Node::get_narrowcon() const {
1328   assert( Opcode() == Op_ConN, "" );
1329   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1330 }
1331 
1332 // Get a long constant from a ConNode.
1333 // Return a default value if there is no apparent constant here.
1334 const TypeLong* Node::find_long_type() const {
1335   if (this->is_Type()) {
1336     return this->as_Type()->type()->isa_long();
1337   } else if (this->is_Con()) {
1338     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1339     return this->bottom_type()->isa_long();
1340   }
1341   return NULL;
1342 }
1343 
1344 // Get a double constant from a ConstNode.
1345 // Returns the constant if it is a double ConstNode
1346 jdouble Node::getd() const {
1347   assert( Opcode() == Op_ConD, "" );
1348   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1349 }
1350 
1351 // Get a float constant from a ConstNode.
1352 // Returns the constant if it is a float ConstNode
1353 jfloat Node::getf() const {
1354   assert( Opcode() == Op_ConF, "" );
1355   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1356 }
1357 
1358 #ifndef PRODUCT
1359 
1360 //----------------------------NotANode----------------------------------------
1361 // Used in debugging code to avoid walking across dead or uninitialized edges.
1362 static inline bool NotANode(const Node* n) {
1363   if (n == NULL)                   return true;
1364   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1365   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1366   return false;
1367 }
1368 
1369 
1370 //------------------------------find------------------------------------------
1371 // Find a neighbor of this Node with the given _idx
1372 // If idx is negative, find its absolute value, following both _in and _out.
1373 static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
1374                         VectorSet &old_space, VectorSet &new_space ) {
1375   int node_idx = (idx >= 0) ? idx : -idx;
1376   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1377   // Contained in new_space or old_space?
1378   VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
1379   if( v->test(n->_idx) ) return;
1380   if( (int)n->_idx == node_idx
1381       debug_only(|| n->debug_idx() == node_idx) ) {
1382     if (result != NULL)
1383       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1384                  (uintptr_t)result, (uintptr_t)n, node_idx);
1385     result = n;
1386   }
1387   v->set(n->_idx);
1388   for( uint i=0; i<n->len(); i++ ) {
1389     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1390     find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
1391   }
1392   // Search along forward edges also:
1393   if (idx < 0 && !only_ctrl) {
1394     for( uint j=0; j<n->outcnt(); j++ ) {
1395       find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1396     }
1397   }
1398 #ifdef ASSERT
1399   // Search along debug_orig edges last:
1400   for (Node* orig = n->debug_orig(); orig != NULL && n != orig; orig = orig->debug_orig()) {
1401     if (NotANode(orig))  break;
1402     find_recur( result, orig, idx, only_ctrl, old_space, new_space );
1403   }
1404 #endif //ASSERT
1405 }
1406 
1407 // call this from debugger:
1408 Node* find_node(Node* n, int idx) {
1409   return n->find(idx);
1410 }
1411 
1412 //------------------------------find-------------------------------------------
1413 Node* Node::find(int idx) const {
1414   ResourceArea *area = Thread::current()->resource_area();
1415   VectorSet old_space(area), new_space(area);
1416   Node* result = NULL;
1417   find_recur( result, (Node*) this, idx, false, old_space, new_space );
1418   return result;
1419 }
1420 
1421 //------------------------------find_ctrl--------------------------------------
1422 // Find an ancestor to this node in the control history with given _idx
1423 Node* Node::find_ctrl(int idx) const {
1424   ResourceArea *area = Thread::current()->resource_area();
1425   VectorSet old_space(area), new_space(area);
1426   Node* result = NULL;
1427   find_recur( result, (Node*) this, idx, true, old_space, new_space );
1428   return result;
1429 }
1430 #endif
1431 
1432 
1433 
1434 #ifndef PRODUCT
1435 int Node::_in_dump_cnt = 0;
1436 
1437 // -----------------------------Name-------------------------------------------
1438 extern const char *NodeClassNames[];
1439 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1440 
1441 static bool is_disconnected(const Node* n) {
1442   for (uint i = 0; i < n->req(); i++) {
1443     if (n->in(i) != NULL)  return false;
1444   }
1445   return true;
1446 }
1447 
1448 #ifdef ASSERT
1449 static void dump_orig(Node* orig) {
1450   Compile* C = Compile::current();
1451   if (NotANode(orig))  orig = NULL;
1452   if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1453   if (orig == NULL)  return;
1454   tty->print(" !orig=");
1455   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1456   if (NotANode(fast))  fast = NULL;
1457   while (orig != NULL) {
1458     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1459     if (discon)  tty->print("[");
1460     if (!Compile::current()->node_arena()->contains(orig))
1461       tty->print("o");
1462     tty->print("%d", orig->_idx);
1463     if (discon)  tty->print("]");
1464     orig = orig->debug_orig();
1465     if (NotANode(orig))  orig = NULL;
1466     if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1467     if (orig != NULL)  tty->print(",");
1468     if (fast != NULL) {
1469       // Step fast twice for each single step of orig:
1470       fast = fast->debug_orig();
1471       if (NotANode(fast))  fast = NULL;
1472       if (fast != NULL && fast != orig) {
1473         fast = fast->debug_orig();
1474         if (NotANode(fast))  fast = NULL;
1475       }
1476       if (fast == orig) {
1477         tty->print("...");
1478         break;
1479       }
1480     }
1481   }
1482 }
1483 
1484 void Node::set_debug_orig(Node* orig) {
1485   _debug_orig = orig;
1486   if (BreakAtNode == 0)  return;
1487   if (NotANode(orig))  orig = NULL;
1488   int trip = 10;
1489   while (orig != NULL) {
1490     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1491       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1492                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1493       BREAKPOINT;
1494     }
1495     orig = orig->debug_orig();
1496     if (NotANode(orig))  orig = NULL;
1497     if (trip-- <= 0)  break;
1498   }
1499 }
1500 #endif //ASSERT
1501 
1502 //------------------------------dump------------------------------------------
1503 // Dump a Node
1504 void Node::dump() const {
1505   Compile* C = Compile::current();
1506   bool is_new = C->node_arena()->contains(this);
1507   _in_dump_cnt++;
1508   tty->print("%c%d\t%s\t=== ",
1509              is_new ? ' ' : 'o', _idx, Name());
1510 
1511   // Dump the required and precedence inputs
1512   dump_req();
1513   dump_prec();
1514   // Dump the outputs
1515   dump_out();
1516 
1517   if (is_disconnected(this)) {
1518 #ifdef ASSERT
1519     tty->print("  [%d]",debug_idx());
1520     dump_orig(debug_orig());
1521 #endif
1522     tty->cr();
1523     _in_dump_cnt--;
1524     return;                     // don't process dead nodes
1525   }
1526 
1527   // Dump node-specific info
1528   dump_spec(tty);
1529 #ifdef ASSERT
1530   // Dump the non-reset _debug_idx
1531   if( Verbose && WizardMode ) {
1532     tty->print("  [%d]",debug_idx());
1533   }
1534 #endif
1535 
1536   const Type *t = bottom_type();
1537 
1538   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1539     const TypeInstPtr  *toop = t->isa_instptr();
1540     const TypeKlassPtr *tkls = t->isa_klassptr();
1541     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1542     if( klass && klass->is_loaded() && klass->is_interface() ) {
1543       tty->print("  Interface:");
1544     } else if( toop ) {
1545       tty->print("  Oop:");
1546     } else if( tkls ) {
1547       tty->print("  Klass:");
1548     }
1549     t->dump();
1550   } else if( t == Type::MEMORY ) {
1551     tty->print("  Memory:");
1552     MemNode::dump_adr_type(this, adr_type(), tty);
1553   } else if( Verbose || WizardMode ) {
1554     tty->print("  Type:");
1555     if( t ) {
1556       t->dump();
1557     } else {
1558       tty->print("no type");
1559     }
1560   }
1561   if (is_new) {
1562     debug_only(dump_orig(debug_orig()));
1563     Node_Notes* nn = C->node_notes_at(_idx);
1564     if (nn != NULL && !nn->is_clear()) {
1565       if (nn->jvms() != NULL) {
1566         tty->print(" !jvms:");
1567         nn->jvms()->dump_spec(tty);
1568       }
1569     }
1570   }
1571   tty->cr();
1572   _in_dump_cnt--;
1573 }
1574 
1575 //------------------------------dump_req--------------------------------------
1576 void Node::dump_req() const {
1577   // Dump the required input edges
1578   for (uint i = 0; i < req(); i++) {    // For all required inputs
1579     Node* d = in(i);
1580     if (d == NULL) {
1581       tty->print("_ ");
1582     } else if (NotANode(d)) {
1583       tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1584     } else {
1585       tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1586     }
1587   }
1588 }
1589 
1590 
1591 //------------------------------dump_prec-------------------------------------
1592 void Node::dump_prec() const {
1593   // Dump the precedence edges
1594   int any_prec = 0;
1595   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1596     Node* p = in(i);
1597     if (p != NULL) {
1598       if( !any_prec++ ) tty->print(" |");
1599       if (NotANode(p)) { tty->print("NotANode "); continue; }
1600       tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1601     }
1602   }
1603 }
1604 
1605 //------------------------------dump_out--------------------------------------
1606 void Node::dump_out() const {
1607   // Delimit the output edges
1608   tty->print(" [[");
1609   // Dump the output edges
1610   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1611     Node* u = _out[i];
1612     if (u == NULL) {
1613       tty->print("_ ");
1614     } else if (NotANode(u)) {
1615       tty->print("NotANode ");
1616     } else {
1617       tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1618     }
1619   }
1620   tty->print("]] ");
1621 }
1622 
1623 //------------------------------dump_nodes-------------------------------------
1624 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1625   Node* s = (Node*)start; // remove const
1626   if (NotANode(s)) return;
1627 
1628   uint depth = (uint)ABS(d);
1629   int direction = d;
1630   Compile* C = Compile::current();
1631   GrowableArray <Node *> nstack(C->unique());
1632 
1633   nstack.append(s);
1634   int begin = 0;
1635   int end = 0;
1636   for(uint i = 0; i < depth; i++) {
1637     end = nstack.length();
1638     for(int j = begin; j < end; j++) {
1639       Node* tp  = nstack.at(j);
1640       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1641       for(uint k = 0; k < limit; k++) {
1642         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1643 
1644         if (NotANode(n))  continue;
1645         // do not recurse through top or the root (would reach unrelated stuff)
1646         if (n->is_Root() || n->is_top())  continue;
1647         if (only_ctrl && !n->is_CFG()) continue;
1648 
1649         bool on_stack = nstack.contains(n);
1650         if (!on_stack) {
1651           nstack.append(n);
1652         }
1653       }
1654     }
1655     begin = end;
1656   }
1657   end = nstack.length();
1658   if (direction > 0) {
1659     for(int j = end-1; j >= 0; j--) {
1660       nstack.at(j)->dump();
1661     }
1662   } else {
1663     for(int j = 0; j < end; j++) {
1664       nstack.at(j)->dump();
1665     }
1666   }
1667 }
1668 
1669 //------------------------------dump-------------------------------------------
1670 void Node::dump(int d) const {
1671   dump_nodes(this, d, false);
1672 }
1673 
1674 //------------------------------dump_ctrl--------------------------------------
1675 // Dump a Node's control history to depth
1676 void Node::dump_ctrl(int d) const {
1677   dump_nodes(this, d, true);
1678 }
1679 
1680 // VERIFICATION CODE
1681 // For each input edge to a node (ie - for each Use-Def edge), verify that
1682 // there is a corresponding Def-Use edge.
1683 //------------------------------verify_edges-----------------------------------
1684 void Node::verify_edges(Unique_Node_List &visited) {
1685   uint i, j, idx;
1686   int  cnt;
1687   Node *n;
1688 
1689   // Recursive termination test
1690   if (visited.member(this))  return;
1691   visited.push(this);
1692 
1693   // Walk over all input edges, checking for correspondence
1694   for( i = 0; i < len(); i++ ) {
1695     n = in(i);
1696     if (n != NULL && !n->is_top()) {
1697       // Count instances of (Node *)this
1698       cnt = 0;
1699       for (idx = 0; idx < n->_outcnt; idx++ ) {
1700         if (n->_out[idx] == (Node *)this)  cnt++;
1701       }
1702       assert( cnt > 0,"Failed to find Def-Use edge." );
1703       // Check for duplicate edges
1704       // walk the input array downcounting the input edges to n
1705       for( j = 0; j < len(); j++ ) {
1706         if( in(j) == n ) cnt--;
1707       }
1708       assert( cnt == 0,"Mismatched edge count.");
1709     } else if (n == NULL) {
1710       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1711     } else {
1712       assert(n->is_top(), "sanity");
1713       // Nothing to check.
1714     }
1715   }
1716   // Recursive walk over all input edges
1717   for( i = 0; i < len(); i++ ) {
1718     n = in(i);
1719     if( n != NULL )
1720       in(i)->verify_edges(visited);
1721   }
1722 }
1723 
1724 //------------------------------verify_recur-----------------------------------
1725 static const Node *unique_top = NULL;
1726 
1727 void Node::verify_recur(const Node *n, int verify_depth,
1728                         VectorSet &old_space, VectorSet &new_space) {
1729   if ( verify_depth == 0 )  return;
1730   if (verify_depth > 0)  --verify_depth;
1731 
1732   Compile* C = Compile::current();
1733 
1734   // Contained in new_space or old_space?
1735   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1736   // Check for visited in the proper space.  Numberings are not unique
1737   // across spaces so we need a separate VectorSet for each space.
1738   if( v->test_set(n->_idx) ) return;
1739 
1740   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1741     if (C->cached_top_node() == NULL)
1742       C->set_cached_top_node((Node*)n);
1743     assert(C->cached_top_node() == n, "TOP node must be unique");
1744   }
1745 
1746   for( uint i = 0; i < n->len(); i++ ) {
1747     Node *x = n->in(i);
1748     if (!x || x->is_top()) continue;
1749 
1750     // Verify my input has a def-use edge to me
1751     if (true /*VerifyDefUse*/) {
1752       // Count use-def edges from n to x
1753       int cnt = 0;
1754       for( uint j = 0; j < n->len(); j++ )
1755         if( n->in(j) == x )
1756           cnt++;
1757       // Count def-use edges from x to n
1758       uint max = x->_outcnt;
1759       for( uint k = 0; k < max; k++ )
1760         if (x->_out[k] == n)
1761           cnt--;
1762       assert( cnt == 0, "mismatched def-use edge counts" );
1763     }
1764 
1765     verify_recur(x, verify_depth, old_space, new_space);
1766   }
1767 
1768 }
1769 
1770 //------------------------------verify-----------------------------------------
1771 // Check Def-Use info for my subgraph
1772 void Node::verify() const {
1773   Compile* C = Compile::current();
1774   Node* old_top = C->cached_top_node();
1775   ResourceMark rm;
1776   ResourceArea *area = Thread::current()->resource_area();
1777   VectorSet old_space(area), new_space(area);
1778   verify_recur(this, -1, old_space, new_space);
1779   C->set_cached_top_node(old_top);
1780 }
1781 #endif
1782 
1783 
1784 //------------------------------walk-------------------------------------------
1785 // Graph walk, with both pre-order and post-order functions
1786 void Node::walk(NFunc pre, NFunc post, void *env) {
1787   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1788   walk_(pre, post, env, visited);
1789 }
1790 
1791 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1792   if( visited.test_set(_idx) ) return;
1793   pre(*this,env);               // Call the pre-order walk function
1794   for( uint i=0; i<_max; i++ )
1795     if( in(i) )                 // Input exists and is not walked?
1796       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1797   post(*this,env);              // Call the post-order walk function
1798 }
1799 
1800 void Node::nop(Node &, void*) {}
1801 
1802 //------------------------------Registers--------------------------------------
1803 // Do we Match on this edge index or not?  Generally false for Control
1804 // and true for everything else.  Weird for calls & returns.
1805 uint Node::match_edge(uint idx) const {
1806   return idx;                   // True for other than index 0 (control)
1807 }
1808 
1809 // Register classes are defined for specific machines
1810 const RegMask &Node::out_RegMask() const {
1811   ShouldNotCallThis();
1812   return *(new RegMask());
1813 }
1814 
1815 const RegMask &Node::in_RegMask(uint) const {
1816   ShouldNotCallThis();
1817   return *(new RegMask());
1818 }
1819 
1820 //=============================================================================
1821 //-----------------------------------------------------------------------------
1822 void Node_Array::reset( Arena *new_arena ) {
1823   _a->Afree(_nodes,_max*sizeof(Node*));
1824   _max   = 0;
1825   _nodes = NULL;
1826   _a     = new_arena;
1827 }
1828 
1829 //------------------------------clear------------------------------------------
1830 // Clear all entries in _nodes to NULL but keep storage
1831 void Node_Array::clear() {
1832   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1833 }
1834 
1835 //-----------------------------------------------------------------------------
1836 void Node_Array::grow( uint i ) {
1837   if( !_max ) {
1838     _max = 1;
1839     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1840     _nodes[0] = NULL;
1841   }
1842   uint old = _max;
1843   while( i >= _max ) _max <<= 1;        // Double to fit
1844   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1845   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1846 }
1847 
1848 //-----------------------------------------------------------------------------
1849 void Node_Array::insert( uint i, Node *n ) {
1850   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1851   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1852   _nodes[i] = n;
1853 }
1854 
1855 //-----------------------------------------------------------------------------
1856 void Node_Array::remove( uint i ) {
1857   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1858   _nodes[_max-1] = NULL;
1859 }
1860 
1861 //-----------------------------------------------------------------------------
1862 void Node_Array::sort( C_sort_func_t func) {
1863   qsort( _nodes, _max, sizeof( Node* ), func );
1864 }
1865 
1866 //-----------------------------------------------------------------------------
1867 void Node_Array::dump() const {
1868 #ifndef PRODUCT
1869   for( uint i = 0; i < _max; i++ ) {
1870     Node *nn = _nodes[i];
1871     if( nn != NULL ) {
1872       tty->print("%5d--> ",i); nn->dump();
1873     }
1874   }
1875 #endif
1876 }
1877 
1878 //--------------------------is_iteratively_computed------------------------------
1879 // Operation appears to be iteratively computed (such as an induction variable)
1880 // It is possible for this operation to return false for a loop-varying
1881 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1882 bool Node::is_iteratively_computed() {
1883   if (ideal_reg()) { // does operation have a result register?
1884     for (uint i = 1; i < req(); i++) {
1885       Node* n = in(i);
1886       if (n != NULL && n->is_Phi()) {
1887         for (uint j = 1; j < n->req(); j++) {
1888           if (n->in(j) == this) {
1889             return true;
1890           }
1891         }
1892       }
1893     }
1894   }
1895   return false;
1896 }
1897 
1898 //--------------------------find_similar------------------------------
1899 // Return a node with opcode "opc" and same inputs as "this" if one can
1900 // be found; Otherwise return NULL;
1901 Node* Node::find_similar(int opc) {
1902   if (req() >= 2) {
1903     Node* def = in(1);
1904     if (def && def->outcnt() >= 2) {
1905       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1906         Node* use = def->fast_out(i);
1907         if (use->Opcode() == opc &&
1908             use->req() == req()) {
1909           uint j;
1910           for (j = 0; j < use->req(); j++) {
1911             if (use->in(j) != in(j)) {
1912               break;
1913             }
1914           }
1915           if (j == use->req()) {
1916             return use;
1917           }
1918         }
1919       }
1920     }
1921   }
1922   return NULL;
1923 }
1924 
1925 
1926 //--------------------------unique_ctrl_out------------------------------
1927 // Return the unique control out if only one. Null if none or more than one.
1928 Node* Node::unique_ctrl_out() {
1929   Node* found = NULL;
1930   for (uint i = 0; i < outcnt(); i++) {
1931     Node* use = raw_out(i);
1932     if (use->is_CFG() && use != this) {
1933       if (found != NULL) return NULL;
1934       found = use;
1935     }
1936   }
1937   return found;
1938 }
1939 
1940 //=============================================================================
1941 //------------------------------yank-------------------------------------------
1942 // Find and remove
1943 void Node_List::yank( Node *n ) {
1944   uint i;
1945   for( i = 0; i < _cnt; i++ )
1946     if( _nodes[i] == n )
1947       break;
1948 
1949   if( i < _cnt )
1950     _nodes[i] = _nodes[--_cnt];
1951 }
1952 
1953 //------------------------------dump-------------------------------------------
1954 void Node_List::dump() const {
1955 #ifndef PRODUCT
1956   for( uint i = 0; i < _cnt; i++ )
1957     if( _nodes[i] ) {
1958       tty->print("%5d--> ",i);
1959       _nodes[i]->dump();
1960     }
1961 #endif
1962 }
1963 
1964 //=============================================================================
1965 //------------------------------remove-----------------------------------------
1966 void Unique_Node_List::remove( Node *n ) {
1967   if( _in_worklist[n->_idx] ) {
1968     for( uint i = 0; i < size(); i++ )
1969       if( _nodes[i] == n ) {
1970         map(i,Node_List::pop());
1971         _in_worklist >>= n->_idx;
1972         return;
1973       }
1974     ShouldNotReachHere();
1975   }
1976 }
1977 
1978 //-----------------------remove_useless_nodes----------------------------------
1979 // Remove useless nodes from worklist
1980 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
1981 
1982   for( uint i = 0; i < size(); ++i ) {
1983     Node *n = at(i);
1984     assert( n != NULL, "Did not expect null entries in worklist");
1985     if( ! useful.test(n->_idx) ) {
1986       _in_worklist >>= n->_idx;
1987       map(i,Node_List::pop());
1988       // Node *replacement = Node_List::pop();
1989       // if( i != size() ) { // Check if removing last entry
1990       //   _nodes[i] = replacement;
1991       // }
1992       --i;  // Visit popped node
1993       // If it was last entry, loop terminates since size() was also reduced
1994     }
1995   }
1996 }
1997 
1998 //=============================================================================
1999 void Node_Stack::grow() {
2000   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2001   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2002   size_t max = old_max << 1;             // max * 2
2003   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2004   _inode_max = _inodes + max;
2005   _inode_top = _inodes + old_top;        // restore _top
2006 }
2007 
2008 //=============================================================================
2009 uint TypeNode::size_of() const { return sizeof(*this); }
2010 #ifndef PRODUCT
2011 void TypeNode::dump_spec(outputStream *st) const {
2012   if( !Verbose && !WizardMode ) {
2013     // standard dump does this in Verbose and WizardMode
2014     st->print(" #"); _type->dump_on(st);
2015   }
2016 }
2017 #endif
2018 uint TypeNode::hash() const {
2019   return Node::hash() + _type->hash();
2020 }
2021 uint TypeNode::cmp( const Node &n ) const
2022 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2023 const Type *TypeNode::bottom_type() const { return _type; }
2024 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2025 
2026 //------------------------------ideal_reg--------------------------------------
2027 uint TypeNode::ideal_reg() const {
2028   return Matcher::base2reg[_type->base()];
2029 }