1 /*
   2  * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 
  30 class AbstractLockNode;
  31 class AddNode;
  32 class AddPNode;
  33 class AliasInfo;
  34 class AllocateArrayNode;
  35 class AllocateNode;
  36 class Block;
  37 class Block_Array;
  38 class BoolNode;
  39 class BoxLockNode;
  40 class CMoveNode;
  41 class CallDynamicJavaNode;
  42 class CallJavaNode;
  43 class CallLeafNode;
  44 class CallNode;
  45 class CallRuntimeNode;
  46 class CallStaticJavaNode;
  47 class CatchNode;
  48 class CatchProjNode;
  49 class CheckCastPPNode;
  50 class ClearArrayNode;
  51 class CmpNode;
  52 class CodeBuffer;
  53 class ConstraintCastNode;
  54 class ConNode;
  55 class CountedLoopNode;
  56 class CountedLoopEndNode;
  57 class DecodeNNode;
  58 class EncodePNode;
  59 class FastLockNode;
  60 class FastUnlockNode;
  61 class IfNode;
  62 class InitializeNode;
  63 class JVMState;
  64 class JumpNode;
  65 class JumpProjNode;
  66 class LoadNode;
  67 class LoadStoreNode;
  68 class LockNode;
  69 class LoopNode;
  70 class MachCallDynamicJavaNode;
  71 class MachCallJavaNode;
  72 class MachCallLeafNode;
  73 class MachCallNode;
  74 class MachCallRuntimeNode;
  75 class MachCallStaticJavaNode;
  76 class MachIfNode;
  77 class MachNode;
  78 class MachNullCheckNode;
  79 class MachReturnNode;
  80 class MachSafePointNode;
  81 class MachSpillCopyNode;
  82 class MachTempNode;
  83 class Matcher;
  84 class MemBarNode;
  85 class MemNode;
  86 class MergeMemNode;
  87 class MulNode;
  88 class MultiNode;
  89 class MultiBranchNode;
  90 class NeverBranchNode;
  91 class Node;
  92 class Node_Array;
  93 class Node_List;
  94 class Node_Stack;
  95 class NullCheckNode;
  96 class OopMap;
  97 class ParmNode;
  98 class PCTableNode;
  99 class PhaseCCP;
 100 class PhaseGVN;
 101 class PhaseIterGVN;
 102 class PhaseRegAlloc;
 103 class PhaseTransform;
 104 class PhaseValues;
 105 class PhiNode;
 106 class Pipeline;
 107 class ProjNode;
 108 class RegMask;
 109 class RegionNode;
 110 class RootNode;
 111 class SafePointNode;
 112 class SafePointScalarObjectNode;
 113 class StartNode;
 114 class State;
 115 class StoreNode;
 116 class SubNode;
 117 class Type;
 118 class TypeNode;
 119 class UnlockNode;
 120 class VectorSet;
 121 class IfTrueNode;
 122 class IfFalseNode;
 123 typedef void (*NFunc)(Node&,void*);
 124 extern "C" {
 125   typedef int (*C_sort_func_t)(const void *, const void *);
 126 }
 127 
 128 // The type of all node counts and indexes.
 129 // It must hold at least 16 bits, but must also be fast to load and store.
 130 // This type, if less than 32 bits, could limit the number of possible nodes.
 131 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 132 typedef unsigned int node_idx_t;
 133 
 134 
 135 #ifndef OPTO_DU_ITERATOR_ASSERT
 136 #ifdef ASSERT
 137 #define OPTO_DU_ITERATOR_ASSERT 1
 138 #else
 139 #define OPTO_DU_ITERATOR_ASSERT 0
 140 #endif
 141 #endif //OPTO_DU_ITERATOR_ASSERT
 142 
 143 #if OPTO_DU_ITERATOR_ASSERT
 144 class DUIterator;
 145 class DUIterator_Fast;
 146 class DUIterator_Last;
 147 #else
 148 typedef uint   DUIterator;
 149 typedef Node** DUIterator_Fast;
 150 typedef Node** DUIterator_Last;
 151 #endif
 152 
 153 // Node Sentinel
 154 #define NodeSentinel (Node*)-1
 155 
 156 // Unknown count frequency
 157 #define COUNT_UNKNOWN (-1.0f)
 158 
 159 //------------------------------Node-------------------------------------------
 160 // Nodes define actions in the program.  They create values, which have types.
 161 // They are both vertices in a directed graph and program primitives.  Nodes
 162 // are labeled; the label is the "opcode", the primitive function in the lambda
 163 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 164 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 165 // the Node's function.  These inputs also define a Type equation for the Node.
 166 // Solving these Type equations amounts to doing dataflow analysis.
 167 // Control and data are uniformly represented in the graph.  Finally, Nodes
 168 // have a unique dense integer index which is used to index into side arrays
 169 // whenever I have phase-specific information.
 170 
 171 class Node {
 172   // Lots of restrictions on cloning Nodes
 173   Node(const Node&);            // not defined; linker error to use these
 174   Node &operator=(const Node &rhs);
 175 
 176 public:
 177   friend class Compile;
 178   #if OPTO_DU_ITERATOR_ASSERT
 179   friend class DUIterator_Common;
 180   friend class DUIterator;
 181   friend class DUIterator_Fast;
 182   friend class DUIterator_Last;
 183   #endif
 184 
 185   // Because Nodes come and go, I define an Arena of Node structures to pull
 186   // from.  This should allow fast access to node creation & deletion.  This
 187   // field is a local cache of a value defined in some "program fragment" for
 188   // which these Nodes are just a part of.
 189 
 190   // New Operator that takes a Compile pointer, this will eventually
 191   // be the "new" New operator.
 192   inline void* operator new( size_t x, Compile* C) {
 193     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 194 #ifdef ASSERT
 195     n->_in = (Node**)n; // magic cookie for assertion check
 196 #endif
 197     n->_out = (Node**)C;
 198     return (void*)n;
 199   }
 200 
 201   // New Operator that takes a Compile pointer, this will eventually
 202   // be the "new" New operator.
 203   inline void* operator new( size_t x, Compile* C, int y) {
 204     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
 205     n->_in = (Node**)(((char*)n) + x);
 206 #ifdef ASSERT
 207     n->_in[y-1] = n; // magic cookie for assertion check
 208 #endif
 209     n->_out = (Node**)C;
 210     return (void*)n;
 211   }
 212 
 213   // Delete is a NOP
 214   void operator delete( void *ptr ) {}
 215   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 216   void destruct();
 217 
 218   // Create a new Node.  Required is the number is of inputs required for
 219   // semantic correctness.
 220   Node( uint required );
 221 
 222   // Create a new Node with given input edges.
 223   // This version requires use of the "edge-count" new.
 224   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 225   Node( Node *n0 );
 226   Node( Node *n0, Node *n1 );
 227   Node( Node *n0, Node *n1, Node *n2 );
 228   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 229   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 230   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 231   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 232             Node *n4, Node *n5, Node *n6 );
 233 
 234   // Clone an inherited Node given only the base Node type.
 235   Node* clone() const;
 236 
 237   // Clone a Node, immediately supplying one or two new edges.
 238   // The first and second arguments, if non-null, replace in(1) and in(2),
 239   // respectively.
 240   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 241     Node* nn = clone();
 242     if (in1 != NULL)  nn->set_req(1, in1);
 243     if (in2 != NULL)  nn->set_req(2, in2);
 244     return nn;
 245   }
 246 
 247 private:
 248   // Shared setup for the above constructors.
 249   // Handles all interactions with Compile::current.
 250   // Puts initial values in all Node fields except _idx.
 251   // Returns the initial value for _idx, which cannot
 252   // be initialized by assignment.
 253   inline int Init(int req, Compile* C);
 254 
 255 //----------------- input edge handling
 256 protected:
 257   friend class PhaseCFG;        // Access to address of _in array elements
 258   Node **_in;                   // Array of use-def references to Nodes
 259   Node **_out;                  // Array of def-use references to Nodes
 260 
 261   // Input edges are split into two categories.  Required edges are required
 262   // for semantic correctness; order is important and NULLs are allowed.
 263   // Precedence edges are used to help determine execution order and are
 264   // added, e.g., for scheduling purposes.  They are unordered and not
 265   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 266   // are required, from _cnt to _max-1 are precedence edges.
 267   node_idx_t _cnt;              // Total number of required Node inputs.
 268 
 269   node_idx_t _max;              // Actual length of input array.
 270 
 271   // Output edges are an unordered list of def-use edges which exactly
 272   // correspond to required input edges which point from other nodes
 273   // to this one.  Thus the count of the output edges is the number of
 274   // users of this node.
 275   node_idx_t _outcnt;           // Total number of Node outputs.
 276 
 277   node_idx_t _outmax;           // Actual length of output array.
 278 
 279   // Grow the actual input array to the next larger power-of-2 bigger than len.
 280   void grow( uint len );
 281   // Grow the output array to the next larger power-of-2 bigger than len.
 282   void out_grow( uint len );
 283 
 284  public:
 285   // Each Node is assigned a unique small/dense number.  This number is used
 286   // to index into auxiliary arrays of data and bitvectors.
 287   // It is declared const to defend against inadvertant assignment,
 288   // since it is used by clients as a naked field.
 289   const node_idx_t _idx;
 290 
 291   // Get the (read-only) number of input edges
 292   uint req() const { return _cnt; }
 293   uint len() const { return _max; }
 294   // Get the (read-only) number of output edges
 295   uint outcnt() const { return _outcnt; }
 296 
 297 #if OPTO_DU_ITERATOR_ASSERT
 298   // Iterate over the out-edges of this node.  Deletions are illegal.
 299   inline DUIterator outs() const;
 300   // Use this when the out array might have changed to suppress asserts.
 301   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 302   // Does the node have an out at this position?  (Used for iteration.)
 303   inline bool has_out(DUIterator& i) const;
 304   inline Node*    out(DUIterator& i) const;
 305   // Iterate over the out-edges of this node.  All changes are illegal.
 306   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 307   inline Node*    fast_out(DUIterator_Fast& i) const;
 308   // Iterate over the out-edges of this node, deleting one at a time.
 309   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 310   inline Node*    last_out(DUIterator_Last& i) const;
 311   // The inline bodies of all these methods are after the iterator definitions.
 312 #else
 313   // Iterate over the out-edges of this node.  Deletions are illegal.
 314   // This iteration uses integral indexes, to decouple from array reallocations.
 315   DUIterator outs() const  { return 0; }
 316   // Use this when the out array might have changed to suppress asserts.
 317   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 318 
 319   // Reference to the i'th output Node.  Error if out of bounds.
 320   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 321   // Does the node have an out at this position?  (Used for iteration.)
 322   bool has_out(DUIterator i) const { return i < _outcnt; }
 323 
 324   // Iterate over the out-edges of this node.  All changes are illegal.
 325   // This iteration uses a pointer internal to the out array.
 326   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 327     Node** out = _out;
 328     // Assign a limit pointer to the reference argument:
 329     max = out + (ptrdiff_t)_outcnt;
 330     // Return the base pointer:
 331     return out;
 332   }
 333   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 334   // Iterate over the out-edges of this node, deleting one at a time.
 335   // This iteration uses a pointer internal to the out array.
 336   DUIterator_Last last_outs(DUIterator_Last& min) const {
 337     Node** out = _out;
 338     // Assign a limit pointer to the reference argument:
 339     min = out;
 340     // Return the pointer to the start of the iteration:
 341     return out + (ptrdiff_t)_outcnt - 1;
 342   }
 343   Node*    last_out(DUIterator_Last i) const  { return *i; }
 344 #endif
 345 
 346   // Reference to the i'th input Node.  Error if out of bounds.
 347   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
 348   // Reference to the i'th output Node.  Error if out of bounds.
 349   // Use this accessor sparingly.  We are going trying to use iterators instead.
 350   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 351   // Return the unique out edge.
 352   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 353   // Delete out edge at position 'i' by moving last out edge to position 'i'
 354   void  raw_del_out(uint i) {
 355     assert(i < _outcnt,"oob");
 356     assert(_outcnt > 0,"oob");
 357     #if OPTO_DU_ITERATOR_ASSERT
 358     // Record that a change happened here.
 359     debug_only(_last_del = _out[i]; ++_del_tick);
 360     #endif
 361     _out[i] = _out[--_outcnt];
 362     // Smash the old edge so it can't be used accidentally.
 363     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 364   }
 365 
 366 #ifdef ASSERT
 367   bool is_dead() const;
 368 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 369 #endif
 370 
 371   // Set a required input edge, also updates corresponding output edge
 372   void add_req( Node *n ); // Append a NEW required input
 373   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 374   void del_req( uint idx ); // Delete required edge & compact
 375   void ins_req( uint i, Node *n ); // Insert a NEW required input
 376   void set_req( uint i, Node *n ) {
 377     assert( is_not_dead(n), "can not use dead node");
 378     assert( i < _cnt, "oob");
 379     assert( !VerifyHashTableKeys || _hash_lock == 0,
 380             "remove node from hash table before modifying it");
 381     Node** p = &_in[i];    // cache this._in, across the del_out call
 382     if (*p != NULL)  (*p)->del_out((Node *)this);
 383     (*p) = n;
 384     if (n != NULL)      n->add_out((Node *)this);
 385   }
 386   // Light version of set_req() to init inputs after node creation.
 387   void init_req( uint i, Node *n ) {
 388     assert( i == 0 && this == n ||
 389             is_not_dead(n), "can not use dead node");
 390     assert( i < _cnt, "oob");
 391     assert( !VerifyHashTableKeys || _hash_lock == 0,
 392             "remove node from hash table before modifying it");
 393     assert( _in[i] == NULL, "sanity");
 394     _in[i] = n;
 395     if (n != NULL)      n->add_out((Node *)this);
 396   }
 397   // Find first occurrence of n among my edges:
 398   int find_edge(Node* n);
 399   int replace_edge(Node* old, Node* neww);
 400   // NULL out all inputs to eliminate incoming Def-Use edges.
 401   // Return the number of edges between 'n' and 'this'
 402   int  disconnect_inputs(Node *n);
 403 
 404   // Quickly, return true if and only if I am Compile::current()->top().
 405   bool is_top() const {
 406     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 407     return (_out == NULL);
 408   }
 409   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 410   void setup_is_top();
 411 
 412   // Strip away casting.  (It is depth-limited.)
 413   Node* uncast() const;
 414 
 415 private:
 416   static Node* uncast_helper(const Node* n);
 417 
 418   // Add an output edge to the end of the list
 419   void add_out( Node *n ) {
 420     if (is_top())  return;
 421     if( _outcnt == _outmax ) out_grow(_outcnt);
 422     _out[_outcnt++] = n;
 423   }
 424   // Delete an output edge
 425   void del_out( Node *n ) {
 426     if (is_top())  return;
 427     Node** outp = &_out[_outcnt];
 428     // Find and remove n
 429     do {
 430       assert(outp > _out, "Missing Def-Use edge");
 431     } while (*--outp != n);
 432     *outp = _out[--_outcnt];
 433     // Smash the old edge so it can't be used accidentally.
 434     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 435     // Record that a change happened here.
 436     #if OPTO_DU_ITERATOR_ASSERT
 437     debug_only(_last_del = n; ++_del_tick);
 438     #endif
 439   }
 440 
 441 public:
 442   // Globally replace this node by a given new node, updating all uses.
 443   void replace_by(Node* new_node);
 444   // Globally replace this node by a given new node, updating all uses
 445   // and cutting input edges of old node.
 446   void subsume_by(Node* new_node) {
 447     replace_by(new_node);
 448     disconnect_inputs(NULL);
 449   }
 450   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 451   // Find the one non-null required input.  RegionNode only
 452   Node *nonnull_req() const;
 453   // Add or remove precedence edges
 454   void add_prec( Node *n );
 455   void rm_prec( uint i );
 456   void set_prec( uint i, Node *n ) {
 457     assert( is_not_dead(n), "can not use dead node");
 458     assert( i >= _cnt, "not a precedence edge");
 459     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 460     _in[i] = n;
 461     if (n != NULL) n->add_out((Node *)this);
 462   }
 463   // Set this node's index, used by cisc_version to replace current node
 464   void set_idx(uint new_idx) {
 465     const node_idx_t* ref = &_idx;
 466     *(node_idx_t*)ref = new_idx;
 467   }
 468   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 469   void swap_edges(uint i1, uint i2) {
 470     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 471     // Def-Use info is unchanged
 472     Node* n1 = in(i1);
 473     Node* n2 = in(i2);
 474     _in[i1] = n2;
 475     _in[i2] = n1;
 476     // If this node is in the hash table, make sure it doesn't need a rehash.
 477     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 478   }
 479 
 480   // Iterators over input Nodes for a Node X are written as:
 481   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 482   // NOTE: Required edges can contain embedded NULL pointers.
 483 
 484 //----------------- Other Node Properties
 485 
 486   // Generate class id for some ideal nodes to avoid virtual query
 487   // methods is_<Node>().
 488   // Class id is the set of bits corresponded to the node class and all its
 489   // super classes so that queries for super classes are also valid.
 490   // Subclasses of the same super class have different assigned bit
 491   // (the third parameter in the macro DEFINE_CLASS_ID).
 492   // Classes with deeper hierarchy are declared first.
 493   // Classes with the same hierarchy depth are sorted by usage frequency.
 494   //
 495   // The query method masks the bits to cut off bits of subclasses
 496   // and then compare the result with the class id
 497   // (see the macro DEFINE_CLASS_QUERY below).
 498   //
 499   //  Class_MachCall=30, ClassMask_MachCall=31
 500   // 12               8               4               0
 501   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 502   //                                  |   |   |   |
 503   //                                  |   |   |   Bit_Mach=2
 504   //                                  |   |   Bit_MachReturn=4
 505   //                                  |   Bit_MachSafePoint=8
 506   //                                  Bit_MachCall=16
 507   //
 508   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 509   // 12               8               4               0
 510   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 511   //                              |   |   |
 512   //                              |   |   Bit_Region=8
 513   //                              |   Bit_Loop=16
 514   //                              Bit_CountedLoop=32
 515 
 516   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 517   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 518   Class_##cl = Class_##supcl + Bit_##cl , \
 519   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 520 
 521   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 522   // so that it's values fits into 16 bits.
 523   enum NodeClasses {
 524     Bit_Node   = 0x0000,
 525     Class_Node = 0x0000,
 526     ClassMask_Node = 0xFFFF,
 527 
 528     DEFINE_CLASS_ID(Multi, Node, 0)
 529       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 530         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 531           DEFINE_CLASS_ID(CallJava,         Call, 0)
 532             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 533             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 534           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 535             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 536           DEFINE_CLASS_ID(Allocate,         Call, 2)
 537             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 538           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 539             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 540             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 541       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 542         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 543           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 544           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 545         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 546           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 547         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 548       DEFINE_CLASS_ID(Start,       Multi, 2)
 549       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 550         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
 551 
 552     DEFINE_CLASS_ID(Mach,  Node, 1)
 553       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 554         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 555           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 556             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 557               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 558               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 559             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 560               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 561       DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
 562       DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
 563       DEFINE_CLASS_ID(MachIf,        Mach, 3)
 564       DEFINE_CLASS_ID(MachTemp,      Mach, 4)
 565 
 566     DEFINE_CLASS_ID(Proj,  Node, 2)
 567       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 568       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 569       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 570       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 571       DEFINE_CLASS_ID(Parm,      Proj, 4)
 572 
 573     DEFINE_CLASS_ID(Region, Node, 3)
 574       DEFINE_CLASS_ID(Loop, Region, 0)
 575         DEFINE_CLASS_ID(Root,        Loop, 0)
 576         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 577 
 578     DEFINE_CLASS_ID(Sub,   Node, 4)
 579       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 580         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 581         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 582 
 583     DEFINE_CLASS_ID(Type,  Node, 5)
 584       DEFINE_CLASS_ID(Phi,   Type, 0)
 585       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 586       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 587       DEFINE_CLASS_ID(CMove, Type, 3)
 588       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 589       DEFINE_CLASS_ID(DecodeN, Type, 5)
 590       DEFINE_CLASS_ID(EncodeP, Type, 6)
 591 
 592     DEFINE_CLASS_ID(Mem,   Node, 6)
 593       DEFINE_CLASS_ID(Load,  Mem, 0)
 594       DEFINE_CLASS_ID(Store, Mem, 1)
 595       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 596 
 597     DEFINE_CLASS_ID(MergeMem, Node, 7)
 598     DEFINE_CLASS_ID(Bool,     Node, 8)
 599     DEFINE_CLASS_ID(AddP,     Node, 9)
 600     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 601     DEFINE_CLASS_ID(Add,      Node, 11)
 602     DEFINE_CLASS_ID(Mul,      Node, 12)
 603     DEFINE_CLASS_ID(ClearArray, Node, 13)
 604 
 605     _max_classes  = ClassMask_ClearArray
 606   };
 607   #undef DEFINE_CLASS_ID
 608 
 609   // Flags are sorted by usage frequency.
 610   enum NodeFlags {
 611     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
 612     Flag_is_Call             = Flag_is_Copy << 1,
 613     Flag_rematerialize       = Flag_is_Call << 1,
 614     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 615     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
 616     Flag_is_Con              = Flag_is_macro << 1,
 617     Flag_is_cisc_alternate   = Flag_is_Con << 1,
 618     Flag_is_Branch           = Flag_is_cisc_alternate << 1,
 619     Flag_is_block_start      = Flag_is_Branch << 1,
 620     Flag_is_Goto             = Flag_is_block_start << 1,
 621     Flag_is_dead_loop_safe   = Flag_is_Goto << 1,
 622     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
 623     Flag_is_safepoint_node   = Flag_may_be_short_branch << 1,
 624     Flag_is_pc_relative      = Flag_is_safepoint_node << 1,
 625     Flag_is_Vector           = Flag_is_pc_relative << 1,
 626     _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
 627   };
 628 
 629 private:
 630   jushort _class_id;
 631   jushort _flags;
 632 
 633 protected:
 634   // These methods should be called from constructors only.
 635   void init_class_id(jushort c) {
 636     assert(c <= _max_classes, "invalid node class");
 637     _class_id = c; // cast out const
 638   }
 639   void init_flags(jushort fl) {
 640     assert(fl <= _max_flags, "invalid node flag");
 641     _flags |= fl;
 642   }
 643   void clear_flag(jushort fl) {
 644     assert(fl <= _max_flags, "invalid node flag");
 645     _flags &= ~fl;
 646   }
 647 
 648 public:
 649   const jushort class_id() const { return _class_id; }
 650 
 651   const jushort flags() const { return _flags; }
 652 
 653   // Return a dense integer opcode number
 654   virtual int Opcode() const;
 655 
 656   // Virtual inherited Node size
 657   virtual uint size_of() const;
 658 
 659   // Other interesting Node properties
 660 
 661   // Special case: is_Call() returns true for both CallNode and MachCallNode.
 662   bool is_Call() const {
 663     return (_flags & Flag_is_Call) != 0;
 664   }
 665 
 666   CallNode* isa_Call() const {
 667     return is_Call() ? as_Call() : NULL;
 668   }
 669 
 670   CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
 671     assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
 672     return (CallNode*)this;
 673   }
 674 
 675   #define DEFINE_CLASS_QUERY(type)                           \
 676   bool is_##type() const {                                   \
 677     return ((_class_id & ClassMask_##type) == Class_##type); \
 678   }                                                          \
 679   type##Node *as_##type() const {                            \
 680     assert(is_##type(), "invalid node class");               \
 681     return (type##Node*)this;                                \
 682   }                                                          \
 683   type##Node* isa_##type() const {                           \
 684     return (is_##type()) ? as_##type() : NULL;               \
 685   }
 686 
 687   DEFINE_CLASS_QUERY(AbstractLock)
 688   DEFINE_CLASS_QUERY(Add)
 689   DEFINE_CLASS_QUERY(AddP)
 690   DEFINE_CLASS_QUERY(Allocate)
 691   DEFINE_CLASS_QUERY(AllocateArray)
 692   DEFINE_CLASS_QUERY(Bool)
 693   DEFINE_CLASS_QUERY(BoxLock)
 694   DEFINE_CLASS_QUERY(CallDynamicJava)
 695   DEFINE_CLASS_QUERY(CallJava)
 696   DEFINE_CLASS_QUERY(CallLeaf)
 697   DEFINE_CLASS_QUERY(CallRuntime)
 698   DEFINE_CLASS_QUERY(CallStaticJava)
 699   DEFINE_CLASS_QUERY(Catch)
 700   DEFINE_CLASS_QUERY(CatchProj)
 701   DEFINE_CLASS_QUERY(CheckCastPP)
 702   DEFINE_CLASS_QUERY(ConstraintCast)
 703   DEFINE_CLASS_QUERY(ClearArray)
 704   DEFINE_CLASS_QUERY(CMove)
 705   DEFINE_CLASS_QUERY(Cmp)
 706   DEFINE_CLASS_QUERY(CountedLoop)
 707   DEFINE_CLASS_QUERY(CountedLoopEnd)
 708   DEFINE_CLASS_QUERY(DecodeN)
 709   DEFINE_CLASS_QUERY(EncodeP)
 710   DEFINE_CLASS_QUERY(FastLock)
 711   DEFINE_CLASS_QUERY(FastUnlock)
 712   DEFINE_CLASS_QUERY(If)
 713   DEFINE_CLASS_QUERY(IfFalse)
 714   DEFINE_CLASS_QUERY(IfTrue)
 715   DEFINE_CLASS_QUERY(Initialize)
 716   DEFINE_CLASS_QUERY(Jump)
 717   DEFINE_CLASS_QUERY(JumpProj)
 718   DEFINE_CLASS_QUERY(Load)
 719   DEFINE_CLASS_QUERY(LoadStore)
 720   DEFINE_CLASS_QUERY(Lock)
 721   DEFINE_CLASS_QUERY(Loop)
 722   DEFINE_CLASS_QUERY(Mach)
 723   DEFINE_CLASS_QUERY(MachCall)
 724   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 725   DEFINE_CLASS_QUERY(MachCallJava)
 726   DEFINE_CLASS_QUERY(MachCallLeaf)
 727   DEFINE_CLASS_QUERY(MachCallRuntime)
 728   DEFINE_CLASS_QUERY(MachCallStaticJava)
 729   DEFINE_CLASS_QUERY(MachIf)
 730   DEFINE_CLASS_QUERY(MachNullCheck)
 731   DEFINE_CLASS_QUERY(MachReturn)
 732   DEFINE_CLASS_QUERY(MachSafePoint)
 733   DEFINE_CLASS_QUERY(MachSpillCopy)
 734   DEFINE_CLASS_QUERY(MachTemp)
 735   DEFINE_CLASS_QUERY(Mem)
 736   DEFINE_CLASS_QUERY(MemBar)
 737   DEFINE_CLASS_QUERY(MergeMem)
 738   DEFINE_CLASS_QUERY(Mul)
 739   DEFINE_CLASS_QUERY(Multi)
 740   DEFINE_CLASS_QUERY(MultiBranch)
 741   DEFINE_CLASS_QUERY(Parm)
 742   DEFINE_CLASS_QUERY(PCTable)
 743   DEFINE_CLASS_QUERY(Phi)
 744   DEFINE_CLASS_QUERY(Proj)
 745   DEFINE_CLASS_QUERY(Region)
 746   DEFINE_CLASS_QUERY(Root)
 747   DEFINE_CLASS_QUERY(SafePoint)
 748   DEFINE_CLASS_QUERY(SafePointScalarObject)
 749   DEFINE_CLASS_QUERY(Start)
 750   DEFINE_CLASS_QUERY(Store)
 751   DEFINE_CLASS_QUERY(Sub)
 752   DEFINE_CLASS_QUERY(Type)
 753   DEFINE_CLASS_QUERY(Unlock)
 754 
 755   #undef DEFINE_CLASS_QUERY
 756 
 757   // duplicate of is_MachSpillCopy()
 758   bool is_SpillCopy () const {
 759     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 760   }
 761 
 762   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 763   bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
 764   // The data node which is safe to leave in dead loop during IGVN optimization.
 765   bool is_dead_loop_safe() const {
 766     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 767            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 768             (!is_Proj() || !in(0)->is_Allocate()));
 769   }
 770 
 771   // is_Copy() returns copied edge index (0 or 1)
 772   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 773 
 774   virtual bool is_CFG() const { return false; }
 775 
 776   // If this node is control-dependent on a test, can it be
 777   // rerouted to a dominating equivalent test?  This is usually
 778   // true of non-CFG nodes, but can be false for operations which
 779   // depend for their correct sequencing on more than one test.
 780   // (In that case, hoisting to a dominating test may silently
 781   // skip some other important test.)
 782   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 783 
 784   // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
 785   bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
 786 
 787   // When building basic blocks, I need to have a notion of block beginning
 788   // Nodes, next block selector Nodes (block enders), and next block
 789   // projections.  These calls need to work on their machine equivalents.  The
 790   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 791   bool is_block_start() const {
 792     if ( is_Region() )
 793       return this == (const Node*)in(0);
 794     else
 795       return (_flags & Flag_is_block_start) != 0;
 796   }
 797 
 798   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 799   // Goto and Return.  This call also returns the block ending Node.
 800   virtual const Node *is_block_proj() const;
 801 
 802   // The node is a "macro" node which needs to be expanded before matching
 803   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 804 
 805   // Value is a vector of primitive values
 806   bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
 807 
 808 //----------------- Optimization
 809 
 810   // Get the worst-case Type output for this Node.
 811   virtual const class Type *bottom_type() const;
 812 
 813   // If we find a better type for a node, try to record it permanently.
 814   // Return true if this node actually changed.
 815   // Be sure to do the hash_delete game in the "rehash" variant.
 816   void raise_bottom_type(const Type* new_type);
 817 
 818   // Get the address type with which this node uses and/or defs memory,
 819   // or NULL if none.  The address type is conservatively wide.
 820   // Returns non-null for calls, membars, loads, stores, etc.
 821   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 822   virtual const class TypePtr *adr_type() const { return NULL; }
 823 
 824   // Return an existing node which computes the same function as this node.
 825   // The optimistic combined algorithm requires this to return a Node which
 826   // is a small number of steps away (e.g., one of my inputs).
 827   virtual Node *Identity( PhaseTransform *phase );
 828 
 829   // Return the set of values this Node can take on at runtime.
 830   virtual const Type *Value( PhaseTransform *phase ) const;
 831 
 832   // Return a node which is more "ideal" than the current node.
 833   // The invariants on this call are subtle.  If in doubt, read the
 834   // treatise in node.cpp above the default implemention AND TEST WITH
 835   // +VerifyIterativeGVN!
 836   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 837 
 838   // Some nodes have specific Ideal subgraph transformations only if they are
 839   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 840   // for the transformations to happen.
 841   bool has_special_unique_user() const;
 842 
 843   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 844   Node* find_exact_control(Node* ctrl);
 845 
 846   // Check if 'this' node dominates or equal to 'sub'.
 847   bool dominates(Node* sub, Node_List &nlist);
 848 
 849 protected:
 850   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 851 public:
 852 
 853   // Idealize graph, using DU info.  Done after constant propagation
 854   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 855 
 856   // See if there is valid pipeline info
 857   static  const Pipeline *pipeline_class();
 858   virtual const Pipeline *pipeline() const;
 859 
 860   // Compute the latency from the def to this instruction of the ith input node
 861   uint latency(uint i);
 862 
 863   // Hash & compare functions, for pessimistic value numbering
 864 
 865   // If the hash function returns the special sentinel value NO_HASH,
 866   // the node is guaranteed never to compare equal to any other node.
 867   // If we accidentally generate a hash with value NO_HASH the node
 868   // won't go into the table and we'll lose a little optimization.
 869   enum { NO_HASH = 0 };
 870   virtual uint hash() const;
 871   virtual uint cmp( const Node &n ) const;
 872 
 873   // Operation appears to be iteratively computed (such as an induction variable)
 874   // It is possible for this operation to return false for a loop-varying
 875   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 876   bool is_iteratively_computed();
 877 
 878   // Determine if a node is Counted loop induction variable.
 879   // The method is defined in loopnode.cpp.
 880   const Node* is_loop_iv() const;
 881 
 882   // Return a node with opcode "opc" and same inputs as "this" if one can
 883   // be found; Otherwise return NULL;
 884   Node* find_similar(int opc);
 885 
 886   // Return the unique control out if only one. Null if none or more than one.
 887   Node* unique_ctrl_out();
 888 
 889 //----------------- Code Generation
 890 
 891   // Ideal register class for Matching.  Zero means unmatched instruction
 892   // (these are cloned instead of converted to machine nodes).
 893   virtual uint ideal_reg() const;
 894 
 895   static const uint NotAMachineReg;   // must be > max. machine register
 896 
 897   // Do we Match on this edge index or not?  Generally false for Control
 898   // and true for everything else.  Weird for calls & returns.
 899   virtual uint match_edge(uint idx) const;
 900 
 901   // Register class output is returned in
 902   virtual const RegMask &out_RegMask() const;
 903   // Register class input is expected in
 904   virtual const RegMask &in_RegMask(uint) const;
 905   // Should we clone rather than spill this instruction?
 906   bool rematerialize() const;
 907 
 908   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 909   virtual JVMState* jvms() const;
 910 
 911   // Print as assembly
 912   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 913   // Emit bytes starting at parameter 'ptr'
 914   // Bump 'ptr' by the number of output bytes
 915   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 916   // Size of instruction in bytes
 917   virtual uint size(PhaseRegAlloc *ra_) const;
 918 
 919   // Convenience function to extract an integer constant from a node.
 920   // If it is not an integer constant (either Con, CastII, or Mach),
 921   // return value_if_unknown.
 922   jint find_int_con(jint value_if_unknown) const {
 923     const TypeInt* t = find_int_type();
 924     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 925   }
 926   // Return the constant, knowing it is an integer constant already
 927   jint get_int() const {
 928     const TypeInt* t = find_int_type();
 929     guarantee(t != NULL, "must be con");
 930     return t->get_con();
 931   }
 932   // Here's where the work is done.  Can produce non-constant int types too.
 933   const TypeInt* find_int_type() const;
 934 
 935   // Same thing for long (and intptr_t, via type.hpp):
 936   jlong get_long() const {
 937     const TypeLong* t = find_long_type();
 938     guarantee(t != NULL, "must be con");
 939     return t->get_con();
 940   }
 941   jlong find_long_con(jint value_if_unknown) const {
 942     const TypeLong* t = find_long_type();
 943     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 944   }
 945   const TypeLong* find_long_type() const;
 946 
 947   // These guys are called by code generated by ADLC:
 948   intptr_t get_ptr() const;
 949   intptr_t get_narrowcon() const;
 950   jdouble getd() const;
 951   jfloat getf() const;
 952 
 953   // Nodes which are pinned into basic blocks
 954   virtual bool pinned() const { return false; }
 955 
 956   // Nodes which use memory without consuming it, hence need antidependences
 957   // More specifically, needs_anti_dependence_check returns true iff the node
 958   // (a) does a load, and (b) does not perform a store (except perhaps to a
 959   // stack slot or some other unaliased location).
 960   bool needs_anti_dependence_check() const;
 961 
 962   // Return which operand this instruction may cisc-spill. In other words,
 963   // return operand position that can convert from reg to memory access
 964   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 965   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 966 
 967 //----------------- Graph walking
 968 public:
 969   // Walk and apply member functions recursively.
 970   // Supplied (this) pointer is root.
 971   void walk(NFunc pre, NFunc post, void *env);
 972   static void nop(Node &, void*); // Dummy empty function
 973   static void packregion( Node &n, void* );
 974 private:
 975   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
 976 
 977 //----------------- Printing, etc
 978 public:
 979 #ifndef PRODUCT
 980   Node* find(int idx) const;         // Search the graph for the given idx.
 981   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
 982   void dump() const;                 // Print this node,
 983   void dump(int depth) const;        // Print this node, recursively to depth d
 984   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
 985   virtual void dump_req() const;     // Print required-edge info
 986   virtual void dump_prec() const;    // Print precedence-edge info
 987   virtual void dump_out() const;     // Print the output edge info
 988   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
 989   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
 990   void verify() const;               // Check Def-Use info for my subgraph
 991   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
 992 
 993   // This call defines a class-unique string used to identify class instances
 994   virtual const char *Name() const;
 995 
 996   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
 997   // RegMask Print Functions
 998   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
 999   void dump_out_regmask() { out_RegMask().dump(); }
1000   static int _in_dump_cnt;
1001   static bool in_dump() { return _in_dump_cnt > 0; }
1002   void fast_dump() const {
1003     tty->print("%4d: %-17s", _idx, Name());
1004     for (uint i = 0; i < len(); i++)
1005       if (in(i))
1006         tty->print(" %4d", in(i)->_idx);
1007       else
1008         tty->print(" NULL");
1009     tty->print("\n");
1010   }
1011 #endif
1012 #ifdef ASSERT
1013   void verify_construction();
1014   bool verify_jvms(const JVMState* jvms) const;
1015   int  _debug_idx;                     // Unique value assigned to every node.
1016   int   debug_idx() const              { return _debug_idx; }
1017   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1018 
1019   Node* _debug_orig;                   // Original version of this, if any.
1020   Node*  debug_orig() const            { return _debug_orig; }
1021   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1022 
1023   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1024   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1025   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1026 
1027   static void init_NodeProperty();
1028 
1029   #if OPTO_DU_ITERATOR_ASSERT
1030   const Node* _last_del;               // The last deleted node.
1031   uint        _del_tick;               // Bumped when a deletion happens..
1032   #endif
1033 #endif
1034 };
1035 
1036 //-----------------------------------------------------------------------------
1037 // Iterators over DU info, and associated Node functions.
1038 
1039 #if OPTO_DU_ITERATOR_ASSERT
1040 
1041 // Common code for assertion checking on DU iterators.
1042 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1043 #ifdef ASSERT
1044  protected:
1045   bool         _vdui;               // cached value of VerifyDUIterators
1046   const Node*  _node;               // the node containing the _out array
1047   uint         _outcnt;             // cached node->_outcnt
1048   uint         _del_tick;           // cached node->_del_tick
1049   Node*        _last;               // last value produced by the iterator
1050 
1051   void sample(const Node* node);    // used by c'tor to set up for verifies
1052   void verify(const Node* node, bool at_end_ok = false);
1053   void verify_resync();
1054   void reset(const DUIterator_Common& that);
1055 
1056 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1057   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1058 #else
1059   #define I_VDUI_ONLY(i,x) { }
1060 #endif //ASSERT
1061 };
1062 
1063 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1064 
1065 // Default DU iterator.  Allows appends onto the out array.
1066 // Allows deletion from the out array only at the current point.
1067 // Usage:
1068 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1069 //    Node* y = x->out(i);
1070 //    ...
1071 //  }
1072 // Compiles in product mode to a unsigned integer index, which indexes
1073 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1074 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1075 // before continuing the loop.  You must delete only the last-produced
1076 // edge.  You must delete only a single copy of the last-produced edge,
1077 // or else you must delete all copies at once (the first time the edge
1078 // is produced by the iterator).
1079 class DUIterator : public DUIterator_Common {
1080   friend class Node;
1081 
1082   // This is the index which provides the product-mode behavior.
1083   // Whatever the product-mode version of the system does to the
1084   // DUI index is done to this index.  All other fields in
1085   // this class are used only for assertion checking.
1086   uint         _idx;
1087 
1088   #ifdef ASSERT
1089   uint         _refresh_tick;    // Records the refresh activity.
1090 
1091   void sample(const Node* node); // Initialize _refresh_tick etc.
1092   void verify(const Node* node, bool at_end_ok = false);
1093   void verify_increment();       // Verify an increment operation.
1094   void verify_resync();          // Verify that we can back up over a deletion.
1095   void verify_finish();          // Verify that the loop terminated properly.
1096   void refresh();                // Resample verification info.
1097   void reset(const DUIterator& that);  // Resample after assignment.
1098   #endif
1099 
1100   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1101     { _idx = 0;                         debug_only(sample(node)); }
1102 
1103  public:
1104   // initialize to garbage; clear _vdui to disable asserts
1105   DUIterator()
1106     { /*initialize to garbage*/         debug_only(_vdui = false); }
1107 
1108   void operator++(int dummy_to_specify_postfix_op)
1109     { _idx++;                           VDUI_ONLY(verify_increment()); }
1110 
1111   void operator--()
1112     { VDUI_ONLY(verify_resync());       --_idx; }
1113 
1114   ~DUIterator()
1115     { VDUI_ONLY(verify_finish()); }
1116 
1117   void operator=(const DUIterator& that)
1118     { _idx = that._idx;                 debug_only(reset(that)); }
1119 };
1120 
1121 DUIterator Node::outs() const
1122   { return DUIterator(this, 0); }
1123 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1124   { I_VDUI_ONLY(i, i.refresh());        return i; }
1125 bool Node::has_out(DUIterator& i) const
1126   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1127 Node*    Node::out(DUIterator& i) const
1128   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1129 
1130 
1131 // Faster DU iterator.  Disallows insertions into the out array.
1132 // Allows deletion from the out array only at the current point.
1133 // Usage:
1134 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1135 //    Node* y = x->fast_out(i);
1136 //    ...
1137 //  }
1138 // Compiles in product mode to raw Node** pointer arithmetic, with
1139 // no reloading of pointers from the original node x.  If you delete,
1140 // you must perform "--i; --imax" just before continuing the loop.
1141 // If you delete multiple copies of the same edge, you must decrement
1142 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1143 class DUIterator_Fast : public DUIterator_Common {
1144   friend class Node;
1145   friend class DUIterator_Last;
1146 
1147   // This is the pointer which provides the product-mode behavior.
1148   // Whatever the product-mode version of the system does to the
1149   // DUI pointer is done to this pointer.  All other fields in
1150   // this class are used only for assertion checking.
1151   Node**       _outp;
1152 
1153   #ifdef ASSERT
1154   void verify(const Node* node, bool at_end_ok = false);
1155   void verify_limit();
1156   void verify_resync();
1157   void verify_relimit(uint n);
1158   void reset(const DUIterator_Fast& that);
1159   #endif
1160 
1161   // Note:  offset must be signed, since -1 is sometimes passed
1162   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1163     { _outp = node->_out + offset;      debug_only(sample(node)); }
1164 
1165  public:
1166   // initialize to garbage; clear _vdui to disable asserts
1167   DUIterator_Fast()
1168     { /*initialize to garbage*/         debug_only(_vdui = false); }
1169 
1170   void operator++(int dummy_to_specify_postfix_op)
1171     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1172 
1173   void operator--()
1174     { VDUI_ONLY(verify_resync());       --_outp; }
1175 
1176   void operator-=(uint n)   // applied to the limit only
1177     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1178 
1179   bool operator<(DUIterator_Fast& limit) {
1180     I_VDUI_ONLY(*this, this->verify(_node, true));
1181     I_VDUI_ONLY(limit, limit.verify_limit());
1182     return _outp < limit._outp;
1183   }
1184 
1185   void operator=(const DUIterator_Fast& that)
1186     { _outp = that._outp;               debug_only(reset(that)); }
1187 };
1188 
1189 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1190   // Assign a limit pointer to the reference argument:
1191   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1192   // Return the base pointer:
1193   return DUIterator_Fast(this, 0);
1194 }
1195 Node* Node::fast_out(DUIterator_Fast& i) const {
1196   I_VDUI_ONLY(i, i.verify(this));
1197   return debug_only(i._last=) *i._outp;
1198 }
1199 
1200 
1201 // Faster DU iterator.  Requires each successive edge to be removed.
1202 // Does not allow insertion of any edges.
1203 // Usage:
1204 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1205 //    Node* y = x->last_out(i);
1206 //    ...
1207 //  }
1208 // Compiles in product mode to raw Node** pointer arithmetic, with
1209 // no reloading of pointers from the original node x.
1210 class DUIterator_Last : private DUIterator_Fast {
1211   friend class Node;
1212 
1213   #ifdef ASSERT
1214   void verify(const Node* node, bool at_end_ok = false);
1215   void verify_limit();
1216   void verify_step(uint num_edges);
1217   #endif
1218 
1219   // Note:  offset must be signed, since -1 is sometimes passed
1220   DUIterator_Last(const Node* node, ptrdiff_t offset)
1221     : DUIterator_Fast(node, offset) { }
1222 
1223   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1224   void operator<(int)                              {} // do not use
1225 
1226  public:
1227   DUIterator_Last() { }
1228   // initialize to garbage
1229 
1230   void operator--()
1231     { _outp--;              VDUI_ONLY(verify_step(1));  }
1232 
1233   void operator-=(uint n)
1234     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1235 
1236   bool operator>=(DUIterator_Last& limit) {
1237     I_VDUI_ONLY(*this, this->verify(_node, true));
1238     I_VDUI_ONLY(limit, limit.verify_limit());
1239     return _outp >= limit._outp;
1240   }
1241 
1242   void operator=(const DUIterator_Last& that)
1243     { DUIterator_Fast::operator=(that); }
1244 };
1245 
1246 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1247   // Assign a limit pointer to the reference argument:
1248   imin = DUIterator_Last(this, 0);
1249   // Return the initial pointer:
1250   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1251 }
1252 Node* Node::last_out(DUIterator_Last& i) const {
1253   I_VDUI_ONLY(i, i.verify(this));
1254   return debug_only(i._last=) *i._outp;
1255 }
1256 
1257 #endif //OPTO_DU_ITERATOR_ASSERT
1258 
1259 #undef I_VDUI_ONLY
1260 #undef VDUI_ONLY
1261 
1262 // An Iterator that truly follows the iterator pattern.  Doesn't
1263 // support deletion but could be made to.
1264 //
1265 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1266 //     Node* m = i.get();
1267 //
1268 class SimpleDUIterator : public StackObj {
1269  private:
1270   Node* node;
1271   DUIterator_Fast i;
1272   DUIterator_Fast imax;
1273  public:
1274   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1275   bool has_next() { return i < imax; }
1276   void next() { i++; }
1277   Node* get() { return node->fast_out(i); }
1278 };
1279 
1280 
1281 //-----------------------------------------------------------------------------
1282 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1283 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1284 // Note that the constructor just zeros things, and since I use Arena
1285 // allocation I do not need a destructor to reclaim storage.
1286 class Node_Array : public ResourceObj {
1287 protected:
1288   Arena *_a;                    // Arena to allocate in
1289   uint   _max;
1290   Node **_nodes;
1291   void   grow( uint i );        // Grow array node to fit
1292 public:
1293   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1294     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1295     for( int i = 0; i < OptoNodeListSize; i++ ) {
1296       _nodes[i] = NULL;
1297     }
1298   }
1299 
1300   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1301   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1302   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1303   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1304   Node **adr() { return _nodes; }
1305   // Extend the mapping: index i maps to Node *n.
1306   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1307   void insert( uint i, Node *n );
1308   void remove( uint i );        // Remove, preserving order
1309   void sort( C_sort_func_t func);
1310   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1311   void clear();                 // Set all entries to NULL, keep storage
1312   uint Size() const { return _max; }
1313   void dump() const;
1314 };
1315 
1316 class Node_List : public Node_Array {
1317   uint _cnt;
1318 public:
1319   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1320   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1321   bool contains(Node* n) {
1322     for (uint e = 0; e < size(); e++) {
1323       if (at(e) == n) return true;
1324     }
1325     return false;
1326   }
1327   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1328   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1329   void push( Node *b ) { map(_cnt++,b); }
1330   void yank( Node *n );         // Find and remove
1331   Node *pop() { return _nodes[--_cnt]; }
1332   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1333   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1334   uint size() const { return _cnt; }
1335   void dump() const;
1336 };
1337 
1338 //------------------------------Unique_Node_List-------------------------------
1339 class Unique_Node_List : public Node_List {
1340   VectorSet _in_worklist;
1341   uint _clock_index;            // Index in list where to pop from next
1342 public:
1343   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1344   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1345 
1346   void remove( Node *n );
1347   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1348   VectorSet &member_set(){ return _in_worklist; }
1349 
1350   void push( Node *b ) {
1351     if( !_in_worklist.test_set(b->_idx) )
1352       Node_List::push(b);
1353   }
1354   Node *pop() {
1355     if( _clock_index >= size() ) _clock_index = 0;
1356     Node *b = at(_clock_index);
1357     map( _clock_index, Node_List::pop());
1358     if (size() != 0) _clock_index++; // Always start from 0
1359     _in_worklist >>= b->_idx;
1360     return b;
1361   }
1362   Node *remove( uint i ) {
1363     Node *b = Node_List::at(i);
1364     _in_worklist >>= b->_idx;
1365     map(i,Node_List::pop());
1366     return b;
1367   }
1368   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1369   void  clear() {
1370     _in_worklist.Clear();        // Discards storage but grows automatically
1371     Node_List::clear();
1372     _clock_index = 0;
1373   }
1374 
1375   // Used after parsing to remove useless nodes before Iterative GVN
1376   void remove_useless_nodes(VectorSet &useful);
1377 
1378 #ifndef PRODUCT
1379   void print_set() const { _in_worklist.print(); }
1380 #endif
1381 };
1382 
1383 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1384 inline void Compile::record_for_igvn(Node* n) {
1385   _for_igvn->push(n);
1386 }
1387 
1388 //------------------------------Node_Stack-------------------------------------
1389 class Node_Stack {
1390 protected:
1391   struct INode {
1392     Node *node; // Processed node
1393     uint  indx; // Index of next node's child
1394   };
1395   INode *_inode_top; // tos, stack grows up
1396   INode *_inode_max; // End of _inodes == _inodes + _max
1397   INode *_inodes;    // Array storage for the stack
1398   Arena *_a;         // Arena to allocate in
1399   void grow();
1400 public:
1401   Node_Stack(int size) {
1402     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1403     _a = Thread::current()->resource_area();
1404     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1405     _inode_max = _inodes + max;
1406     _inode_top = _inodes - 1; // stack is empty
1407   }
1408 
1409   Node_Stack(Arena *a, int size) : _a(a) {
1410     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1411     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1412     _inode_max = _inodes + max;
1413     _inode_top = _inodes - 1; // stack is empty
1414   }
1415 
1416   void pop() {
1417     assert(_inode_top >= _inodes, "node stack underflow");
1418     --_inode_top;
1419   }
1420   void push(Node *n, uint i) {
1421     ++_inode_top;
1422     if (_inode_top >= _inode_max) grow();
1423     INode *top = _inode_top; // optimization
1424     top->node = n;
1425     top->indx = i;
1426   }
1427   Node *node() const {
1428     return _inode_top->node;
1429   }
1430   Node* node_at(uint i) const {
1431     assert(_inodes + i <= _inode_top, "in range");
1432     return _inodes[i].node;
1433   }
1434   uint index() const {
1435     return _inode_top->indx;
1436   }
1437   uint index_at(uint i) const {
1438     assert(_inodes + i <= _inode_top, "in range");
1439     return _inodes[i].indx;
1440   }
1441   void set_node(Node *n) {
1442     _inode_top->node = n;
1443   }
1444   void set_index(uint i) {
1445     _inode_top->indx = i;
1446   }
1447   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1448   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1449   bool is_nonempty() const { return (_inode_top >= _inodes); }
1450   bool is_empty() const { return (_inode_top < _inodes); }
1451   void clear() { _inode_top = _inodes - 1; } // retain storage
1452 };
1453 
1454 
1455 //-----------------------------Node_Notes--------------------------------------
1456 // Debugging or profiling annotations loosely and sparsely associated
1457 // with some nodes.  See Compile::node_notes_at for the accessor.
1458 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1459   JVMState* _jvms;
1460 
1461 public:
1462   Node_Notes(JVMState* jvms = NULL) {
1463     _jvms = jvms;
1464   }
1465 
1466   JVMState* jvms()            { return _jvms; }
1467   void  set_jvms(JVMState* x) {        _jvms = x; }
1468 
1469   // True if there is nothing here.
1470   bool is_clear() {
1471     return (_jvms == NULL);
1472   }
1473 
1474   // Make there be nothing here.
1475   void clear() {
1476     _jvms = NULL;
1477   }
1478 
1479   // Make a new, clean node notes.
1480   static Node_Notes* make(Compile* C) {
1481     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1482     nn->clear();
1483     return nn;
1484   }
1485 
1486   Node_Notes* clone(Compile* C) {
1487     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1488     (*nn) = (*this);
1489     return nn;
1490   }
1491 
1492   // Absorb any information from source.
1493   bool update_from(Node_Notes* source) {
1494     bool changed = false;
1495     if (source != NULL) {
1496       if (source->jvms() != NULL) {
1497         set_jvms(source->jvms());
1498         changed = true;
1499       }
1500     }
1501     return changed;
1502   }
1503 };
1504 
1505 // Inlined accessors for Compile::node_nodes that require the preceding class:
1506 inline Node_Notes*
1507 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1508                            int idx, bool can_grow) {
1509   assert(idx >= 0, "oob");
1510   int block_idx = (idx >> _log2_node_notes_block_size);
1511   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1512   if (grow_by >= 0) {
1513     if (!can_grow)  return NULL;
1514     grow_node_notes(arr, grow_by + 1);
1515   }
1516   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1517   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1518 }
1519 
1520 inline bool
1521 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1522   if (value == NULL || value->is_clear())
1523     return false;  // nothing to write => write nothing
1524   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1525   assert(loc != NULL, "");
1526   return loc->update_from(value);
1527 }
1528 
1529 
1530 //------------------------------TypeNode---------------------------------------
1531 // Node with a Type constant.
1532 class TypeNode : public Node {
1533 protected:
1534   virtual uint hash() const;    // Check the type
1535   virtual uint cmp( const Node &n ) const;
1536   virtual uint size_of() const; // Size is bigger
1537   const Type* const _type;
1538 public:
1539   void set_type(const Type* t) {
1540     assert(t != NULL, "sanity");
1541     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1542     *(const Type**)&_type = t;   // cast away const-ness
1543     // If this node is in the hash table, make sure it doesn't need a rehash.
1544     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1545   }
1546   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1547   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1548     init_class_id(Class_Type);
1549   }
1550   virtual const Type *Value( PhaseTransform *phase ) const;
1551   virtual const Type *bottom_type() const;
1552   virtual       uint  ideal_reg() const;
1553 #ifndef PRODUCT
1554   virtual void dump_spec(outputStream *st) const;
1555 #endif
1556 };