1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/universe.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/memnode.hpp"
  32 #include "opto/parse.hpp"
  33 #include "opto/rootnode.hpp"
  34 #include "opto/runtime.hpp"
  35 #include "opto/subnode.hpp"
  36 #include "runtime/deoptimization.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 
  39 //=============================================================================
  40 // Helper methods for _get* and _put* bytecodes
  41 //=============================================================================
  42 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  43   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
  44   // Better to check now than to Deoptimize as soon as we execute
  45   assert( field->is_static(), "Only check if field is static");
  46   // is_being_initialized() is too generous.  It allows access to statics
  47   // by threads that are not running the <clinit> before the <clinit> finishes.
  48   // return field->holder()->is_being_initialized();
  49 
  50   // The following restriction is correct but conservative.
  51   // It is also desirable to allow compilation of methods called from <clinit>
  52   // but this generated code will need to be made safe for execution by
  53   // other threads, or the transition from interpreted to compiled code would
  54   // need to be guarded.
  55   ciInstanceKlass *field_holder = field->holder();
  56 
  57   bool access_OK = false;
  58   if (method->holder()->is_subclass_of(field_holder)) {
  59     if (method->is_static()) {
  60       if (method->name() == ciSymbol::class_initializer_name()) {
  61         // OK to access static fields inside initializer
  62         access_OK = true;
  63       }
  64     } else {
  65       if (method->name() == ciSymbol::object_initializer_name()) {
  66         // It's also OK to access static fields inside a constructor,
  67         // because any thread calling the constructor must first have
  68         // synchronized on the class by executing a '_new' bytecode.
  69         access_OK = true;
  70       }
  71     }
  72   }
  73 
  74   return access_OK;
  75 
  76 }
  77 
  78 
  79 void Parse::do_field_access(bool is_get, bool is_field) {
  80   bool will_link;
  81   ciField* field = iter().get_field(will_link);
  82   assert(will_link, "getfield: typeflow responsibility");
  83 
  84   ciInstanceKlass* field_holder = field->holder();
  85 
  86   if (is_field == field->is_static()) {
  87     // Interpreter will throw java_lang_IncompatibleClassChangeError
  88     // Check this before allowing <clinit> methods to access static fields
  89     uncommon_trap(Deoptimization::Reason_unhandled,
  90                   Deoptimization::Action_none);
  91     return;
  92   }
  93 
  94   if (!is_field && !field_holder->is_initialized()) {
  95     if (!static_field_ok_in_clinit(field, method())) {
  96       uncommon_trap(Deoptimization::Reason_uninitialized,
  97                     Deoptimization::Action_reinterpret,
  98                     NULL, "!static_field_ok_in_clinit");
  99       return;
 100     }
 101   }
 102 
 103   assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
 104 
 105   // Note:  We do not check for an unloaded field type here any more.
 106 
 107   // Generate code for the object pointer.
 108   Node* obj;
 109   if (is_field) {
 110     int obj_depth = is_get ? 0 : field->type()->size();
 111     obj = do_null_check(peek(obj_depth), T_OBJECT);
 112     // Compile-time detect of null-exception?
 113     if (stopped())  return;
 114 
 115     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 116     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 117 
 118     if (is_get) {
 119       --_sp;  // pop receiver before getting
 120       do_get_xxx(tjp, obj, field, is_field);
 121     } else {
 122       do_put_xxx(tjp, obj, field, is_field);
 123       --_sp;  // pop receiver after putting
 124     }
 125   } else {
 126     const TypeKlassPtr* tkp = TypeKlassPtr::make(field_holder);
 127     obj = _gvn.makecon(tkp);
 128     if (is_get) {
 129       do_get_xxx(tkp, obj, field, is_field);
 130     } else {
 131       do_put_xxx(tkp, obj, field, is_field);
 132     }
 133   }
 134 }
 135 
 136 
 137 void Parse::do_get_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
 138   // Does this field have a constant value?  If so, just push the value.
 139   if (field->is_constant()) {
 140     if (field->is_static()) {
 141       // final static field
 142       if (push_constant(field->constant_value()))
 143         return;
 144     }
 145     else {
 146       // final non-static field of a trusted class ({java,sun}.dyn
 147       // classes).
 148       if (obj->is_Con()) {
 149         const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 150         ciObject* constant_oop = oop_ptr->const_oop();
 151         ciConstant constant = field->constant_value_of(constant_oop);
 152 
 153         if (push_constant(constant, true))
 154           return;
 155       }
 156     }
 157   }
 158 
 159   ciType* field_klass = field->type();
 160   bool is_vol = field->is_volatile();
 161 
 162   // Compute address and memory type.
 163   int offset = field->offset_in_bytes();
 164   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 165   Node *adr = basic_plus_adr(obj, obj, offset);
 166   BasicType bt = field->layout_type();
 167 
 168   // Build the resultant type of the load
 169   const Type *type;
 170 
 171   bool must_assert_null = false;
 172 
 173   if( bt == T_OBJECT ) {
 174     if (!field->type()->is_loaded()) {
 175       type = TypeInstPtr::BOTTOM;
 176       must_assert_null = true;
 177     } else if (field->is_constant() && field->is_static()) {
 178       // This can happen if the constant oop is non-perm.
 179       ciObject* con = field->constant_value().as_object();
 180       // Do not "join" in the previous type; it doesn't add value,
 181       // and may yield a vacuous result if the field is of interface type.
 182       type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 183       assert(type != NULL, "field singleton type must be consistent");
 184     } else {
 185       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
 186     }
 187   } else {
 188     type = Type::get_const_basic_type(bt);
 189   }
 190   // Build the load.
 191   Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
 192 
 193   // Adjust Java stack
 194   if (type2size[bt] == 1)
 195     push(ld);
 196   else
 197     push_pair(ld);
 198 
 199   if (must_assert_null) {
 200     // Do not take a trap here.  It's possible that the program
 201     // will never load the field's class, and will happily see
 202     // null values in this field forever.  Don't stumble into a
 203     // trap for such a program, or we might get a long series
 204     // of useless recompilations.  (Or, we might load a class
 205     // which should not be loaded.)  If we ever see a non-null
 206     // value, we will then trap and recompile.  (The trap will
 207     // not need to mention the class index, since the class will
 208     // already have been loaded if we ever see a non-null value.)
 209     // uncommon_trap(iter().get_field_signature_index());
 210 #ifndef PRODUCT
 211     if (PrintOpto && (Verbose || WizardMode)) {
 212       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
 213     }
 214 #endif
 215     if (C->log() != NULL) {
 216       C->log()->elem("assert_null reason='field' klass='%d'",
 217                      C->log()->identify(field->type()));
 218     }
 219     // If there is going to be a trap, put it at the next bytecode:
 220     set_bci(iter().next_bci());
 221     do_null_assert(peek(), T_OBJECT);
 222     set_bci(iter().cur_bci()); // put it back
 223   }
 224 
 225   // If reference is volatile, prevent following memory ops from
 226   // floating up past the volatile read.  Also prevents commoning
 227   // another volatile read.
 228   if (field->is_volatile()) {
 229     // Memory barrier includes bogus read of value to force load BEFORE membar
 230     insert_mem_bar(Op_MemBarAcquire, ld);
 231   }
 232 }
 233 
 234 void Parse::do_put_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
 235   bool is_vol = field->is_volatile();
 236   // If reference is volatile, prevent following memory ops from
 237   // floating down past the volatile write.  Also prevents commoning
 238   // another volatile read.
 239   if (is_vol)  insert_mem_bar(Op_MemBarRelease);
 240 
 241   // Compute address and memory type.
 242   int offset = field->offset_in_bytes();
 243   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 244   Node* adr = basic_plus_adr(obj, obj, offset);
 245   BasicType bt = field->layout_type();
 246   // Value to be stored
 247   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
 248   // Round doubles before storing
 249   if (bt == T_DOUBLE)  val = dstore_rounding(val);
 250 
 251   // Store the value.
 252   Node* store;
 253   if (bt == T_OBJECT) {
 254     const TypeOopPtr* field_type;
 255     if (!field->type()->is_loaded()) {
 256       field_type = TypeInstPtr::BOTTOM;
 257     } else {
 258       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
 259     }
 260     store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
 261   } else {
 262     store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
 263   }
 264 
 265   // If reference is volatile, prevent following volatiles ops from
 266   // floating up before the volatile write.
 267   if (is_vol) {
 268     // First place the specific membar for THIS volatile index. This first
 269     // membar is dependent on the store, keeping any other membars generated
 270     // below from floating up past the store.
 271     int adr_idx = C->get_alias_index(adr_type);
 272     insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx, store);
 273 
 274     // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
 275     // volatile alias indices. Skip this if the membar is redundant.
 276     if (adr_idx != Compile::AliasIdxBot) {
 277       insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot, store);
 278     }
 279 
 280     // Finally, place alias-index-specific membars for each volatile index
 281     // that isn't the adr_idx membar. Typically there's only 1 or 2.
 282     for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
 283       if (i != adr_idx && C->alias_type(i)->is_volatile()) {
 284         insert_mem_bar_volatile(Op_MemBarVolatile, i, store);
 285       }
 286     }
 287   }
 288 
 289   // If the field is final, the rules of Java say we are in <init> or <clinit>.
 290   // Note the presence of writes to final non-static fields, so that we
 291   // can insert a memory barrier later on to keep the writes from floating
 292   // out of the constructor.
 293   if (is_field && field->is_final()) {
 294     set_wrote_final(true);
 295   }
 296 }
 297 
 298 
 299 bool Parse::push_constant(ciConstant constant, bool require_constant) {
 300   switch (constant.basic_type()) {
 301   case T_BOOLEAN:  push( intcon(constant.as_boolean()) ); break;
 302   case T_INT:      push( intcon(constant.as_int())     ); break;
 303   case T_CHAR:     push( intcon(constant.as_char())    ); break;
 304   case T_BYTE:     push( intcon(constant.as_byte())    ); break;
 305   case T_SHORT:    push( intcon(constant.as_short())   ); break;
 306   case T_FLOAT:    push( makecon(TypeF::make(constant.as_float())) );  break;
 307   case T_DOUBLE:   push_pair( makecon(TypeD::make(constant.as_double())) );  break;
 308   case T_LONG:     push_pair( longcon(constant.as_long()) ); break;
 309   case T_ARRAY:
 310   case T_OBJECT: {
 311     // cases:
 312     //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 313     //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 314     // An oop is not scavengable if it is in the perm gen.
 315     ciObject* oop_constant = constant.as_object();
 316     if (oop_constant->is_null_object()) {
 317       push( zerocon(T_OBJECT) );
 318       break;
 319     } else if (require_constant || oop_constant->should_be_constant()) {
 320       push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant)) );
 321       break;
 322     } else {
 323       // we cannot inline the oop, but we can use it later to narrow a type
 324       return false;
 325     }
 326   }
 327   case T_ILLEGAL: {
 328     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 329     assert(C->env()->failing(), "otherwise should not see this");
 330     // These always occur because of object types; we are going to
 331     // bail out anyway, so make the stack depths match up
 332     push( zerocon(T_OBJECT) );
 333     return false;
 334   }
 335   default:
 336     ShouldNotReachHere();
 337     return false;
 338   }
 339 
 340   // success
 341   return true;
 342 }
 343 
 344 
 345 
 346 //=============================================================================
 347 void Parse::do_anewarray() {
 348   bool will_link;
 349   ciKlass* klass = iter().get_klass(will_link);
 350 
 351   // Uncommon Trap when class that array contains is not loaded
 352   // we need the loaded class for the rest of graph; do not
 353   // initialize the container class (see Java spec)!!!
 354   assert(will_link, "anewarray: typeflow responsibility");
 355 
 356   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
 357   // Check that array_klass object is loaded
 358   if (!array_klass->is_loaded()) {
 359     // Generate uncommon_trap for unloaded array_class
 360     uncommon_trap(Deoptimization::Reason_unloaded,
 361                   Deoptimization::Action_reinterpret,
 362                   array_klass);
 363     return;
 364   }
 365 
 366   kill_dead_locals();
 367 
 368   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
 369   Node* count_val = pop();
 370   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
 371   push(obj);
 372 }
 373 
 374 
 375 void Parse::do_newarray(BasicType elem_type) {
 376   kill_dead_locals();
 377 
 378   Node*   count_val = pop();
 379   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
 380   Node*   obj = new_array(makecon(array_klass), count_val, 1);
 381   // Push resultant oop onto stack
 382   push(obj);
 383 }
 384 
 385 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
 386 // Also handle the degenerate 1-dimensional case of anewarray.
 387 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
 388   Node* length = lengths[0];
 389   assert(length != NULL, "");
 390   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
 391   if (ndimensions > 1) {
 392     jint length_con = find_int_con(length, -1);
 393     guarantee(length_con >= 0, "non-constant multianewarray");
 394     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
 395     const TypePtr* adr_type = TypeAryPtr::OOPS;
 396     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 397     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 398     for (jint i = 0; i < length_con; i++) {
 399       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
 400       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
 401       Node*    eaddr  = basic_plus_adr(array, offset);
 402       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
 403     }
 404   }
 405   return array;
 406 }
 407 
 408 void Parse::do_multianewarray() {
 409   int ndimensions = iter().get_dimensions();
 410 
 411   // the m-dimensional array
 412   bool will_link;
 413   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
 414   assert(will_link, "multianewarray: typeflow responsibility");
 415 
 416   // Note:  Array classes are always initialized; no is_initialized check.
 417 
 418   enum { MAX_DIMENSION = 5 };
 419   if (ndimensions > MAX_DIMENSION || ndimensions <= 0) {
 420     uncommon_trap(Deoptimization::Reason_unhandled,
 421                   Deoptimization::Action_none);
 422     return;
 423   }
 424 
 425   kill_dead_locals();
 426 
 427   // get the lengths from the stack (first dimension is on top)
 428   Node* length[MAX_DIMENSION+1];
 429   length[ndimensions] = NULL;  // terminating null for make_runtime_call
 430   int j;
 431   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
 432 
 433   // The original expression was of this form: new T[length0][length1]...
 434   // It is often the case that the lengths are small (except the last).
 435   // If that happens, use the fast 1-d creator a constant number of times.
 436   const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
 437   jint expand_count = 1;        // count of allocations in the expansion
 438   jint expand_fanout = 1;       // running total fanout
 439   for (j = 0; j < ndimensions-1; j++) {
 440     jint dim_con = find_int_con(length[j], -1);
 441     expand_fanout *= dim_con;
 442     expand_count  += expand_fanout; // count the level-J sub-arrays
 443     if (dim_con <= 0
 444         || dim_con > expand_limit
 445         || expand_count > expand_limit) {
 446       expand_count = 0;
 447       break;
 448     }
 449   }
 450 
 451   // Can use multianewarray instead of [a]newarray if only one dimension,
 452   // or if all non-final dimensions are small constants.
 453   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
 454     Node* obj = NULL;
 455     // Set the original stack and the reexecute bit for the interpreter
 456     // to reexecute the multianewarray bytecode if deoptimization happens.
 457     // Do it unconditionally even for one dimension multianewarray.
 458     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
 459     // when AllocateArray node for newarray is created.
 460     { PreserveReexecuteState preexecs(this);
 461       _sp += ndimensions;
 462       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
 463       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
 464     } //original reexecute and sp are set back here
 465     push(obj);
 466     return;
 467   }
 468 
 469   address fun = NULL;
 470   switch (ndimensions) {
 471   //case 1: Actually, there is no case 1.  It's handled by new_array.
 472   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
 473   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
 474   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
 475   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
 476   default: ShouldNotReachHere();
 477   };
 478 
 479   Node* c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 480                               OptoRuntime::multianewarray_Type(ndimensions),
 481                               fun, NULL, TypeRawPtr::BOTTOM,
 482                               makecon(TypeKlassPtr::make(array_klass)),
 483                               length[0], length[1], length[2],
 484                               length[3], length[4]);
 485   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms));
 486 
 487   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
 488 
 489   // Improve the type:  We know it's not null, exact, and of a given length.
 490   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
 491   type = type->is_aryptr()->cast_to_exactness(true);
 492 
 493   const TypeInt* ltype = _gvn.find_int_type(length[0]);
 494   if (ltype != NULL)
 495     type = type->is_aryptr()->cast_to_size(ltype);
 496 
 497   // We cannot sharpen the nested sub-arrays, since the top level is mutable.
 498 
 499   Node* cast = _gvn.transform( new (C, 2) CheckCastPPNode(control(), res, type) );
 500   push(cast);
 501 
 502   // Possible improvements:
 503   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
 504   // - Issue CastII against length[*] values, to TypeInt::POS.
 505 }