1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/regalloc.hpp"
  37 #include "opto/rootnode.hpp"
  38 
  39 //=============================================================================
  40 #define NODE_HASH_MINIMUM_SIZE    255
  41 //------------------------------NodeHash---------------------------------------
  42 NodeHash::NodeHash(uint est_max_size) :
  43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  44   _a(Thread::current()->resource_area()),
  45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  46   _inserts(0), _insert_limit( insert_limit() ),
  47   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  48   _total_insert_probes(0), _total_inserts(0),
  49   _insert_probes(0), _grows(0) {
  50   // _sentinel must be in the current node space
  51   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
  52   memset(_table,0,sizeof(Node*)*_max);
  53 }
  54 
  55 //------------------------------NodeHash---------------------------------------
  56 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  57   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  58   _a(arena),
  59   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  60   _inserts(0), _insert_limit( insert_limit() ),
  61   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  62   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  63   _total_insert_probes(0), _total_inserts(0),
  64   _insert_probes(0), _grows(0) {
  65   // _sentinel must be in the current node space
  66   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
  67   memset(_table,0,sizeof(Node*)*_max);
  68 }
  69 
  70 //------------------------------NodeHash---------------------------------------
  71 NodeHash::NodeHash(NodeHash *nh) {
  72   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  73   // just copy in all the fields
  74   *this = *nh;
  75   // nh->_sentinel must be in the current node space
  76 }
  77 
  78 //------------------------------hash_find--------------------------------------
  79 // Find in hash table
  80 Node *NodeHash::hash_find( const Node *n ) {
  81   // ((Node*)n)->set_hash( n->hash() );
  82   uint hash = n->hash();
  83   if (hash == Node::NO_HASH) {
  84     debug_only( _lookup_misses++ );
  85     return NULL;
  86   }
  87   uint key = hash & (_max-1);
  88   uint stride = key | 0x01;
  89   debug_only( _look_probes++ );
  90   Node *k = _table[key];        // Get hashed value
  91   if( !k ) {                    // ?Miss?
  92     debug_only( _lookup_misses++ );
  93     return NULL;                // Miss!
  94   }
  95 
  96   int op = n->Opcode();
  97   uint req = n->req();
  98   while( 1 ) {                  // While probing hash table
  99     if( k->req() == req &&      // Same count of inputs
 100         k->Opcode() == op ) {   // Same Opcode
 101       for( uint i=0; i<req; i++ )
 102         if( n->in(i)!=k->in(i)) // Different inputs?
 103           goto collision;       // "goto" is a speed hack...
 104       if( n->cmp(*k) ) {        // Check for any special bits
 105         debug_only( _lookup_hits++ );
 106         return k;               // Hit!
 107       }
 108     }
 109   collision:
 110     debug_only( _look_probes++ );
 111     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 112     k = _table[key];            // Get hashed value
 113     if( !k ) {                  // ?Miss?
 114       debug_only( _lookup_misses++ );
 115       return NULL;              // Miss!
 116     }
 117   }
 118   ShouldNotReachHere();
 119   return NULL;
 120 }
 121 
 122 //------------------------------hash_find_insert-------------------------------
 123 // Find in hash table, insert if not already present
 124 // Used to preserve unique entries in hash table
 125 Node *NodeHash::hash_find_insert( Node *n ) {
 126   // n->set_hash( );
 127   uint hash = n->hash();
 128   if (hash == Node::NO_HASH) {
 129     debug_only( _lookup_misses++ );
 130     return NULL;
 131   }
 132   uint key = hash & (_max-1);
 133   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 134   uint first_sentinel = 0;      // replace a sentinel if seen.
 135   debug_only( _look_probes++ );
 136   Node *k = _table[key];        // Get hashed value
 137   if( !k ) {                    // ?Miss?
 138     debug_only( _lookup_misses++ );
 139     _table[key] = n;            // Insert into table!
 140     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 141     check_grow();               // Grow table if insert hit limit
 142     return NULL;                // Miss!
 143   }
 144   else if( k == _sentinel ) {
 145     first_sentinel = key;      // Can insert here
 146   }
 147 
 148   int op = n->Opcode();
 149   uint req = n->req();
 150   while( 1 ) {                  // While probing hash table
 151     if( k->req() == req &&      // Same count of inputs
 152         k->Opcode() == op ) {   // Same Opcode
 153       for( uint i=0; i<req; i++ )
 154         if( n->in(i)!=k->in(i)) // Different inputs?
 155           goto collision;       // "goto" is a speed hack...
 156       if( n->cmp(*k) ) {        // Check for any special bits
 157         debug_only( _lookup_hits++ );
 158         return k;               // Hit!
 159       }
 160     }
 161   collision:
 162     debug_only( _look_probes++ );
 163     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 164     k = _table[key];            // Get hashed value
 165     if( !k ) {                  // ?Miss?
 166       debug_only( _lookup_misses++ );
 167       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 168       _table[key] = n;          // Insert into table!
 169       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 170       check_grow();             // Grow table if insert hit limit
 171       return NULL;              // Miss!
 172     }
 173     else if( first_sentinel == 0 && k == _sentinel ) {
 174       first_sentinel = key;    // Can insert here
 175     }
 176 
 177   }
 178   ShouldNotReachHere();
 179   return NULL;
 180 }
 181 
 182 //------------------------------hash_insert------------------------------------
 183 // Insert into hash table
 184 void NodeHash::hash_insert( Node *n ) {
 185   // // "conflict" comments -- print nodes that conflict
 186   // bool conflict = false;
 187   // n->set_hash();
 188   uint hash = n->hash();
 189   if (hash == Node::NO_HASH) {
 190     return;
 191   }
 192   check_grow();
 193   uint key = hash & (_max-1);
 194   uint stride = key | 0x01;
 195 
 196   while( 1 ) {                  // While probing hash table
 197     debug_only( _insert_probes++ );
 198     Node *k = _table[key];      // Get hashed value
 199     if( !k || (k == _sentinel) ) break;       // Found a slot
 200     assert( k != n, "already inserted" );
 201     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 202     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 203   }
 204   _table[key] = n;              // Insert into table!
 205   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 206   // if( conflict ) { n->dump(); }
 207 }
 208 
 209 //------------------------------hash_delete------------------------------------
 210 // Replace in hash table with sentinel
 211 bool NodeHash::hash_delete( const Node *n ) {
 212   Node *k;
 213   uint hash = n->hash();
 214   if (hash == Node::NO_HASH) {
 215     debug_only( _delete_misses++ );
 216     return false;
 217   }
 218   uint key = hash & (_max-1);
 219   uint stride = key | 0x01;
 220   debug_only( uint counter = 0; );
 221   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 222     debug_only( counter++ );
 223     debug_only( _delete_probes++ );
 224     k = _table[key];            // Get hashed value
 225     if( !k ) {                  // Miss?
 226       debug_only( _delete_misses++ );
 227 #ifdef ASSERT
 228       if( VerifyOpto ) {
 229         for( uint i=0; i < _max; i++ )
 230           assert( _table[i] != n, "changed edges with rehashing" );
 231       }
 232 #endif
 233       return false;             // Miss! Not in chain
 234     }
 235     else if( n == k ) {
 236       debug_only( _delete_hits++ );
 237       _table[key] = _sentinel;  // Hit! Label as deleted entry
 238       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 239       return true;
 240     }
 241     else {
 242       // collision: move through table with prime offset
 243       key = (key + stride/*7*/) & (_max-1);
 244       assert( counter <= _insert_limit, "Cycle in hash-table");
 245     }
 246   }
 247   ShouldNotReachHere();
 248   return false;
 249 }
 250 
 251 //------------------------------round_up---------------------------------------
 252 // Round up to nearest power of 2
 253 uint NodeHash::round_up( uint x ) {
 254   x += (x>>2);                  // Add 25% slop
 255   if( x <16 ) return 16;        // Small stuff
 256   uint i=16;
 257   while( i < x ) i <<= 1;       // Double to fit
 258   return i;                     // Return hash table size
 259 }
 260 
 261 //------------------------------grow-------------------------------------------
 262 // Grow _table to next power of 2 and insert old entries
 263 void  NodeHash::grow() {
 264   // Record old state
 265   uint   old_max   = _max;
 266   Node **old_table = _table;
 267   // Construct new table with twice the space
 268   _grows++;
 269   _total_inserts       += _inserts;
 270   _total_insert_probes += _insert_probes;
 271   _inserts         = 0;
 272   _insert_probes   = 0;
 273   _max     = _max << 1;
 274   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 275   memset(_table,0,sizeof(Node*)*_max);
 276   _insert_limit = insert_limit();
 277   // Insert old entries into the new table
 278   for( uint i = 0; i < old_max; i++ ) {
 279     Node *m = *old_table++;
 280     if( !m || m == _sentinel ) continue;
 281     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 282     hash_insert(m);
 283   }
 284 }
 285 
 286 //------------------------------clear------------------------------------------
 287 // Clear all entries in _table to NULL but keep storage
 288 void  NodeHash::clear() {
 289 #ifdef ASSERT
 290   // Unlock all nodes upon removal from table.
 291   for (uint i = 0; i < _max; i++) {
 292     Node* n = _table[i];
 293     if (!n || n == _sentinel)  continue;
 294     n->exit_hash_lock();
 295   }
 296 #endif
 297 
 298   memset( _table, 0, _max * sizeof(Node*) );
 299 }
 300 
 301 //-----------------------remove_useless_nodes----------------------------------
 302 // Remove useless nodes from value table,
 303 // implementation does not depend on hash function
 304 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 305 
 306   // Dead nodes in the hash table inherited from GVN should not replace
 307   // existing nodes, remove dead nodes.
 308   uint max = size();
 309   Node *sentinel_node = sentinel();
 310   for( uint i = 0; i < max; ++i ) {
 311     Node *n = at(i);
 312     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 313       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 314       _table[i] = sentinel_node;       // Replace with placeholder
 315     }
 316   }
 317 }
 318 
 319 #ifndef PRODUCT
 320 //------------------------------dump-------------------------------------------
 321 // Dump statistics for the hash table
 322 void NodeHash::dump() {
 323   _total_inserts       += _inserts;
 324   _total_insert_probes += _insert_probes;
 325   if( PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0) ) { // PrintOptoGVN
 326     if( PrintCompilation2 ) {
 327       for( uint i=0; i<_max; i++ )
 328       if( _table[i] )
 329         tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 330     }
 331     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 332     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 333     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 334     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 335     // sentinels increase lookup cost, but not insert cost
 336     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 337     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 338     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 339   }
 340 }
 341 
 342 Node *NodeHash::find_index(uint idx) { // For debugging
 343   // Find an entry by its index value
 344   for( uint i = 0; i < _max; i++ ) {
 345     Node *m = _table[i];
 346     if( !m || m == _sentinel ) continue;
 347     if( m->_idx == (uint)idx ) return m;
 348   }
 349   return NULL;
 350 }
 351 #endif
 352 
 353 #ifdef ASSERT
 354 NodeHash::~NodeHash() {
 355   // Unlock all nodes upon destruction of table.
 356   if (_table != (Node**)badAddress)  clear();
 357 }
 358 
 359 void NodeHash::operator=(const NodeHash& nh) {
 360   // Unlock all nodes upon replacement of table.
 361   if (&nh == this)  return;
 362   if (_table != (Node**)badAddress)  clear();
 363   memcpy(this, &nh, sizeof(*this));
 364   // Do not increment hash_lock counts again.
 365   // Instead, be sure we never again use the source table.
 366   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 367 }
 368 
 369 
 370 #endif
 371 
 372 
 373 //=============================================================================
 374 //------------------------------PhaseRemoveUseless-----------------------------
 375 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 376 PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
 377   _useful(Thread::current()->resource_area()) {
 378 
 379   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 380   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 381   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 382 
 383   // Identify nodes that are reachable from below, useful.
 384   C->identify_useful_nodes(_useful);
 385 
 386   // Remove all useless nodes from PhaseValues' recorded types
 387   // Must be done before disconnecting nodes to preserve hash-table-invariant
 388   gvn->remove_useless_nodes(_useful.member_set());
 389 
 390   // Remove all useless nodes from future worklist
 391   worklist->remove_useless_nodes(_useful.member_set());
 392 
 393   // Disconnect 'useless' nodes that are adjacent to useful nodes
 394   C->remove_useless_nodes(_useful);
 395 
 396   // Remove edges from "root" to each SafePoint at a backward branch.
 397   // They were inserted during parsing (see add_safepoint()) to make infinite
 398   // loops without calls or exceptions visible to root, i.e., useful.
 399   Node *root = C->root();
 400   if( root != NULL ) {
 401     for( uint i = root->req(); i < root->len(); ++i ) {
 402       Node *n = root->in(i);
 403       if( n != NULL && n->is_SafePoint() ) {
 404         root->rm_prec(i);
 405         --i;
 406       }
 407     }
 408   }
 409 }
 410 
 411 
 412 //=============================================================================
 413 //------------------------------PhaseTransform---------------------------------
 414 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 415   _arena(Thread::current()->resource_area()),
 416   _nodes(_arena),
 417   _types(_arena)
 418 {
 419   init_con_caches();
 420 #ifndef PRODUCT
 421   clear_progress();
 422   clear_transforms();
 423   set_allow_progress(true);
 424 #endif
 425   // Force allocation for currently existing nodes
 426   _types.map(C->unique(), NULL);
 427 }
 428 
 429 //------------------------------PhaseTransform---------------------------------
 430 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 431   _arena(arena),
 432   _nodes(arena),
 433   _types(arena)
 434 {
 435   init_con_caches();
 436 #ifndef PRODUCT
 437   clear_progress();
 438   clear_transforms();
 439   set_allow_progress(true);
 440 #endif
 441   // Force allocation for currently existing nodes
 442   _types.map(C->unique(), NULL);
 443 }
 444 
 445 //------------------------------PhaseTransform---------------------------------
 446 // Initialize with previously generated type information
 447 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 448   _arena(pt->_arena),
 449   _nodes(pt->_nodes),
 450   _types(pt->_types)
 451 {
 452   init_con_caches();
 453 #ifndef PRODUCT
 454   clear_progress();
 455   clear_transforms();
 456   set_allow_progress(true);
 457 #endif
 458 }
 459 
 460 void PhaseTransform::init_con_caches() {
 461   memset(_icons,0,sizeof(_icons));
 462   memset(_lcons,0,sizeof(_lcons));
 463   memset(_zcons,0,sizeof(_zcons));
 464 }
 465 
 466 
 467 //--------------------------------find_int_type--------------------------------
 468 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 469   if (n == NULL)  return NULL;
 470   // Call type_or_null(n) to determine node's type since we might be in
 471   // parse phase and call n->Value() may return wrong type.
 472   // (For example, a phi node at the beginning of loop parsing is not ready.)
 473   const Type* t = type_or_null(n);
 474   if (t == NULL)  return NULL;
 475   return t->isa_int();
 476 }
 477 
 478 
 479 //-------------------------------find_long_type--------------------------------
 480 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 481   if (n == NULL)  return NULL;
 482   // (See comment above on type_or_null.)
 483   const Type* t = type_or_null(n);
 484   if (t == NULL)  return NULL;
 485   return t->isa_long();
 486 }
 487 
 488 
 489 #ifndef PRODUCT
 490 void PhaseTransform::dump_old2new_map() const {
 491   _nodes.dump();
 492 }
 493 
 494 void PhaseTransform::dump_new( uint nidx ) const {
 495   for( uint i=0; i<_nodes.Size(); i++ )
 496     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 497       _nodes[i]->dump();
 498       tty->cr();
 499       tty->print_cr("Old index= %d",i);
 500       return;
 501     }
 502   tty->print_cr("Node %d not found in the new indices", nidx);
 503 }
 504 
 505 //------------------------------dump_types-------------------------------------
 506 void PhaseTransform::dump_types( ) const {
 507   _types.dump();
 508 }
 509 
 510 //------------------------------dump_nodes_and_types---------------------------
 511 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 512   VectorSet visited(Thread::current()->resource_area());
 513   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 514 }
 515 
 516 //------------------------------dump_nodes_and_types_recur---------------------
 517 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 518   if( !n ) return;
 519   if( depth == 0 ) return;
 520   if( visited.test_set(n->_idx) ) return;
 521   for( uint i=0; i<n->len(); i++ ) {
 522     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 523     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 524   }
 525   n->dump();
 526   if (type_or_null(n) != NULL) {
 527     tty->print("      "); type(n)->dump(); tty->cr();
 528   }
 529 }
 530 
 531 #endif
 532 
 533 
 534 //=============================================================================
 535 //------------------------------PhaseValues------------------------------------
 536 // Set minimum table size to "255"
 537 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 538   NOT_PRODUCT( clear_new_values(); )
 539 }
 540 
 541 //------------------------------PhaseValues------------------------------------
 542 // Set minimum table size to "255"
 543 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 544   _table(&ptv->_table) {
 545   NOT_PRODUCT( clear_new_values(); )
 546 }
 547 
 548 //------------------------------PhaseValues------------------------------------
 549 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 550 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 551   _table(ptv->arena(),ptv->_table.size()) {
 552   NOT_PRODUCT( clear_new_values(); )
 553 }
 554 
 555 //------------------------------~PhaseValues-----------------------------------
 556 #ifndef PRODUCT
 557 PhaseValues::~PhaseValues() {
 558   _table.dump();
 559 
 560   // Statistics for value progress and efficiency
 561   if( PrintCompilation && Verbose && WizardMode ) {
 562     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 563       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 564     if( made_transforms() != 0 ) {
 565       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 566     } else {
 567       tty->cr();
 568     }
 569   }
 570 }
 571 #endif
 572 
 573 //------------------------------makecon----------------------------------------
 574 ConNode* PhaseTransform::makecon(const Type *t) {
 575   assert(t->singleton(), "must be a constant");
 576   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 577   switch (t->base()) {  // fast paths
 578   case Type::Half:
 579   case Type::Top:  return (ConNode*) C->top();
 580   case Type::Int:  return intcon( t->is_int()->get_con() );
 581   case Type::Long: return longcon( t->is_long()->get_con() );
 582   }
 583   if (t->is_zero_type())
 584     return zerocon(t->basic_type());
 585   return uncached_makecon(t);
 586 }
 587 
 588 //--------------------------uncached_makecon-----------------------------------
 589 // Make an idealized constant - one of ConINode, ConPNode, etc.
 590 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 591   assert(t->singleton(), "must be a constant");
 592   ConNode* x = ConNode::make(C, t);
 593   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 594   if (k == NULL) {
 595     set_type(x, t);             // Missed, provide type mapping
 596     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 597     if (nna != NULL) {
 598       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 599       loc->clear(); // do not put debug info on constants
 600     }
 601   } else {
 602     x->destruct();              // Hit, destroy duplicate constant
 603     x = k;                      // use existing constant
 604   }
 605   return x;
 606 }
 607 
 608 //------------------------------intcon-----------------------------------------
 609 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 610 ConINode* PhaseTransform::intcon(int i) {
 611   // Small integer?  Check cache! Check that cached node is not dead
 612   if (i >= _icon_min && i <= _icon_max) {
 613     ConINode* icon = _icons[i-_icon_min];
 614     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 615       return icon;
 616   }
 617   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 618   assert(icon->is_Con(), "");
 619   if (i >= _icon_min && i <= _icon_max)
 620     _icons[i-_icon_min] = icon;   // Cache small integers
 621   return icon;
 622 }
 623 
 624 //------------------------------longcon----------------------------------------
 625 // Fast long constant.
 626 ConLNode* PhaseTransform::longcon(jlong l) {
 627   // Small integer?  Check cache! Check that cached node is not dead
 628   if (l >= _lcon_min && l <= _lcon_max) {
 629     ConLNode* lcon = _lcons[l-_lcon_min];
 630     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 631       return lcon;
 632   }
 633   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 634   assert(lcon->is_Con(), "");
 635   if (l >= _lcon_min && l <= _lcon_max)
 636     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 637   return lcon;
 638 }
 639 
 640 //------------------------------zerocon-----------------------------------------
 641 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 642 ConNode* PhaseTransform::zerocon(BasicType bt) {
 643   assert((uint)bt <= _zcon_max, "domain check");
 644   ConNode* zcon = _zcons[bt];
 645   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 646     return zcon;
 647   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 648   _zcons[bt] = zcon;
 649   return zcon;
 650 }
 651 
 652 
 653 
 654 //=============================================================================
 655 //------------------------------transform--------------------------------------
 656 // Return a node which computes the same function as this node, but in a
 657 // faster or cheaper fashion.
 658 Node *PhaseGVN::transform( Node *n ) {
 659   return transform_no_reclaim(n);
 660 }
 661 
 662 //------------------------------transform--------------------------------------
 663 // Return a node which computes the same function as this node, but
 664 // in a faster or cheaper fashion.
 665 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 666   NOT_PRODUCT( set_transforms(); )
 667 
 668   // Apply the Ideal call in a loop until it no longer applies
 669   Node *k = n;
 670   NOT_PRODUCT( uint loop_count = 0; )
 671   while( 1 ) {
 672     Node *i = k->Ideal(this, /*can_reshape=*/false);
 673     if( !i ) break;
 674     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 675     k = i;
 676     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 677   }
 678   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 679 
 680 
 681   // If brand new node, make space in type array.
 682   ensure_type_or_null(k);
 683 
 684   // Since I just called 'Value' to compute the set of run-time values
 685   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 686   // cache Value.  Later requests for the local phase->type of this Node can
 687   // use the cached Value instead of suffering with 'bottom_type'.
 688   const Type *t = k->Value(this); // Get runtime Value set
 689   assert(t != NULL, "value sanity");
 690   if (type_or_null(k) != t) {
 691 #ifndef PRODUCT
 692     // Do not count initial visit to node as a transformation
 693     if (type_or_null(k) == NULL) {
 694       inc_new_values();
 695       set_progress();
 696     }
 697 #endif
 698     set_type(k, t);
 699     // If k is a TypeNode, capture any more-precise type permanently into Node
 700     k->raise_bottom_type(t);
 701   }
 702 
 703   if( t->singleton() && !k->is_Con() ) {
 704     NOT_PRODUCT( set_progress(); )
 705     return makecon(t);          // Turn into a constant
 706   }
 707 
 708   // Now check for Identities
 709   Node *i = k->Identity(this);  // Look for a nearby replacement
 710   if( i != k ) {                // Found? Return replacement!
 711     NOT_PRODUCT( set_progress(); )
 712     return i;
 713   }
 714 
 715   // Global Value Numbering
 716   i = hash_find_insert(k);      // Insert if new
 717   if( i && (i != k) ) {
 718     // Return the pre-existing node
 719     NOT_PRODUCT( set_progress(); )
 720     return i;
 721   }
 722 
 723   // Return Idealized original
 724   return k;
 725 }
 726 
 727 #ifdef ASSERT
 728 //------------------------------dead_loop_check--------------------------------
 729 // Check for a simple dead loop when a data node references itself directly
 730 // or through an other data node excluding cons and phis.
 731 void PhaseGVN::dead_loop_check( Node *n ) {
 732   // Phi may reference itself in a loop
 733   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 734     // Do 2 levels check and only data inputs.
 735     bool no_dead_loop = true;
 736     uint cnt = n->req();
 737     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 738       Node *in = n->in(i);
 739       if (in == n) {
 740         no_dead_loop = false;
 741       } else if (in != NULL && !in->is_dead_loop_safe()) {
 742         uint icnt = in->req();
 743         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 744           if (in->in(j) == n || in->in(j) == in)
 745             no_dead_loop = false;
 746         }
 747       }
 748     }
 749     if (!no_dead_loop) n->dump(3);
 750     assert(no_dead_loop, "dead loop detected");
 751   }
 752 }
 753 #endif
 754 
 755 //=============================================================================
 756 //------------------------------PhaseIterGVN-----------------------------------
 757 // Initialize hash table to fresh and clean for +VerifyOpto
 758 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 759                                                                       _delay_transform(false) {
 760 }
 761 
 762 //------------------------------PhaseIterGVN-----------------------------------
 763 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 764 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 765                                                    _worklist( igvn->_worklist ),
 766                                                    _delay_transform(igvn->_delay_transform)
 767 {
 768 }
 769 
 770 //------------------------------PhaseIterGVN-----------------------------------
 771 // Initialize with previous PhaseGVN info from Parser
 772 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 773                                               _worklist(*C->for_igvn()),
 774                                               _delay_transform(false)
 775 {
 776   uint max;
 777 
 778   // Dead nodes in the hash table inherited from GVN were not treated as
 779   // roots during def-use info creation; hence they represent an invisible
 780   // use.  Clear them out.
 781   max = _table.size();
 782   for( uint i = 0; i < max; ++i ) {
 783     Node *n = _table.at(i);
 784     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 785       if( n->is_top() ) continue;
 786       assert( false, "Parse::remove_useless_nodes missed this node");
 787       hash_delete(n);
 788     }
 789   }
 790 
 791   // Any Phis or Regions on the worklist probably had uses that could not
 792   // make more progress because the uses were made while the Phis and Regions
 793   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 794   max = _worklist.size();
 795   for( uint j = 0; j < max; j++ ) {
 796     Node *n = _worklist.at(j);
 797     uint uop = n->Opcode();
 798     if( uop == Op_Phi || uop == Op_Region ||
 799         n->is_Type() ||
 800         n->is_Mem() )
 801       add_users_to_worklist(n);
 802   }
 803 }
 804 
 805 
 806 #ifndef PRODUCT
 807 void PhaseIterGVN::verify_step(Node* n) {
 808   _verify_window[_verify_counter % _verify_window_size] = n;
 809   ++_verify_counter;
 810   ResourceMark rm;
 811   ResourceArea *area = Thread::current()->resource_area();
 812   VectorSet old_space(area), new_space(area);
 813   if (C->unique() < 1000 ||
 814       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 815     ++_verify_full_passes;
 816     Node::verify_recur(C->root(), -1, old_space, new_space);
 817   }
 818   const int verify_depth = 4;
 819   for ( int i = 0; i < _verify_window_size; i++ ) {
 820     Node* n = _verify_window[i];
 821     if ( n == NULL )  continue;
 822     if( n->in(0) == NodeSentinel ) {  // xform_idom
 823       _verify_window[i] = n->in(1);
 824       --i; continue;
 825     }
 826     // Typical fanout is 1-2, so this call visits about 6 nodes.
 827     Node::verify_recur(n, verify_depth, old_space, new_space);
 828   }
 829 }
 830 #endif
 831 
 832 
 833 //------------------------------init_worklist----------------------------------
 834 // Initialize worklist for each node.
 835 void PhaseIterGVN::init_worklist( Node *n ) {
 836   if( _worklist.member(n) ) return;
 837   _worklist.push(n);
 838   uint cnt = n->req();
 839   for( uint i =0 ; i < cnt; i++ ) {
 840     Node *m = n->in(i);
 841     if( m ) init_worklist(m);
 842   }
 843 }
 844 
 845 //------------------------------optimize---------------------------------------
 846 void PhaseIterGVN::optimize() {
 847   debug_only(uint num_processed  = 0;);
 848 #ifndef PRODUCT
 849   {
 850     _verify_counter = 0;
 851     _verify_full_passes = 0;
 852     for ( int i = 0; i < _verify_window_size; i++ ) {
 853       _verify_window[i] = NULL;
 854     }
 855   }
 856 #endif
 857 
 858 #ifdef ASSERT
 859   Node* prev = NULL;
 860   uint rep_cnt = 0;
 861 #endif
 862   uint loop_count = 0;
 863 
 864   // Pull from worklist; transform node;
 865   // If node has changed: update edge info and put uses on worklist.
 866   while( _worklist.size() ) {
 867     Node *n  = _worklist.pop();
 868     if (++loop_count >= K * C->unique()) {
 869       debug_only(n->dump(4);)
 870       assert(false, "infinite loop in PhaseIterGVN::optimize");
 871       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
 872       return;
 873     }
 874 #ifdef ASSERT
 875     if (n == prev) {
 876       if (++rep_cnt > 3) {
 877         n->dump(4);
 878         assert(false, "loop in Ideal transformation");
 879       }
 880     } else {
 881       rep_cnt = 0;
 882     }
 883     prev = n;
 884 #endif
 885     if (TraceIterativeGVN && Verbose) {
 886       tty->print("  Pop ");
 887       NOT_PRODUCT( n->dump(); )
 888       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
 889     }
 890 
 891     if (n->outcnt() != 0) {
 892 
 893 #ifndef PRODUCT
 894       uint wlsize = _worklist.size();
 895       const Type* oldtype = type_or_null(n);
 896 #endif //PRODUCT
 897 
 898       Node *nn = transform_old(n);
 899 
 900 #ifndef PRODUCT
 901       if (TraceIterativeGVN) {
 902         const Type* newtype = type_or_null(n);
 903         if (nn != n) {
 904           // print old node
 905           tty->print("< ");
 906           if (oldtype != newtype && oldtype != NULL) {
 907             oldtype->dump();
 908           }
 909           do { tty->print("\t"); } while (tty->position() < 16);
 910           tty->print("<");
 911           n->dump();
 912         }
 913         if (oldtype != newtype || nn != n) {
 914           // print new node and/or new type
 915           if (oldtype == NULL) {
 916             tty->print("* ");
 917           } else if (nn != n) {
 918             tty->print("> ");
 919           } else {
 920             tty->print("= ");
 921           }
 922           if (newtype == NULL) {
 923             tty->print("null");
 924           } else {
 925             newtype->dump();
 926           }
 927           do { tty->print("\t"); } while (tty->position() < 16);
 928           nn->dump();
 929         }
 930         if (Verbose && wlsize < _worklist.size()) {
 931           tty->print("  Push {");
 932           while (wlsize != _worklist.size()) {
 933             Node* pushed = _worklist.at(wlsize++);
 934             tty->print(" %d", pushed->_idx);
 935           }
 936           tty->print_cr(" }");
 937         }
 938       }
 939       if( VerifyIterativeGVN && nn != n ) {
 940         verify_step((Node*) NULL);  // ignore n, it might be subsumed
 941       }
 942 #endif
 943     } else if (!n->is_top()) {
 944       remove_dead_node(n);
 945     }
 946   }
 947 
 948 #ifndef PRODUCT
 949   C->verify_graph_edges();
 950   if( VerifyOpto && allow_progress() ) {
 951     // Must turn off allow_progress to enable assert and break recursion
 952     C->root()->verify();
 953     { // Check if any progress was missed using IterGVN
 954       // Def-Use info enables transformations not attempted in wash-pass
 955       // e.g. Region/Phi cleanup, ...
 956       // Null-check elision -- may not have reached fixpoint
 957       //                       do not propagate to dominated nodes
 958       ResourceMark rm;
 959       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
 960       // Fill worklist completely
 961       igvn2.init_worklist(C->root());
 962 
 963       igvn2.set_allow_progress(false);
 964       igvn2.optimize();
 965       igvn2.set_allow_progress(true);
 966     }
 967   }
 968   if ( VerifyIterativeGVN && PrintOpto ) {
 969     if ( _verify_counter == _verify_full_passes )
 970       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
 971                     _verify_full_passes);
 972     else
 973       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
 974                   _verify_counter, _verify_full_passes);
 975   }
 976 #endif
 977 }
 978 
 979 
 980 //------------------register_new_node_with_optimizer---------------------------
 981 // Register a new node with the optimizer.  Update the types array, the def-use
 982 // info.  Put on worklist.
 983 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
 984   set_type_bottom(n);
 985   _worklist.push(n);
 986   if (orig != NULL)  C->copy_node_notes_to(n, orig);
 987   return n;
 988 }
 989 
 990 //------------------------------transform--------------------------------------
 991 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
 992 Node *PhaseIterGVN::transform( Node *n ) {
 993   if (_delay_transform) {
 994     // Register the node but don't optimize for now
 995     register_new_node_with_optimizer(n);
 996     return n;
 997   }
 998 
 999   // If brand new node, make space in type array, and give it a type.
1000   ensure_type_or_null(n);
1001   if (type_or_null(n) == NULL) {
1002     set_type_bottom(n);
1003   }
1004 
1005   return transform_old(n);
1006 }
1007 
1008 //------------------------------transform_old----------------------------------
1009 Node *PhaseIterGVN::transform_old( Node *n ) {
1010 #ifndef PRODUCT
1011   debug_only(uint loop_count = 0;);
1012   set_transforms();
1013 #endif
1014   // Remove 'n' from hash table in case it gets modified
1015   _table.hash_delete(n);
1016   if( VerifyIterativeGVN ) {
1017    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
1018   }
1019 
1020   // Apply the Ideal call in a loop until it no longer applies
1021   Node *k = n;
1022   DEBUG_ONLY(dead_loop_check(k);)
1023   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1024   Node *i = k->Ideal(this, /*can_reshape=*/true);
1025   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1026 #ifndef PRODUCT
1027   if( VerifyIterativeGVN )
1028     verify_step(k);
1029   if( i && VerifyOpto ) {
1030     if( !allow_progress() ) {
1031       if (i->is_Add() && i->outcnt() == 1) {
1032         // Switched input to left side because this is the only use
1033       } else if( i->is_If() && (i->in(0) == NULL) ) {
1034         // This IF is dead because it is dominated by an equivalent IF When
1035         // dominating if changed, info is not propagated sparsely to 'this'
1036         // Propagating this info further will spuriously identify other
1037         // progress.
1038         return i;
1039       } else
1040         set_progress();
1041     } else
1042       set_progress();
1043   }
1044 #endif
1045 
1046   while( i ) {
1047 #ifndef PRODUCT
1048     debug_only( if( loop_count >= K ) i->dump(4); )
1049     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
1050     debug_only( loop_count++; )
1051 #endif
1052     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1053     // Made a change; put users of original Node on worklist
1054     add_users_to_worklist( k );
1055     // Replacing root of transform tree?
1056     if( k != i ) {
1057       // Make users of old Node now use new.
1058       subsume_node( k, i );
1059       k = i;
1060     }
1061     DEBUG_ONLY(dead_loop_check(k);)
1062     // Try idealizing again
1063     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1064     i = k->Ideal(this, /*can_reshape=*/true);
1065     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1066 #ifndef PRODUCT
1067     if( VerifyIterativeGVN )
1068       verify_step(k);
1069     if( i && VerifyOpto ) set_progress();
1070 #endif
1071   }
1072 
1073   // If brand new node, make space in type array.
1074   ensure_type_or_null(k);
1075 
1076   // See what kind of values 'k' takes on at runtime
1077   const Type *t = k->Value(this);
1078   assert(t != NULL, "value sanity");
1079 
1080   // Since I just called 'Value' to compute the set of run-time values
1081   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1082   // cache Value.  Later requests for the local phase->type of this Node can
1083   // use the cached Value instead of suffering with 'bottom_type'.
1084   if (t != type_or_null(k)) {
1085     NOT_PRODUCT( set_progress(); )
1086     NOT_PRODUCT( inc_new_values();)
1087     set_type(k, t);
1088     // If k is a TypeNode, capture any more-precise type permanently into Node
1089     k->raise_bottom_type(t);
1090     // Move users of node to worklist
1091     add_users_to_worklist( k );
1092   }
1093 
1094   // If 'k' computes a constant, replace it with a constant
1095   if( t->singleton() && !k->is_Con() ) {
1096     NOT_PRODUCT( set_progress(); )
1097     Node *con = makecon(t);     // Make a constant
1098     add_users_to_worklist( k );
1099     subsume_node( k, con );     // Everybody using k now uses con
1100     return con;
1101   }
1102 
1103   // Now check for Identities
1104   i = k->Identity(this);        // Look for a nearby replacement
1105   if( i != k ) {                // Found? Return replacement!
1106     NOT_PRODUCT( set_progress(); )
1107     add_users_to_worklist( k );
1108     subsume_node( k, i );       // Everybody using k now uses i
1109     return i;
1110   }
1111 
1112   // Global Value Numbering
1113   i = hash_find_insert(k);      // Check for pre-existing node
1114   if( i && (i != k) ) {
1115     // Return the pre-existing node if it isn't dead
1116     NOT_PRODUCT( set_progress(); )
1117     add_users_to_worklist( k );
1118     subsume_node( k, i );       // Everybody using k now uses i
1119     return i;
1120   }
1121 
1122   // Return Idealized original
1123   return k;
1124 }
1125 
1126 //---------------------------------saturate------------------------------------
1127 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1128                                    const Type* limit_type) const {
1129   return new_type->narrow(old_type);
1130 }
1131 
1132 //------------------------------remove_globally_dead_node----------------------
1133 // Kill a globally dead Node.  All uses are also globally dead and are
1134 // aggressively trimmed.
1135 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1136   assert(dead != C->root(), "killing root, eh?");
1137   if (dead->is_top())  return;
1138   NOT_PRODUCT( set_progress(); )
1139   // Remove from iterative worklist
1140   _worklist.remove(dead);
1141   if (!dead->is_Con()) { // Don't kill cons but uses
1142     // Remove from hash table
1143     _table.hash_delete( dead );
1144     // Smash all inputs to 'dead', isolating him completely
1145     for( uint i = 0; i < dead->req(); i++ ) {
1146       Node *in = dead->in(i);
1147       if( in ) {                 // Points to something?
1148         dead->set_req(i,NULL);  // Kill the edge
1149         if (in->outcnt() == 0 && in != C->top()) {// Made input go dead?
1150           remove_dead_node(in); // Recursively remove
1151         } else if (in->outcnt() == 1 &&
1152                    in->has_special_unique_user()) {
1153           _worklist.push(in->unique_out());
1154         } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1155           if( in->Opcode() == Op_Region )
1156             _worklist.push(in);
1157           else if( in->is_Store() ) {
1158             DUIterator_Fast imax, i = in->fast_outs(imax);
1159             _worklist.push(in->fast_out(i));
1160             i++;
1161             if(in->outcnt() == 2) {
1162               _worklist.push(in->fast_out(i));
1163               i++;
1164             }
1165             assert(!(i < imax), "sanity");
1166           }
1167         }
1168       }
1169     }
1170 
1171     if (dead->is_macro()) {
1172       C->remove_macro_node(dead);
1173     }
1174   }
1175   // Aggressively kill globally dead uses
1176   // (Cannot use DUIterator_Last because of the indefinite number
1177   // of edge deletions per loop trip.)
1178   while (dead->outcnt() > 0) {
1179     remove_globally_dead_node(dead->raw_out(0));
1180   }
1181 }
1182 
1183 //------------------------------subsume_node-----------------------------------
1184 // Remove users from node 'old' and add them to node 'nn'.
1185 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1186   assert( old != hash_find(old), "should already been removed" );
1187   assert( old != C->top(), "cannot subsume top node");
1188   // Copy debug or profile information to the new version:
1189   C->copy_node_notes_to(nn, old);
1190   // Move users of node 'old' to node 'nn'
1191   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1192     Node* use = old->last_out(i);  // for each use...
1193     // use might need re-hashing (but it won't if it's a new node)
1194     bool is_in_table = _table.hash_delete( use );
1195     // Update use-def info as well
1196     // We remove all occurrences of old within use->in,
1197     // so as to avoid rehashing any node more than once.
1198     // The hash table probe swamps any outer loop overhead.
1199     uint num_edges = 0;
1200     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1201       if (use->in(j) == old) {
1202         use->set_req(j, nn);
1203         ++num_edges;
1204       }
1205     }
1206     // Insert into GVN hash table if unique
1207     // If a duplicate, 'use' will be cleaned up when pulled off worklist
1208     if( is_in_table ) {
1209       hash_find_insert(use);
1210     }
1211     i -= num_edges;    // we deleted 1 or more copies of this edge
1212   }
1213 
1214   // Smash all inputs to 'old', isolating him completely
1215   Node *temp = new (C, 1) Node(1);
1216   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1217   remove_dead_node( old );
1218   temp->del_req(0);         // Yank bogus edge
1219 #ifndef PRODUCT
1220   if( VerifyIterativeGVN ) {
1221     for ( int i = 0; i < _verify_window_size; i++ ) {
1222       if ( _verify_window[i] == old )
1223         _verify_window[i] = nn;
1224     }
1225   }
1226 #endif
1227   _worklist.remove(temp);   // this can be necessary
1228   temp->destruct();         // reuse the _idx of this little guy
1229 }
1230 
1231 //------------------------------add_users_to_worklist--------------------------
1232 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1233   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1234     _worklist.push(n->fast_out(i));  // Push on worklist
1235   }
1236 }
1237 
1238 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1239   add_users_to_worklist0(n);
1240 
1241   // Move users of node to worklist
1242   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1243     Node* use = n->fast_out(i); // Get use
1244 
1245     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1246         use->is_Store() )       // Enable store/load same address
1247       add_users_to_worklist0(use);
1248 
1249     // If we changed the receiver type to a call, we need to revisit
1250     // the Catch following the call.  It's looking for a non-NULL
1251     // receiver to know when to enable the regular fall-through path
1252     // in addition to the NullPtrException path.
1253     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1254       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1255       if (p != NULL) {
1256         add_users_to_worklist0(p);
1257       }
1258     }
1259 
1260     if( use->is_Cmp() ) {       // Enable CMP/BOOL optimization
1261       add_users_to_worklist(use); // Put Bool on worklist
1262       // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1263       // phi merging either 0 or 1 onto the worklist
1264       if (use->outcnt() > 0) {
1265         Node* bol = use->raw_out(0);
1266         if (bol->outcnt() > 0) {
1267           Node* iff = bol->raw_out(0);
1268           if (iff->outcnt() == 2) {
1269             Node* ifproj0 = iff->raw_out(0);
1270             Node* ifproj1 = iff->raw_out(1);
1271             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1272               Node* region0 = ifproj0->raw_out(0);
1273               Node* region1 = ifproj1->raw_out(0);
1274               if( region0 == region1 )
1275                 add_users_to_worklist0(region0);
1276             }
1277           }
1278         }
1279       }
1280     }
1281 
1282     uint use_op = use->Opcode();
1283     // If changed Cast input, check Phi users for simple cycles
1284     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
1285       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1286         Node* u = use->fast_out(i2);
1287         if (u->is_Phi())
1288           _worklist.push(u);
1289       }
1290     }
1291     // If changed LShift inputs, check RShift users for useless sign-ext
1292     if( use_op == Op_LShiftI ) {
1293       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1294         Node* u = use->fast_out(i2);
1295         if (u->Opcode() == Op_RShiftI)
1296           _worklist.push(u);
1297       }
1298     }
1299     // If changed AddP inputs, check Stores for loop invariant
1300     if( use_op == Op_AddP ) {
1301       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1302         Node* u = use->fast_out(i2);
1303         if (u->is_Mem())
1304           _worklist.push(u);
1305       }
1306     }
1307     // If changed initialization activity, check dependent Stores
1308     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1309       InitializeNode* init = use->as_Allocate()->initialization();
1310       if (init != NULL) {
1311         Node* imem = init->proj_out(TypeFunc::Memory);
1312         if (imem != NULL)  add_users_to_worklist0(imem);
1313       }
1314     }
1315     if (use_op == Op_Initialize) {
1316       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1317       if (imem != NULL)  add_users_to_worklist0(imem);
1318     }
1319   }
1320 }
1321 
1322 //=============================================================================
1323 #ifndef PRODUCT
1324 uint PhaseCCP::_total_invokes   = 0;
1325 uint PhaseCCP::_total_constants = 0;
1326 #endif
1327 //------------------------------PhaseCCP---------------------------------------
1328 // Conditional Constant Propagation, ala Wegman & Zadeck
1329 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1330   NOT_PRODUCT( clear_constants(); )
1331   assert( _worklist.size() == 0, "" );
1332   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1333   _nodes.clear();               // Clear out from IterGVN
1334   analyze();
1335 }
1336 
1337 #ifndef PRODUCT
1338 //------------------------------~PhaseCCP--------------------------------------
1339 PhaseCCP::~PhaseCCP() {
1340   inc_invokes();
1341   _total_constants += count_constants();
1342 }
1343 #endif
1344 
1345 
1346 #ifdef ASSERT
1347 static bool ccp_type_widens(const Type* t, const Type* t0) {
1348   assert(t->meet(t0) == t, "Not monotonic");
1349   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1350   case Type::Int:
1351     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1352     break;
1353   case Type::Long:
1354     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1355     break;
1356   }
1357   return true;
1358 }
1359 #endif //ASSERT
1360 
1361 //------------------------------analyze----------------------------------------
1362 void PhaseCCP::analyze() {
1363   // Initialize all types to TOP, optimistic analysis
1364   for (int i = C->unique() - 1; i >= 0; i--)  {
1365     _types.map(i,Type::TOP);
1366   }
1367 
1368   // Push root onto worklist
1369   Unique_Node_List worklist;
1370   worklist.push(C->root());
1371 
1372   // Pull from worklist; compute new value; push changes out.
1373   // This loop is the meat of CCP.
1374   while( worklist.size() ) {
1375     Node *n = worklist.pop();
1376     const Type *t = n->Value(this);
1377     if (t != type(n)) {
1378       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1379 #ifndef PRODUCT
1380       if( TracePhaseCCP ) {
1381         t->dump();
1382         do { tty->print("\t"); } while (tty->position() < 16);
1383         n->dump();
1384       }
1385 #endif
1386       set_type(n, t);
1387       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1388         Node* m = n->fast_out(i);   // Get user
1389         if( m->is_Region() ) {  // New path to Region?  Must recheck Phis too
1390           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1391             Node* p = m->fast_out(i2); // Propagate changes to uses
1392             if( p->bottom_type() != type(p) ) // If not already bottomed out
1393               worklist.push(p); // Propagate change to user
1394           }
1395         }
1396         // If we changed the receiver type to a call, we need to revisit
1397         // the Catch following the call.  It's looking for a non-NULL
1398         // receiver to know when to enable the regular fall-through path
1399         // in addition to the NullPtrException path
1400         if (m->is_Call()) {
1401           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1402             Node* p = m->fast_out(i2);  // Propagate changes to uses
1403             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
1404               worklist.push(p->unique_out());
1405           }
1406         }
1407         if( m->bottom_type() != type(m) ) // If not already bottomed out
1408           worklist.push(m);     // Propagate change to user
1409       }
1410     }
1411   }
1412 }
1413 
1414 //------------------------------do_transform-----------------------------------
1415 // Top level driver for the recursive transformer
1416 void PhaseCCP::do_transform() {
1417   // Correct leaves of new-space Nodes; they point to old-space.
1418   C->set_root( transform(C->root())->as_Root() );
1419   assert( C->top(),  "missing TOP node" );
1420   assert( C->root(), "missing root" );
1421 }
1422 
1423 //------------------------------transform--------------------------------------
1424 // Given a Node in old-space, clone him into new-space.
1425 // Convert any of his old-space children into new-space children.
1426 Node *PhaseCCP::transform( Node *n ) {
1427   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1428   if( new_node != NULL )
1429     return new_node;                // Been there, done that, return old answer
1430   new_node = transform_once(n);     // Check for constant
1431   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1432 
1433   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1434   GrowableArray <Node *> trstack(C->unique() >> 1);
1435 
1436   trstack.push(new_node);           // Process children of cloned node
1437   while ( trstack.is_nonempty() ) {
1438     Node *clone = trstack.pop();
1439     uint cnt = clone->req();
1440     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1441       Node *input = clone->in(i);
1442       if( input != NULL ) {                    // Ignore NULLs
1443         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1444         if( new_input == NULL ) {
1445           new_input = transform_once(input);   // Check for constant
1446           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1447           trstack.push(new_input);
1448         }
1449         assert( new_input == clone->in(i), "insanity check");
1450       }
1451     }
1452   }
1453   return new_node;
1454 }
1455 
1456 
1457 //------------------------------transform_once---------------------------------
1458 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1459 Node *PhaseCCP::transform_once( Node *n ) {
1460   const Type *t = type(n);
1461   // Constant?  Use constant Node instead
1462   if( t->singleton() ) {
1463     Node *nn = n;               // Default is to return the original constant
1464     if( t == Type::TOP ) {
1465       // cache my top node on the Compile instance
1466       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1467         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
1468         set_type(C->top(), Type::TOP);
1469       }
1470       nn = C->top();
1471     }
1472     if( !n->is_Con() ) {
1473       if( t != Type::TOP ) {
1474         nn = makecon(t);        // ConNode::make(t);
1475         NOT_PRODUCT( inc_constants(); )
1476       } else if( n->is_Region() ) { // Unreachable region
1477         // Note: nn == C->top()
1478         n->set_req(0, NULL);        // Cut selfreference
1479         // Eagerly remove dead phis to avoid phis copies creation.
1480         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1481           Node* m = n->out(i);
1482           if( m->is_Phi() ) {
1483             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1484             replace_node(m, nn);
1485             --i; // deleted this phi; rescan starting with next position
1486           }
1487         }
1488       }
1489       replace_node(n,nn);       // Update DefUse edges for new constant
1490     }
1491     return nn;
1492   }
1493 
1494   // If x is a TypeNode, capture any more-precise type permanently into Node
1495   if (t != n->bottom_type()) {
1496     hash_delete(n);             // changing bottom type may force a rehash
1497     n->raise_bottom_type(t);
1498     _worklist.push(n);          // n re-enters the hash table via the worklist
1499   }
1500 
1501   // Idealize graph using DU info.  Must clone() into new-space.
1502   // DU info is generally used to show profitability, progress or safety
1503   // (but generally not needed for correctness).
1504   Node *nn = n->Ideal_DU_postCCP(this);
1505 
1506   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1507   switch( n->Opcode() ) {
1508   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1509   case Op_If:
1510   case Op_CountedLoopEnd:
1511   case Op_Region:
1512   case Op_Loop:
1513   case Op_CountedLoop:
1514   case Op_Conv2B:
1515   case Op_Opaque1:
1516   case Op_Opaque2:
1517     _worklist.push(n);
1518     break;
1519   default:
1520     break;
1521   }
1522   if( nn ) {
1523     _worklist.push(n);
1524     // Put users of 'n' onto worklist for second igvn transform
1525     add_users_to_worklist(n);
1526     return nn;
1527   }
1528 
1529   return  n;
1530 }
1531 
1532 //---------------------------------saturate------------------------------------
1533 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1534                                const Type* limit_type) const {
1535   const Type* wide_type = new_type->widen(old_type, limit_type);
1536   if (wide_type != new_type) {          // did we widen?
1537     // If so, we may have widened beyond the limit type.  Clip it back down.
1538     new_type = wide_type->filter(limit_type);
1539   }
1540   return new_type;
1541 }
1542 
1543 //------------------------------print_statistics-------------------------------
1544 #ifndef PRODUCT
1545 void PhaseCCP::print_statistics() {
1546   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1547 }
1548 #endif
1549 
1550 
1551 //=============================================================================
1552 #ifndef PRODUCT
1553 uint PhasePeephole::_total_peepholes = 0;
1554 #endif
1555 //------------------------------PhasePeephole----------------------------------
1556 // Conditional Constant Propagation, ala Wegman & Zadeck
1557 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1558   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1559   NOT_PRODUCT( clear_peepholes(); )
1560 }
1561 
1562 #ifndef PRODUCT
1563 //------------------------------~PhasePeephole---------------------------------
1564 PhasePeephole::~PhasePeephole() {
1565   _total_peepholes += count_peepholes();
1566 }
1567 #endif
1568 
1569 //------------------------------transform--------------------------------------
1570 Node *PhasePeephole::transform( Node *n ) {
1571   ShouldNotCallThis();
1572   return NULL;
1573 }
1574 
1575 //------------------------------do_transform-----------------------------------
1576 void PhasePeephole::do_transform() {
1577   bool method_name_not_printed = true;
1578 
1579   // Examine each basic block
1580   for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) {
1581     Block *block = _cfg._blocks[block_number];
1582     bool block_not_printed = true;
1583 
1584     // and each instruction within a block
1585     uint end_index = block->_nodes.size();
1586     // block->end_idx() not valid after PhaseRegAlloc
1587     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1588       Node     *n = block->_nodes.at(instruction_index);
1589       if( n->is_Mach() ) {
1590         MachNode *m = n->as_Mach();
1591         int deleted_count = 0;
1592         // check for peephole opportunities
1593         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
1594         if( m2 != NULL ) {
1595 #ifndef PRODUCT
1596           if( PrintOptoPeephole ) {
1597             // Print method, first time only
1598             if( C->method() && method_name_not_printed ) {
1599               C->method()->print_short_name(); tty->cr();
1600               method_name_not_printed = false;
1601             }
1602             // Print this block
1603             if( Verbose && block_not_printed) {
1604               tty->print_cr("in block");
1605               block->dump();
1606               block_not_printed = false;
1607             }
1608             // Print instructions being deleted
1609             for( int i = (deleted_count - 1); i >= 0; --i ) {
1610               block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1611             }
1612             tty->print_cr("replaced with");
1613             // Print new instruction
1614             m2->format(_regalloc);
1615             tty->print("\n\n");
1616           }
1617 #endif
1618           // Remove old nodes from basic block and update instruction_index
1619           // (old nodes still exist and may have edges pointing to them
1620           //  as register allocation info is stored in the allocator using
1621           //  the node index to live range mappings.)
1622           uint safe_instruction_index = (instruction_index - deleted_count);
1623           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1624             block->_nodes.remove( instruction_index );
1625           }
1626           // install new node after safe_instruction_index
1627           block->_nodes.insert( safe_instruction_index + 1, m2 );
1628           end_index = block->_nodes.size() - 1; // Recompute new block size
1629           NOT_PRODUCT( inc_peepholes(); )
1630         }
1631       }
1632     }
1633   }
1634 }
1635 
1636 //------------------------------print_statistics-------------------------------
1637 #ifndef PRODUCT
1638 void PhasePeephole::print_statistics() {
1639   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1640 }
1641 #endif
1642 
1643 
1644 //=============================================================================
1645 //------------------------------set_req_X--------------------------------------
1646 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1647   assert( is_not_dead(n), "can not use dead node");
1648   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1649   Node *old = in(i);
1650   set_req(i, n);
1651 
1652   // old goes dead?
1653   if( old ) {
1654     switch (old->outcnt()) {
1655     case 0:
1656       // Put into the worklist to kill later. We do not kill it now because the
1657       // recursive kill will delete the current node (this) if dead-loop exists
1658       if (!old->is_top())
1659         igvn->_worklist.push( old );
1660       break;
1661     case 1:
1662       if( old->is_Store() || old->has_special_unique_user() )
1663         igvn->add_users_to_worklist( old );
1664       break;
1665     case 2:
1666       if( old->is_Store() )
1667         igvn->add_users_to_worklist( old );
1668       if( old->Opcode() == Op_Region )
1669         igvn->_worklist.push(old);
1670       break;
1671     case 3:
1672       if( old->Opcode() == Op_Region ) {
1673         igvn->_worklist.push(old);
1674         igvn->add_users_to_worklist( old );
1675       }
1676       break;
1677     default:
1678       break;
1679     }
1680   }
1681 
1682 }
1683 
1684 //-------------------------------replace_by-----------------------------------
1685 // Using def-use info, replace one node for another.  Follow the def-use info
1686 // to all users of the OLD node.  Then make all uses point to the NEW node.
1687 void Node::replace_by(Node *new_node) {
1688   assert(!is_top(), "top node has no DU info");
1689   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1690     Node* use = last_out(i);
1691     uint uses_found = 0;
1692     for (uint j = 0; j < use->len(); j++) {
1693       if (use->in(j) == this) {
1694         if (j < use->req())
1695               use->set_req(j, new_node);
1696         else  use->set_prec(j, new_node);
1697         uses_found++;
1698       }
1699     }
1700     i -= uses_found;    // we deleted 1 or more copies of this edge
1701   }
1702 }
1703 
1704 //=============================================================================
1705 //-----------------------------------------------------------------------------
1706 void Type_Array::grow( uint i ) {
1707   if( !_max ) {
1708     _max = 1;
1709     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
1710     _types[0] = NULL;
1711   }
1712   uint old = _max;
1713   while( i >= _max ) _max <<= 1;        // Double to fit
1714   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
1715   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
1716 }
1717 
1718 //------------------------------dump-------------------------------------------
1719 #ifndef PRODUCT
1720 void Type_Array::dump() const {
1721   uint max = Size();
1722   for( uint i = 0; i < max; i++ ) {
1723     if( _types[i] != NULL ) {
1724       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
1725     }
1726   }
1727 }
1728 #endif