1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 
  84 
  85 // For debugging purposes:
  86 //  To force FullGCALot inside a runtime function, add the following two lines
  87 //
  88 //  Universe::release_fullgc_alot_dummy();
  89 //  MarkSweep::invoke(0, "Debugging");
  90 //
  91 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  92 
  93 
  94 
  95 
  96 // Compiled code entry points
  97 address OptoRuntime::_new_instance_Java                           = NULL;
  98 address OptoRuntime::_new_array_Java                              = NULL;
  99 address OptoRuntime::_multianewarray2_Java                        = NULL;
 100 address OptoRuntime::_multianewarray3_Java                        = NULL;
 101 address OptoRuntime::_multianewarray4_Java                        = NULL;
 102 address OptoRuntime::_multianewarray5_Java                        = NULL;
 103 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 104 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 105 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 106 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 107 address OptoRuntime::_rethrow_Java                                = NULL;
 108 
 109 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 110 address OptoRuntime::_register_finalizer_Java                     = NULL;
 111 
 112 # ifdef ENABLE_ZAP_DEAD_LOCALS
 113 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 114 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 115 # endif
 116 
 117 
 118 // This should be called in an assertion at the start of OptoRuntime routines
 119 // which are entered from compiled code (all of them)
 120 #ifndef PRODUCT
 121 static bool check_compiled_frame(JavaThread* thread) {
 122   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 123 #ifdef ASSERT
 124   RegisterMap map(thread, false);
 125   frame caller = thread->last_frame().sender(&map);
 126   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 127 #endif  /* ASSERT */
 128   return true;
 129 }
 130 #endif
 131 
 132 
 133 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 134   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
 135 
 136 void OptoRuntime::generate(ciEnv* env) {
 137 
 138   generate_exception_blob();
 139 
 140   // Note: tls: Means fetching the return oop out of the thread-local storage
 141   //
 142   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 143   // -------------------------------------------------------------------------------------------------------------------------------
 144   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 145   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 146   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 147   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 148   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 149   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 150   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 151   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 152   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
 153   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 154 
 155   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 156   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 157 
 158 # ifdef ENABLE_ZAP_DEAD_LOCALS
 159   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 160   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 161 # endif
 162 
 163 }
 164 
 165 #undef gen
 166 
 167 
 168 // Helper method to do generation of RunTimeStub's
 169 address OptoRuntime::generate_stub( ciEnv* env,
 170                                     TypeFunc_generator gen, address C_function,
 171                                     const char *name, int is_fancy_jump,
 172                                     bool pass_tls,
 173                                     bool save_argument_registers,
 174                                     bool return_pc ) {
 175   ResourceMark rm;
 176   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 177   return  C.stub_entry_point();
 178 }
 179 
 180 const char* OptoRuntime::stub_name(address entry) {
 181 #ifndef PRODUCT
 182   CodeBlob* cb = CodeCache::find_blob(entry);
 183   RuntimeStub* rs =(RuntimeStub *)cb;
 184   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 185   return rs->name();
 186 #else
 187   // Fast implementation for product mode (maybe it should be inlined too)
 188   return "runtime stub";
 189 #endif
 190 }
 191 
 192 
 193 //=============================================================================
 194 // Opto compiler runtime routines
 195 //=============================================================================
 196 
 197 
 198 //=============================allocation======================================
 199 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 200 // and try allocation again.
 201 
 202 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 203   // After any safepoint, just before going back to compiled code,
 204   // we inform the GC that we will be doing initializing writes to
 205   // this object in the future without emitting card-marks, so
 206   // GC may take any compensating steps.
 207   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 208 
 209   oop new_obj = thread->vm_result();
 210   if (new_obj == NULL)  return;
 211 
 212   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 213          "compiler must check this first");
 214   // GC may decide to give back a safer copy of new_obj.
 215   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 216   thread->set_vm_result(new_obj);
 217 }
 218 
 219 // object allocation
 220 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
 221   JRT_BLOCK;
 222 #ifndef PRODUCT
 223   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 224 #endif
 225   assert(check_compiled_frame(thread), "incorrect caller");
 226 
 227   // These checks are cheap to make and support reflective allocation.
 228   int lh = Klass::cast(klass)->layout_helper();
 229   if (Klass::layout_helper_needs_slow_path(lh)
 230       || !instanceKlass::cast(klass)->is_initialized()) {
 231     KlassHandle kh(THREAD, klass);
 232     kh->check_valid_for_instantiation(false, THREAD);
 233     if (!HAS_PENDING_EXCEPTION) {
 234       instanceKlass::cast(kh())->initialize(THREAD);
 235     }
 236     if (!HAS_PENDING_EXCEPTION) {
 237       klass = kh();
 238     } else {
 239       klass = NULL;
 240     }
 241   }
 242 
 243   if (klass != NULL) {
 244     // Scavenge and allocate an instance.
 245     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
 246     thread->set_vm_result(result);
 247 
 248     // Pass oops back through thread local storage.  Our apparent type to Java
 249     // is that we return an oop, but we can block on exit from this routine and
 250     // a GC can trash the oop in C's return register.  The generated stub will
 251     // fetch the oop from TLS after any possible GC.
 252   }
 253 
 254   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 255   JRT_BLOCK_END;
 256 
 257   if (GraphKit::use_ReduceInitialCardMarks()) {
 258     // inform GC that we won't do card marks for initializing writes.
 259     new_store_pre_barrier(thread);
 260   }
 261 JRT_END
 262 
 263 
 264 // array allocation
 265 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
 266   JRT_BLOCK;
 267 #ifndef PRODUCT
 268   SharedRuntime::_new_array_ctr++;            // new array requires GC
 269 #endif
 270   assert(check_compiled_frame(thread), "incorrect caller");
 271 
 272   // Scavenge and allocate an instance.
 273   oop result;
 274 
 275   if (Klass::cast(array_type)->oop_is_typeArray()) {
 276     // The oopFactory likes to work with the element type.
 277     // (We could bypass the oopFactory, since it doesn't add much value.)
 278     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
 279     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 280   } else {
 281     // Although the oopFactory likes to work with the elem_type,
 282     // the compiler prefers the array_type, since it must already have
 283     // that latter value in hand for the fast path.
 284     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
 285     result = oopFactory::new_objArray(elem_type, len, THREAD);
 286   }
 287 
 288   // Pass oops back through thread local storage.  Our apparent type to Java
 289   // is that we return an oop, but we can block on exit from this routine and
 290   // a GC can trash the oop in C's return register.  The generated stub will
 291   // fetch the oop from TLS after any possible GC.
 292   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 293   thread->set_vm_result(result);
 294   JRT_BLOCK_END;
 295 
 296   if (GraphKit::use_ReduceInitialCardMarks()) {
 297     // inform GC that we won't do card marks for initializing writes.
 298     new_store_pre_barrier(thread);
 299   }
 300 JRT_END
 301 
 302 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 303 
 304 // multianewarray for 2 dimensions
 305 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
 306 #ifndef PRODUCT
 307   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 308 #endif
 309   assert(check_compiled_frame(thread), "incorrect caller");
 310   assert(oop(elem_type)->is_klass(), "not a class");
 311   jint dims[2];
 312   dims[0] = len1;
 313   dims[1] = len2;
 314   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 315   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 316   thread->set_vm_result(obj);
 317 JRT_END
 318 
 319 // multianewarray for 3 dimensions
 320 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
 321 #ifndef PRODUCT
 322   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 323 #endif
 324   assert(check_compiled_frame(thread), "incorrect caller");
 325   assert(oop(elem_type)->is_klass(), "not a class");
 326   jint dims[3];
 327   dims[0] = len1;
 328   dims[1] = len2;
 329   dims[2] = len3;
 330   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 331   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 332   thread->set_vm_result(obj);
 333 JRT_END
 334 
 335 // multianewarray for 4 dimensions
 336 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 337 #ifndef PRODUCT
 338   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 339 #endif
 340   assert(check_compiled_frame(thread), "incorrect caller");
 341   assert(oop(elem_type)->is_klass(), "not a class");
 342   jint dims[4];
 343   dims[0] = len1;
 344   dims[1] = len2;
 345   dims[2] = len3;
 346   dims[3] = len4;
 347   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 348   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 349   thread->set_vm_result(obj);
 350 JRT_END
 351 
 352 // multianewarray for 5 dimensions
 353 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 354 #ifndef PRODUCT
 355   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 356 #endif
 357   assert(check_compiled_frame(thread), "incorrect caller");
 358   assert(oop(elem_type)->is_klass(), "not a class");
 359   jint dims[5];
 360   dims[0] = len1;
 361   dims[1] = len2;
 362   dims[2] = len3;
 363   dims[3] = len4;
 364   dims[4] = len5;
 365   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 366   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 367   thread->set_vm_result(obj);
 368 JRT_END
 369 
 370 const TypeFunc *OptoRuntime::new_instance_Type() {
 371   // create input type (domain)
 372   const Type **fields = TypeTuple::fields(1);
 373   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 374   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 375 
 376   // create result type (range)
 377   fields = TypeTuple::fields(1);
 378   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 379 
 380   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 381 
 382   return TypeFunc::make(domain, range);
 383 }
 384 
 385 
 386 const TypeFunc *OptoRuntime::athrow_Type() {
 387   // create input type (domain)
 388   const Type **fields = TypeTuple::fields(1);
 389   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 390   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 391 
 392   // create result type (range)
 393   fields = TypeTuple::fields(0);
 394 
 395   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 396 
 397   return TypeFunc::make(domain, range);
 398 }
 399 
 400 
 401 const TypeFunc *OptoRuntime::new_array_Type() {
 402   // create input type (domain)
 403   const Type **fields = TypeTuple::fields(2);
 404   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 405   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 406   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 407 
 408   // create result type (range)
 409   fields = TypeTuple::fields(1);
 410   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 411 
 412   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 413 
 414   return TypeFunc::make(domain, range);
 415 }
 416 
 417 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 418   // create input type (domain)
 419   const int nargs = ndim + 1;
 420   const Type **fields = TypeTuple::fields(nargs);
 421   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 422   for( int i = 1; i < nargs; i++ )
 423     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 424   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 425 
 426   // create result type (range)
 427   fields = TypeTuple::fields(1);
 428   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 429   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 430 
 431   return TypeFunc::make(domain, range);
 432 }
 433 
 434 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 435   return multianewarray_Type(2);
 436 }
 437 
 438 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 439   return multianewarray_Type(3);
 440 }
 441 
 442 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 443   return multianewarray_Type(4);
 444 }
 445 
 446 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 447   return multianewarray_Type(5);
 448 }
 449 
 450 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 451   const Type **fields = TypeTuple::fields(2);
 452   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 453   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 454   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 455 
 456   // create result type (range)
 457   fields = TypeTuple::fields(0);
 458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 459 
 460   return TypeFunc::make(domain, range);
 461 }
 462 
 463 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 464 
 465   const Type **fields = TypeTuple::fields(2);
 466   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 467   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 469 
 470   // create result type (range)
 471   fields = TypeTuple::fields(0);
 472   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 473 
 474   return TypeFunc::make(domain, range);
 475 }
 476 
 477 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(1);
 480   // symbolOop name of class to be loaded
 481   fields[TypeFunc::Parms+0] = TypeInt::INT;
 482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 483 
 484   // create result type (range)
 485   fields = TypeTuple::fields(0);
 486   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 487 
 488   return TypeFunc::make(domain, range);
 489 }
 490 
 491 # ifdef ENABLE_ZAP_DEAD_LOCALS
 492 // Type used for stub generation for zap_dead_locals.
 493 // No inputs or outputs
 494 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 495   // create input type (domain)
 496   const Type **fields = TypeTuple::fields(0);
 497   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 498 
 499   // create result type (range)
 500   fields = TypeTuple::fields(0);
 501   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 502 
 503   return TypeFunc::make(domain,range);
 504 }
 505 # endif
 506 
 507 
 508 //-----------------------------------------------------------------------------
 509 // Monitor Handling
 510 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 511   // create input type (domain)
 512   const Type **fields = TypeTuple::fields(2);
 513   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 514   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 515   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 516 
 517   // create result type (range)
 518   fields = TypeTuple::fields(0);
 519 
 520   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 521 
 522   return TypeFunc::make(domain,range);
 523 }
 524 
 525 
 526 //-----------------------------------------------------------------------------
 527 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 528   // create input type (domain)
 529   const Type **fields = TypeTuple::fields(2);
 530   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 531   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 532   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 533 
 534   // create result type (range)
 535   fields = TypeTuple::fields(0);
 536 
 537   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 538 
 539   return TypeFunc::make(domain,range);
 540 }
 541 
 542 const TypeFunc* OptoRuntime::flush_windows_Type() {
 543   // create input type (domain)
 544   const Type** fields = TypeTuple::fields(1);
 545   fields[TypeFunc::Parms+0] = NULL; // void
 546   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 547 
 548   // create result type
 549   fields = TypeTuple::fields(1);
 550   fields[TypeFunc::Parms+0] = NULL; // void
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 const TypeFunc* OptoRuntime::l2f_Type() {
 557   // create input type (domain)
 558   const Type **fields = TypeTuple::fields(2);
 559   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 560   fields[TypeFunc::Parms+1] = Type::HALF;
 561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 562 
 563   // create result type (range)
 564   fields = TypeTuple::fields(1);
 565   fields[TypeFunc::Parms+0] = Type::FLOAT;
 566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 567 
 568   return TypeFunc::make(domain, range);
 569 }
 570 
 571 const TypeFunc* OptoRuntime::modf_Type() {
 572   const Type **fields = TypeTuple::fields(2);
 573   fields[TypeFunc::Parms+0] = Type::FLOAT;
 574   fields[TypeFunc::Parms+1] = Type::FLOAT;
 575   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 576 
 577   // create result type (range)
 578   fields = TypeTuple::fields(1);
 579   fields[TypeFunc::Parms+0] = Type::FLOAT;
 580 
 581   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 582 
 583   return TypeFunc::make(domain, range);
 584 }
 585 
 586 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 587   // create input type (domain)
 588   const Type **fields = TypeTuple::fields(2);
 589   // symbolOop name of class to be loaded
 590   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 591   fields[TypeFunc::Parms+1] = Type::HALF;
 592   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 593 
 594   // create result type (range)
 595   fields = TypeTuple::fields(2);
 596   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 597   fields[TypeFunc::Parms+1] = Type::HALF;
 598   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 599 
 600   return TypeFunc::make(domain, range);
 601 }
 602 
 603 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 604   const Type **fields = TypeTuple::fields(4);
 605   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 606   fields[TypeFunc::Parms+1] = Type::HALF;
 607   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 608   fields[TypeFunc::Parms+3] = Type::HALF;
 609   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 610 
 611   // create result type (range)
 612   fields = TypeTuple::fields(2);
 613   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 614   fields[TypeFunc::Parms+1] = Type::HALF;
 615   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 616 
 617   return TypeFunc::make(domain, range);
 618 }
 619 
 620 //-------------- currentTimeMillis
 621 
 622 const TypeFunc* OptoRuntime::current_time_millis_Type() {
 623   // create input type (domain)
 624   const Type **fields = TypeTuple::fields(0);
 625   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 626 
 627   // create result type (range)
 628   fields = TypeTuple::fields(2);
 629   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 630   fields[TypeFunc::Parms+1] = Type::HALF;
 631   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 632 
 633   return TypeFunc::make(domain, range);
 634 }
 635 
 636 // arraycopy stub variations:
 637 enum ArrayCopyType {
 638   ac_fast,                      // void(ptr, ptr, size_t)
 639   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 640   ac_slow,                      // void(ptr, int, ptr, int, int)
 641   ac_generic                    //  int(ptr, int, ptr, int, int)
 642 };
 643 
 644 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 645   // create input type (domain)
 646   int num_args      = (act == ac_fast ? 3 : 5);
 647   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 648   int argcnt = num_args;
 649   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 650   const Type** fields = TypeTuple::fields(argcnt);
 651   int argp = TypeFunc::Parms;
 652   fields[argp++] = TypePtr::NOTNULL;    // src
 653   if (num_size_args == 0) {
 654     fields[argp++] = TypeInt::INT;      // src_pos
 655   }
 656   fields[argp++] = TypePtr::NOTNULL;    // dest
 657   if (num_size_args == 0) {
 658     fields[argp++] = TypeInt::INT;      // dest_pos
 659     fields[argp++] = TypeInt::INT;      // length
 660   }
 661   while (num_size_args-- > 0) {
 662     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 663     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 664   }
 665   if (act == ac_checkcast) {
 666     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 667   }
 668   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 669   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 670 
 671   // create result type if needed
 672   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 673   fields = TypeTuple::fields(1);
 674   if (retcnt == 0)
 675     fields[TypeFunc::Parms+0] = NULL; // void
 676   else
 677     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 678   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 679   return TypeFunc::make(domain, range);
 680 }
 681 
 682 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 683   // This signature is simple:  Two base pointers and a size_t.
 684   return make_arraycopy_Type(ac_fast);
 685 }
 686 
 687 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 688   // An extension of fast_arraycopy_Type which adds type checking.
 689   return make_arraycopy_Type(ac_checkcast);
 690 }
 691 
 692 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 693   // This signature is exactly the same as System.arraycopy.
 694   // There are no intptr_t (int/long) arguments.
 695   return make_arraycopy_Type(ac_slow);
 696 }
 697 
 698 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 699   // This signature is like System.arraycopy, except that it returns status.
 700   return make_arraycopy_Type(ac_generic);
 701 }
 702 
 703 
 704 const TypeFunc* OptoRuntime::array_fill_Type() {
 705   // create input type (domain): pointer, int, size_t
 706   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 707   int argp = TypeFunc::Parms;
 708   fields[argp++] = TypePtr::NOTNULL;
 709   fields[argp++] = TypeInt::INT;
 710   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 711   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 712   const TypeTuple *domain = TypeTuple::make(argp, fields);
 713 
 714   // create result type
 715   fields = TypeTuple::fields(1);
 716   fields[TypeFunc::Parms+0] = NULL; // void
 717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 718 
 719   return TypeFunc::make(domain, range);
 720 }
 721 
 722 //------------- Interpreter state access for on stack replacement
 723 const TypeFunc* OptoRuntime::osr_end_Type() {
 724   // create input type (domain)
 725   const Type **fields = TypeTuple::fields(1);
 726   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 727   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 728 
 729   // create result type
 730   fields = TypeTuple::fields(1);
 731   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 732   fields[TypeFunc::Parms+0] = NULL; // void
 733   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 734   return TypeFunc::make(domain, range);
 735 }
 736 
 737 //-------------- methodData update helpers
 738 
 739 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 740   // create input type (domain)
 741   const Type **fields = TypeTuple::fields(2);
 742   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 743   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 744   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 745 
 746   // create result type
 747   fields = TypeTuple::fields(1);
 748   fields[TypeFunc::Parms+0] = NULL; // void
 749   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 750   return TypeFunc::make(domain,range);
 751 }
 752 
 753 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 754   if (receiver == NULL) return;
 755   klassOop receiver_klass = receiver->klass();
 756 
 757   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 758   int empty_row = -1;           // free row, if any is encountered
 759 
 760   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 761   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 762     // if (vc->receiver(row) == receiver_klass)
 763     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 764     intptr_t row_recv = *(mdp + receiver_off);
 765     if (row_recv == (intptr_t) receiver_klass) {
 766       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 767       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 768       *(mdp + count_off) += DataLayout::counter_increment;
 769       return;
 770     } else if (row_recv == 0) {
 771       // else if (vc->receiver(row) == NULL)
 772       empty_row = (int) row;
 773     }
 774   }
 775 
 776   if (empty_row != -1) {
 777     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 778     // vc->set_receiver(empty_row, receiver_klass);
 779     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 780     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 781     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 782     *(mdp + count_off) = DataLayout::counter_increment;
 783   } else {
 784     // Receiver did not match any saved receiver and there is no empty row for it.
 785     // Increment total counter to indicate polymorphic case.
 786     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
 787     *count_p += DataLayout::counter_increment;
 788   }
 789 JRT_END
 790 
 791 //-----------------------------------------------------------------------------
 792 // implicit exception support.
 793 
 794 static void report_null_exception_in_code_cache(address exception_pc) {
 795   ResourceMark rm;
 796   CodeBlob* n = CodeCache::find_blob(exception_pc);
 797   if (n != NULL) {
 798     tty->print_cr("#");
 799     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
 800     tty->print_cr("#");
 801     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
 802 
 803     if (n->is_nmethod()) {
 804       methodOop method = ((nmethod*)n)->method();
 805       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
 806       tty->print_cr("#");
 807       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
 808         const char* title    = "HotSpot Runtime Error";
 809         const char* question = "Do you want to exclude compilation of this method in future runs?";
 810         if (os::message_box(title, question)) {
 811           CompilerOracle::append_comment_to_file("");
 812           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
 813           CompilerOracle::append_comment_to_file("");
 814           CompilerOracle::append_exclude_to_file(method);
 815           tty->print_cr("#");
 816           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
 817           tty->print_cr("#");
 818         }
 819       }
 820       fatal("Implicit null exception happened in compiled method");
 821     } else {
 822       n->print();
 823       fatal("Implicit null exception happened in generated stub");
 824     }
 825   }
 826   fatal("Implicit null exception at wrong place");
 827 }
 828 
 829 
 830 //-------------------------------------------------------------------------------------
 831 // register policy
 832 
 833 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 834   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 835   switch (register_save_policy[reg]) {
 836     case 'C': return false; //SOC
 837     case 'E': return true ; //SOE
 838     case 'N': return false; //NS
 839     case 'A': return false; //AS
 840   }
 841   ShouldNotReachHere();
 842   return false;
 843 }
 844 
 845 //-----------------------------------------------------------------------
 846 // Exceptions
 847 //
 848 
 849 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 850 
 851 // The method is an entry that is always called by a C++ method not
 852 // directly from compiled code. Compiled code will call the C++ method following.
 853 // We can't allow async exception to be installed during  exception processing.
 854 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 855 
 856   // Do not confuse exception_oop with pending_exception. The exception_oop
 857   // is only used to pass arguments into the method. Not for general
 858   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 859   // the runtime stubs checks this on exit.
 860   assert(thread->exception_oop() != NULL, "exception oop is found");
 861   address handler_address = NULL;
 862 
 863   Handle exception(thread, thread->exception_oop());
 864 
 865   if (TraceExceptions) {
 866     trace_exception(exception(), thread->exception_pc(), "");
 867   }
 868   // for AbortVMOnException flag
 869   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 870 
 871   #ifdef ASSERT
 872     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 873       // should throw an exception here
 874       ShouldNotReachHere();
 875     }
 876   #endif
 877 
 878 
 879   // new exception handling: this method is entered only from adapters
 880   // exceptions from compiled java methods are handled in compiled code
 881   // using rethrow node
 882 
 883   address pc = thread->exception_pc();
 884   nm = CodeCache::find_nmethod(pc);
 885   assert(nm != NULL, "No NMethod found");
 886   if (nm->is_native_method()) {
 887     fatal("Native mathod should not have path to exception handling");
 888   } else {
 889     // we are switching to old paradigm: search for exception handler in caller_frame
 890     // instead in exception handler of caller_frame.sender()
 891 
 892     if (JvmtiExport::can_post_on_exceptions()) {
 893       // "Full-speed catching" is not necessary here,
 894       // since we're notifying the VM on every catch.
 895       // Force deoptimization and the rest of the lookup
 896       // will be fine.
 897       deoptimize_caller_frame(thread, true);
 898     }
 899 
 900     // Check the stack guard pages.  If enabled, look for handler in this frame;
 901     // otherwise, forcibly unwind the frame.
 902     //
 903     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
 904     bool force_unwind = !thread->reguard_stack();
 905     bool deopting = false;
 906     if (nm->is_deopt_pc(pc)) {
 907       deopting = true;
 908       RegisterMap map(thread, false);
 909       frame deoptee = thread->last_frame().sender(&map);
 910       assert(deoptee.is_deoptimized_frame(), "must be deopted");
 911       // Adjust the pc back to the original throwing pc
 912       pc = deoptee.pc();
 913     }
 914 
 915     // If we are forcing an unwind because of stack overflow then deopt is
 916     // irrelevant sice we are throwing the frame away anyway.
 917 
 918     if (deopting && !force_unwind) {
 919       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
 920     } else {
 921 
 922       handler_address =
 923         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
 924 
 925       if (handler_address == NULL) {
 926         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
 927         assert (handler_address != NULL, "must have compiled handler");
 928         // Update the exception cache only when the unwind was not forced.
 929         if (!force_unwind) {
 930           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
 931         }
 932       } else {
 933         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
 934       }
 935     }
 936 
 937     thread->set_exception_pc(pc);
 938     thread->set_exception_handler_pc(handler_address);
 939     thread->set_exception_stack_size(0);
 940 
 941     // Check if the exception PC is a MethodHandle call site.
 942     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 943   }
 944 
 945   // Restore correct return pc.  Was saved above.
 946   thread->set_exception_oop(exception());
 947   return handler_address;
 948 
 949 JRT_END
 950 
 951 // We are entering here from exception_blob
 952 // If there is a compiled exception handler in this method, we will continue there;
 953 // otherwise we will unwind the stack and continue at the caller of top frame method
 954 // Note we enter without the usual JRT wrapper. We will call a helper routine that
 955 // will do the normal VM entry. We do it this way so that we can see if the nmethod
 956 // we looked up the handler for has been deoptimized in the meantime. If it has been
 957 // we must not use the handler and instread return the deopt blob.
 958 address OptoRuntime::handle_exception_C(JavaThread* thread) {
 959 //
 960 // We are in Java not VM and in debug mode we have a NoHandleMark
 961 //
 962 #ifndef PRODUCT
 963   SharedRuntime::_find_handler_ctr++;          // find exception handler
 964 #endif
 965   debug_only(NoHandleMark __hm;)
 966   nmethod* nm = NULL;
 967   address handler_address = NULL;
 968   {
 969     // Enter the VM
 970 
 971     ResetNoHandleMark rnhm;
 972     handler_address = handle_exception_C_helper(thread, nm);
 973   }
 974 
 975   // Back in java: Use no oops, DON'T safepoint
 976 
 977   // Now check to see if the handler we are returning is in a now
 978   // deoptimized frame
 979 
 980   if (nm != NULL) {
 981     RegisterMap map(thread, false);
 982     frame caller = thread->last_frame().sender(&map);
 983 #ifdef ASSERT
 984     assert(caller.is_compiled_frame(), "must be");
 985 #endif // ASSERT
 986     if (caller.is_deoptimized_frame()) {
 987       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
 988     }
 989   }
 990   return handler_address;
 991 }
 992 
 993 //------------------------------rethrow----------------------------------------
 994 // We get here after compiled code has executed a 'RethrowNode'.  The callee
 995 // is either throwing or rethrowing an exception.  The callee-save registers
 996 // have been restored, synchronized objects have been unlocked and the callee
 997 // stack frame has been removed.  The return address was passed in.
 998 // Exception oop is passed as the 1st argument.  This routine is then called
 999 // from the stub.  On exit, we know where to jump in the caller's code.
1000 // After this C code exits, the stub will pop his frame and end in a jump
1001 // (instead of a return).  We enter the caller's default handler.
1002 //
1003 // This must be JRT_LEAF:
1004 //     - caller will not change its state as we cannot block on exit,
1005 //       therefore raw_exception_handler_for_return_address is all it takes
1006 //       to handle deoptimized blobs
1007 //
1008 // However, there needs to be a safepoint check in the middle!  So compiled
1009 // safepoints are completely watertight.
1010 //
1011 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1012 //
1013 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1014 //
1015 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1016 #ifndef PRODUCT
1017   SharedRuntime::_rethrow_ctr++;               // count rethrows
1018 #endif
1019   assert (exception != NULL, "should have thrown a NULLPointerException");
1020 #ifdef ASSERT
1021   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1022     // should throw an exception here
1023     ShouldNotReachHere();
1024   }
1025 #endif
1026 
1027   thread->set_vm_result(exception);
1028   // Frame not compiled (handles deoptimization blob)
1029   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1030 }
1031 
1032 
1033 const TypeFunc *OptoRuntime::rethrow_Type() {
1034   // create input type (domain)
1035   const Type **fields = TypeTuple::fields(1);
1036   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1037   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1038 
1039   // create result type (range)
1040   fields = TypeTuple::fields(1);
1041   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1042   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1043 
1044   return TypeFunc::make(domain, range);
1045 }
1046 
1047 
1048 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1049   // Deoptimize frame
1050   if (doit) {
1051     // Called from within the owner thread, so no need for safepoint
1052     RegisterMap reg_map(thread);
1053     frame stub_frame = thread->last_frame();
1054     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1055     frame caller_frame = stub_frame.sender(&reg_map);
1056 
1057     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
1058     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1059   }
1060 }
1061 
1062 
1063 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1064   // create input type (domain)
1065   const Type **fields = TypeTuple::fields(1);
1066   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1067   // // The JavaThread* is passed to each routine as the last argument
1068   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1069   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1070 
1071   // create result type (range)
1072   fields = TypeTuple::fields(0);
1073 
1074   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1075 
1076   return TypeFunc::make(domain,range);
1077 }
1078 
1079 
1080 //-----------------------------------------------------------------------------
1081 // Dtrace support.  entry and exit probes have the same signature
1082 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1083   // create input type (domain)
1084   const Type **fields = TypeTuple::fields(2);
1085   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1086   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
1087   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1088 
1089   // create result type (range)
1090   fields = TypeTuple::fields(0);
1091 
1092   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1093 
1094   return TypeFunc::make(domain,range);
1095 }
1096 
1097 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1098   // create input type (domain)
1099   const Type **fields = TypeTuple::fields(2);
1100   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1101   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1102 
1103   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1104 
1105   // create result type (range)
1106   fields = TypeTuple::fields(0);
1107 
1108   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1109 
1110   return TypeFunc::make(domain,range);
1111 }
1112 
1113 
1114 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1115   assert(obj->is_oop(), "must be a valid oop");
1116   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1117   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1118 JRT_END
1119 
1120 //-----------------------------------------------------------------------------
1121 
1122 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1123 
1124 //
1125 // dump the collected NamedCounters.
1126 //
1127 void OptoRuntime::print_named_counters() {
1128   int total_lock_count = 0;
1129   int eliminated_lock_count = 0;
1130 
1131   NamedCounter* c = _named_counters;
1132   while (c) {
1133     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1134       int count = c->count();
1135       if (count > 0) {
1136         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1137         if (Verbose) {
1138           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1139         }
1140         total_lock_count += count;
1141         if (eliminated) {
1142           eliminated_lock_count += count;
1143         }
1144       }
1145     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1146       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1147       if (blc->nonzero()) {
1148         tty->print_cr("%s", c->name());
1149         blc->print_on(tty);
1150       }
1151     }
1152     c = c->next();
1153   }
1154   if (total_lock_count > 0) {
1155     tty->print_cr("dynamic locks: %d", total_lock_count);
1156     if (eliminated_lock_count) {
1157       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1158                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1159     }
1160   }
1161 }
1162 
1163 //
1164 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1165 //  name which consists of method@line for the inlining tree.
1166 //
1167 
1168 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1169   int max_depth = youngest_jvms->depth();
1170 
1171   // Visit scopes from youngest to oldest.
1172   bool first = true;
1173   stringStream st;
1174   for (int depth = max_depth; depth >= 1; depth--) {
1175     JVMState* jvms = youngest_jvms->of_depth(depth);
1176     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1177     if (!first) {
1178       st.print(" ");
1179     } else {
1180       first = false;
1181     }
1182     int bci = jvms->bci();
1183     if (bci < 0) bci = 0;
1184     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1185     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1186   }
1187   NamedCounter* c;
1188   if (tag == NamedCounter::BiasedLockingCounter) {
1189     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1190   } else {
1191     c = new NamedCounter(strdup(st.as_string()), tag);
1192   }
1193 
1194   // atomically add the new counter to the head of the list.  We only
1195   // add counters so this is safe.
1196   NamedCounter* head;
1197   do {
1198     head = _named_counters;
1199     c->set_next(head);
1200   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1201   return c;
1202 }
1203 
1204 //-----------------------------------------------------------------------------
1205 // Non-product code
1206 #ifndef PRODUCT
1207 
1208 int trace_exception_counter = 0;
1209 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1210   ttyLocker ttyl;
1211   trace_exception_counter++;
1212   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1213   exception_oop->print_value();
1214   tty->print(" in ");
1215   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1216   if (blob->is_nmethod()) {
1217     ((nmethod*)blob)->method()->print_value();
1218   } else if (blob->is_runtime_stub()) {
1219     tty->print("<runtime-stub>");
1220   } else {
1221     tty->print("<unknown>");
1222   }
1223   tty->print(" at " INTPTR_FORMAT,  exception_pc);
1224   tty->print_cr("]");
1225 }
1226 
1227 #endif  // PRODUCT
1228 
1229 
1230 # ifdef ENABLE_ZAP_DEAD_LOCALS
1231 // Called from call sites in compiled code with oop maps (actually safepoints)
1232 // Zaps dead locals in first java frame.
1233 // Is entry because may need to lock to generate oop maps
1234 // Currently, only used for compiler frames, but someday may be used
1235 // for interpreter frames, too.
1236 
1237 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1238 
1239 // avoid pointers to member funcs with these helpers
1240 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1241 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1242 
1243 
1244 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1245                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1246   assert(JavaThread::current() == thread, "is this needed?");
1247 
1248   if ( !ZapDeadCompiledLocals )  return;
1249 
1250   bool skip = false;
1251 
1252        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1253   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1254   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1255     warning("starting zapping after skipping");
1256 
1257        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1258   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1259   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1260     warning("about to zap last zap");
1261 
1262   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1263 
1264   if ( skip )  return;
1265 
1266   // find java frame and zap it
1267 
1268   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1269     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1270       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1271       return;
1272     }
1273   }
1274   warning("no frame found to zap in zap_dead_Java_locals_C");
1275 }
1276 
1277 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1278   zap_dead_java_or_native_locals(thread, is_java_frame);
1279 JRT_END
1280 
1281 // The following does not work because for one thing, the
1282 // thread state is wrong; it expects java, but it is native.
1283 // Also, the invariants in a native stub are different and
1284 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1285 // in there.
1286 // So for now, we do not zap in native stubs.
1287 
1288 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1289   zap_dead_java_or_native_locals(thread, is_native_frame);
1290 JRT_END
1291 
1292 # endif