1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_subnode.cpp.incl"
  31 #include "math.h"
  32 
  33 //=============================================================================
  34 //------------------------------Identity---------------------------------------
  35 // If right input is a constant 0, return the left input.
  36 Node *SubNode::Identity( PhaseTransform *phase ) {
  37   assert(in(1) != this, "Must already have called Value");
  38   assert(in(2) != this, "Must already have called Value");
  39 
  40   // Remove double negation
  41   const Type *zero = add_id();
  42   if( phase->type( in(1) )->higher_equal( zero ) &&
  43       in(2)->Opcode() == Opcode() &&
  44       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
  45     return in(2)->in(2);
  46   }
  47 
  48   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  49   if( in(1)->Opcode() == Op_AddI ) {
  50     if( phase->eqv(in(1)->in(2),in(2)) )
  51       return in(1)->in(1);
  52     if (phase->eqv(in(1)->in(1),in(2)))
  53       return in(1)->in(2);
  54 
  55     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
  56     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
  57     // are originally used, although the optimizer sometimes jiggers things).
  58     // This folding through an O2 removes a loop-exit use of a loop-varying
  59     // value and generally lowers register pressure in and around the loop.
  60     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
  61         phase->eqv(in(1)->in(2)->in(1),in(2)) )
  62       return in(1)->in(1);
  63   }
  64 
  65   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  66 }
  67 
  68 //------------------------------Value------------------------------------------
  69 // A subtract node differences it's two inputs.
  70 const Type *SubNode::Value( PhaseTransform *phase ) const {
  71   const Node* in1 = in(1);
  72   const Node* in2 = in(2);
  73   // Either input is TOP ==> the result is TOP
  74   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  75   if( t1 == Type::TOP ) return Type::TOP;
  76   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  77   if( t2 == Type::TOP ) return Type::TOP;
  78 
  79   // Not correct for SubFnode and AddFNode (must check for infinity)
  80   // Equal?  Subtract is zero
  81   if (phase->eqv_uncast(in1, in2))  return add_id();
  82 
  83   // Either input is BOTTOM ==> the result is the local BOTTOM
  84   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
  85     return bottom_type();
  86 
  87   return sub(t1,t2);            // Local flavor of type subtraction
  88 
  89 }
  90 
  91 //=============================================================================
  92 
  93 //------------------------------Helper function--------------------------------
  94 static bool ok_to_convert(Node* inc, Node* iv) {
  95     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
  96     // "-" is loop invariant and collapsing extends the live-range of "x"
  97     // to overlap with the "+", forcing another register to be used in
  98     // the loop.
  99     // This test will be clearer with '&&' (apply DeMorgan's rule)
 100     // but I like the early cutouts that happen here.
 101     const PhiNode *phi;
 102     if( ( !inc->in(1)->is_Phi() ||
 103           !(phi=inc->in(1)->as_Phi()) ||
 104           phi->is_copy() ||
 105           !phi->region()->is_CountedLoop() ||
 106           inc != phi->region()->as_CountedLoop()->incr() )
 107        &&
 108         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
 109         // because "x" maybe invariant.
 110         ( !iv->is_loop_iv() )
 111       ) {
 112       return true;
 113     } else {
 114       return false;
 115     }
 116 }
 117 //------------------------------Ideal------------------------------------------
 118 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 119   Node *in1 = in(1);
 120   Node *in2 = in(2);
 121   uint op1 = in1->Opcode();
 122   uint op2 = in2->Opcode();
 123 
 124 #ifdef ASSERT
 125   // Check for dead loop
 126   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 127       ( op1 == Op_AddI || op1 == Op_SubI ) &&
 128       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 129         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
 130     assert(false, "dead loop in SubINode::Ideal");
 131 #endif
 132 
 133   const Type *t2 = phase->type( in2 );
 134   if( t2 == Type::TOP ) return NULL;
 135   // Convert "x-c0" into "x+ -c0".
 136   if( t2->base() == Type::Int ){        // Might be bottom or top...
 137     const TypeInt *i = t2->is_int();
 138     if( i->is_con() )
 139       return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
 140   }
 141 
 142   // Convert "(x+c0) - y" into (x-y) + c0"
 143   // Do not collapse (x+c0)-y if "+" is a loop increment or
 144   // if "y" is a loop induction variable.
 145   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 146     const Type *tadd = phase->type( in1->in(2) );
 147     if( tadd->singleton() && tadd != Type::TOP ) {
 148       Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
 149       return new (phase->C, 3) AddINode( sub2, in1->in(2) );
 150     }
 151   }
 152 
 153 
 154   // Convert "x - (y+c0)" into "(x-y) - c0"
 155   // Need the same check as in above optimization but reversed.
 156   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
 157     Node* in21 = in2->in(1);
 158     Node* in22 = in2->in(2);
 159     const TypeInt* tcon = phase->type(in22)->isa_int();
 160     if (tcon != NULL && tcon->is_con()) {
 161       Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
 162       Node* neg_c0 = phase->intcon(- tcon->get_con());
 163       return new (phase->C, 3) AddINode(sub2, neg_c0);
 164     }
 165   }
 166 
 167   const Type *t1 = phase->type( in1 );
 168   if( t1 == Type::TOP ) return NULL;
 169 
 170 #ifdef ASSERT
 171   // Check for dead loop
 172   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
 173       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 174         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 175     assert(false, "dead loop in SubINode::Ideal");
 176 #endif
 177 
 178   // Convert "x - (x+y)" into "-y"
 179   if( op2 == Op_AddI &&
 180       phase->eqv( in1, in2->in(1) ) )
 181     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
 182   // Convert "(x-y) - x" into "-y"
 183   if( op1 == Op_SubI &&
 184       phase->eqv( in1->in(1), in2 ) )
 185     return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
 186   // Convert "x - (y+x)" into "-y"
 187   if( op2 == Op_AddI &&
 188       phase->eqv( in1, in2->in(2) ) )
 189     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
 190 
 191   // Convert "0 - (x-y)" into "y-x"
 192   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
 193     return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
 194 
 195   // Convert "0 - (x+con)" into "-con-x"
 196   jint con;
 197   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 198       (con = in2->in(2)->find_int_con(0)) != 0 )
 199     return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
 200 
 201   // Convert "(X+A) - (X+B)" into "A - B"
 202   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 203     return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
 204 
 205   // Convert "(A+X) - (B+X)" into "A - B"
 206   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 207     return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
 208 
 209   // Convert "(A+X) - (X+B)" into "A - B"
 210   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 211     return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
 212 
 213   // Convert "(X+A) - (B+X)" into "A - B"
 214   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 215     return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
 216 
 217   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 218   // nicer to optimize than subtract.
 219   if( op2 == Op_SubI && in2->outcnt() == 1) {
 220     Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
 221     return new (phase->C, 3) SubINode( add1, in2->in(1) );
 222   }
 223 
 224   return NULL;
 225 }
 226 
 227 //------------------------------sub--------------------------------------------
 228 // A subtract node differences it's two inputs.
 229 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 230   const TypeInt *r0 = t1->is_int(); // Handy access
 231   const TypeInt *r1 = t2->is_int();
 232   int32 lo = r0->_lo - r1->_hi;
 233   int32 hi = r0->_hi - r1->_lo;
 234 
 235   // We next check for 32-bit overflow.
 236   // If that happens, we just assume all integers are possible.
 237   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 238        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 239       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 240        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 241     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 242   else                          // Overflow; assume all integers
 243     return TypeInt::INT;
 244 }
 245 
 246 //=============================================================================
 247 //------------------------------Ideal------------------------------------------
 248 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 249   Node *in1 = in(1);
 250   Node *in2 = in(2);
 251   uint op1 = in1->Opcode();
 252   uint op2 = in2->Opcode();
 253 
 254 #ifdef ASSERT
 255   // Check for dead loop
 256   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 257       ( op1 == Op_AddL || op1 == Op_SubL ) &&
 258       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 259         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
 260     assert(false, "dead loop in SubLNode::Ideal");
 261 #endif
 262 
 263   if( phase->type( in2 ) == Type::TOP ) return NULL;
 264   const TypeLong *i = phase->type( in2 )->isa_long();
 265   // Convert "x-c0" into "x+ -c0".
 266   if( i &&                      // Might be bottom or top...
 267       i->is_con() )
 268     return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
 269 
 270   // Convert "(x+c0) - y" into (x-y) + c0"
 271   // Do not collapse (x+c0)-y if "+" is a loop increment or
 272   // if "y" is a loop induction variable.
 273   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 274     Node *in11 = in1->in(1);
 275     const Type *tadd = phase->type( in1->in(2) );
 276     if( tadd->singleton() && tadd != Type::TOP ) {
 277       Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
 278       return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
 279     }
 280   }
 281 
 282   // Convert "x - (y+c0)" into "(x-y) - c0"
 283   // Need the same check as in above optimization but reversed.
 284   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
 285     Node* in21 = in2->in(1);
 286     Node* in22 = in2->in(2);
 287     const TypeLong* tcon = phase->type(in22)->isa_long();
 288     if (tcon != NULL && tcon->is_con()) {
 289       Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
 290       Node* neg_c0 = phase->longcon(- tcon->get_con());
 291       return new (phase->C, 3) AddLNode(sub2, neg_c0);
 292     }
 293   }
 294 
 295   const Type *t1 = phase->type( in1 );
 296   if( t1 == Type::TOP ) return NULL;
 297 
 298 #ifdef ASSERT
 299   // Check for dead loop
 300   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
 301       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 302         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 303     assert(false, "dead loop in SubLNode::Ideal");
 304 #endif
 305 
 306   // Convert "x - (x+y)" into "-y"
 307   if( op2 == Op_AddL &&
 308       phase->eqv( in1, in2->in(1) ) )
 309     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
 310   // Convert "x - (y+x)" into "-y"
 311   if( op2 == Op_AddL &&
 312       phase->eqv( in1, in2->in(2) ) )
 313     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
 314 
 315   // Convert "0 - (x-y)" into "y-x"
 316   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
 317     return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
 318 
 319   // Convert "(X+A) - (X+B)" into "A - B"
 320   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 321     return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
 322 
 323   // Convert "(A+X) - (B+X)" into "A - B"
 324   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 325     return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
 326 
 327   // Convert "A-(B-C)" into (A+C)-B"
 328   if( op2 == Op_SubL && in2->outcnt() == 1) {
 329     Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
 330     return new (phase->C, 3) SubLNode( add1, in2->in(1) );
 331   }
 332 
 333   return NULL;
 334 }
 335 
 336 //------------------------------sub--------------------------------------------
 337 // A subtract node differences it's two inputs.
 338 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 339   const TypeLong *r0 = t1->is_long(); // Handy access
 340   const TypeLong *r1 = t2->is_long();
 341   jlong lo = r0->_lo - r1->_hi;
 342   jlong hi = r0->_hi - r1->_lo;
 343 
 344   // We next check for 32-bit overflow.
 345   // If that happens, we just assume all integers are possible.
 346   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 347        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 348       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 349        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 350     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 351   else                          // Overflow; assume all integers
 352     return TypeLong::LONG;
 353 }
 354 
 355 //=============================================================================
 356 //------------------------------Value------------------------------------------
 357 // A subtract node differences its two inputs.
 358 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
 359   const Node* in1 = in(1);
 360   const Node* in2 = in(2);
 361   // Either input is TOP ==> the result is TOP
 362   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 363   if( t1 == Type::TOP ) return Type::TOP;
 364   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 365   if( t2 == Type::TOP ) return Type::TOP;
 366 
 367   // if both operands are infinity of same sign, the result is NaN; do
 368   // not replace with zero
 369   if( (t1->is_finite() && t2->is_finite()) ) {
 370     if( phase->eqv(in1, in2) ) return add_id();
 371   }
 372 
 373   // Either input is BOTTOM ==> the result is the local BOTTOM
 374   const Type *bot = bottom_type();
 375   if( (t1 == bot) || (t2 == bot) ||
 376       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 377     return bot;
 378 
 379   return sub(t1,t2);            // Local flavor of type subtraction
 380 }
 381 
 382 
 383 //=============================================================================
 384 //------------------------------Ideal------------------------------------------
 385 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 386   const Type *t2 = phase->type( in(2) );
 387   // Convert "x-c0" into "x+ -c0".
 388   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 389     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 390   }
 391 
 392   // Not associative because of boundary conditions (infinity)
 393   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 394     // Convert "x - (x+y)" into "-y"
 395     if( in(2)->is_Add() &&
 396         phase->eqv(in(1),in(2)->in(1) ) )
 397       return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
 398   }
 399 
 400   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 401   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 402   //if( phase->type(in(1)) == TypeF::ZERO )
 403   //return new (phase->C, 2) NegFNode(in(2));
 404 
 405   return NULL;
 406 }
 407 
 408 //------------------------------sub--------------------------------------------
 409 // A subtract node differences its two inputs.
 410 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 411   // no folding if one of operands is infinity or NaN, do not do constant folding
 412   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 413     return TypeF::make( t1->getf() - t2->getf() );
 414   }
 415   else if( g_isnan(t1->getf()) ) {
 416     return t1;
 417   }
 418   else if( g_isnan(t2->getf()) ) {
 419     return t2;
 420   }
 421   else {
 422     return Type::FLOAT;
 423   }
 424 }
 425 
 426 //=============================================================================
 427 //------------------------------Ideal------------------------------------------
 428 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 429   const Type *t2 = phase->type( in(2) );
 430   // Convert "x-c0" into "x+ -c0".
 431   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 432     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 433   }
 434 
 435   // Not associative because of boundary conditions (infinity)
 436   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 437     // Convert "x - (x+y)" into "-y"
 438     if( in(2)->is_Add() &&
 439         phase->eqv(in(1),in(2)->in(1) ) )
 440       return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
 441   }
 442 
 443   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 444   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 445   //if( phase->type(in(1)) == TypeD::ZERO )
 446   //return new (phase->C, 2) NegDNode(in(2));
 447 
 448   return NULL;
 449 }
 450 
 451 //------------------------------sub--------------------------------------------
 452 // A subtract node differences its two inputs.
 453 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 454   // no folding if one of operands is infinity or NaN, do not do constant folding
 455   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 456     return TypeD::make( t1->getd() - t2->getd() );
 457   }
 458   else if( g_isnan(t1->getd()) ) {
 459     return t1;
 460   }
 461   else if( g_isnan(t2->getd()) ) {
 462     return t2;
 463   }
 464   else {
 465     return Type::DOUBLE;
 466   }
 467 }
 468 
 469 //=============================================================================
 470 //------------------------------Idealize---------------------------------------
 471 // Unlike SubNodes, compare must still flatten return value to the
 472 // range -1, 0, 1.
 473 // And optimizations like those for (X + Y) - X fail if overflow happens.
 474 Node *CmpNode::Identity( PhaseTransform *phase ) {
 475   return this;
 476 }
 477 
 478 //=============================================================================
 479 //------------------------------cmp--------------------------------------------
 480 // Simplify a CmpI (compare 2 integers) node, based on local information.
 481 // If both inputs are constants, compare them.
 482 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 483   const TypeInt *r0 = t1->is_int(); // Handy access
 484   const TypeInt *r1 = t2->is_int();
 485 
 486   if( r0->_hi < r1->_lo )       // Range is always low?
 487     return TypeInt::CC_LT;
 488   else if( r0->_lo > r1->_hi )  // Range is always high?
 489     return TypeInt::CC_GT;
 490 
 491   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 492     assert(r0->get_con() == r1->get_con(), "must be equal");
 493     return TypeInt::CC_EQ;      // Equal results.
 494   } else if( r0->_hi == r1->_lo ) // Range is never high?
 495     return TypeInt::CC_LE;
 496   else if( r0->_lo == r1->_hi ) // Range is never low?
 497     return TypeInt::CC_GE;
 498   return TypeInt::CC;           // else use worst case results
 499 }
 500 
 501 // Simplify a CmpU (compare 2 integers) node, based on local information.
 502 // If both inputs are constants, compare them.
 503 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
 504   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
 505 
 506   // comparing two unsigned ints
 507   const TypeInt *r0 = t1->is_int();   // Handy access
 508   const TypeInt *r1 = t2->is_int();
 509 
 510   // Current installed version
 511   // Compare ranges for non-overlap
 512   juint lo0 = r0->_lo;
 513   juint hi0 = r0->_hi;
 514   juint lo1 = r1->_lo;
 515   juint hi1 = r1->_hi;
 516 
 517   // If either one has both negative and positive values,
 518   // it therefore contains both 0 and -1, and since [0..-1] is the
 519   // full unsigned range, the type must act as an unsigned bottom.
 520   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
 521   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
 522 
 523   if (bot0 || bot1) {
 524     // All unsigned values are LE -1 and GE 0.
 525     if (lo0 == 0 && hi0 == 0) {
 526       return TypeInt::CC_LE;            //   0 <= bot
 527     } else if (lo1 == 0 && hi1 == 0) {
 528       return TypeInt::CC_GE;            // bot >= 0
 529     }
 530   } else {
 531     // We can use ranges of the form [lo..hi] if signs are the same.
 532     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 533     // results are reversed, '-' > '+' for unsigned compare
 534     if (hi0 < lo1) {
 535       return TypeInt::CC_LT;            // smaller
 536     } else if (lo0 > hi1) {
 537       return TypeInt::CC_GT;            // greater
 538     } else if (hi0 == lo1 && lo0 == hi1) {
 539       return TypeInt::CC_EQ;            // Equal results
 540     } else if (lo0 >= hi1) {
 541       return TypeInt::CC_GE;
 542     } else if (hi0 <= lo1) {
 543       // Check for special case in Hashtable::get.  (See below.)
 544       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
 545           in(1)->Opcode() == Op_ModI &&
 546           in(1)->in(2) == in(2) )
 547         return TypeInt::CC_LT;
 548       return TypeInt::CC_LE;
 549     }
 550   }
 551   // Check for special case in Hashtable::get - the hash index is
 552   // mod'ed to the table size so the following range check is useless.
 553   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 554   // to be positive.
 555   // (This is a gross hack, since the sub method never
 556   // looks at the structure of the node in any other case.)
 557   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
 558       in(1)->Opcode() == Op_ModI &&
 559       in(1)->in(2)->uncast() == in(2)->uncast())
 560     return TypeInt::CC_LT;
 561   return TypeInt::CC;                   // else use worst case results
 562 }
 563 
 564 //------------------------------Idealize---------------------------------------
 565 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 566   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 567     switch (in(1)->Opcode()) {
 568     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 569       return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
 570     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 571       return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
 572     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 573       return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
 574     //case Op_SubI:
 575       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 576       // can be turned into (x <?> y).
 577       // This is handled (with more general cases) by Ideal_sub_algebra.
 578     }
 579   }
 580   return NULL;                  // No change
 581 }
 582 
 583 
 584 //=============================================================================
 585 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 586 // If both inputs are constants, compare them.
 587 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 588   const TypeLong *r0 = t1->is_long(); // Handy access
 589   const TypeLong *r1 = t2->is_long();
 590 
 591   if( r0->_hi < r1->_lo )       // Range is always low?
 592     return TypeInt::CC_LT;
 593   else if( r0->_lo > r1->_hi )  // Range is always high?
 594     return TypeInt::CC_GT;
 595 
 596   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 597     assert(r0->get_con() == r1->get_con(), "must be equal");
 598     return TypeInt::CC_EQ;      // Equal results.
 599   } else if( r0->_hi == r1->_lo ) // Range is never high?
 600     return TypeInt::CC_LE;
 601   else if( r0->_lo == r1->_hi ) // Range is never low?
 602     return TypeInt::CC_GE;
 603   return TypeInt::CC;           // else use worst case results
 604 }
 605 
 606 //=============================================================================
 607 //------------------------------sub--------------------------------------------
 608 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 609 // If both inputs are constants, compare them.
 610 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 611   const TypePtr *r0 = t1->is_ptr(); // Handy access
 612   const TypePtr *r1 = t2->is_ptr();
 613 
 614   // Undefined inputs makes for an undefined result
 615   if( TypePtr::above_centerline(r0->_ptr) ||
 616       TypePtr::above_centerline(r1->_ptr) )
 617     return Type::TOP;
 618 
 619   if (r0 == r1 && r0->singleton()) {
 620     // Equal pointer constants (klasses, nulls, etc.)
 621     return TypeInt::CC_EQ;
 622   }
 623 
 624   // See if it is 2 unrelated classes.
 625   const TypeOopPtr* p0 = r0->isa_oopptr();
 626   const TypeOopPtr* p1 = r1->isa_oopptr();
 627   if (p0 && p1) {
 628     Node* in1 = in(1)->uncast();
 629     Node* in2 = in(2)->uncast();
 630     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
 631     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
 632     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
 633       return TypeInt::CC_GT;  // different pointers
 634     }
 635     ciKlass* klass0 = p0->klass();
 636     bool    xklass0 = p0->klass_is_exact();
 637     ciKlass* klass1 = p1->klass();
 638     bool    xklass1 = p1->klass_is_exact();
 639     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 640     if (klass0 && klass1 &&
 641         kps != 1 &&             // both or neither are klass pointers
 642         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
 643         klass1->is_loaded() && !klass1->is_interface() &&
 644         (!klass0->is_obj_array_klass() ||
 645          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
 646         (!klass1->is_obj_array_klass() ||
 647          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
 648       bool unrelated_classes = false;
 649       // See if neither subclasses the other, or if the class on top
 650       // is precise.  In either of these cases, the compare is known
 651       // to fail if at least one of the pointers is provably not null.
 652       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
 653           !klass0->is_java_klass() ||   // types not part of Java language?
 654           !klass1->is_java_klass()) {   // types not part of Java language?
 655         // Do nothing; we know nothing for imprecise types
 656       } else if (klass0->is_subtype_of(klass1)) {
 657         // If klass1's type is PRECISE, then classes are unrelated.
 658         unrelated_classes = xklass1;
 659       } else if (klass1->is_subtype_of(klass0)) {
 660         // If klass0's type is PRECISE, then classes are unrelated.
 661         unrelated_classes = xklass0;
 662       } else {                  // Neither subtypes the other
 663         unrelated_classes = true;
 664       }
 665       if (unrelated_classes) {
 666         // The oops classes are known to be unrelated. If the joined PTRs of
 667         // two oops is not Null and not Bottom, then we are sure that one
 668         // of the two oops is non-null, and the comparison will always fail.
 669         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 670         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 671           return TypeInt::CC_GT;
 672         }
 673       }
 674     }
 675   }
 676 
 677   // Known constants can be compared exactly
 678   // Null can be distinguished from any NotNull pointers
 679   // Unknown inputs makes an unknown result
 680   if( r0->singleton() ) {
 681     intptr_t bits0 = r0->get_con();
 682     if( r1->singleton() )
 683       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 684     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 685   } else if( r1->singleton() ) {
 686     intptr_t bits1 = r1->get_con();
 687     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 688   } else
 689     return TypeInt::CC;
 690 }
 691 
 692 //------------------------------Ideal------------------------------------------
 693 // Check for the case of comparing an unknown klass loaded from the primary
 694 // super-type array vs a known klass with no subtypes.  This amounts to
 695 // checking to see an unknown klass subtypes a known klass with no subtypes;
 696 // this only happens on an exact match.  We can shorten this test by 1 load.
 697 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 698   // Constant pointer on right?
 699   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
 700   if (t2 == NULL || !t2->klass_is_exact())
 701     return NULL;
 702   // Get the constant klass we are comparing to.
 703   ciKlass* superklass = t2->klass();
 704 
 705   // Now check for LoadKlass on left.
 706   Node* ldk1 = in(1);
 707   if (ldk1->is_DecodeN()) {
 708     ldk1 = ldk1->in(1);
 709     if (ldk1->Opcode() != Op_LoadNKlass )
 710       return NULL;
 711   } else if (ldk1->Opcode() != Op_LoadKlass )
 712     return NULL;
 713   // Take apart the address of the LoadKlass:
 714   Node* adr1 = ldk1->in(MemNode::Address);
 715   intptr_t con2 = 0;
 716   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
 717   if (ldk2 == NULL)
 718     return NULL;
 719   if (con2 == oopDesc::klass_offset_in_bytes()) {
 720     // We are inspecting an object's concrete class.
 721     // Short-circuit the check if the query is abstract.
 722     if (superklass->is_interface() ||
 723         superklass->is_abstract()) {
 724       // Make it come out always false:
 725       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
 726       return this;
 727     }
 728   }
 729 
 730   // Check for a LoadKlass from primary supertype array.
 731   // Any nested loadklass from loadklass+con must be from the p.s. array.
 732   if (ldk2->is_DecodeN()) {
 733     // Keep ldk2 as DecodeN since it could be used in CmpP below.
 734     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
 735       return NULL;
 736   } else if (ldk2->Opcode() != Op_LoadKlass)
 737     return NULL;
 738 
 739   // Verify that we understand the situation
 740   if (con2 != (intptr_t) superklass->super_check_offset())
 741     return NULL;                // Might be element-klass loading from array klass
 742 
 743   // If 'superklass' has no subklasses and is not an interface, then we are
 744   // assured that the only input which will pass the type check is
 745   // 'superklass' itself.
 746   //
 747   // We could be more liberal here, and allow the optimization on interfaces
 748   // which have a single implementor.  This would require us to increase the
 749   // expressiveness of the add_dependency() mechanism.
 750   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
 751 
 752   // Object arrays must have their base element have no subtypes
 753   while (superklass->is_obj_array_klass()) {
 754     ciType* elem = superklass->as_obj_array_klass()->element_type();
 755     superklass = elem->as_klass();
 756   }
 757   if (superklass->is_instance_klass()) {
 758     ciInstanceKlass* ik = superklass->as_instance_klass();
 759     if (ik->has_subklass() || ik->is_interface())  return NULL;
 760     // Add a dependency if there is a chance that a subclass will be added later.
 761     if (!ik->is_final()) {
 762       phase->C->dependencies()->assert_leaf_type(ik);
 763     }
 764   }
 765 
 766   // Bypass the dependent load, and compare directly
 767   this->set_req(1,ldk2);
 768 
 769   return this;
 770 }
 771 
 772 //=============================================================================
 773 //------------------------------sub--------------------------------------------
 774 // Simplify an CmpN (compare 2 pointers) node, based on local information.
 775 // If both inputs are constants, compare them.
 776 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
 777   const TypePtr *r0 = t1->make_ptr(); // Handy access
 778   const TypePtr *r1 = t2->make_ptr();
 779 
 780   // Undefined inputs makes for an undefined result
 781   if( TypePtr::above_centerline(r0->_ptr) ||
 782       TypePtr::above_centerline(r1->_ptr) )
 783     return Type::TOP;
 784 
 785   if (r0 == r1 && r0->singleton()) {
 786     // Equal pointer constants (klasses, nulls, etc.)
 787     return TypeInt::CC_EQ;
 788   }
 789 
 790   // See if it is 2 unrelated classes.
 791   const TypeOopPtr* p0 = r0->isa_oopptr();
 792   const TypeOopPtr* p1 = r1->isa_oopptr();
 793   if (p0 && p1) {
 794     ciKlass* klass0 = p0->klass();
 795     bool    xklass0 = p0->klass_is_exact();
 796     ciKlass* klass1 = p1->klass();
 797     bool    xklass1 = p1->klass_is_exact();
 798     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 799     if (klass0 && klass1 &&
 800         kps != 1 &&             // both or neither are klass pointers
 801         !klass0->is_interface() && // do not trust interfaces
 802         !klass1->is_interface()) {
 803       bool unrelated_classes = false;
 804       // See if neither subclasses the other, or if the class on top
 805       // is precise.  In either of these cases, the compare is known
 806       // to fail if at least one of the pointers is provably not null.
 807       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
 808           !klass0->is_java_klass() ||   // types not part of Java language?
 809           !klass1->is_java_klass()) {   // types not part of Java language?
 810         // Do nothing; we know nothing for imprecise types
 811       } else if (klass0->is_subtype_of(klass1)) {
 812         // If klass1's type is PRECISE, then classes are unrelated.
 813         unrelated_classes = xklass1;
 814       } else if (klass1->is_subtype_of(klass0)) {
 815         // If klass0's type is PRECISE, then classes are unrelated.
 816         unrelated_classes = xklass0;
 817       } else {                  // Neither subtypes the other
 818         unrelated_classes = true;
 819       }
 820       if (unrelated_classes) {
 821         // The oops classes are known to be unrelated. If the joined PTRs of
 822         // two oops is not Null and not Bottom, then we are sure that one
 823         // of the two oops is non-null, and the comparison will always fail.
 824         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 825         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 826           return TypeInt::CC_GT;
 827         }
 828       }
 829     }
 830   }
 831 
 832   // Known constants can be compared exactly
 833   // Null can be distinguished from any NotNull pointers
 834   // Unknown inputs makes an unknown result
 835   if( r0->singleton() ) {
 836     intptr_t bits0 = r0->get_con();
 837     if( r1->singleton() )
 838       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 839     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 840   } else if( r1->singleton() ) {
 841     intptr_t bits1 = r1->get_con();
 842     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 843   } else
 844     return TypeInt::CC;
 845 }
 846 
 847 //------------------------------Ideal------------------------------------------
 848 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 849   return NULL;
 850 }
 851 
 852 //=============================================================================
 853 //------------------------------Value------------------------------------------
 854 // Simplify an CmpF (compare 2 floats ) node, based on local information.
 855 // If both inputs are constants, compare them.
 856 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
 857   const Node* in1 = in(1);
 858   const Node* in2 = in(2);
 859   // Either input is TOP ==> the result is TOP
 860   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 861   if( t1 == Type::TOP ) return Type::TOP;
 862   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 863   if( t2 == Type::TOP ) return Type::TOP;
 864 
 865   // Not constants?  Don't know squat - even if they are the same
 866   // value!  If they are NaN's they compare to LT instead of EQ.
 867   const TypeF *tf1 = t1->isa_float_constant();
 868   const TypeF *tf2 = t2->isa_float_constant();
 869   if( !tf1 || !tf2 ) return TypeInt::CC;
 870 
 871   // This implements the Java bytecode fcmpl, so unordered returns -1.
 872   if( tf1->is_nan() || tf2->is_nan() )
 873     return TypeInt::CC_LT;
 874 
 875   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
 876   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
 877   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
 878   return TypeInt::CC_EQ;
 879 }
 880 
 881 
 882 //=============================================================================
 883 //------------------------------Value------------------------------------------
 884 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
 885 // If both inputs are constants, compare them.
 886 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
 887   const Node* in1 = in(1);
 888   const Node* in2 = in(2);
 889   // Either input is TOP ==> the result is TOP
 890   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 891   if( t1 == Type::TOP ) return Type::TOP;
 892   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 893   if( t2 == Type::TOP ) return Type::TOP;
 894 
 895   // Not constants?  Don't know squat - even if they are the same
 896   // value!  If they are NaN's they compare to LT instead of EQ.
 897   const TypeD *td1 = t1->isa_double_constant();
 898   const TypeD *td2 = t2->isa_double_constant();
 899   if( !td1 || !td2 ) return TypeInt::CC;
 900 
 901   // This implements the Java bytecode dcmpl, so unordered returns -1.
 902   if( td1->is_nan() || td2->is_nan() )
 903     return TypeInt::CC_LT;
 904 
 905   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
 906   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
 907   assert( td1->_d == td2->_d, "do not understand FP behavior" );
 908   return TypeInt::CC_EQ;
 909 }
 910 
 911 //------------------------------Ideal------------------------------------------
 912 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 913   // Check if we can change this to a CmpF and remove a ConvD2F operation.
 914   // Change  (CMPD (F2D (float)) (ConD value))
 915   // To      (CMPF      (float)  (ConF value))
 916   // Valid when 'value' does not lose precision as a float.
 917   // Benefits: eliminates conversion, does not require 24-bit mode
 918 
 919   // NaNs prevent commuting operands.  This transform works regardless of the
 920   // order of ConD and ConvF2D inputs by preserving the original order.
 921   int idx_f2d = 1;              // ConvF2D on left side?
 922   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
 923     idx_f2d = 2;                // No, swap to check for reversed args
 924   int idx_con = 3-idx_f2d;      // Check for the constant on other input
 925 
 926   if( ConvertCmpD2CmpF &&
 927       in(idx_f2d)->Opcode() == Op_ConvF2D &&
 928       in(idx_con)->Opcode() == Op_ConD ) {
 929     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
 930     double t2_value_as_double = t2->_d;
 931     float  t2_value_as_float  = (float)t2_value_as_double;
 932     if( t2_value_as_double == (double)t2_value_as_float ) {
 933       // Test value can be represented as a float
 934       // Eliminate the conversion to double and create new comparison
 935       Node *new_in1 = in(idx_f2d)->in(1);
 936       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
 937       if( idx_f2d != 1 ) {      // Must flip args to match original order
 938         Node *tmp = new_in1;
 939         new_in1 = new_in2;
 940         new_in2 = tmp;
 941       }
 942       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
 943         ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
 944         : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
 945       return new_cmp;           // Changed to CmpFNode
 946     }
 947     // Testing value required the precision of a double
 948   }
 949   return NULL;                  // No change
 950 }
 951 
 952 
 953 //=============================================================================
 954 //------------------------------cc2logical-------------------------------------
 955 // Convert a condition code type to a logical type
 956 const Type *BoolTest::cc2logical( const Type *CC ) const {
 957   if( CC == Type::TOP ) return Type::TOP;
 958   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
 959   const TypeInt *ti = CC->is_int();
 960   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
 961     // Match low order 2 bits
 962     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
 963     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
 964     return TypeInt::make(tmp);       // Boolean result
 965   }
 966 
 967   if( CC == TypeInt::CC_GE ) {
 968     if( _test == ge ) return TypeInt::ONE;
 969     if( _test == lt ) return TypeInt::ZERO;
 970   }
 971   if( CC == TypeInt::CC_LE ) {
 972     if( _test == le ) return TypeInt::ONE;
 973     if( _test == gt ) return TypeInt::ZERO;
 974   }
 975 
 976   return TypeInt::BOOL;
 977 }
 978 
 979 //------------------------------dump_spec-------------------------------------
 980 // Print special per-node info
 981 #ifndef PRODUCT
 982 void BoolTest::dump_on(outputStream *st) const {
 983   const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
 984   st->print(msg[_test]);
 985 }
 986 #endif
 987 
 988 //=============================================================================
 989 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
 990 uint BoolNode::size_of() const { return sizeof(BoolNode); }
 991 
 992 //------------------------------operator==-------------------------------------
 993 uint BoolNode::cmp( const Node &n ) const {
 994   const BoolNode *b = (const BoolNode *)&n; // Cast up
 995   return (_test._test == b->_test._test);
 996 }
 997 
 998 //------------------------------clone_cmp--------------------------------------
 999 // Clone a compare/bool tree
1000 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
1001   Node *ncmp = cmp->clone();
1002   ncmp->set_req(1,cmp1);
1003   ncmp->set_req(2,cmp2);
1004   ncmp = gvn->transform( ncmp );
1005   return new (gvn->C, 2) BoolNode( ncmp, test );
1006 }
1007 
1008 //-------------------------------make_predicate--------------------------------
1009 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1010   if (test_value->is_Con())   return test_value;
1011   if (test_value->is_Bool())  return test_value;
1012   Compile* C = phase->C;
1013   if (test_value->is_CMove() &&
1014       test_value->in(CMoveNode::Condition)->is_Bool()) {
1015     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1016     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1017     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1018     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1019       return bol;
1020     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1021       return phase->transform( bol->negate(phase) );
1022     }
1023     // Else fall through.  The CMove gets in the way of the test.
1024     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1025   }
1026   Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
1027   cmp = phase->transform(cmp);
1028   Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
1029   return phase->transform(bol);
1030 }
1031 
1032 //--------------------------------as_int_value---------------------------------
1033 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1034   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1035   Node* cmov = CMoveNode::make(phase->C, NULL, this,
1036                                phase->intcon(0), phase->intcon(1),
1037                                TypeInt::BOOL);
1038   return phase->transform(cmov);
1039 }
1040 
1041 //----------------------------------negate-------------------------------------
1042 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1043   Compile* C = phase->C;
1044   return new (C, 2) BoolNode(in(1), _test.negate());
1045 }
1046 
1047 
1048 //------------------------------Ideal------------------------------------------
1049 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1050   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1051   // This moves the constant to the right.  Helps value-numbering.
1052   Node *cmp = in(1);
1053   if( !cmp->is_Sub() ) return NULL;
1054   int cop = cmp->Opcode();
1055   if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
1056   Node *cmp1 = cmp->in(1);
1057   Node *cmp2 = cmp->in(2);
1058   if( !cmp1 ) return NULL;
1059 
1060   // Constant on left?
1061   Node *con = cmp1;
1062   uint op2 = cmp2->Opcode();
1063   // Move constants to the right of compare's to canonicalize.
1064   // Do not muck with Opaque1 nodes, as this indicates a loop
1065   // guard that cannot change shape.
1066   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1067       // Because of NaN's, CmpD and CmpF are not commutative
1068       cop != Op_CmpD && cop != Op_CmpF &&
1069       // Protect against swapping inputs to a compare when it is used by a
1070       // counted loop exit, which requires maintaining the loop-limit as in(2)
1071       !is_counted_loop_exit_test() ) {
1072     // Ok, commute the constant to the right of the cmp node.
1073     // Clone the Node, getting a new Node of the same class
1074     cmp = cmp->clone();
1075     // Swap inputs to the clone
1076     cmp->swap_edges(1, 2);
1077     cmp = phase->transform( cmp );
1078     return new (phase->C, 2) BoolNode( cmp, _test.commute() );
1079   }
1080 
1081   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1082   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1083   // test instead.
1084   int cmp1_op = cmp1->Opcode();
1085   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1086   if (cmp2_type == NULL)  return NULL;
1087   Node* j_xor = cmp1;
1088   if( cmp2_type == TypeInt::ZERO &&
1089       cmp1_op == Op_XorI &&
1090       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1091       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1092       (_test._test == BoolTest::eq ||
1093        _test._test == BoolTest::ne) ) {
1094     Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
1095     return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
1096   }
1097 
1098   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1099   // This is a standard idiom for branching on a boolean value.
1100   Node *c2b = cmp1;
1101   if( cmp2_type == TypeInt::ZERO &&
1102       cmp1_op == Op_Conv2B &&
1103       (_test._test == BoolTest::eq ||
1104        _test._test == BoolTest::ne) ) {
1105     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1106        ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
1107        : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1108     );
1109     return new (phase->C, 2) BoolNode( ncmp, _test._test );
1110   }
1111 
1112   // Comparing a SubI against a zero is equal to comparing the SubI
1113   // arguments directly.  This only works for eq and ne comparisons
1114   // due to possible integer overflow.
1115   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1116         (cop == Op_CmpI) &&
1117         (cmp1->Opcode() == Op_SubI) &&
1118         ( cmp2_type == TypeInt::ZERO ) ) {
1119     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
1120     return new (phase->C, 2) BoolNode( ncmp, _test._test );
1121   }
1122 
1123   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1124   // most general case because negating 0x80000000 does nothing.  Needed for
1125   // the CmpF3/SubI/CmpI idiom.
1126   if( cop == Op_CmpI &&
1127       cmp1->Opcode() == Op_SubI &&
1128       cmp2_type == TypeInt::ZERO &&
1129       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1130       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1131     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
1132     return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
1133   }
1134 
1135   //  The transformation below is not valid for either signed or unsigned
1136   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1137   //  This transformation can be resurrected when we are able to
1138   //  make inferences about the range of values being subtracted from
1139   //  (or added to) relative to the wraparound point.
1140   //
1141   //    // Remove +/-1's if possible.
1142   //    // "X <= Y-1" becomes "X <  Y"
1143   //    // "X+1 <= Y" becomes "X <  Y"
1144   //    // "X <  Y+1" becomes "X <= Y"
1145   //    // "X-1 <  Y" becomes "X <= Y"
1146   //    // Do not this to compares off of the counted-loop-end.  These guys are
1147   //    // checking the trip counter and they want to use the post-incremented
1148   //    // counter.  If they use the PRE-incremented counter, then the counter has
1149   //    // to be incremented in a private block on a loop backedge.
1150   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1151   //      return NULL;
1152   //  #ifndef PRODUCT
1153   //    // Do not do this in a wash GVN pass during verification.
1154   //    // Gets triggered by too many simple optimizations to be bothered with
1155   //    // re-trying it again and again.
1156   //    if( !phase->allow_progress() ) return NULL;
1157   //  #endif
1158   //    // Not valid for unsigned compare because of corner cases in involving zero.
1159   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1160   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1161   //    // "0 <=u Y" is always true).
1162   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1163   //    int cmp2_op = cmp2->Opcode();
1164   //    if( _test._test == BoolTest::le ) {
1165   //      if( cmp1_op == Op_AddI &&
1166   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1167   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1168   //      else if( cmp2_op == Op_AddI &&
1169   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1170   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1171   //    } else if( _test._test == BoolTest::lt ) {
1172   //      if( cmp1_op == Op_AddI &&
1173   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1174   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1175   //      else if( cmp2_op == Op_AddI &&
1176   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1177   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1178   //    }
1179 
1180   return NULL;
1181 }
1182 
1183 //------------------------------Value------------------------------------------
1184 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1185 // based on local information.   If the input is constant, do it.
1186 const Type *BoolNode::Value( PhaseTransform *phase ) const {
1187   return _test.cc2logical( phase->type( in(1) ) );
1188 }
1189 
1190 //------------------------------dump_spec--------------------------------------
1191 // Dump special per-node info
1192 #ifndef PRODUCT
1193 void BoolNode::dump_spec(outputStream *st) const {
1194   st->print("[");
1195   _test.dump_on(st);
1196   st->print("]");
1197 }
1198 #endif
1199 
1200 //------------------------------is_counted_loop_exit_test--------------------------------------
1201 // Returns true if node is used by a counted loop node.
1202 bool BoolNode::is_counted_loop_exit_test() {
1203   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1204     Node* use = fast_out(i);
1205     if (use->is_CountedLoopEnd()) {
1206       return true;
1207     }
1208   }
1209   return false;
1210 }
1211 
1212 //=============================================================================
1213 //------------------------------NegNode----------------------------------------
1214 Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1215   if( in(1)->Opcode() == Op_SubF )
1216     return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
1217   return NULL;
1218 }
1219 
1220 Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1221   if( in(1)->Opcode() == Op_SubD )
1222     return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
1223   return NULL;
1224 }
1225 
1226 
1227 //=============================================================================
1228 //------------------------------Value------------------------------------------
1229 // Compute sqrt
1230 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
1231   const Type *t1 = phase->type( in(1) );
1232   if( t1 == Type::TOP ) return Type::TOP;
1233   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1234   double d = t1->getd();
1235   if( d < 0.0 ) return Type::DOUBLE;
1236   return TypeD::make( sqrt( d ) );
1237 }
1238 
1239 //=============================================================================
1240 //------------------------------Value------------------------------------------
1241 // Compute cos
1242 const Type *CosDNode::Value( PhaseTransform *phase ) const {
1243   const Type *t1 = phase->type( in(1) );
1244   if( t1 == Type::TOP ) return Type::TOP;
1245   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1246   double d = t1->getd();
1247   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
1248 }
1249 
1250 //=============================================================================
1251 //------------------------------Value------------------------------------------
1252 // Compute sin
1253 const Type *SinDNode::Value( PhaseTransform *phase ) const {
1254   const Type *t1 = phase->type( in(1) );
1255   if( t1 == Type::TOP ) return Type::TOP;
1256   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1257   double d = t1->getd();
1258   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
1259 }
1260 
1261 //=============================================================================
1262 //------------------------------Value------------------------------------------
1263 // Compute tan
1264 const Type *TanDNode::Value( PhaseTransform *phase ) const {
1265   const Type *t1 = phase->type( in(1) );
1266   if( t1 == Type::TOP ) return Type::TOP;
1267   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1268   double d = t1->getd();
1269   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
1270 }
1271 
1272 //=============================================================================
1273 //------------------------------Value------------------------------------------
1274 // Compute log
1275 const Type *LogDNode::Value( PhaseTransform *phase ) const {
1276   const Type *t1 = phase->type( in(1) );
1277   if( t1 == Type::TOP ) return Type::TOP;
1278   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1279   double d = t1->getd();
1280   return TypeD::make( StubRoutines::intrinsic_log( d ) );
1281 }
1282 
1283 //=============================================================================
1284 //------------------------------Value------------------------------------------
1285 // Compute log10
1286 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
1287   const Type *t1 = phase->type( in(1) );
1288   if( t1 == Type::TOP ) return Type::TOP;
1289   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1290   double d = t1->getd();
1291   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
1292 }
1293 
1294 //=============================================================================
1295 //------------------------------Value------------------------------------------
1296 // Compute exp
1297 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
1298   const Type *t1 = phase->type( in(1) );
1299   if( t1 == Type::TOP ) return Type::TOP;
1300   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1301   double d = t1->getd();
1302   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
1303 }
1304 
1305 
1306 //=============================================================================
1307 //------------------------------Value------------------------------------------
1308 // Compute pow
1309 const Type *PowDNode::Value( PhaseTransform *phase ) const {
1310   const Type *t1 = phase->type( in(1) );
1311   if( t1 == Type::TOP ) return Type::TOP;
1312   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1313   const Type *t2 = phase->type( in(2) );
1314   if( t2 == Type::TOP ) return Type::TOP;
1315   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
1316   double d1 = t1->getd();
1317   double d2 = t2->getd();
1318   if( d1 < 0.0 ) return Type::DOUBLE;
1319   if( d2 < 0.0 ) return Type::DOUBLE;
1320   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
1321 }