1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 //------------------------------SUBNode----------------------------------------
  28 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
  29 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
  30 // -float, and -double are all inherited from this class.  The compare
  31 // functions behave like subtract functions, except that all negative answers
  32 // are compressed into -1, and all positive answers compressed to 1.
  33 class SubNode : public Node {
  34 public:
  35   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
  36     init_class_id(Class_Sub);
  37   }
  38 
  39   // Handle algebraic identities here.  If we have an identity, return the Node
  40   // we are equivalent to.  We look for "add of zero" as an identity.
  41   virtual Node *Identity( PhaseTransform *phase );
  42 
  43   // Compute a new Type for this node.  Basically we just do the pre-check,
  44   // then call the virtual add() to set the type.
  45   virtual const Type *Value( PhaseTransform *phase ) const;
  46 
  47   // Supplied function returns the subtractend of the inputs.
  48   // This also type-checks the inputs for sanity.  Guaranteed never to
  49   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
  50   virtual const Type *sub( const Type *, const Type * ) const = 0;
  51 
  52   // Supplied function to return the additive identity type.
  53   // This is returned whenever the subtracts inputs are the same.
  54   virtual const Type *add_id() const = 0;
  55 
  56 };
  57 
  58 
  59 // NOTE: SubINode should be taken away and replaced by add and negate
  60 //------------------------------SubINode---------------------------------------
  61 // Subtract 2 integers
  62 class SubINode : public SubNode {
  63 public:
  64   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  65   virtual int Opcode() const;
  66   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  67   virtual const Type *sub( const Type *, const Type * ) const;
  68   const Type *add_id() const { return TypeInt::ZERO; }
  69   const Type *bottom_type() const { return TypeInt::INT; }
  70   virtual uint ideal_reg() const { return Op_RegI; }
  71 };
  72 
  73 //------------------------------SubLNode---------------------------------------
  74 // Subtract 2 integers
  75 class SubLNode : public SubNode {
  76 public:
  77   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  78   virtual int Opcode() const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual const Type *sub( const Type *, const Type * ) const;
  81   const Type *add_id() const { return TypeLong::ZERO; }
  82   const Type *bottom_type() const { return TypeLong::LONG; }
  83   virtual uint ideal_reg() const { return Op_RegL; }
  84 };
  85 
  86 // NOTE: SubFPNode should be taken away and replaced by add and negate
  87 //------------------------------SubFPNode--------------------------------------
  88 // Subtract 2 floats or doubles
  89 class SubFPNode : public SubNode {
  90 protected:
  91   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  92 public:
  93   const Type *Value( PhaseTransform *phase ) const;
  94 };
  95 
  96 // NOTE: SubFNode should be taken away and replaced by add and negate
  97 //------------------------------SubFNode---------------------------------------
  98 // Subtract 2 doubles
  99 class SubFNode : public SubFPNode {
 100 public:
 101   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 102   virtual int Opcode() const;
 103   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 104   virtual const Type *sub( const Type *, const Type * ) const;
 105   const Type   *add_id() const { return TypeF::ZERO; }
 106   const Type   *bottom_type() const { return Type::FLOAT; }
 107   virtual uint  ideal_reg() const { return Op_RegF; }
 108 };
 109 
 110 // NOTE: SubDNode should be taken away and replaced by add and negate
 111 //------------------------------SubDNode---------------------------------------
 112 // Subtract 2 doubles
 113 class SubDNode : public SubFPNode {
 114 public:
 115   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 116   virtual int Opcode() const;
 117   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 118   virtual const Type *sub( const Type *, const Type * ) const;
 119   const Type   *add_id() const { return TypeD::ZERO; }
 120   const Type   *bottom_type() const { return Type::DOUBLE; }
 121   virtual uint  ideal_reg() const { return Op_RegD; }
 122 };
 123 
 124 //------------------------------CmpNode---------------------------------------
 125 // Compare 2 values, returning condition codes (-1, 0 or 1).
 126 class CmpNode : public SubNode {
 127 public:
 128   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
 129     init_class_id(Class_Cmp);
 130   }
 131   virtual Node *Identity( PhaseTransform *phase );
 132   const Type *add_id() const { return TypeInt::ZERO; }
 133   const Type *bottom_type() const { return TypeInt::CC; }
 134   virtual uint ideal_reg() const { return Op_RegFlags; }
 135 };
 136 
 137 //------------------------------CmpINode---------------------------------------
 138 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
 139 class CmpINode : public CmpNode {
 140 public:
 141   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 142   virtual int Opcode() const;
 143   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 144   virtual const Type *sub( const Type *, const Type * ) const;
 145 };
 146 
 147 //------------------------------CmpUNode---------------------------------------
 148 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
 149 class CmpUNode : public CmpNode {
 150 public:
 151   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 152   virtual int Opcode() const;
 153   virtual const Type *sub( const Type *, const Type * ) const;
 154 };
 155 
 156 //------------------------------CmpPNode---------------------------------------
 157 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
 158 class CmpPNode : public CmpNode {
 159 public:
 160   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 161   virtual int Opcode() const;
 162   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 163   virtual const Type *sub( const Type *, const Type * ) const;
 164 };
 165 
 166 //------------------------------CmpNNode--------------------------------------
 167 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
 168 class CmpNNode : public CmpNode {
 169 public:
 170   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 171   virtual int Opcode() const;
 172   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 173   virtual const Type *sub( const Type *, const Type * ) const;
 174 };
 175 
 176 //------------------------------CmpLNode---------------------------------------
 177 // Compare 2 long values, returning condition codes (-1, 0 or 1).
 178 class CmpLNode : public CmpNode {
 179 public:
 180   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 181   virtual int    Opcode() const;
 182   virtual const Type *sub( const Type *, const Type * ) const;
 183 };
 184 
 185 //------------------------------CmpL3Node--------------------------------------
 186 // Compare 2 long values, returning integer value (-1, 0 or 1).
 187 class CmpL3Node : public CmpLNode {
 188 public:
 189   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
 190     // Since it is not consumed by Bools, it is not really a Cmp.
 191     init_class_id(Class_Sub);
 192   }
 193   virtual int    Opcode() const;
 194   virtual uint ideal_reg() const { return Op_RegI; }
 195 };
 196 
 197 //------------------------------CmpFNode---------------------------------------
 198 // Compare 2 float values, returning condition codes (-1, 0 or 1).
 199 // This implements the Java bytecode fcmpl, so unordered returns -1.
 200 // Operands may not commute.
 201 class CmpFNode : public CmpNode {
 202 public:
 203   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 204   virtual int Opcode() const;
 205   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 206   const Type *Value( PhaseTransform *phase ) const;
 207 };
 208 
 209 //------------------------------CmpF3Node--------------------------------------
 210 // Compare 2 float values, returning integer value (-1, 0 or 1).
 211 // This implements the Java bytecode fcmpl, so unordered returns -1.
 212 // Operands may not commute.
 213 class CmpF3Node : public CmpFNode {
 214 public:
 215   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
 216     // Since it is not consumed by Bools, it is not really a Cmp.
 217     init_class_id(Class_Sub);
 218   }
 219   virtual int Opcode() const;
 220   // Since it is not consumed by Bools, it is not really a Cmp.
 221   virtual uint ideal_reg() const { return Op_RegI; }
 222 };
 223 
 224 
 225 //------------------------------CmpDNode---------------------------------------
 226 // Compare 2 double values, returning condition codes (-1, 0 or 1).
 227 // This implements the Java bytecode dcmpl, so unordered returns -1.
 228 // Operands may not commute.
 229 class CmpDNode : public CmpNode {
 230 public:
 231   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 232   virtual int Opcode() const;
 233   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 234   const Type *Value( PhaseTransform *phase ) const;
 235   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
 236 };
 237 
 238 //------------------------------CmpD3Node--------------------------------------
 239 // Compare 2 double values, returning integer value (-1, 0 or 1).
 240 // This implements the Java bytecode dcmpl, so unordered returns -1.
 241 // Operands may not commute.
 242 class CmpD3Node : public CmpDNode {
 243 public:
 244   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
 245     // Since it is not consumed by Bools, it is not really a Cmp.
 246     init_class_id(Class_Sub);
 247   }
 248   virtual int Opcode() const;
 249   virtual uint ideal_reg() const { return Op_RegI; }
 250 };
 251 
 252 
 253 //------------------------------BoolTest---------------------------------------
 254 // Convert condition codes to a boolean test value (0 or -1).
 255 // We pick the values as 3 bits; the low order 2 bits we compare against the
 256 // condition codes, the high bit flips the sense of the result.
 257 struct BoolTest VALUE_OBJ_CLASS_SPEC {
 258   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, illegal = 8 };
 259   mask _test;
 260   BoolTest( mask btm ) : _test(btm) {}
 261   const Type *cc2logical( const Type *CC ) const;
 262   // Commute the test.  I use a small table lookup.  The table is created as
 263   // a simple char array where each element is the ASCII version of a 'mask'
 264   // enum from above.
 265   mask commute( ) const { return mask("038147858"[_test]-'0'); }
 266   mask negate( ) const { return mask(_test^4); }
 267   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le); }
 268 #ifndef PRODUCT
 269   void dump_on(outputStream *st) const;
 270 #endif
 271 };
 272 
 273 //------------------------------BoolNode---------------------------------------
 274 // A Node to convert a Condition Codes to a Logical result.
 275 class BoolNode : public Node {
 276   virtual uint hash() const;
 277   virtual uint cmp( const Node &n ) const;
 278   virtual uint size_of() const;
 279 public:
 280   const BoolTest _test;
 281   BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
 282     init_class_id(Class_Bool);
 283   }
 284   // Convert an arbitrary int value to a Bool or other suitable predicate.
 285   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
 286   // Convert self back to an integer value.
 287   Node* as_int_value(PhaseGVN* phase);
 288   // Invert sense of self, returning new Bool.
 289   BoolNode* negate(PhaseGVN* phase);
 290   virtual int Opcode() const;
 291   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 292   virtual const Type *Value( PhaseTransform *phase ) const;
 293   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
 294   uint match_edge(uint idx) const { return 0; }
 295   virtual uint ideal_reg() const { return Op_RegI; }
 296 
 297   bool is_counted_loop_exit_test();
 298 #ifndef PRODUCT
 299   virtual void dump_spec(outputStream *st) const;
 300 #endif
 301 };
 302 
 303 //------------------------------AbsNode----------------------------------------
 304 // Abstract class for absolute value.  Mostly used to get a handy wrapper
 305 // for finding this pattern in the graph.
 306 class AbsNode : public Node {
 307 public:
 308   AbsNode( Node *value ) : Node(0,value) {}
 309 };
 310 
 311 //------------------------------AbsINode---------------------------------------
 312 // Absolute value an integer.  Since a naive graph involves control flow, we
 313 // "match" it in the ideal world (so the control flow can be removed).
 314 class AbsINode : public AbsNode {
 315 public:
 316   AbsINode( Node *in1 ) : AbsNode(in1) {}
 317   virtual int Opcode() const;
 318   const Type *bottom_type() const { return TypeInt::INT; }
 319   virtual uint ideal_reg() const { return Op_RegI; }
 320 };
 321 
 322 //------------------------------AbsFNode---------------------------------------
 323 // Absolute value a float, a common float-point idiom with a cheap hardware
 324 // implemention on most chips.  Since a naive graph involves control flow, we
 325 // "match" it in the ideal world (so the control flow can be removed).
 326 class AbsFNode : public AbsNode {
 327 public:
 328   AbsFNode( Node *in1 ) : AbsNode(in1) {}
 329   virtual int Opcode() const;
 330   const Type *bottom_type() const { return Type::FLOAT; }
 331   virtual uint ideal_reg() const { return Op_RegF; }
 332 };
 333 
 334 //------------------------------AbsDNode---------------------------------------
 335 // Absolute value a double, a common float-point idiom with a cheap hardware
 336 // implemention on most chips.  Since a naive graph involves control flow, we
 337 // "match" it in the ideal world (so the control flow can be removed).
 338 class AbsDNode : public AbsNode {
 339 public:
 340   AbsDNode( Node *in1 ) : AbsNode(in1) {}
 341   virtual int Opcode() const;
 342   const Type *bottom_type() const { return Type::DOUBLE; }
 343   virtual uint ideal_reg() const { return Op_RegD; }
 344 };
 345 
 346 
 347 //------------------------------CmpLTMaskNode----------------------------------
 348 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
 349 class CmpLTMaskNode : public Node {
 350 public:
 351   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
 352   virtual int Opcode() const;
 353   const Type *bottom_type() const { return TypeInt::INT; }
 354   virtual uint ideal_reg() const { return Op_RegI; }
 355 };
 356 
 357 
 358 //------------------------------NegNode----------------------------------------
 359 class NegNode : public Node {
 360 public:
 361   NegNode( Node *in1 ) : Node(0,in1) {}
 362 };
 363 
 364 //------------------------------NegFNode---------------------------------------
 365 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
 366 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
 367 // cannot be used to replace negation we have to implement negation as ideal
 368 // node; note that negation and addition can replace subtraction.
 369 class NegFNode : public NegNode {
 370 public:
 371   NegFNode( Node *in1 ) : NegNode(in1) {}
 372   virtual int Opcode() const;
 373   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 374   const Type *bottom_type() const { return Type::FLOAT; }
 375   virtual uint ideal_reg() const { return Op_RegF; }
 376 };
 377 
 378 //------------------------------NegDNode---------------------------------------
 379 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
 380 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
 381 // cannot be used to replace negation we have to implement negation as ideal
 382 // node; note that negation and addition can replace subtraction.
 383 class NegDNode : public NegNode {
 384 public:
 385   NegDNode( Node *in1 ) : NegNode(in1) {}
 386   virtual int Opcode() const;
 387   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 388   const Type *bottom_type() const { return Type::DOUBLE; }
 389   virtual uint ideal_reg() const { return Op_RegD; }
 390 };
 391 
 392 //------------------------------CosDNode---------------------------------------
 393 // Cosinus of a double
 394 class CosDNode : public Node {
 395 public:
 396   CosDNode( Node *in1  ) : Node(0, in1) {}
 397   virtual int Opcode() const;
 398   const Type *bottom_type() const { return Type::DOUBLE; }
 399   virtual uint ideal_reg() const { return Op_RegD; }
 400   virtual const Type *Value( PhaseTransform *phase ) const;
 401 };
 402 
 403 //------------------------------CosDNode---------------------------------------
 404 // Sinus of a double
 405 class SinDNode : public Node {
 406 public:
 407   SinDNode( Node *in1  ) : Node(0, in1) {}
 408   virtual int Opcode() const;
 409   const Type *bottom_type() const { return Type::DOUBLE; }
 410   virtual uint ideal_reg() const { return Op_RegD; }
 411   virtual const Type *Value( PhaseTransform *phase ) const;
 412 };
 413 
 414 
 415 //------------------------------TanDNode---------------------------------------
 416 // tangens of a double
 417 class TanDNode : public Node {
 418 public:
 419   TanDNode(Node *in1  ) : Node(0, in1) {}
 420   virtual int Opcode() const;
 421   const Type *bottom_type() const { return Type::DOUBLE; }
 422   virtual uint ideal_reg() const { return Op_RegD; }
 423   virtual const Type *Value( PhaseTransform *phase ) const;
 424 };
 425 
 426 
 427 //------------------------------AtanDNode--------------------------------------
 428 // arcus tangens of a double
 429 class AtanDNode : public Node {
 430 public:
 431   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
 432   virtual int Opcode() const;
 433   const Type *bottom_type() const { return Type::DOUBLE; }
 434   virtual uint ideal_reg() const { return Op_RegD; }
 435 };
 436 
 437 
 438 //------------------------------SqrtDNode--------------------------------------
 439 // square root a double
 440 class SqrtDNode : public Node {
 441 public:
 442   SqrtDNode(Node *c, Node *in1  ) : Node(c, in1) {}
 443   virtual int Opcode() const;
 444   const Type *bottom_type() const { return Type::DOUBLE; }
 445   virtual uint ideal_reg() const { return Op_RegD; }
 446   virtual const Type *Value( PhaseTransform *phase ) const;
 447 };
 448 
 449 //------------------------------ExpDNode---------------------------------------
 450 //  Exponentiate a double
 451 class ExpDNode : public Node {
 452 public:
 453   ExpDNode( Node *c, Node *in1 ) : Node(c, in1) {}
 454   virtual int Opcode() const;
 455   const Type *bottom_type() const { return Type::DOUBLE; }
 456   virtual uint ideal_reg() const { return Op_RegD; }
 457   virtual const Type *Value( PhaseTransform *phase ) const;
 458 };
 459 
 460 //------------------------------LogDNode---------------------------------------
 461 // Log_e of a double
 462 class LogDNode : public Node {
 463 public:
 464   LogDNode( Node *in1 ) : Node(0, in1) {}
 465   virtual int Opcode() const;
 466   const Type *bottom_type() const { return Type::DOUBLE; }
 467   virtual uint ideal_reg() const { return Op_RegD; }
 468   virtual const Type *Value( PhaseTransform *phase ) const;
 469 };
 470 
 471 //------------------------------Log10DNode---------------------------------------
 472 // Log_10 of a double
 473 class Log10DNode : public Node {
 474 public:
 475   Log10DNode( Node *in1 ) : Node(0, in1) {}
 476   virtual int Opcode() const;
 477   const Type *bottom_type() const { return Type::DOUBLE; }
 478   virtual uint ideal_reg() const { return Op_RegD; }
 479   virtual const Type *Value( PhaseTransform *phase ) const;
 480 };
 481 
 482 //------------------------------PowDNode---------------------------------------
 483 // Raise a double to a double power
 484 class PowDNode : public Node {
 485 public:
 486   PowDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
 487   virtual int Opcode() const;
 488   const Type *bottom_type() const { return Type::DOUBLE; }
 489   virtual uint ideal_reg() const { return Op_RegD; }
 490   virtual const Type *Value( PhaseTransform *phase ) const;
 491 };
 492 
 493 //-------------------------------ReverseBytesINode--------------------------------
 494 // reverse bytes of an integer
 495 class ReverseBytesINode : public Node {
 496 public:
 497   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
 498   virtual int Opcode() const;
 499   const Type *bottom_type() const { return TypeInt::INT; }
 500   virtual uint ideal_reg() const { return Op_RegI; }
 501 };
 502 
 503 //-------------------------------ReverseBytesLNode--------------------------------
 504 // reverse bytes of a long
 505 class ReverseBytesLNode : public Node {
 506 public:
 507   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
 508   virtual int Opcode() const;
 509   const Type *bottom_type() const { return TypeLong::LONG; }
 510   virtual uint ideal_reg() const { return Op_RegL; }
 511 };
 512 
 513 //-------------------------------ReverseBytesUSNode--------------------------------
 514 // reverse bytes of an unsigned short / char
 515 class ReverseBytesUSNode : public Node {
 516 public:
 517   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
 518   virtual int Opcode() const;
 519   const Type *bottom_type() const { return TypeInt::CHAR; }
 520   virtual uint ideal_reg() const { return Op_RegI; }
 521 };
 522 
 523 //-------------------------------ReverseBytesSNode--------------------------------
 524 // reverse bytes of a short
 525 class ReverseBytesSNode : public Node {
 526 public:
 527   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
 528   virtual int Opcode() const;
 529   const Type *bottom_type() const { return TypeInt::SHORT; }
 530   virtual uint ideal_reg() const { return Op_RegI; }
 531 };