1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_type.cpp.incl"
  31 
  32 // Dictionary of types shared among compilations.
  33 Dict* Type::_shared_type_dict = NULL;
  34 
  35 // Array which maps compiler types to Basic Types
  36 const BasicType Type::_basic_type[Type::lastype] = {
  37   T_ILLEGAL,    // Bad
  38   T_ILLEGAL,    // Control
  39   T_VOID,       // Top
  40   T_INT,        // Int
  41   T_LONG,       // Long
  42   T_VOID,       // Half
  43   T_NARROWOOP,  // NarrowOop
  44 
  45   T_ILLEGAL,    // Tuple
  46   T_ARRAY,      // Array
  47 
  48   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
  49   T_ADDRESS,    // RawPtr
  50   T_OBJECT,     // OopPtr
  51   T_OBJECT,     // InstPtr
  52   T_OBJECT,     // AryPtr
  53   T_OBJECT,     // KlassPtr
  54 
  55   T_OBJECT,     // Function
  56   T_ILLEGAL,    // Abio
  57   T_ADDRESS,    // Return_Address
  58   T_ILLEGAL,    // Memory
  59   T_FLOAT,      // FloatTop
  60   T_FLOAT,      // FloatCon
  61   T_FLOAT,      // FloatBot
  62   T_DOUBLE,     // DoubleTop
  63   T_DOUBLE,     // DoubleCon
  64   T_DOUBLE,     // DoubleBot
  65   T_ILLEGAL,    // Bottom
  66 };
  67 
  68 // Map ideal registers (machine types) to ideal types
  69 const Type *Type::mreg2type[_last_machine_leaf];
  70 
  71 // Map basic types to canonical Type* pointers.
  72 const Type* Type::     _const_basic_type[T_CONFLICT+1];
  73 
  74 // Map basic types to constant-zero Types.
  75 const Type* Type::            _zero_type[T_CONFLICT+1];
  76 
  77 // Map basic types to array-body alias types.
  78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
  79 
  80 //=============================================================================
  81 // Convenience common pre-built types.
  82 const Type *Type::ABIO;         // State-of-machine only
  83 const Type *Type::BOTTOM;       // All values
  84 const Type *Type::CONTROL;      // Control only
  85 const Type *Type::DOUBLE;       // All doubles
  86 const Type *Type::FLOAT;        // All floats
  87 const Type *Type::HALF;         // Placeholder half of doublewide type
  88 const Type *Type::MEMORY;       // Abstract store only
  89 const Type *Type::RETURN_ADDRESS;
  90 const Type *Type::TOP;          // No values in set
  91 
  92 //------------------------------get_const_type---------------------------
  93 const Type* Type::get_const_type(ciType* type) {
  94   if (type == NULL) {
  95     return NULL;
  96   } else if (type->is_primitive_type()) {
  97     return get_const_basic_type(type->basic_type());
  98   } else {
  99     return TypeOopPtr::make_from_klass(type->as_klass());
 100   }
 101 }
 102 
 103 //---------------------------array_element_basic_type---------------------------------
 104 // Mapping to the array element's basic type.
 105 BasicType Type::array_element_basic_type() const {
 106   BasicType bt = basic_type();
 107   if (bt == T_INT) {
 108     if (this == TypeInt::INT)   return T_INT;
 109     if (this == TypeInt::CHAR)  return T_CHAR;
 110     if (this == TypeInt::BYTE)  return T_BYTE;
 111     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 112     if (this == TypeInt::SHORT) return T_SHORT;
 113     return T_VOID;
 114   }
 115   return bt;
 116 }
 117 
 118 //---------------------------get_typeflow_type---------------------------------
 119 // Import a type produced by ciTypeFlow.
 120 const Type* Type::get_typeflow_type(ciType* type) {
 121   switch (type->basic_type()) {
 122 
 123   case ciTypeFlow::StateVector::T_BOTTOM:
 124     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 125     return Type::BOTTOM;
 126 
 127   case ciTypeFlow::StateVector::T_TOP:
 128     assert(type == ciTypeFlow::StateVector::top_type(), "");
 129     return Type::TOP;
 130 
 131   case ciTypeFlow::StateVector::T_NULL:
 132     assert(type == ciTypeFlow::StateVector::null_type(), "");
 133     return TypePtr::NULL_PTR;
 134 
 135   case ciTypeFlow::StateVector::T_LONG2:
 136     // The ciTypeFlow pass pushes a long, then the half.
 137     // We do the same.
 138     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 139     return TypeInt::TOP;
 140 
 141   case ciTypeFlow::StateVector::T_DOUBLE2:
 142     // The ciTypeFlow pass pushes double, then the half.
 143     // Our convention is the same.
 144     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 145     return Type::TOP;
 146 
 147   case T_ADDRESS:
 148     assert(type->is_return_address(), "");
 149     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 150 
 151   default:
 152     // make sure we did not mix up the cases:
 153     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 154     assert(type != ciTypeFlow::StateVector::top_type(), "");
 155     assert(type != ciTypeFlow::StateVector::null_type(), "");
 156     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 157     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 158     assert(!type->is_return_address(), "");
 159 
 160     return Type::get_const_type(type);
 161   }
 162 }
 163 
 164 
 165 //------------------------------make-------------------------------------------
 166 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 167 // and look for an existing copy in the type dictionary.
 168 const Type *Type::make( enum TYPES t ) {
 169   return (new Type(t))->hashcons();
 170 }
 171 
 172 //------------------------------cmp--------------------------------------------
 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 174   if( t1->_base != t2->_base )
 175     return 1;                   // Missed badly
 176   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 177   return !t1->eq(t2);           // Return ZERO if equal
 178 }
 179 
 180 //------------------------------hash-------------------------------------------
 181 int Type::uhash( const Type *const t ) {
 182   return t->hash();
 183 }
 184 
 185 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 186 
 187 //--------------------------Initialize_shared----------------------------------
 188 void Type::Initialize_shared(Compile* current) {
 189   // This method does not need to be locked because the first system
 190   // compilations (stub compilations) occur serially.  If they are
 191   // changed to proceed in parallel, then this section will need
 192   // locking.
 193 
 194   Arena* save = current->type_arena();
 195   Arena* shared_type_arena = new Arena();
 196 
 197   current->set_type_arena(shared_type_arena);
 198   _shared_type_dict =
 199     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 200                                   shared_type_arena, 128 );
 201   current->set_type_dict(_shared_type_dict);
 202 
 203   // Make shared pre-built types.
 204   CONTROL = make(Control);      // Control only
 205   TOP     = make(Top);          // No values in set
 206   MEMORY  = make(Memory);       // Abstract store only
 207   ABIO    = make(Abio);         // State-of-machine only
 208   RETURN_ADDRESS=make(Return_Address);
 209   FLOAT   = make(FloatBot);     // All floats
 210   DOUBLE  = make(DoubleBot);    // All doubles
 211   BOTTOM  = make(Bottom);       // Everything
 212   HALF    = make(Half);         // Placeholder half of doublewide type
 213 
 214   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 215   TypeF::ONE  = TypeF::make(1.0); // Float 1
 216 
 217   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 218   TypeD::ONE  = TypeD::make(1.0); // Double 1
 219 
 220   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 221   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 222   TypeInt::ONE     = TypeInt::make( 1);  //  1
 223   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 224   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 225   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 226   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 227   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 228   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 229   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 230   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 231   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 232   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 233   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 234   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 235   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 236   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 237   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 238   // CmpL is overloaded both as the bytecode computation returning
 239   // a trinary (-1,0,+1) integer result AND as an efficient long
 240   // compare returning optimizer ideal-type flags.
 241   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 242   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 243   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 244   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 245   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 246 
 247   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 248   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 249   TypeLong::ONE     = TypeLong::make( 1);        //  1
 250   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 251   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 252   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 253   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 254 
 255   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 256   fboth[0] = Type::CONTROL;
 257   fboth[1] = Type::CONTROL;
 258   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 259 
 260   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 261   ffalse[0] = Type::CONTROL;
 262   ffalse[1] = Type::TOP;
 263   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 264 
 265   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 266   fneither[0] = Type::TOP;
 267   fneither[1] = Type::TOP;
 268   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 269 
 270   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 271   ftrue[0] = Type::TOP;
 272   ftrue[1] = Type::CONTROL;
 273   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 274 
 275   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 276   floop[0] = Type::CONTROL;
 277   floop[1] = TypeInt::INT;
 278   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 279 
 280   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 281   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 282   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 283 
 284   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 285   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 286 
 287   const Type **fmembar = TypeTuple::fields(0);
 288   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 289 
 290   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 291   fsc[0] = TypeInt::CC;
 292   fsc[1] = Type::MEMORY;
 293   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 294 
 295   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 296   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 297   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 298   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 299                                            false, 0, oopDesc::mark_offset_in_bytes());
 300   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 301                                            false, 0, oopDesc::klass_offset_in_bytes());
 302   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 303 
 304   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 305   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 306 
 307   mreg2type[Op_Node] = Type::BOTTOM;
 308   mreg2type[Op_Set ] = 0;
 309   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 310   mreg2type[Op_RegI] = TypeInt::INT;
 311   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 312   mreg2type[Op_RegF] = Type::FLOAT;
 313   mreg2type[Op_RegD] = Type::DOUBLE;
 314   mreg2type[Op_RegL] = TypeLong::LONG;
 315   mreg2type[Op_RegFlags] = TypeInt::CC;
 316 
 317   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 318 
 319   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 320 
 321 #ifdef _LP64
 322   if (UseCompressedOops) {
 323     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 324   } else
 325 #endif
 326   {
 327     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 328     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 329   }
 330   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 331   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 332   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 333   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 334   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 335   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 336   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 337 
 338   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 339   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 340   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 341   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 342   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 343   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 344   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 345   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 346   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 347   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 348   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 349   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 350 
 351   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 352   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 353 
 354   const Type **fi2c = TypeTuple::fields(2);
 355   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
 356   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 357   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 358 
 359   const Type **intpair = TypeTuple::fields(2);
 360   intpair[0] = TypeInt::INT;
 361   intpair[1] = TypeInt::INT;
 362   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 363 
 364   const Type **longpair = TypeTuple::fields(2);
 365   longpair[0] = TypeLong::LONG;
 366   longpair[1] = TypeLong::LONG;
 367   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 368 
 369   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
 370   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
 371   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
 372   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
 373   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
 374   _const_basic_type[T_INT]     = TypeInt::INT;
 375   _const_basic_type[T_LONG]    = TypeLong::LONG;
 376   _const_basic_type[T_FLOAT]   = Type::FLOAT;
 377   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
 378   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
 379   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 380   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
 381   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 382   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
 383 
 384   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
 385   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
 386   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
 387   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
 388   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
 389   _zero_type[T_INT]     = TypeInt::ZERO;
 390   _zero_type[T_LONG]    = TypeLong::ZERO;
 391   _zero_type[T_FLOAT]   = TypeF::ZERO;
 392   _zero_type[T_DOUBLE]  = TypeD::ZERO;
 393   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
 394   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
 395   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
 396   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
 397 
 398   // get_zero_type() should not happen for T_CONFLICT
 399   _zero_type[T_CONFLICT]= NULL;
 400 
 401   // Restore working type arena.
 402   current->set_type_arena(save);
 403   current->set_type_dict(NULL);
 404 }
 405 
 406 //------------------------------Initialize-------------------------------------
 407 void Type::Initialize(Compile* current) {
 408   assert(current->type_arena() != NULL, "must have created type arena");
 409 
 410   if (_shared_type_dict == NULL) {
 411     Initialize_shared(current);
 412   }
 413 
 414   Arena* type_arena = current->type_arena();
 415 
 416   // Create the hash-cons'ing dictionary with top-level storage allocation
 417   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 418   current->set_type_dict(tdic);
 419 
 420   // Transfer the shared types.
 421   DictI i(_shared_type_dict);
 422   for( ; i.test(); ++i ) {
 423     Type* t = (Type*)i._value;
 424     tdic->Insert(t,t);  // New Type, insert into Type table
 425   }
 426 
 427 #ifdef ASSERT
 428   verify_lastype();
 429 #endif
 430 }
 431 
 432 //------------------------------hashcons---------------------------------------
 433 // Do the hash-cons trick.  If the Type already exists in the type table,
 434 // delete the current Type and return the existing Type.  Otherwise stick the
 435 // current Type in the Type table.
 436 const Type *Type::hashcons(void) {
 437   debug_only(base());           // Check the assertion in Type::base().
 438   // Look up the Type in the Type dictionary
 439   Dict *tdic = type_dict();
 440   Type* old = (Type*)(tdic->Insert(this, this, false));
 441   if( old ) {                   // Pre-existing Type?
 442     if( old != this )           // Yes, this guy is not the pre-existing?
 443       delete this;              // Yes, Nuke this guy
 444     assert( old->_dual, "" );
 445     return old;                 // Return pre-existing
 446   }
 447 
 448   // Every type has a dual (to make my lattice symmetric).
 449   // Since we just discovered a new Type, compute its dual right now.
 450   assert( !_dual, "" );         // No dual yet
 451   _dual = xdual();              // Compute the dual
 452   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 453     _dual = this;
 454     return this;
 455   }
 456   assert( !_dual->_dual, "" );  // No reverse dual yet
 457   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 458   // New Type, insert into Type table
 459   tdic->Insert((void*)_dual,(void*)_dual);
 460   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 461 #ifdef ASSERT
 462   Type *dual_dual = (Type*)_dual->xdual();
 463   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 464   delete dual_dual;
 465 #endif
 466   return this;                  // Return new Type
 467 }
 468 
 469 //------------------------------eq---------------------------------------------
 470 // Structural equality check for Type representations
 471 bool Type::eq( const Type * ) const {
 472   return true;                  // Nothing else can go wrong
 473 }
 474 
 475 //------------------------------hash-------------------------------------------
 476 // Type-specific hashing function.
 477 int Type::hash(void) const {
 478   return _base;
 479 }
 480 
 481 //------------------------------is_finite--------------------------------------
 482 // Has a finite value
 483 bool Type::is_finite() const {
 484   return false;
 485 }
 486 
 487 //------------------------------is_nan-----------------------------------------
 488 // Is not a number (NaN)
 489 bool Type::is_nan()    const {
 490   return false;
 491 }
 492 
 493 //----------------------interface_vs_oop---------------------------------------
 494 #ifdef ASSERT
 495 bool Type::interface_vs_oop(const Type *t) const {
 496   bool result = false;
 497 
 498   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 499   const TypePtr*    t_ptr =    t->make_ptr();
 500   if( this_ptr == NULL || t_ptr == NULL )
 501     return result;
 502 
 503   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 504   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 505   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 506     bool this_interface = this_inst->klass()->is_interface();
 507     bool    t_interface =    t_inst->klass()->is_interface();
 508     result = this_interface ^ t_interface;
 509   }
 510 
 511   return result;
 512 }
 513 #endif
 514 
 515 //------------------------------meet-------------------------------------------
 516 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 517 // commutative and the lattice is symmetric.
 518 const Type *Type::meet( const Type *t ) const {
 519   if (isa_narrowoop() && t->isa_narrowoop()) {
 520     const Type* result = make_ptr()->meet(t->make_ptr());
 521     return result->make_narrowoop();
 522   }
 523 
 524   const Type *mt = xmeet(t);
 525   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 526 #ifdef ASSERT
 527   assert( mt == t->xmeet(this), "meet not commutative" );
 528   const Type* dual_join = mt->_dual;
 529   const Type *t2t    = dual_join->xmeet(t->_dual);
 530   const Type *t2this = dual_join->xmeet(   _dual);
 531 
 532   // Interface meet Oop is Not Symmetric:
 533   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 534   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 535 
 536   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
 537     tty->print_cr("=== Meet Not Symmetric ===");
 538     tty->print("t   =                   ");         t->dump(); tty->cr();
 539     tty->print("this=                   ");            dump(); tty->cr();
 540     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 541 
 542     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 543     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
 544     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 545 
 546     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 547     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 548 
 549     fatal("meet not symmetric" );
 550   }
 551 #endif
 552   return mt;
 553 }
 554 
 555 //------------------------------xmeet------------------------------------------
 556 // Compute the MEET of two types.  It returns a new Type object.
 557 const Type *Type::xmeet( const Type *t ) const {
 558   // Perform a fast test for common case; meeting the same types together.
 559   if( this == t ) return this;  // Meeting same type-rep?
 560 
 561   // Meeting TOP with anything?
 562   if( _base == Top ) return t;
 563 
 564   // Meeting BOTTOM with anything?
 565   if( _base == Bottom ) return BOTTOM;
 566 
 567   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 568   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 569   switch (t->base()) {  // Switch on original type
 570 
 571   // Cut in half the number of cases I must handle.  Only need cases for when
 572   // the given enum "t->type" is less than or equal to the local enum "type".
 573   case FloatCon:
 574   case DoubleCon:
 575   case Int:
 576   case Long:
 577     return t->xmeet(this);
 578 
 579   case OopPtr:
 580     return t->xmeet(this);
 581 
 582   case InstPtr:
 583     return t->xmeet(this);
 584 
 585   case KlassPtr:
 586     return t->xmeet(this);
 587 
 588   case AryPtr:
 589     return t->xmeet(this);
 590 
 591   case NarrowOop:
 592     return t->xmeet(this);
 593 
 594   case Bad:                     // Type check
 595   default:                      // Bogus type not in lattice
 596     typerr(t);
 597     return Type::BOTTOM;
 598 
 599   case Bottom:                  // Ye Olde Default
 600     return t;
 601 
 602   case FloatTop:
 603     if( _base == FloatTop ) return this;
 604   case FloatBot:                // Float
 605     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 606     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 607     typerr(t);
 608     return Type::BOTTOM;
 609 
 610   case DoubleTop:
 611     if( _base == DoubleTop ) return this;
 612   case DoubleBot:               // Double
 613     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 614     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 615     typerr(t);
 616     return Type::BOTTOM;
 617 
 618   // These next few cases must match exactly or it is a compile-time error.
 619   case Control:                 // Control of code
 620   case Abio:                    // State of world outside of program
 621   case Memory:
 622     if( _base == t->_base )  return this;
 623     typerr(t);
 624     return Type::BOTTOM;
 625 
 626   case Top:                     // Top of the lattice
 627     return this;
 628   }
 629 
 630   // The type is unchanged
 631   return this;
 632 }
 633 
 634 //-----------------------------filter------------------------------------------
 635 const Type *Type::filter( const Type *kills ) const {
 636   const Type* ft = join(kills);
 637   if (ft->empty())
 638     return Type::TOP;           // Canonical empty value
 639   return ft;
 640 }
 641 
 642 //------------------------------xdual------------------------------------------
 643 // Compute dual right now.
 644 const Type::TYPES Type::dual_type[Type::lastype] = {
 645   Bad,          // Bad
 646   Control,      // Control
 647   Bottom,       // Top
 648   Bad,          // Int - handled in v-call
 649   Bad,          // Long - handled in v-call
 650   Half,         // Half
 651   Bad,          // NarrowOop - handled in v-call
 652 
 653   Bad,          // Tuple - handled in v-call
 654   Bad,          // Array - handled in v-call
 655 
 656   Bad,          // AnyPtr - handled in v-call
 657   Bad,          // RawPtr - handled in v-call
 658   Bad,          // OopPtr - handled in v-call
 659   Bad,          // InstPtr - handled in v-call
 660   Bad,          // AryPtr - handled in v-call
 661   Bad,          // KlassPtr - handled in v-call
 662 
 663   Bad,          // Function - handled in v-call
 664   Abio,         // Abio
 665   Return_Address,// Return_Address
 666   Memory,       // Memory
 667   FloatBot,     // FloatTop
 668   FloatCon,     // FloatCon
 669   FloatTop,     // FloatBot
 670   DoubleBot,    // DoubleTop
 671   DoubleCon,    // DoubleCon
 672   DoubleTop,    // DoubleBot
 673   Top           // Bottom
 674 };
 675 
 676 const Type *Type::xdual() const {
 677   // Note: the base() accessor asserts the sanity of _base.
 678   assert(dual_type[base()] != Bad, "implement with v-call");
 679   return new Type(dual_type[_base]);
 680 }
 681 
 682 //------------------------------has_memory-------------------------------------
 683 bool Type::has_memory() const {
 684   Type::TYPES tx = base();
 685   if (tx == Memory) return true;
 686   if (tx == Tuple) {
 687     const TypeTuple *t = is_tuple();
 688     for (uint i=0; i < t->cnt(); i++) {
 689       tx = t->field_at(i)->base();
 690       if (tx == Memory)  return true;
 691     }
 692   }
 693   return false;
 694 }
 695 
 696 #ifndef PRODUCT
 697 //------------------------------dump2------------------------------------------
 698 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 699   st->print(msg[_base]);
 700 }
 701 
 702 //------------------------------dump-------------------------------------------
 703 void Type::dump_on(outputStream *st) const {
 704   ResourceMark rm;
 705   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 706   dump2(d,1, st);
 707   if (is_ptr_to_narrowoop()) {
 708     st->print(" [narrow]");
 709   }
 710 }
 711 
 712 //------------------------------data-------------------------------------------
 713 const char * const Type::msg[Type::lastype] = {
 714   "bad","control","top","int:","long:","half", "narrowoop:",
 715   "tuple:", "aryptr",
 716   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
 717   "func", "abIO", "return_address", "memory",
 718   "float_top", "ftcon:", "float",
 719   "double_top", "dblcon:", "double",
 720   "bottom"
 721 };
 722 #endif
 723 
 724 //------------------------------singleton--------------------------------------
 725 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 726 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 727 bool Type::singleton(void) const {
 728   return _base == Top || _base == Half;
 729 }
 730 
 731 //------------------------------empty------------------------------------------
 732 // TRUE if Type is a type with no values, FALSE otherwise.
 733 bool Type::empty(void) const {
 734   switch (_base) {
 735   case DoubleTop:
 736   case FloatTop:
 737   case Top:
 738     return true;
 739 
 740   case Half:
 741   case Abio:
 742   case Return_Address:
 743   case Memory:
 744   case Bottom:
 745   case FloatBot:
 746   case DoubleBot:
 747     return false;  // never a singleton, therefore never empty
 748   }
 749 
 750   ShouldNotReachHere();
 751   return false;
 752 }
 753 
 754 //------------------------------dump_stats-------------------------------------
 755 // Dump collected statistics to stderr
 756 #ifndef PRODUCT
 757 void Type::dump_stats() {
 758   tty->print("Types made: %d\n", type_dict()->Size());
 759 }
 760 #endif
 761 
 762 //------------------------------typerr-----------------------------------------
 763 void Type::typerr( const Type *t ) const {
 764 #ifndef PRODUCT
 765   tty->print("\nError mixing types: ");
 766   dump();
 767   tty->print(" and ");
 768   t->dump();
 769   tty->print("\n");
 770 #endif
 771   ShouldNotReachHere();
 772 }
 773 
 774 //------------------------------isa_oop_ptr------------------------------------
 775 // Return true if type is an oop pointer type.  False for raw pointers.
 776 static char isa_oop_ptr_tbl[Type::lastype] = {
 777   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
 778   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
 779   0/*func*/,0,0/*return_address*/,0,
 780   /*floats*/0,0,0, /*doubles*/0,0,0,
 781   0
 782 };
 783 bool Type::isa_oop_ptr() const {
 784   return isa_oop_ptr_tbl[_base] != 0;
 785 }
 786 
 787 //------------------------------dump_stats-------------------------------------
 788 // // Check that arrays match type enum
 789 #ifndef PRODUCT
 790 void Type::verify_lastype() {
 791   // Check that arrays match enumeration
 792   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
 793   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
 794   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
 795   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
 796   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
 797 }
 798 #endif
 799 
 800 //=============================================================================
 801 // Convenience common pre-built types.
 802 const TypeF *TypeF::ZERO;       // Floating point zero
 803 const TypeF *TypeF::ONE;        // Floating point one
 804 
 805 //------------------------------make-------------------------------------------
 806 // Create a float constant
 807 const TypeF *TypeF::make(float f) {
 808   return (TypeF*)(new TypeF(f))->hashcons();
 809 }
 810 
 811 //------------------------------meet-------------------------------------------
 812 // Compute the MEET of two types.  It returns a new Type object.
 813 const Type *TypeF::xmeet( const Type *t ) const {
 814   // Perform a fast test for common case; meeting the same types together.
 815   if( this == t ) return this;  // Meeting same type-rep?
 816 
 817   // Current "this->_base" is FloatCon
 818   switch (t->base()) {          // Switch on original type
 819   case AnyPtr:                  // Mixing with oops happens when javac
 820   case RawPtr:                  // reuses local variables
 821   case OopPtr:
 822   case InstPtr:
 823   case KlassPtr:
 824   case AryPtr:
 825   case NarrowOop:
 826   case Int:
 827   case Long:
 828   case DoubleTop:
 829   case DoubleCon:
 830   case DoubleBot:
 831   case Bottom:                  // Ye Olde Default
 832     return Type::BOTTOM;
 833 
 834   case FloatBot:
 835     return t;
 836 
 837   default:                      // All else is a mistake
 838     typerr(t);
 839 
 840   case FloatCon:                // Float-constant vs Float-constant?
 841     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 842                                 // must compare bitwise as positive zero, negative zero and NaN have
 843                                 // all the same representation in C++
 844       return FLOAT;             // Return generic float
 845                                 // Equal constants
 846   case Top:
 847   case FloatTop:
 848     break;                      // Return the float constant
 849   }
 850   return this;                  // Return the float constant
 851 }
 852 
 853 //------------------------------xdual------------------------------------------
 854 // Dual: symmetric
 855 const Type *TypeF::xdual() const {
 856   return this;
 857 }
 858 
 859 //------------------------------eq---------------------------------------------
 860 // Structural equality check for Type representations
 861 bool TypeF::eq( const Type *t ) const {
 862   if( g_isnan(_f) ||
 863       g_isnan(t->getf()) ) {
 864     // One or both are NANs.  If both are NANs return true, else false.
 865     return (g_isnan(_f) && g_isnan(t->getf()));
 866   }
 867   if (_f == t->getf()) {
 868     // (NaN is impossible at this point, since it is not equal even to itself)
 869     if (_f == 0.0) {
 870       // difference between positive and negative zero
 871       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 872     }
 873     return true;
 874   }
 875   return false;
 876 }
 877 
 878 //------------------------------hash-------------------------------------------
 879 // Type-specific hashing function.
 880 int TypeF::hash(void) const {
 881   return *(int*)(&_f);
 882 }
 883 
 884 //------------------------------is_finite--------------------------------------
 885 // Has a finite value
 886 bool TypeF::is_finite() const {
 887   return g_isfinite(getf()) != 0;
 888 }
 889 
 890 //------------------------------is_nan-----------------------------------------
 891 // Is not a number (NaN)
 892 bool TypeF::is_nan()    const {
 893   return g_isnan(getf()) != 0;
 894 }
 895 
 896 //------------------------------dump2------------------------------------------
 897 // Dump float constant Type
 898 #ifndef PRODUCT
 899 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
 900   Type::dump2(d,depth, st);
 901   st->print("%f", _f);
 902 }
 903 #endif
 904 
 905 //------------------------------singleton--------------------------------------
 906 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 907 // constants (Ldi nodes).  Singletons are integer, float or double constants
 908 // or a single symbol.
 909 bool TypeF::singleton(void) const {
 910   return true;                  // Always a singleton
 911 }
 912 
 913 bool TypeF::empty(void) const {
 914   return false;                 // always exactly a singleton
 915 }
 916 
 917 //=============================================================================
 918 // Convenience common pre-built types.
 919 const TypeD *TypeD::ZERO;       // Floating point zero
 920 const TypeD *TypeD::ONE;        // Floating point one
 921 
 922 //------------------------------make-------------------------------------------
 923 const TypeD *TypeD::make(double d) {
 924   return (TypeD*)(new TypeD(d))->hashcons();
 925 }
 926 
 927 //------------------------------meet-------------------------------------------
 928 // Compute the MEET of two types.  It returns a new Type object.
 929 const Type *TypeD::xmeet( const Type *t ) const {
 930   // Perform a fast test for common case; meeting the same types together.
 931   if( this == t ) return this;  // Meeting same type-rep?
 932 
 933   // Current "this->_base" is DoubleCon
 934   switch (t->base()) {          // Switch on original type
 935   case AnyPtr:                  // Mixing with oops happens when javac
 936   case RawPtr:                  // reuses local variables
 937   case OopPtr:
 938   case InstPtr:
 939   case KlassPtr:
 940   case AryPtr:
 941   case NarrowOop:
 942   case Int:
 943   case Long:
 944   case FloatTop:
 945   case FloatCon:
 946   case FloatBot:
 947   case Bottom:                  // Ye Olde Default
 948     return Type::BOTTOM;
 949 
 950   case DoubleBot:
 951     return t;
 952 
 953   default:                      // All else is a mistake
 954     typerr(t);
 955 
 956   case DoubleCon:               // Double-constant vs Double-constant?
 957     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
 958       return DOUBLE;            // Return generic double
 959   case Top:
 960   case DoubleTop:
 961     break;
 962   }
 963   return this;                  // Return the double constant
 964 }
 965 
 966 //------------------------------xdual------------------------------------------
 967 // Dual: symmetric
 968 const Type *TypeD::xdual() const {
 969   return this;
 970 }
 971 
 972 //------------------------------eq---------------------------------------------
 973 // Structural equality check for Type representations
 974 bool TypeD::eq( const Type *t ) const {
 975   if( g_isnan(_d) ||
 976       g_isnan(t->getd()) ) {
 977     // One or both are NANs.  If both are NANs return true, else false.
 978     return (g_isnan(_d) && g_isnan(t->getd()));
 979   }
 980   if (_d == t->getd()) {
 981     // (NaN is impossible at this point, since it is not equal even to itself)
 982     if (_d == 0.0) {
 983       // difference between positive and negative zero
 984       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
 985     }
 986     return true;
 987   }
 988   return false;
 989 }
 990 
 991 //------------------------------hash-------------------------------------------
 992 // Type-specific hashing function.
 993 int TypeD::hash(void) const {
 994   return *(int*)(&_d);
 995 }
 996 
 997 //------------------------------is_finite--------------------------------------
 998 // Has a finite value
 999 bool TypeD::is_finite() const {
1000   return g_isfinite(getd()) != 0;
1001 }
1002 
1003 //------------------------------is_nan-----------------------------------------
1004 // Is not a number (NaN)
1005 bool TypeD::is_nan()    const {
1006   return g_isnan(getd()) != 0;
1007 }
1008 
1009 //------------------------------dump2------------------------------------------
1010 // Dump double constant Type
1011 #ifndef PRODUCT
1012 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1013   Type::dump2(d,depth,st);
1014   st->print("%f", _d);
1015 }
1016 #endif
1017 
1018 //------------------------------singleton--------------------------------------
1019 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1020 // constants (Ldi nodes).  Singletons are integer, float or double constants
1021 // or a single symbol.
1022 bool TypeD::singleton(void) const {
1023   return true;                  // Always a singleton
1024 }
1025 
1026 bool TypeD::empty(void) const {
1027   return false;                 // always exactly a singleton
1028 }
1029 
1030 //=============================================================================
1031 // Convience common pre-built types.
1032 const TypeInt *TypeInt::MINUS_1;// -1
1033 const TypeInt *TypeInt::ZERO;   // 0
1034 const TypeInt *TypeInt::ONE;    // 1
1035 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1036 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1037 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1038 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1039 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1040 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1041 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1042 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1043 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1044 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1045 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1046 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1047 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1048 const TypeInt *TypeInt::INT;    // 32-bit integers
1049 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1050 
1051 //------------------------------TypeInt----------------------------------------
1052 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1053 }
1054 
1055 //------------------------------make-------------------------------------------
1056 const TypeInt *TypeInt::make( jint lo ) {
1057   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1058 }
1059 
1060 static int normalize_int_widen( jint lo, jint hi, int w ) {
1061   // Certain normalizations keep us sane when comparing types.
1062   // The 'SMALLINT' covers constants and also CC and its relatives.
1063   if (lo <= hi) {
1064     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1065     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1066   } else {
1067     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1068     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1069   }
1070   return w;
1071 }
1072 
1073 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1074   w = normalize_int_widen(lo, hi, w);
1075   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1076 }
1077 
1078 //------------------------------meet-------------------------------------------
1079 // Compute the MEET of two types.  It returns a new Type representation object
1080 // with reference count equal to the number of Types pointing at it.
1081 // Caller should wrap a Types around it.
1082 const Type *TypeInt::xmeet( const Type *t ) const {
1083   // Perform a fast test for common case; meeting the same types together.
1084   if( this == t ) return this;  // Meeting same type?
1085 
1086   // Currently "this->_base" is a TypeInt
1087   switch (t->base()) {          // Switch on original type
1088   case AnyPtr:                  // Mixing with oops happens when javac
1089   case RawPtr:                  // reuses local variables
1090   case OopPtr:
1091   case InstPtr:
1092   case KlassPtr:
1093   case AryPtr:
1094   case NarrowOop:
1095   case Long:
1096   case FloatTop:
1097   case FloatCon:
1098   case FloatBot:
1099   case DoubleTop:
1100   case DoubleCon:
1101   case DoubleBot:
1102   case Bottom:                  // Ye Olde Default
1103     return Type::BOTTOM;
1104   default:                      // All else is a mistake
1105     typerr(t);
1106   case Top:                     // No change
1107     return this;
1108   case Int:                     // Int vs Int?
1109     break;
1110   }
1111 
1112   // Expand covered set
1113   const TypeInt *r = t->is_int();
1114   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1115 }
1116 
1117 //------------------------------xdual------------------------------------------
1118 // Dual: reverse hi & lo; flip widen
1119 const Type *TypeInt::xdual() const {
1120   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1121   return new TypeInt(_hi,_lo,w);
1122 }
1123 
1124 //------------------------------widen------------------------------------------
1125 // Only happens for optimistic top-down optimizations.
1126 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1127   // Coming from TOP or such; no widening
1128   if( old->base() != Int ) return this;
1129   const TypeInt *ot = old->is_int();
1130 
1131   // If new guy is equal to old guy, no widening
1132   if( _lo == ot->_lo && _hi == ot->_hi )
1133     return old;
1134 
1135   // If new guy contains old, then we widened
1136   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1137     // New contains old
1138     // If new guy is already wider than old, no widening
1139     if( _widen > ot->_widen ) return this;
1140     // If old guy was a constant, do not bother
1141     if (ot->_lo == ot->_hi)  return this;
1142     // Now widen new guy.
1143     // Check for widening too far
1144     if (_widen == WidenMax) {
1145       int max = max_jint;
1146       int min = min_jint;
1147       if (limit->isa_int()) {
1148         max = limit->is_int()->_hi;
1149         min = limit->is_int()->_lo;
1150       }
1151       if (min < _lo && _hi < max) {
1152         // If neither endpoint is extremal yet, push out the endpoint
1153         // which is closer to its respective limit.
1154         if (_lo >= 0 ||                 // easy common case
1155             (juint)(_lo - min) >= (juint)(max - _hi)) {
1156           // Try to widen to an unsigned range type of 31 bits:
1157           return make(_lo, max, WidenMax);
1158         } else {
1159           return make(min, _hi, WidenMax);
1160         }
1161       }
1162       return TypeInt::INT;
1163     }
1164     // Returned widened new guy
1165     return make(_lo,_hi,_widen+1);
1166   }
1167 
1168   // If old guy contains new, then we probably widened too far & dropped to
1169   // bottom.  Return the wider fellow.
1170   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1171     return old;
1172 
1173   //fatal("Integer value range is not subset");
1174   //return this;
1175   return TypeInt::INT;
1176 }
1177 
1178 //------------------------------narrow---------------------------------------
1179 // Only happens for pessimistic optimizations.
1180 const Type *TypeInt::narrow( const Type *old ) const {
1181   if (_lo >= _hi)  return this;   // already narrow enough
1182   if (old == NULL)  return this;
1183   const TypeInt* ot = old->isa_int();
1184   if (ot == NULL)  return this;
1185   jint olo = ot->_lo;
1186   jint ohi = ot->_hi;
1187 
1188   // If new guy is equal to old guy, no narrowing
1189   if (_lo == olo && _hi == ohi)  return old;
1190 
1191   // If old guy was maximum range, allow the narrowing
1192   if (olo == min_jint && ohi == max_jint)  return this;
1193 
1194   if (_lo < olo || _hi > ohi)
1195     return this;                // doesn't narrow; pretty wierd
1196 
1197   // The new type narrows the old type, so look for a "death march".
1198   // See comments on PhaseTransform::saturate.
1199   juint nrange = _hi - _lo;
1200   juint orange = ohi - olo;
1201   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1202     // Use the new type only if the range shrinks a lot.
1203     // We do not want the optimizer computing 2^31 point by point.
1204     return old;
1205   }
1206 
1207   return this;
1208 }
1209 
1210 //-----------------------------filter------------------------------------------
1211 const Type *TypeInt::filter( const Type *kills ) const {
1212   const TypeInt* ft = join(kills)->isa_int();
1213   if (ft == NULL || ft->empty())
1214     return Type::TOP;           // Canonical empty value
1215   if (ft->_widen < this->_widen) {
1216     // Do not allow the value of kill->_widen to affect the outcome.
1217     // The widen bits must be allowed to run freely through the graph.
1218     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1219   }
1220   return ft;
1221 }
1222 
1223 //------------------------------eq---------------------------------------------
1224 // Structural equality check for Type representations
1225 bool TypeInt::eq( const Type *t ) const {
1226   const TypeInt *r = t->is_int(); // Handy access
1227   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1228 }
1229 
1230 //------------------------------hash-------------------------------------------
1231 // Type-specific hashing function.
1232 int TypeInt::hash(void) const {
1233   return _lo+_hi+_widen+(int)Type::Int;
1234 }
1235 
1236 //------------------------------is_finite--------------------------------------
1237 // Has a finite value
1238 bool TypeInt::is_finite() const {
1239   return true;
1240 }
1241 
1242 //------------------------------dump2------------------------------------------
1243 // Dump TypeInt
1244 #ifndef PRODUCT
1245 static const char* intname(char* buf, jint n) {
1246   if (n == min_jint)
1247     return "min";
1248   else if (n < min_jint + 10000)
1249     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1250   else if (n == max_jint)
1251     return "max";
1252   else if (n > max_jint - 10000)
1253     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1254   else
1255     sprintf(buf, INT32_FORMAT, n);
1256   return buf;
1257 }
1258 
1259 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1260   char buf[40], buf2[40];
1261   if (_lo == min_jint && _hi == max_jint)
1262     st->print("int");
1263   else if (is_con())
1264     st->print("int:%s", intname(buf, get_con()));
1265   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1266     st->print("bool");
1267   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1268     st->print("byte");
1269   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1270     st->print("char");
1271   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1272     st->print("short");
1273   else if (_hi == max_jint)
1274     st->print("int:>=%s", intname(buf, _lo));
1275   else if (_lo == min_jint)
1276     st->print("int:<=%s", intname(buf, _hi));
1277   else
1278     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1279 
1280   if (_widen != 0 && this != TypeInt::INT)
1281     st->print(":%.*s", _widen, "wwww");
1282 }
1283 #endif
1284 
1285 //------------------------------singleton--------------------------------------
1286 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1287 // constants.
1288 bool TypeInt::singleton(void) const {
1289   return _lo >= _hi;
1290 }
1291 
1292 bool TypeInt::empty(void) const {
1293   return _lo > _hi;
1294 }
1295 
1296 //=============================================================================
1297 // Convenience common pre-built types.
1298 const TypeLong *TypeLong::MINUS_1;// -1
1299 const TypeLong *TypeLong::ZERO; // 0
1300 const TypeLong *TypeLong::ONE;  // 1
1301 const TypeLong *TypeLong::POS;  // >=0
1302 const TypeLong *TypeLong::LONG; // 64-bit integers
1303 const TypeLong *TypeLong::INT;  // 32-bit subrange
1304 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1305 
1306 //------------------------------TypeLong---------------------------------------
1307 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1308 }
1309 
1310 //------------------------------make-------------------------------------------
1311 const TypeLong *TypeLong::make( jlong lo ) {
1312   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1313 }
1314 
1315 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1316   // Certain normalizations keep us sane when comparing types.
1317   // The 'SMALLINT' covers constants.
1318   if (lo <= hi) {
1319     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1320     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1321   } else {
1322     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1323     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1324   }
1325   return w;
1326 }
1327 
1328 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1329   w = normalize_long_widen(lo, hi, w);
1330   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1331 }
1332 
1333 
1334 //------------------------------meet-------------------------------------------
1335 // Compute the MEET of two types.  It returns a new Type representation object
1336 // with reference count equal to the number of Types pointing at it.
1337 // Caller should wrap a Types around it.
1338 const Type *TypeLong::xmeet( const Type *t ) const {
1339   // Perform a fast test for common case; meeting the same types together.
1340   if( this == t ) return this;  // Meeting same type?
1341 
1342   // Currently "this->_base" is a TypeLong
1343   switch (t->base()) {          // Switch on original type
1344   case AnyPtr:                  // Mixing with oops happens when javac
1345   case RawPtr:                  // reuses local variables
1346   case OopPtr:
1347   case InstPtr:
1348   case KlassPtr:
1349   case AryPtr:
1350   case NarrowOop:
1351   case Int:
1352   case FloatTop:
1353   case FloatCon:
1354   case FloatBot:
1355   case DoubleTop:
1356   case DoubleCon:
1357   case DoubleBot:
1358   case Bottom:                  // Ye Olde Default
1359     return Type::BOTTOM;
1360   default:                      // All else is a mistake
1361     typerr(t);
1362   case Top:                     // No change
1363     return this;
1364   case Long:                    // Long vs Long?
1365     break;
1366   }
1367 
1368   // Expand covered set
1369   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1370   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1371 }
1372 
1373 //------------------------------xdual------------------------------------------
1374 // Dual: reverse hi & lo; flip widen
1375 const Type *TypeLong::xdual() const {
1376   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1377   return new TypeLong(_hi,_lo,w);
1378 }
1379 
1380 //------------------------------widen------------------------------------------
1381 // Only happens for optimistic top-down optimizations.
1382 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1383   // Coming from TOP or such; no widening
1384   if( old->base() != Long ) return this;
1385   const TypeLong *ot = old->is_long();
1386 
1387   // If new guy is equal to old guy, no widening
1388   if( _lo == ot->_lo && _hi == ot->_hi )
1389     return old;
1390 
1391   // If new guy contains old, then we widened
1392   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1393     // New contains old
1394     // If new guy is already wider than old, no widening
1395     if( _widen > ot->_widen ) return this;
1396     // If old guy was a constant, do not bother
1397     if (ot->_lo == ot->_hi)  return this;
1398     // Now widen new guy.
1399     // Check for widening too far
1400     if (_widen == WidenMax) {
1401       jlong max = max_jlong;
1402       jlong min = min_jlong;
1403       if (limit->isa_long()) {
1404         max = limit->is_long()->_hi;
1405         min = limit->is_long()->_lo;
1406       }
1407       if (min < _lo && _hi < max) {
1408         // If neither endpoint is extremal yet, push out the endpoint
1409         // which is closer to its respective limit.
1410         if (_lo >= 0 ||                 // easy common case
1411             (julong)(_lo - min) >= (julong)(max - _hi)) {
1412           // Try to widen to an unsigned range type of 32/63 bits:
1413           if (max >= max_juint && _hi < max_juint)
1414             return make(_lo, max_juint, WidenMax);
1415           else
1416             return make(_lo, max, WidenMax);
1417         } else {
1418           return make(min, _hi, WidenMax);
1419         }
1420       }
1421       return TypeLong::LONG;
1422     }
1423     // Returned widened new guy
1424     return make(_lo,_hi,_widen+1);
1425   }
1426 
1427   // If old guy contains new, then we probably widened too far & dropped to
1428   // bottom.  Return the wider fellow.
1429   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1430     return old;
1431 
1432   //  fatal("Long value range is not subset");
1433   // return this;
1434   return TypeLong::LONG;
1435 }
1436 
1437 //------------------------------narrow----------------------------------------
1438 // Only happens for pessimistic optimizations.
1439 const Type *TypeLong::narrow( const Type *old ) const {
1440   if (_lo >= _hi)  return this;   // already narrow enough
1441   if (old == NULL)  return this;
1442   const TypeLong* ot = old->isa_long();
1443   if (ot == NULL)  return this;
1444   jlong olo = ot->_lo;
1445   jlong ohi = ot->_hi;
1446 
1447   // If new guy is equal to old guy, no narrowing
1448   if (_lo == olo && _hi == ohi)  return old;
1449 
1450   // If old guy was maximum range, allow the narrowing
1451   if (olo == min_jlong && ohi == max_jlong)  return this;
1452 
1453   if (_lo < olo || _hi > ohi)
1454     return this;                // doesn't narrow; pretty wierd
1455 
1456   // The new type narrows the old type, so look for a "death march".
1457   // See comments on PhaseTransform::saturate.
1458   julong nrange = _hi - _lo;
1459   julong orange = ohi - olo;
1460   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1461     // Use the new type only if the range shrinks a lot.
1462     // We do not want the optimizer computing 2^31 point by point.
1463     return old;
1464   }
1465 
1466   return this;
1467 }
1468 
1469 //-----------------------------filter------------------------------------------
1470 const Type *TypeLong::filter( const Type *kills ) const {
1471   const TypeLong* ft = join(kills)->isa_long();
1472   if (ft == NULL || ft->empty())
1473     return Type::TOP;           // Canonical empty value
1474   if (ft->_widen < this->_widen) {
1475     // Do not allow the value of kill->_widen to affect the outcome.
1476     // The widen bits must be allowed to run freely through the graph.
1477     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1478   }
1479   return ft;
1480 }
1481 
1482 //------------------------------eq---------------------------------------------
1483 // Structural equality check for Type representations
1484 bool TypeLong::eq( const Type *t ) const {
1485   const TypeLong *r = t->is_long(); // Handy access
1486   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1487 }
1488 
1489 //------------------------------hash-------------------------------------------
1490 // Type-specific hashing function.
1491 int TypeLong::hash(void) const {
1492   return (int)(_lo+_hi+_widen+(int)Type::Long);
1493 }
1494 
1495 //------------------------------is_finite--------------------------------------
1496 // Has a finite value
1497 bool TypeLong::is_finite() const {
1498   return true;
1499 }
1500 
1501 //------------------------------dump2------------------------------------------
1502 // Dump TypeLong
1503 #ifndef PRODUCT
1504 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1505   if (n > x) {
1506     if (n >= x + 10000)  return NULL;
1507     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
1508   } else if (n < x) {
1509     if (n <= x - 10000)  return NULL;
1510     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
1511   } else {
1512     return xname;
1513   }
1514   return buf;
1515 }
1516 
1517 static const char* longname(char* buf, jlong n) {
1518   const char* str;
1519   if (n == min_jlong)
1520     return "min";
1521   else if (n < min_jlong + 10000)
1522     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
1523   else if (n == max_jlong)
1524     return "max";
1525   else if (n > max_jlong - 10000)
1526     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
1527   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1528     return str;
1529   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1530     return str;
1531   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1532     return str;
1533   else
1534     sprintf(buf, INT64_FORMAT, n);
1535   return buf;
1536 }
1537 
1538 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1539   char buf[80], buf2[80];
1540   if (_lo == min_jlong && _hi == max_jlong)
1541     st->print("long");
1542   else if (is_con())
1543     st->print("long:%s", longname(buf, get_con()));
1544   else if (_hi == max_jlong)
1545     st->print("long:>=%s", longname(buf, _lo));
1546   else if (_lo == min_jlong)
1547     st->print("long:<=%s", longname(buf, _hi));
1548   else
1549     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1550 
1551   if (_widen != 0 && this != TypeLong::LONG)
1552     st->print(":%.*s", _widen, "wwww");
1553 }
1554 #endif
1555 
1556 //------------------------------singleton--------------------------------------
1557 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1558 // constants
1559 bool TypeLong::singleton(void) const {
1560   return _lo >= _hi;
1561 }
1562 
1563 bool TypeLong::empty(void) const {
1564   return _lo > _hi;
1565 }
1566 
1567 //=============================================================================
1568 // Convenience common pre-built types.
1569 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1570 const TypeTuple *TypeTuple::IFFALSE;
1571 const TypeTuple *TypeTuple::IFTRUE;
1572 const TypeTuple *TypeTuple::IFNEITHER;
1573 const TypeTuple *TypeTuple::LOOPBODY;
1574 const TypeTuple *TypeTuple::MEMBAR;
1575 const TypeTuple *TypeTuple::STORECONDITIONAL;
1576 const TypeTuple *TypeTuple::START_I2C;
1577 const TypeTuple *TypeTuple::INT_PAIR;
1578 const TypeTuple *TypeTuple::LONG_PAIR;
1579 
1580 
1581 //------------------------------make-------------------------------------------
1582 // Make a TypeTuple from the range of a method signature
1583 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1584   ciType* return_type = sig->return_type();
1585   uint total_fields = TypeFunc::Parms + return_type->size();
1586   const Type **field_array = fields(total_fields);
1587   switch (return_type->basic_type()) {
1588   case T_LONG:
1589     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1590     field_array[TypeFunc::Parms+1] = Type::HALF;
1591     break;
1592   case T_DOUBLE:
1593     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1594     field_array[TypeFunc::Parms+1] = Type::HALF;
1595     break;
1596   case T_OBJECT:
1597   case T_ARRAY:
1598   case T_BOOLEAN:
1599   case T_CHAR:
1600   case T_FLOAT:
1601   case T_BYTE:
1602   case T_SHORT:
1603   case T_INT:
1604     field_array[TypeFunc::Parms] = get_const_type(return_type);
1605     break;
1606   case T_VOID:
1607     break;
1608   default:
1609     ShouldNotReachHere();
1610   }
1611   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1612 }
1613 
1614 // Make a TypeTuple from the domain of a method signature
1615 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1616   uint total_fields = TypeFunc::Parms + sig->size();
1617 
1618   uint pos = TypeFunc::Parms;
1619   const Type **field_array;
1620   if (recv != NULL) {
1621     total_fields++;
1622     field_array = fields(total_fields);
1623     // Use get_const_type here because it respects UseUniqueSubclasses:
1624     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1625   } else {
1626     field_array = fields(total_fields);
1627   }
1628 
1629   int i = 0;
1630   while (pos < total_fields) {
1631     ciType* type = sig->type_at(i);
1632 
1633     switch (type->basic_type()) {
1634     case T_LONG:
1635       field_array[pos++] = TypeLong::LONG;
1636       field_array[pos++] = Type::HALF;
1637       break;
1638     case T_DOUBLE:
1639       field_array[pos++] = Type::DOUBLE;
1640       field_array[pos++] = Type::HALF;
1641       break;
1642     case T_OBJECT:
1643     case T_ARRAY:
1644     case T_BOOLEAN:
1645     case T_CHAR:
1646     case T_FLOAT:
1647     case T_BYTE:
1648     case T_SHORT:
1649     case T_INT:
1650       field_array[pos++] = get_const_type(type);
1651       break;
1652     default:
1653       ShouldNotReachHere();
1654     }
1655     i++;
1656   }
1657   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1658 }
1659 
1660 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1661   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1662 }
1663 
1664 //------------------------------fields-----------------------------------------
1665 // Subroutine call type with space allocated for argument types
1666 const Type **TypeTuple::fields( uint arg_cnt ) {
1667   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1668   flds[TypeFunc::Control  ] = Type::CONTROL;
1669   flds[TypeFunc::I_O      ] = Type::ABIO;
1670   flds[TypeFunc::Memory   ] = Type::MEMORY;
1671   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1672   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1673 
1674   return flds;
1675 }
1676 
1677 //------------------------------meet-------------------------------------------
1678 // Compute the MEET of two types.  It returns a new Type object.
1679 const Type *TypeTuple::xmeet( const Type *t ) const {
1680   // Perform a fast test for common case; meeting the same types together.
1681   if( this == t ) return this;  // Meeting same type-rep?
1682 
1683   // Current "this->_base" is Tuple
1684   switch (t->base()) {          // switch on original type
1685 
1686   case Bottom:                  // Ye Olde Default
1687     return t;
1688 
1689   default:                      // All else is a mistake
1690     typerr(t);
1691 
1692   case Tuple: {                 // Meeting 2 signatures?
1693     const TypeTuple *x = t->is_tuple();
1694     assert( _cnt == x->_cnt, "" );
1695     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1696     for( uint i=0; i<_cnt; i++ )
1697       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1698     return TypeTuple::make(_cnt,fields);
1699   }
1700   case Top:
1701     break;
1702   }
1703   return this;                  // Return the double constant
1704 }
1705 
1706 //------------------------------xdual------------------------------------------
1707 // Dual: compute field-by-field dual
1708 const Type *TypeTuple::xdual() const {
1709   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1710   for( uint i=0; i<_cnt; i++ )
1711     fields[i] = _fields[i]->dual();
1712   return new TypeTuple(_cnt,fields);
1713 }
1714 
1715 //------------------------------eq---------------------------------------------
1716 // Structural equality check for Type representations
1717 bool TypeTuple::eq( const Type *t ) const {
1718   const TypeTuple *s = (const TypeTuple *)t;
1719   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1720   for (uint i = 0; i < _cnt; i++)
1721     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1722       return false;             // Missed
1723   return true;
1724 }
1725 
1726 //------------------------------hash-------------------------------------------
1727 // Type-specific hashing function.
1728 int TypeTuple::hash(void) const {
1729   intptr_t sum = _cnt;
1730   for( uint i=0; i<_cnt; i++ )
1731     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1732   return sum;
1733 }
1734 
1735 //------------------------------dump2------------------------------------------
1736 // Dump signature Type
1737 #ifndef PRODUCT
1738 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1739   st->print("{");
1740   if( !depth || d[this] ) {     // Check for recursive print
1741     st->print("...}");
1742     return;
1743   }
1744   d.Insert((void*)this, (void*)this);   // Stop recursion
1745   if( _cnt ) {
1746     uint i;
1747     for( i=0; i<_cnt-1; i++ ) {
1748       st->print("%d:", i);
1749       _fields[i]->dump2(d, depth-1, st);
1750       st->print(", ");
1751     }
1752     st->print("%d:", i);
1753     _fields[i]->dump2(d, depth-1, st);
1754   }
1755   st->print("}");
1756 }
1757 #endif
1758 
1759 //------------------------------singleton--------------------------------------
1760 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1761 // constants (Ldi nodes).  Singletons are integer, float or double constants
1762 // or a single symbol.
1763 bool TypeTuple::singleton(void) const {
1764   return false;                 // Never a singleton
1765 }
1766 
1767 bool TypeTuple::empty(void) const {
1768   for( uint i=0; i<_cnt; i++ ) {
1769     if (_fields[i]->empty())  return true;
1770   }
1771   return false;
1772 }
1773 
1774 //=============================================================================
1775 // Convenience common pre-built types.
1776 
1777 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1778   // Certain normalizations keep us sane when comparing types.
1779   // We do not want arrayOop variables to differ only by the wideness
1780   // of their index types.  Pick minimum wideness, since that is the
1781   // forced wideness of small ranges anyway.
1782   if (size->_widen != Type::WidenMin)
1783     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1784   else
1785     return size;
1786 }
1787 
1788 //------------------------------make-------------------------------------------
1789 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
1790   if (UseCompressedOops && elem->isa_oopptr()) {
1791     elem = elem->make_narrowoop();
1792   }
1793   size = normalize_array_size(size);
1794   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
1795 }
1796 
1797 //------------------------------meet-------------------------------------------
1798 // Compute the MEET of two types.  It returns a new Type object.
1799 const Type *TypeAry::xmeet( const Type *t ) const {
1800   // Perform a fast test for common case; meeting the same types together.
1801   if( this == t ) return this;  // Meeting same type-rep?
1802 
1803   // Current "this->_base" is Ary
1804   switch (t->base()) {          // switch on original type
1805 
1806   case Bottom:                  // Ye Olde Default
1807     return t;
1808 
1809   default:                      // All else is a mistake
1810     typerr(t);
1811 
1812   case Array: {                 // Meeting 2 arrays?
1813     const TypeAry *a = t->is_ary();
1814     return TypeAry::make(_elem->meet(a->_elem),
1815                          _size->xmeet(a->_size)->is_int());
1816   }
1817   case Top:
1818     break;
1819   }
1820   return this;                  // Return the double constant
1821 }
1822 
1823 //------------------------------xdual------------------------------------------
1824 // Dual: compute field-by-field dual
1825 const Type *TypeAry::xdual() const {
1826   const TypeInt* size_dual = _size->dual()->is_int();
1827   size_dual = normalize_array_size(size_dual);
1828   return new TypeAry( _elem->dual(), size_dual);
1829 }
1830 
1831 //------------------------------eq---------------------------------------------
1832 // Structural equality check for Type representations
1833 bool TypeAry::eq( const Type *t ) const {
1834   const TypeAry *a = (const TypeAry*)t;
1835   return _elem == a->_elem &&
1836     _size == a->_size;
1837 }
1838 
1839 //------------------------------hash-------------------------------------------
1840 // Type-specific hashing function.
1841 int TypeAry::hash(void) const {
1842   return (intptr_t)_elem + (intptr_t)_size;
1843 }
1844 
1845 //----------------------interface_vs_oop---------------------------------------
1846 #ifdef ASSERT
1847 bool TypeAry::interface_vs_oop(const Type *t) const {
1848   const TypeAry* t_ary = t->is_ary();
1849   if (t_ary) {
1850     return _elem->interface_vs_oop(t_ary->_elem);
1851   }
1852   return false;
1853 }
1854 #endif
1855 
1856 //------------------------------dump2------------------------------------------
1857 #ifndef PRODUCT
1858 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1859   _elem->dump2(d, depth, st);
1860   st->print("[");
1861   _size->dump2(d, depth, st);
1862   st->print("]");
1863 }
1864 #endif
1865 
1866 //------------------------------singleton--------------------------------------
1867 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1868 // constants (Ldi nodes).  Singletons are integer, float or double constants
1869 // or a single symbol.
1870 bool TypeAry::singleton(void) const {
1871   return false;                 // Never a singleton
1872 }
1873 
1874 bool TypeAry::empty(void) const {
1875   return _elem->empty() || _size->empty();
1876 }
1877 
1878 //--------------------------ary_must_be_exact----------------------------------
1879 bool TypeAry::ary_must_be_exact() const {
1880   if (!UseExactTypes)       return false;
1881   // This logic looks at the element type of an array, and returns true
1882   // if the element type is either a primitive or a final instance class.
1883   // In such cases, an array built on this ary must have no subclasses.
1884   if (_elem == BOTTOM)      return false;  // general array not exact
1885   if (_elem == TOP   )      return false;  // inverted general array not exact
1886   const TypeOopPtr*  toop = NULL;
1887   if (UseCompressedOops && _elem->isa_narrowoop()) {
1888     toop = _elem->make_ptr()->isa_oopptr();
1889   } else {
1890     toop = _elem->isa_oopptr();
1891   }
1892   if (!toop)                return true;   // a primitive type, like int
1893   ciKlass* tklass = toop->klass();
1894   if (tklass == NULL)       return false;  // unloaded class
1895   if (!tklass->is_loaded()) return false;  // unloaded class
1896   const TypeInstPtr* tinst;
1897   if (_elem->isa_narrowoop())
1898     tinst = _elem->make_ptr()->isa_instptr();
1899   else
1900     tinst = _elem->isa_instptr();
1901   if (tinst)
1902     return tklass->as_instance_klass()->is_final();
1903   const TypeAryPtr*  tap;
1904   if (_elem->isa_narrowoop())
1905     tap = _elem->make_ptr()->isa_aryptr();
1906   else
1907     tap = _elem->isa_aryptr();
1908   if (tap)
1909     return tap->ary()->ary_must_be_exact();
1910   return false;
1911 }
1912 
1913 //=============================================================================
1914 // Convenience common pre-built types.
1915 const TypePtr *TypePtr::NULL_PTR;
1916 const TypePtr *TypePtr::NOTNULL;
1917 const TypePtr *TypePtr::BOTTOM;
1918 
1919 //------------------------------meet-------------------------------------------
1920 // Meet over the PTR enum
1921 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
1922   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
1923   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
1924   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
1925   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
1926   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
1927   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
1928   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
1929 };
1930 
1931 //------------------------------make-------------------------------------------
1932 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
1933   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
1934 }
1935 
1936 //------------------------------cast_to_ptr_type-------------------------------
1937 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
1938   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
1939   if( ptr == _ptr ) return this;
1940   return make(_base, ptr, _offset);
1941 }
1942 
1943 //------------------------------get_con----------------------------------------
1944 intptr_t TypePtr::get_con() const {
1945   assert( _ptr == Null, "" );
1946   return _offset;
1947 }
1948 
1949 //------------------------------meet-------------------------------------------
1950 // Compute the MEET of two types.  It returns a new Type object.
1951 const Type *TypePtr::xmeet( const Type *t ) const {
1952   // Perform a fast test for common case; meeting the same types together.
1953   if( this == t ) return this;  // Meeting same type-rep?
1954 
1955   // Current "this->_base" is AnyPtr
1956   switch (t->base()) {          // switch on original type
1957   case Int:                     // Mixing ints & oops happens when javac
1958   case Long:                    // reuses local variables
1959   case FloatTop:
1960   case FloatCon:
1961   case FloatBot:
1962   case DoubleTop:
1963   case DoubleCon:
1964   case DoubleBot:
1965   case NarrowOop:
1966   case Bottom:                  // Ye Olde Default
1967     return Type::BOTTOM;
1968   case Top:
1969     return this;
1970 
1971   case AnyPtr: {                // Meeting to AnyPtrs
1972     const TypePtr *tp = t->is_ptr();
1973     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
1974   }
1975   case RawPtr:                  // For these, flip the call around to cut down
1976   case OopPtr:
1977   case InstPtr:                 // on the cases I have to handle.
1978   case KlassPtr:
1979   case AryPtr:
1980     return t->xmeet(this);      // Call in reverse direction
1981   default:                      // All else is a mistake
1982     typerr(t);
1983 
1984   }
1985   return this;
1986 }
1987 
1988 //------------------------------meet_offset------------------------------------
1989 int TypePtr::meet_offset( int offset ) const {
1990   // Either is 'TOP' offset?  Return the other offset!
1991   if( _offset == OffsetTop ) return offset;
1992   if( offset == OffsetTop ) return _offset;
1993   // If either is different, return 'BOTTOM' offset
1994   if( _offset != offset ) return OffsetBot;
1995   return _offset;
1996 }
1997 
1998 //------------------------------dual_offset------------------------------------
1999 int TypePtr::dual_offset( ) const {
2000   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2001   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2002   return _offset;               // Map everything else into self
2003 }
2004 
2005 //------------------------------xdual------------------------------------------
2006 // Dual: compute field-by-field dual
2007 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2008   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2009 };
2010 const Type *TypePtr::xdual() const {
2011   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2012 }
2013 
2014 //------------------------------xadd_offset------------------------------------
2015 int TypePtr::xadd_offset( intptr_t offset ) const {
2016   // Adding to 'TOP' offset?  Return 'TOP'!
2017   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2018   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2019   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2020   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2021   offset += (intptr_t)_offset;
2022   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2023 
2024   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2025   // It is possible to construct a negative offset during PhaseCCP
2026 
2027   return (int)offset;        // Sum valid offsets
2028 }
2029 
2030 //------------------------------add_offset-------------------------------------
2031 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2032   return make( AnyPtr, _ptr, xadd_offset(offset) );
2033 }
2034 
2035 //------------------------------eq---------------------------------------------
2036 // Structural equality check for Type representations
2037 bool TypePtr::eq( const Type *t ) const {
2038   const TypePtr *a = (const TypePtr*)t;
2039   return _ptr == a->ptr() && _offset == a->offset();
2040 }
2041 
2042 //------------------------------hash-------------------------------------------
2043 // Type-specific hashing function.
2044 int TypePtr::hash(void) const {
2045   return _ptr + _offset;
2046 }
2047 
2048 //------------------------------dump2------------------------------------------
2049 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2050   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2051 };
2052 
2053 #ifndef PRODUCT
2054 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2055   if( _ptr == Null ) st->print("NULL");
2056   else st->print("%s *", ptr_msg[_ptr]);
2057   if( _offset == OffsetTop ) st->print("+top");
2058   else if( _offset == OffsetBot ) st->print("+bot");
2059   else if( _offset ) st->print("+%d", _offset);
2060 }
2061 #endif
2062 
2063 //------------------------------singleton--------------------------------------
2064 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2065 // constants
2066 bool TypePtr::singleton(void) const {
2067   // TopPTR, Null, AnyNull, Constant are all singletons
2068   return (_offset != OffsetBot) && !below_centerline(_ptr);
2069 }
2070 
2071 bool TypePtr::empty(void) const {
2072   return (_offset == OffsetTop) || above_centerline(_ptr);
2073 }
2074 
2075 //=============================================================================
2076 // Convenience common pre-built types.
2077 const TypeRawPtr *TypeRawPtr::BOTTOM;
2078 const TypeRawPtr *TypeRawPtr::NOTNULL;
2079 
2080 //------------------------------make-------------------------------------------
2081 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2082   assert( ptr != Constant, "what is the constant?" );
2083   assert( ptr != Null, "Use TypePtr for NULL" );
2084   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2085 }
2086 
2087 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2088   assert( bits, "Use TypePtr for NULL" );
2089   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2090 }
2091 
2092 //------------------------------cast_to_ptr_type-------------------------------
2093 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2094   assert( ptr != Constant, "what is the constant?" );
2095   assert( ptr != Null, "Use TypePtr for NULL" );
2096   assert( _bits==0, "Why cast a constant address?");
2097   if( ptr == _ptr ) return this;
2098   return make(ptr);
2099 }
2100 
2101 //------------------------------get_con----------------------------------------
2102 intptr_t TypeRawPtr::get_con() const {
2103   assert( _ptr == Null || _ptr == Constant, "" );
2104   return (intptr_t)_bits;
2105 }
2106 
2107 //------------------------------meet-------------------------------------------
2108 // Compute the MEET of two types.  It returns a new Type object.
2109 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2110   // Perform a fast test for common case; meeting the same types together.
2111   if( this == t ) return this;  // Meeting same type-rep?
2112 
2113   // Current "this->_base" is RawPtr
2114   switch( t->base() ) {         // switch on original type
2115   case Bottom:                  // Ye Olde Default
2116     return t;
2117   case Top:
2118     return this;
2119   case AnyPtr:                  // Meeting to AnyPtrs
2120     break;
2121   case RawPtr: {                // might be top, bot, any/not or constant
2122     enum PTR tptr = t->is_ptr()->ptr();
2123     enum PTR ptr = meet_ptr( tptr );
2124     if( ptr == Constant ) {     // Cannot be equal constants, so...
2125       if( tptr == Constant && _ptr != Constant)  return t;
2126       if( _ptr == Constant && tptr != Constant)  return this;
2127       ptr = NotNull;            // Fall down in lattice
2128     }
2129     return make( ptr );
2130   }
2131 
2132   case OopPtr:
2133   case InstPtr:
2134   case KlassPtr:
2135   case AryPtr:
2136     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2137   default:                      // All else is a mistake
2138     typerr(t);
2139   }
2140 
2141   // Found an AnyPtr type vs self-RawPtr type
2142   const TypePtr *tp = t->is_ptr();
2143   switch (tp->ptr()) {
2144   case TypePtr::TopPTR:  return this;
2145   case TypePtr::BotPTR:  return t;
2146   case TypePtr::Null:
2147     if( _ptr == TypePtr::TopPTR ) return t;
2148     return TypeRawPtr::BOTTOM;
2149   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2150   case TypePtr::AnyNull:
2151     if( _ptr == TypePtr::Constant) return this;
2152     return make( meet_ptr(TypePtr::AnyNull) );
2153   default: ShouldNotReachHere();
2154   }
2155   return this;
2156 }
2157 
2158 //------------------------------xdual------------------------------------------
2159 // Dual: compute field-by-field dual
2160 const Type *TypeRawPtr::xdual() const {
2161   return new TypeRawPtr( dual_ptr(), _bits );
2162 }
2163 
2164 //------------------------------add_offset-------------------------------------
2165 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2166   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2167   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2168   if( offset == 0 ) return this; // No change
2169   switch (_ptr) {
2170   case TypePtr::TopPTR:
2171   case TypePtr::BotPTR:
2172   case TypePtr::NotNull:
2173     return this;
2174   case TypePtr::Null:
2175   case TypePtr::Constant:
2176     return make( _bits+offset );
2177   default:  ShouldNotReachHere();
2178   }
2179   return NULL;                  // Lint noise
2180 }
2181 
2182 //------------------------------eq---------------------------------------------
2183 // Structural equality check for Type representations
2184 bool TypeRawPtr::eq( const Type *t ) const {
2185   const TypeRawPtr *a = (const TypeRawPtr*)t;
2186   return _bits == a->_bits && TypePtr::eq(t);
2187 }
2188 
2189 //------------------------------hash-------------------------------------------
2190 // Type-specific hashing function.
2191 int TypeRawPtr::hash(void) const {
2192   return (intptr_t)_bits + TypePtr::hash();
2193 }
2194 
2195 //------------------------------dump2------------------------------------------
2196 #ifndef PRODUCT
2197 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2198   if( _ptr == Constant )
2199     st->print(INTPTR_FORMAT, _bits);
2200   else
2201     st->print("rawptr:%s", ptr_msg[_ptr]);
2202 }
2203 #endif
2204 
2205 //=============================================================================
2206 // Convenience common pre-built type.
2207 const TypeOopPtr *TypeOopPtr::BOTTOM;
2208 
2209 //------------------------------TypeOopPtr-------------------------------------
2210 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2211   : TypePtr(t, ptr, offset),
2212     _const_oop(o), _klass(k),
2213     _klass_is_exact(xk),
2214     _is_ptr_to_narrowoop(false),
2215     _instance_id(instance_id) {
2216 #ifdef _LP64
2217   if (UseCompressedOops && _offset != 0) {
2218     if (klass() == NULL) {
2219       assert(this->isa_aryptr(), "only arrays without klass");
2220       _is_ptr_to_narrowoop = true;
2221     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
2222       _is_ptr_to_narrowoop = true;
2223     } else if (this->isa_aryptr()) {
2224       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
2225                              _offset != arrayOopDesc::length_offset_in_bytes());
2226     } else if (klass() == ciEnv::current()->Class_klass() &&
2227                (_offset == java_lang_Class::klass_offset_in_bytes() ||
2228                 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2229       // Special hidden fields from the Class.
2230       assert(this->isa_instptr(), "must be an instance ptr.");
2231       _is_ptr_to_narrowoop = true;
2232     } else if (klass()->is_instance_klass()) {
2233       ciInstanceKlass* ik = klass()->as_instance_klass();
2234       ciField* field = NULL;
2235       if (this->isa_klassptr()) {
2236         // Perm objects don't use compressed references, except for
2237         // static fields which are currently compressed.
2238         field = ik->get_field_by_offset(_offset, true);
2239         if (field != NULL) {
2240           BasicType basic_elem_type = field->layout_type();
2241           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2242                                   basic_elem_type == T_ARRAY);
2243         }
2244       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2245         // unsafe access
2246         _is_ptr_to_narrowoop = true;
2247       } else { // exclude unsafe ops
2248         assert(this->isa_instptr(), "must be an instance ptr.");
2249         // Field which contains a compressed oop references.
2250         field = ik->get_field_by_offset(_offset, false);
2251         if (field != NULL) {
2252           BasicType basic_elem_type = field->layout_type();
2253           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2254                                   basic_elem_type == T_ARRAY);
2255         } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2256           // Compile::find_alias_type() cast exactness on all types to verify
2257           // that it does not affect alias type.
2258           _is_ptr_to_narrowoop = true;
2259         } else {
2260           // Type for the copy start in LibraryCallKit::inline_native_clone().
2261           assert(!klass_is_exact(), "only non-exact klass");
2262           _is_ptr_to_narrowoop = true;
2263         }
2264       }
2265     }
2266   }
2267 #endif
2268 }
2269 
2270 //------------------------------make-------------------------------------------
2271 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2272                                    int offset, int instance_id) {
2273   assert(ptr != Constant, "no constant generic pointers");
2274   ciKlass*  k = ciKlassKlass::make();
2275   bool      xk = false;
2276   ciObject* o = NULL;
2277   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2278 }
2279 
2280 
2281 //------------------------------cast_to_ptr_type-------------------------------
2282 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2283   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2284   if( ptr == _ptr ) return this;
2285   return make(ptr, _offset, _instance_id);
2286 }
2287 
2288 //-----------------------------cast_to_instance_id----------------------------
2289 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2290   // There are no instances of a general oop.
2291   // Return self unchanged.
2292   return this;
2293 }
2294 
2295 //-----------------------------cast_to_exactness-------------------------------
2296 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2297   // There is no such thing as an exact general oop.
2298   // Return self unchanged.
2299   return this;
2300 }
2301 
2302 
2303 //------------------------------as_klass_type----------------------------------
2304 // Return the klass type corresponding to this instance or array type.
2305 // It is the type that is loaded from an object of this type.
2306 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2307   ciKlass* k = klass();
2308   bool    xk = klass_is_exact();
2309   if (k == NULL || !k->is_java_klass())
2310     return TypeKlassPtr::OBJECT;
2311   else
2312     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2313 }
2314 
2315 
2316 //------------------------------meet-------------------------------------------
2317 // Compute the MEET of two types.  It returns a new Type object.
2318 const Type *TypeOopPtr::xmeet( const Type *t ) const {
2319   // Perform a fast test for common case; meeting the same types together.
2320   if( this == t ) return this;  // Meeting same type-rep?
2321 
2322   // Current "this->_base" is OopPtr
2323   switch (t->base()) {          // switch on original type
2324 
2325   case Int:                     // Mixing ints & oops happens when javac
2326   case Long:                    // reuses local variables
2327   case FloatTop:
2328   case FloatCon:
2329   case FloatBot:
2330   case DoubleTop:
2331   case DoubleCon:
2332   case DoubleBot:
2333   case NarrowOop:
2334   case Bottom:                  // Ye Olde Default
2335     return Type::BOTTOM;
2336   case Top:
2337     return this;
2338 
2339   default:                      // All else is a mistake
2340     typerr(t);
2341 
2342   case RawPtr:
2343     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2344 
2345   case AnyPtr: {
2346     // Found an AnyPtr type vs self-OopPtr type
2347     const TypePtr *tp = t->is_ptr();
2348     int offset = meet_offset(tp->offset());
2349     PTR ptr = meet_ptr(tp->ptr());
2350     switch (tp->ptr()) {
2351     case Null:
2352       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2353       // else fall through:
2354     case TopPTR:
2355     case AnyNull: {
2356       int instance_id = meet_instance_id(InstanceTop);
2357       return make(ptr, offset, instance_id);
2358     }
2359     case BotPTR:
2360     case NotNull:
2361       return TypePtr::make(AnyPtr, ptr, offset);
2362     default: typerr(t);
2363     }
2364   }
2365 
2366   case OopPtr: {                 // Meeting to other OopPtrs
2367     const TypeOopPtr *tp = t->is_oopptr();
2368     int instance_id = meet_instance_id(tp->instance_id());
2369     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2370   }
2371 
2372   case InstPtr:                  // For these, flip the call around to cut down
2373   case KlassPtr:                 // on the cases I have to handle.
2374   case AryPtr:
2375     return t->xmeet(this);      // Call in reverse direction
2376 
2377   } // End of switch
2378   return this;                  // Return the double constant
2379 }
2380 
2381 
2382 //------------------------------xdual------------------------------------------
2383 // Dual of a pure heap pointer.  No relevant klass or oop information.
2384 const Type *TypeOopPtr::xdual() const {
2385   assert(klass() == ciKlassKlass::make(), "no klasses here");
2386   assert(const_oop() == NULL,             "no constants here");
2387   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2388 }
2389 
2390 //--------------------------make_from_klass_common-----------------------------
2391 // Computes the element-type given a klass.
2392 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2393   assert(klass->is_java_klass(), "must be java language klass");
2394   if (klass->is_instance_klass()) {
2395     Compile* C = Compile::current();
2396     Dependencies* deps = C->dependencies();
2397     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2398     // Element is an instance
2399     bool klass_is_exact = false;
2400     if (klass->is_loaded()) {
2401       // Try to set klass_is_exact.
2402       ciInstanceKlass* ik = klass->as_instance_klass();
2403       klass_is_exact = ik->is_final();
2404       if (!klass_is_exact && klass_change
2405           && deps != NULL && UseUniqueSubclasses) {
2406         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2407         if (sub != NULL) {
2408           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2409           klass = ik = sub;
2410           klass_is_exact = sub->is_final();
2411         }
2412       }
2413       if (!klass_is_exact && try_for_exact
2414           && deps != NULL && UseExactTypes) {
2415         if (!ik->is_interface() && !ik->has_subklass()) {
2416           // Add a dependence; if concrete subclass added we need to recompile
2417           deps->assert_leaf_type(ik);
2418           klass_is_exact = true;
2419         }
2420       }
2421     }
2422     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2423   } else if (klass->is_obj_array_klass()) {
2424     // Element is an object array. Recursively call ourself.
2425     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2426     bool xk = etype->klass_is_exact();
2427     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2428     // We used to pass NotNull in here, asserting that the sub-arrays
2429     // are all not-null.  This is not true in generally, as code can
2430     // slam NULLs down in the subarrays.
2431     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2432     return arr;
2433   } else if (klass->is_type_array_klass()) {
2434     // Element is an typeArray
2435     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2436     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2437     // We used to pass NotNull in here, asserting that the array pointer
2438     // is not-null. That was not true in general.
2439     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2440     return arr;
2441   } else {
2442     ShouldNotReachHere();
2443     return NULL;
2444   }
2445 }
2446 
2447 //------------------------------make_from_constant-----------------------------
2448 // Make a java pointer from an oop constant
2449 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
2450   if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
2451     // Treat much like a typeArray of bytes, like below, but fake the type...
2452     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
2453     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2454     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
2455     assert(o->can_be_constant(), "method data oops should be tenured");
2456     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2457     return arr;
2458   } else {
2459     assert(o->is_java_object(), "must be java language object");
2460     assert(!o->is_null_object(), "null object not yet handled here.");
2461     ciKlass *klass = o->klass();
2462     if (klass->is_instance_klass()) {
2463       // Element is an instance
2464       if (require_constant) {
2465         if (!o->can_be_constant())  return NULL;
2466       } else if (!o->should_be_constant()) {
2467         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2468       }
2469       return TypeInstPtr::make(o);
2470     } else if (klass->is_obj_array_klass()) {
2471       // Element is an object array. Recursively call ourself.
2472       const Type *etype =
2473         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2474       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2475       // We used to pass NotNull in here, asserting that the sub-arrays
2476       // are all not-null.  This is not true in generally, as code can
2477       // slam NULLs down in the subarrays.
2478       if (require_constant) {
2479         if (!o->can_be_constant())  return NULL;
2480       } else if (!o->should_be_constant()) {
2481         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2482       }
2483       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2484       return arr;
2485     } else if (klass->is_type_array_klass()) {
2486       // Element is an typeArray
2487       const Type* etype =
2488         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2489       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2490       // We used to pass NotNull in here, asserting that the array pointer
2491       // is not-null. That was not true in general.
2492       if (require_constant) {
2493         if (!o->can_be_constant())  return NULL;
2494       } else if (!o->should_be_constant()) {
2495         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2496       }
2497       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2498       return arr;
2499     }
2500   }
2501 
2502   ShouldNotReachHere();
2503   return NULL;
2504 }
2505 
2506 //------------------------------get_con----------------------------------------
2507 intptr_t TypeOopPtr::get_con() const {
2508   assert( _ptr == Null || _ptr == Constant, "" );
2509   assert( _offset >= 0, "" );
2510 
2511   if (_offset != 0) {
2512     // After being ported to the compiler interface, the compiler no longer
2513     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2514     // to a handle at compile time.  This handle is embedded in the generated
2515     // code and dereferenced at the time the nmethod is made.  Until that time,
2516     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2517     // have access to the addresses!).  This does not seem to currently happen,
2518     // but this assertion here is to help prevent its occurence.
2519     tty->print_cr("Found oop constant with non-zero offset");
2520     ShouldNotReachHere();
2521   }
2522 
2523   return (intptr_t)const_oop()->constant_encoding();
2524 }
2525 
2526 
2527 //-----------------------------filter------------------------------------------
2528 // Do not allow interface-vs.-noninterface joins to collapse to top.
2529 const Type *TypeOopPtr::filter( const Type *kills ) const {
2530 
2531   const Type* ft = join(kills);
2532   const TypeInstPtr* ftip = ft->isa_instptr();
2533   const TypeInstPtr* ktip = kills->isa_instptr();
2534   const TypeKlassPtr* ftkp = ft->isa_klassptr();
2535   const TypeKlassPtr* ktkp = kills->isa_klassptr();
2536 
2537   if (ft->empty()) {
2538     // Check for evil case of 'this' being a class and 'kills' expecting an
2539     // interface.  This can happen because the bytecodes do not contain
2540     // enough type info to distinguish a Java-level interface variable
2541     // from a Java-level object variable.  If we meet 2 classes which
2542     // both implement interface I, but their meet is at 'j/l/O' which
2543     // doesn't implement I, we have no way to tell if the result should
2544     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2545     // into a Phi which "knows" it's an Interface type we'll have to
2546     // uplift the type.
2547     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2548       return kills;             // Uplift to interface
2549     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2550       return kills;             // Uplift to interface
2551 
2552     return Type::TOP;           // Canonical empty value
2553   }
2554 
2555   // If we have an interface-typed Phi or cast and we narrow to a class type,
2556   // the join should report back the class.  However, if we have a J/L/Object
2557   // class-typed Phi and an interface flows in, it's possible that the meet &
2558   // join report an interface back out.  This isn't possible but happens
2559   // because the type system doesn't interact well with interfaces.
2560   if (ftip != NULL && ktip != NULL &&
2561       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2562       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2563     // Happens in a CTW of rt.jar, 320-341, no extra flags
2564     assert(!ftip->klass_is_exact(), "interface could not be exact");
2565     return ktip->cast_to_ptr_type(ftip->ptr());
2566   }
2567   // Interface klass type could be exact in opposite to interface type,
2568   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2569   if (ftkp != NULL && ktkp != NULL &&
2570       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2571       !ftkp->klass_is_exact() && // Keep exact interface klass
2572       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2573     return ktkp->cast_to_ptr_type(ftkp->ptr());
2574   }
2575 
2576   return ft;
2577 }
2578 
2579 //------------------------------eq---------------------------------------------
2580 // Structural equality check for Type representations
2581 bool TypeOopPtr::eq( const Type *t ) const {
2582   const TypeOopPtr *a = (const TypeOopPtr*)t;
2583   if (_klass_is_exact != a->_klass_is_exact ||
2584       _instance_id != a->_instance_id)  return false;
2585   ciObject* one = const_oop();
2586   ciObject* two = a->const_oop();
2587   if (one == NULL || two == NULL) {
2588     return (one == two) && TypePtr::eq(t);
2589   } else {
2590     return one->equals(two) && TypePtr::eq(t);
2591   }
2592 }
2593 
2594 //------------------------------hash-------------------------------------------
2595 // Type-specific hashing function.
2596 int TypeOopPtr::hash(void) const {
2597   return
2598     (const_oop() ? const_oop()->hash() : 0) +
2599     _klass_is_exact +
2600     _instance_id +
2601     TypePtr::hash();
2602 }
2603 
2604 //------------------------------dump2------------------------------------------
2605 #ifndef PRODUCT
2606 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2607   st->print("oopptr:%s", ptr_msg[_ptr]);
2608   if( _klass_is_exact ) st->print(":exact");
2609   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2610   switch( _offset ) {
2611   case OffsetTop: st->print("+top"); break;
2612   case OffsetBot: st->print("+any"); break;
2613   case         0: break;
2614   default:        st->print("+%d",_offset); break;
2615   }
2616   if (_instance_id == InstanceTop)
2617     st->print(",iid=top");
2618   else if (_instance_id != InstanceBot)
2619     st->print(",iid=%d",_instance_id);
2620 }
2621 #endif
2622 
2623 //------------------------------singleton--------------------------------------
2624 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2625 // constants
2626 bool TypeOopPtr::singleton(void) const {
2627   // detune optimizer to not generate constant oop + constant offset as a constant!
2628   // TopPTR, Null, AnyNull, Constant are all singletons
2629   return (_offset == 0) && !below_centerline(_ptr);
2630 }
2631 
2632 //------------------------------add_offset-------------------------------------
2633 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2634   return make( _ptr, xadd_offset(offset), _instance_id);
2635 }
2636 
2637 //------------------------------meet_instance_id--------------------------------
2638 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2639   // Either is 'TOP' instance?  Return the other instance!
2640   if( _instance_id == InstanceTop ) return  instance_id;
2641   if(  instance_id == InstanceTop ) return _instance_id;
2642   // If either is different, return 'BOTTOM' instance
2643   if( _instance_id != instance_id ) return InstanceBot;
2644   return _instance_id;
2645 }
2646 
2647 //------------------------------dual_instance_id--------------------------------
2648 int TypeOopPtr::dual_instance_id( ) const {
2649   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2650   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2651   return _instance_id;              // Map everything else into self
2652 }
2653 
2654 
2655 //=============================================================================
2656 // Convenience common pre-built types.
2657 const TypeInstPtr *TypeInstPtr::NOTNULL;
2658 const TypeInstPtr *TypeInstPtr::BOTTOM;
2659 const TypeInstPtr *TypeInstPtr::MIRROR;
2660 const TypeInstPtr *TypeInstPtr::MARK;
2661 const TypeInstPtr *TypeInstPtr::KLASS;
2662 
2663 //------------------------------TypeInstPtr-------------------------------------
2664 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2665  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2666    assert(k != NULL &&
2667           (k->is_loaded() || o == NULL),
2668           "cannot have constants with non-loaded klass");
2669 };
2670 
2671 //------------------------------make-------------------------------------------
2672 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2673                                      ciKlass* k,
2674                                      bool xk,
2675                                      ciObject* o,
2676                                      int offset,
2677                                      int instance_id) {
2678   assert( !k->is_loaded() || k->is_instance_klass() ||
2679           k->is_method_klass(), "Must be for instance or method");
2680   // Either const_oop() is NULL or else ptr is Constant
2681   assert( (!o && ptr != Constant) || (o && ptr == Constant),
2682           "constant pointers must have a value supplied" );
2683   // Ptr is never Null
2684   assert( ptr != Null, "NULL pointers are not typed" );
2685 
2686   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2687   if (!UseExactTypes)  xk = false;
2688   if (ptr == Constant) {
2689     // Note:  This case includes meta-object constants, such as methods.
2690     xk = true;
2691   } else if (k->is_loaded()) {
2692     ciInstanceKlass* ik = k->as_instance_klass();
2693     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2694     if (xk && ik->is_interface())  xk = false;  // no exact interface
2695   }
2696 
2697   // Now hash this baby
2698   TypeInstPtr *result =
2699     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2700 
2701   return result;
2702 }
2703 
2704 
2705 //------------------------------cast_to_ptr_type-------------------------------
2706 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2707   if( ptr == _ptr ) return this;
2708   // Reconstruct _sig info here since not a problem with later lazy
2709   // construction, _sig will show up on demand.
2710   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2711 }
2712 
2713 
2714 //-----------------------------cast_to_exactness-------------------------------
2715 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2716   if( klass_is_exact == _klass_is_exact ) return this;
2717   if (!UseExactTypes)  return this;
2718   if (!_klass->is_loaded())  return this;
2719   ciInstanceKlass* ik = _klass->as_instance_klass();
2720   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2721   if( ik->is_interface() )              return this;  // cannot set xk
2722   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2723 }
2724 
2725 //-----------------------------cast_to_instance_id----------------------------
2726 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2727   if( instance_id == _instance_id ) return this;
2728   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2729 }
2730 
2731 //------------------------------xmeet_unloaded---------------------------------
2732 // Compute the MEET of two InstPtrs when at least one is unloaded.
2733 // Assume classes are different since called after check for same name/class-loader
2734 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2735     int off = meet_offset(tinst->offset());
2736     PTR ptr = meet_ptr(tinst->ptr());
2737     int instance_id = meet_instance_id(tinst->instance_id());
2738 
2739     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2740     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2741     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2742       //
2743       // Meet unloaded class with java/lang/Object
2744       //
2745       // Meet
2746       //          |                     Unloaded Class
2747       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2748       //  ===================================================================
2749       //   TOP    | ..........................Unloaded......................|
2750       //  AnyNull |  U-AN    |................Unloaded......................|
2751       // Constant | ... O-NN .................................. |   O-BOT   |
2752       //  NotNull | ... O-NN .................................. |   O-BOT   |
2753       //  BOTTOM  | ........................Object-BOTTOM ..................|
2754       //
2755       assert(loaded->ptr() != TypePtr::Null, "insanity check");
2756       //
2757       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2758       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2759       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2760       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2761         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2762         else                                      { return TypeInstPtr::NOTNULL; }
2763       }
2764       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2765 
2766       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2767     }
2768 
2769     // Both are unloaded, not the same class, not Object
2770     // Or meet unloaded with a different loaded class, not java/lang/Object
2771     if( ptr != TypePtr::BotPTR ) {
2772       return TypeInstPtr::NOTNULL;
2773     }
2774     return TypeInstPtr::BOTTOM;
2775 }
2776 
2777 
2778 //------------------------------meet-------------------------------------------
2779 // Compute the MEET of two types.  It returns a new Type object.
2780 const Type *TypeInstPtr::xmeet( const Type *t ) const {
2781   // Perform a fast test for common case; meeting the same types together.
2782   if( this == t ) return this;  // Meeting same type-rep?
2783 
2784   // Current "this->_base" is Pointer
2785   switch (t->base()) {          // switch on original type
2786 
2787   case Int:                     // Mixing ints & oops happens when javac
2788   case Long:                    // reuses local variables
2789   case FloatTop:
2790   case FloatCon:
2791   case FloatBot:
2792   case DoubleTop:
2793   case DoubleCon:
2794   case DoubleBot:
2795   case NarrowOop:
2796   case Bottom:                  // Ye Olde Default
2797     return Type::BOTTOM;
2798   case Top:
2799     return this;
2800 
2801   default:                      // All else is a mistake
2802     typerr(t);
2803 
2804   case RawPtr: return TypePtr::BOTTOM;
2805 
2806   case AryPtr: {                // All arrays inherit from Object class
2807     const TypeAryPtr *tp = t->is_aryptr();
2808     int offset = meet_offset(tp->offset());
2809     PTR ptr = meet_ptr(tp->ptr());
2810     int instance_id = meet_instance_id(tp->instance_id());
2811     switch (ptr) {
2812     case TopPTR:
2813     case AnyNull:                // Fall 'down' to dual of object klass
2814       if (klass()->equals(ciEnv::current()->Object_klass())) {
2815         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2816       } else {
2817         // cannot subclass, so the meet has to fall badly below the centerline
2818         ptr = NotNull;
2819         instance_id = InstanceBot;
2820         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
2821       }
2822     case Constant:
2823     case NotNull:
2824     case BotPTR:                // Fall down to object klass
2825       // LCA is object_klass, but if we subclass from the top we can do better
2826       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
2827         // If 'this' (InstPtr) is above the centerline and it is Object class
2828         // then we can subclass in the Java class hierarchy.
2829         if (klass()->equals(ciEnv::current()->Object_klass())) {
2830           // that is, tp's array type is a subtype of my klass
2831           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
2832                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2833         }
2834       }
2835       // The other case cannot happen, since I cannot be a subtype of an array.
2836       // The meet falls down to Object class below centerline.
2837       if( ptr == Constant )
2838          ptr = NotNull;
2839       instance_id = InstanceBot;
2840       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
2841     default: typerr(t);
2842     }
2843   }
2844 
2845   case OopPtr: {                // Meeting to OopPtrs
2846     // Found a OopPtr type vs self-InstPtr type
2847     const TypeOopPtr *tp = t->is_oopptr();
2848     int offset = meet_offset(tp->offset());
2849     PTR ptr = meet_ptr(tp->ptr());
2850     switch (tp->ptr()) {
2851     case TopPTR:
2852     case AnyNull: {
2853       int instance_id = meet_instance_id(InstanceTop);
2854       return make(ptr, klass(), klass_is_exact(),
2855                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2856     }
2857     case NotNull:
2858     case BotPTR: {
2859       int instance_id = meet_instance_id(tp->instance_id());
2860       return TypeOopPtr::make(ptr, offset, instance_id);
2861     }
2862     default: typerr(t);
2863     }
2864   }
2865 
2866   case AnyPtr: {                // Meeting to AnyPtrs
2867     // Found an AnyPtr type vs self-InstPtr type
2868     const TypePtr *tp = t->is_ptr();
2869     int offset = meet_offset(tp->offset());
2870     PTR ptr = meet_ptr(tp->ptr());
2871     switch (tp->ptr()) {
2872     case Null:
2873       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
2874       // else fall through to AnyNull
2875     case TopPTR:
2876     case AnyNull: {
2877       int instance_id = meet_instance_id(InstanceTop);
2878       return make( ptr, klass(), klass_is_exact(),
2879                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2880     }
2881     case NotNull:
2882     case BotPTR:
2883       return TypePtr::make( AnyPtr, ptr, offset );
2884     default: typerr(t);
2885     }
2886   }
2887 
2888   /*
2889                  A-top         }
2890                /   |   \       }  Tops
2891            B-top A-any C-top   }
2892               | /  |  \ |      }  Any-nulls
2893            B-any   |   C-any   }
2894               |    |    |
2895            B-con A-con C-con   } constants; not comparable across classes
2896               |    |    |
2897            B-not   |   C-not   }
2898               | \  |  / |      }  not-nulls
2899            B-bot A-not C-bot   }
2900                \   |   /       }  Bottoms
2901                  A-bot         }
2902   */
2903 
2904   case InstPtr: {                // Meeting 2 Oops?
2905     // Found an InstPtr sub-type vs self-InstPtr type
2906     const TypeInstPtr *tinst = t->is_instptr();
2907     int off = meet_offset( tinst->offset() );
2908     PTR ptr = meet_ptr( tinst->ptr() );
2909     int instance_id = meet_instance_id(tinst->instance_id());
2910 
2911     // Check for easy case; klasses are equal (and perhaps not loaded!)
2912     // If we have constants, then we created oops so classes are loaded
2913     // and we can handle the constants further down.  This case handles
2914     // both-not-loaded or both-loaded classes
2915     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
2916       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
2917     }
2918 
2919     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
2920     ciKlass* tinst_klass = tinst->klass();
2921     ciKlass* this_klass  = this->klass();
2922     bool tinst_xk = tinst->klass_is_exact();
2923     bool this_xk  = this->klass_is_exact();
2924     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
2925       // One of these classes has not been loaded
2926       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
2927 #ifndef PRODUCT
2928       if( PrintOpto && Verbose ) {
2929         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
2930         tty->print("  this == "); this->dump(); tty->cr();
2931         tty->print(" tinst == "); tinst->dump(); tty->cr();
2932       }
2933 #endif
2934       return unloaded_meet;
2935     }
2936 
2937     // Handle mixing oops and interfaces first.
2938     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
2939       ciKlass *tmp = tinst_klass; // Swap interface around
2940       tinst_klass = this_klass;
2941       this_klass = tmp;
2942       bool tmp2 = tinst_xk;
2943       tinst_xk = this_xk;
2944       this_xk = tmp2;
2945     }
2946     if (tinst_klass->is_interface() &&
2947         !(this_klass->is_interface() ||
2948           // Treat java/lang/Object as an honorary interface,
2949           // because we need a bottom for the interface hierarchy.
2950           this_klass == ciEnv::current()->Object_klass())) {
2951       // Oop meets interface!
2952 
2953       // See if the oop subtypes (implements) interface.
2954       ciKlass *k;
2955       bool xk;
2956       if( this_klass->is_subtype_of( tinst_klass ) ) {
2957         // Oop indeed subtypes.  Now keep oop or interface depending
2958         // on whether we are both above the centerline or either is
2959         // below the centerline.  If we are on the centerline
2960         // (e.g., Constant vs. AnyNull interface), use the constant.
2961         k  = below_centerline(ptr) ? tinst_klass : this_klass;
2962         // If we are keeping this_klass, keep its exactness too.
2963         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
2964       } else {                  // Does not implement, fall to Object
2965         // Oop does not implement interface, so mixing falls to Object
2966         // just like the verifier does (if both are above the
2967         // centerline fall to interface)
2968         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
2969         xk = above_centerline(ptr) ? tinst_xk : false;
2970         // Watch out for Constant vs. AnyNull interface.
2971         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
2972         instance_id = InstanceBot;
2973       }
2974       ciObject* o = NULL;  // the Constant value, if any
2975       if (ptr == Constant) {
2976         // Find out which constant.
2977         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
2978       }
2979       return make( ptr, k, xk, o, off, instance_id );
2980     }
2981 
2982     // Either oop vs oop or interface vs interface or interface vs Object
2983 
2984     // !!! Here's how the symmetry requirement breaks down into invariants:
2985     // If we split one up & one down AND they subtype, take the down man.
2986     // If we split one up & one down AND they do NOT subtype, "fall hard".
2987     // If both are up and they subtype, take the subtype class.
2988     // If both are up and they do NOT subtype, "fall hard".
2989     // If both are down and they subtype, take the supertype class.
2990     // If both are down and they do NOT subtype, "fall hard".
2991     // Constants treated as down.
2992 
2993     // Now, reorder the above list; observe that both-down+subtype is also
2994     // "fall hard"; "fall hard" becomes the default case:
2995     // If we split one up & one down AND they subtype, take the down man.
2996     // If both are up and they subtype, take the subtype class.
2997 
2998     // If both are down and they subtype, "fall hard".
2999     // If both are down and they do NOT subtype, "fall hard".
3000     // If both are up and they do NOT subtype, "fall hard".
3001     // If we split one up & one down AND they do NOT subtype, "fall hard".
3002 
3003     // If a proper subtype is exact, and we return it, we return it exactly.
3004     // If a proper supertype is exact, there can be no subtyping relationship!
3005     // If both types are equal to the subtype, exactness is and-ed below the
3006     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3007 
3008     // Check for subtyping:
3009     ciKlass *subtype = NULL;
3010     bool subtype_exact = false;
3011     if( tinst_klass->equals(this_klass) ) {
3012       subtype = this_klass;
3013       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3014     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3015       subtype = this_klass;     // Pick subtyping class
3016       subtype_exact = this_xk;
3017     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3018       subtype = tinst_klass;    // Pick subtyping class
3019       subtype_exact = tinst_xk;
3020     }
3021 
3022     if( subtype ) {
3023       if( above_centerline(ptr) ) { // both are up?
3024         this_klass = tinst_klass = subtype;
3025         this_xk = tinst_xk = subtype_exact;
3026       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3027         this_klass = tinst_klass; // tinst is down; keep down man
3028         this_xk = tinst_xk;
3029       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3030         tinst_klass = this_klass; // this is down; keep down man
3031         tinst_xk = this_xk;
3032       } else {
3033         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3034       }
3035     }
3036 
3037     // Check for classes now being equal
3038     if (tinst_klass->equals(this_klass)) {
3039       // If the klasses are equal, the constants may still differ.  Fall to
3040       // NotNull if they do (neither constant is NULL; that is a special case
3041       // handled elsewhere).
3042       ciObject* o = NULL;             // Assume not constant when done
3043       ciObject* this_oop  = const_oop();
3044       ciObject* tinst_oop = tinst->const_oop();
3045       if( ptr == Constant ) {
3046         if (this_oop != NULL && tinst_oop != NULL &&
3047             this_oop->equals(tinst_oop) )
3048           o = this_oop;
3049         else if (above_centerline(this ->_ptr))
3050           o = tinst_oop;
3051         else if (above_centerline(tinst ->_ptr))
3052           o = this_oop;
3053         else
3054           ptr = NotNull;
3055       }
3056       return make( ptr, this_klass, this_xk, o, off, instance_id );
3057     } // Else classes are not equal
3058 
3059     // Since klasses are different, we require a LCA in the Java
3060     // class hierarchy - which means we have to fall to at least NotNull.
3061     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3062       ptr = NotNull;
3063     instance_id = InstanceBot;
3064 
3065     // Now we find the LCA of Java classes
3066     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3067     return make( ptr, k, false, NULL, off, instance_id );
3068   } // End of case InstPtr
3069 
3070   case KlassPtr:
3071     return TypeInstPtr::BOTTOM;
3072 
3073   } // End of switch
3074   return this;                  // Return the double constant
3075 }
3076 
3077 
3078 //------------------------java_mirror_type--------------------------------------
3079 ciType* TypeInstPtr::java_mirror_type() const {
3080   // must be a singleton type
3081   if( const_oop() == NULL )  return NULL;
3082 
3083   // must be of type java.lang.Class
3084   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3085 
3086   return const_oop()->as_instance()->java_mirror_type();
3087 }
3088 
3089 
3090 //------------------------------xdual------------------------------------------
3091 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3092 // inheritance mechanism.
3093 const Type *TypeInstPtr::xdual() const {
3094   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3095 }
3096 
3097 //------------------------------eq---------------------------------------------
3098 // Structural equality check for Type representations
3099 bool TypeInstPtr::eq( const Type *t ) const {
3100   const TypeInstPtr *p = t->is_instptr();
3101   return
3102     klass()->equals(p->klass()) &&
3103     TypeOopPtr::eq(p);          // Check sub-type stuff
3104 }
3105 
3106 //------------------------------hash-------------------------------------------
3107 // Type-specific hashing function.
3108 int TypeInstPtr::hash(void) const {
3109   int hash = klass()->hash() + TypeOopPtr::hash();
3110   return hash;
3111 }
3112 
3113 //------------------------------dump2------------------------------------------
3114 // Dump oop Type
3115 #ifndef PRODUCT
3116 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3117   // Print the name of the klass.
3118   klass()->print_name_on(st);
3119 
3120   switch( _ptr ) {
3121   case Constant:
3122     // TO DO: Make CI print the hex address of the underlying oop.
3123     if (WizardMode || Verbose) {
3124       const_oop()->print_oop(st);
3125     }
3126   case BotPTR:
3127     if (!WizardMode && !Verbose) {
3128       if( _klass_is_exact ) st->print(":exact");
3129       break;
3130     }
3131   case TopPTR:
3132   case AnyNull:
3133   case NotNull:
3134     st->print(":%s", ptr_msg[_ptr]);
3135     if( _klass_is_exact ) st->print(":exact");
3136     break;
3137   }
3138 
3139   if( _offset ) {               // Dump offset, if any
3140     if( _offset == OffsetBot )      st->print("+any");
3141     else if( _offset == OffsetTop ) st->print("+unknown");
3142     else st->print("+%d", _offset);
3143   }
3144 
3145   st->print(" *");
3146   if (_instance_id == InstanceTop)
3147     st->print(",iid=top");
3148   else if (_instance_id != InstanceBot)
3149     st->print(",iid=%d",_instance_id);
3150 }
3151 #endif
3152 
3153 //------------------------------add_offset-------------------------------------
3154 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3155   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3156 }
3157 
3158 //=============================================================================
3159 // Convenience common pre-built types.
3160 const TypeAryPtr *TypeAryPtr::RANGE;
3161 const TypeAryPtr *TypeAryPtr::OOPS;
3162 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3163 const TypeAryPtr *TypeAryPtr::BYTES;
3164 const TypeAryPtr *TypeAryPtr::SHORTS;
3165 const TypeAryPtr *TypeAryPtr::CHARS;
3166 const TypeAryPtr *TypeAryPtr::INTS;
3167 const TypeAryPtr *TypeAryPtr::LONGS;
3168 const TypeAryPtr *TypeAryPtr::FLOATS;
3169 const TypeAryPtr *TypeAryPtr::DOUBLES;
3170 
3171 //------------------------------make-------------------------------------------
3172 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3173   assert(!(k == NULL && ary->_elem->isa_int()),
3174          "integral arrays must be pre-equipped with a class");
3175   if (!xk)  xk = ary->ary_must_be_exact();
3176   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3177   if (!UseExactTypes)  xk = (ptr == Constant);
3178   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
3179 }
3180 
3181 //------------------------------make-------------------------------------------
3182 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3183   assert(!(k == NULL && ary->_elem->isa_int()),
3184          "integral arrays must be pre-equipped with a class");
3185   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3186   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3187   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3188   if (!UseExactTypes)  xk = (ptr == Constant);
3189   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
3190 }
3191 
3192 //------------------------------cast_to_ptr_type-------------------------------
3193 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3194   if( ptr == _ptr ) return this;
3195   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3196 }
3197 
3198 
3199 //-----------------------------cast_to_exactness-------------------------------
3200 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3201   if( klass_is_exact == _klass_is_exact ) return this;
3202   if (!UseExactTypes)  return this;
3203   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3204   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3205 }
3206 
3207 //-----------------------------cast_to_instance_id----------------------------
3208 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3209   if( instance_id == _instance_id ) return this;
3210   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3211 }
3212 
3213 //-----------------------------narrow_size_type-------------------------------
3214 // Local cache for arrayOopDesc::max_array_length(etype),
3215 // which is kind of slow (and cached elsewhere by other users).
3216 static jint max_array_length_cache[T_CONFLICT+1];
3217 static jint max_array_length(BasicType etype) {
3218   jint& cache = max_array_length_cache[etype];
3219   jint res = cache;
3220   if (res == 0) {
3221     switch (etype) {
3222     case T_NARROWOOP:
3223       etype = T_OBJECT;
3224       break;
3225     case T_CONFLICT:
3226     case T_ILLEGAL:
3227     case T_VOID:
3228       etype = T_BYTE;           // will produce conservatively high value
3229     }
3230     cache = res = arrayOopDesc::max_array_length(etype);
3231   }
3232   return res;
3233 }
3234 
3235 // Narrow the given size type to the index range for the given array base type.
3236 // Return NULL if the resulting int type becomes empty.
3237 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3238   jint hi = size->_hi;
3239   jint lo = size->_lo;
3240   jint min_lo = 0;
3241   jint max_hi = max_array_length(elem()->basic_type());
3242   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3243   bool chg = false;
3244   if (lo < min_lo) { lo = min_lo; chg = true; }
3245   if (hi > max_hi) { hi = max_hi; chg = true; }
3246   // Negative length arrays will produce weird intermediate dead fast-path code
3247   if (lo > hi)
3248     return TypeInt::ZERO;
3249   if (!chg)
3250     return size;
3251   return TypeInt::make(lo, hi, Type::WidenMin);
3252 }
3253 
3254 //-------------------------------cast_to_size----------------------------------
3255 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3256   assert(new_size != NULL, "");
3257   new_size = narrow_size_type(new_size);
3258   if (new_size == size())  return this;
3259   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
3260   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3261 }
3262 
3263 
3264 //------------------------------eq---------------------------------------------
3265 // Structural equality check for Type representations
3266 bool TypeAryPtr::eq( const Type *t ) const {
3267   const TypeAryPtr *p = t->is_aryptr();
3268   return
3269     _ary == p->_ary &&  // Check array
3270     TypeOopPtr::eq(p);  // Check sub-parts
3271 }
3272 
3273 //------------------------------hash-------------------------------------------
3274 // Type-specific hashing function.
3275 int TypeAryPtr::hash(void) const {
3276   return (intptr_t)_ary + TypeOopPtr::hash();
3277 }
3278 
3279 //------------------------------meet-------------------------------------------
3280 // Compute the MEET of two types.  It returns a new Type object.
3281 const Type *TypeAryPtr::xmeet( const Type *t ) const {
3282   // Perform a fast test for common case; meeting the same types together.
3283   if( this == t ) return this;  // Meeting same type-rep?
3284   // Current "this->_base" is Pointer
3285   switch (t->base()) {          // switch on original type
3286 
3287   // Mixing ints & oops happens when javac reuses local variables
3288   case Int:
3289   case Long:
3290   case FloatTop:
3291   case FloatCon:
3292   case FloatBot:
3293   case DoubleTop:
3294   case DoubleCon:
3295   case DoubleBot:
3296   case NarrowOop:
3297   case Bottom:                  // Ye Olde Default
3298     return Type::BOTTOM;
3299   case Top:
3300     return this;
3301 
3302   default:                      // All else is a mistake
3303     typerr(t);
3304 
3305   case OopPtr: {                // Meeting to OopPtrs
3306     // Found a OopPtr type vs self-AryPtr type
3307     const TypeOopPtr *tp = t->is_oopptr();
3308     int offset = meet_offset(tp->offset());
3309     PTR ptr = meet_ptr(tp->ptr());
3310     switch (tp->ptr()) {
3311     case TopPTR:
3312     case AnyNull: {
3313       int instance_id = meet_instance_id(InstanceTop);
3314       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3315                   _ary, _klass, _klass_is_exact, offset, instance_id);
3316     }
3317     case BotPTR:
3318     case NotNull: {
3319       int instance_id = meet_instance_id(tp->instance_id());
3320       return TypeOopPtr::make(ptr, offset, instance_id);
3321     }
3322     default: ShouldNotReachHere();
3323     }
3324   }
3325 
3326   case AnyPtr: {                // Meeting two AnyPtrs
3327     // Found an AnyPtr type vs self-AryPtr type
3328     const TypePtr *tp = t->is_ptr();
3329     int offset = meet_offset(tp->offset());
3330     PTR ptr = meet_ptr(tp->ptr());
3331     switch (tp->ptr()) {
3332     case TopPTR:
3333       return this;
3334     case BotPTR:
3335     case NotNull:
3336       return TypePtr::make(AnyPtr, ptr, offset);
3337     case Null:
3338       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3339       // else fall through to AnyNull
3340     case AnyNull: {
3341       int instance_id = meet_instance_id(InstanceTop);
3342       return make( ptr, (ptr == Constant ? const_oop() : NULL),
3343                   _ary, _klass, _klass_is_exact, offset, instance_id);
3344     }
3345     default: ShouldNotReachHere();
3346     }
3347   }
3348 
3349   case RawPtr: return TypePtr::BOTTOM;
3350 
3351   case AryPtr: {                // Meeting 2 references?
3352     const TypeAryPtr *tap = t->is_aryptr();
3353     int off = meet_offset(tap->offset());
3354     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3355     PTR ptr = meet_ptr(tap->ptr());
3356     int instance_id = meet_instance_id(tap->instance_id());
3357     ciKlass* lazy_klass = NULL;
3358     if (tary->_elem->isa_int()) {
3359       // Integral array element types have irrelevant lattice relations.
3360       // It is the klass that determines array layout, not the element type.
3361       if (_klass == NULL)
3362         lazy_klass = tap->_klass;
3363       else if (tap->_klass == NULL || tap->_klass == _klass) {
3364         lazy_klass = _klass;
3365       } else {
3366         // Something like byte[int+] meets char[int+].
3367         // This must fall to bottom, not (int[-128..65535])[int+].
3368         instance_id = InstanceBot;
3369         tary = TypeAry::make(Type::BOTTOM, tary->_size);
3370       }
3371     }
3372     bool xk = false;
3373     switch (tap->ptr()) {
3374     case AnyNull:
3375     case TopPTR:
3376       // Compute new klass on demand, do not use tap->_klass
3377       xk = (tap->_klass_is_exact | this->_klass_is_exact);
3378       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3379     case Constant: {
3380       ciObject* o = const_oop();
3381       if( _ptr == Constant ) {
3382         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3383           xk = (klass() == tap->klass());
3384           ptr = NotNull;
3385           o = NULL;
3386           instance_id = InstanceBot;
3387         } else {
3388           xk = true;
3389         }
3390       } else if( above_centerline(_ptr) ) {
3391         o = tap->const_oop();
3392         xk = true;
3393       } else {
3394         // Only precise for identical arrays
3395         xk = this->_klass_is_exact && (klass() == tap->klass());
3396       }
3397       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3398     }
3399     case NotNull:
3400     case BotPTR:
3401       // Compute new klass on demand, do not use tap->_klass
3402       if (above_centerline(this->_ptr))
3403             xk = tap->_klass_is_exact;
3404       else if (above_centerline(tap->_ptr))
3405             xk = this->_klass_is_exact;
3406       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3407               (klass() == tap->klass()); // Only precise for identical arrays
3408       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3409     default: ShouldNotReachHere();
3410     }
3411   }
3412 
3413   // All arrays inherit from Object class
3414   case InstPtr: {
3415     const TypeInstPtr *tp = t->is_instptr();
3416     int offset = meet_offset(tp->offset());
3417     PTR ptr = meet_ptr(tp->ptr());
3418     int instance_id = meet_instance_id(tp->instance_id());
3419     switch (ptr) {
3420     case TopPTR:
3421     case AnyNull:                // Fall 'down' to dual of object klass
3422       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3423         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3424       } else {
3425         // cannot subclass, so the meet has to fall badly below the centerline
3426         ptr = NotNull;
3427         instance_id = InstanceBot;
3428         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3429       }
3430     case Constant:
3431     case NotNull:
3432     case BotPTR:                // Fall down to object klass
3433       // LCA is object_klass, but if we subclass from the top we can do better
3434       if (above_centerline(tp->ptr())) {
3435         // If 'tp'  is above the centerline and it is Object class
3436         // then we can subclass in the Java class hierarchy.
3437         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3438           // that is, my array type is a subtype of 'tp' klass
3439           return make( ptr, (ptr == Constant ? const_oop() : NULL),
3440                        _ary, _klass, _klass_is_exact, offset, instance_id );
3441         }
3442       }
3443       // The other case cannot happen, since t cannot be a subtype of an array.
3444       // The meet falls down to Object class below centerline.
3445       if( ptr == Constant )
3446          ptr = NotNull;
3447       instance_id = InstanceBot;
3448       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3449     default: typerr(t);
3450     }
3451   }
3452 
3453   case KlassPtr:
3454     return TypeInstPtr::BOTTOM;
3455 
3456   }
3457   return this;                  // Lint noise
3458 }
3459 
3460 //------------------------------xdual------------------------------------------
3461 // Dual: compute field-by-field dual
3462 const Type *TypeAryPtr::xdual() const {
3463   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
3464 }
3465 
3466 //----------------------interface_vs_oop---------------------------------------
3467 #ifdef ASSERT
3468 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3469   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3470   if (t_aryptr) {
3471     return _ary->interface_vs_oop(t_aryptr->_ary);
3472   }
3473   return false;
3474 }
3475 #endif
3476 
3477 //------------------------------dump2------------------------------------------
3478 #ifndef PRODUCT
3479 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3480   _ary->dump2(d,depth,st);
3481   switch( _ptr ) {
3482   case Constant:
3483     const_oop()->print(st);
3484     break;
3485   case BotPTR:
3486     if (!WizardMode && !Verbose) {
3487       if( _klass_is_exact ) st->print(":exact");
3488       break;
3489     }
3490   case TopPTR:
3491   case AnyNull:
3492   case NotNull:
3493     st->print(":%s", ptr_msg[_ptr]);
3494     if( _klass_is_exact ) st->print(":exact");
3495     break;
3496   }
3497 
3498   if( _offset != 0 ) {
3499     int header_size = objArrayOopDesc::header_size() * wordSize;
3500     if( _offset == OffsetTop )       st->print("+undefined");
3501     else if( _offset == OffsetBot )  st->print("+any");
3502     else if( _offset < header_size ) st->print("+%d", _offset);
3503     else {
3504       BasicType basic_elem_type = elem()->basic_type();
3505       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3506       int elem_size = type2aelembytes(basic_elem_type);
3507       st->print("[%d]", (_offset - array_base)/elem_size);
3508     }
3509   }
3510   st->print(" *");
3511   if (_instance_id == InstanceTop)
3512     st->print(",iid=top");
3513   else if (_instance_id != InstanceBot)
3514     st->print(",iid=%d",_instance_id);
3515 }
3516 #endif
3517 
3518 bool TypeAryPtr::empty(void) const {
3519   if (_ary->empty())       return true;
3520   return TypeOopPtr::empty();
3521 }
3522 
3523 //------------------------------add_offset-------------------------------------
3524 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3525   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3526 }
3527 
3528 
3529 //=============================================================================
3530 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3531 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3532 
3533 
3534 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3535   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3536 }
3537 
3538 //------------------------------hash-------------------------------------------
3539 // Type-specific hashing function.
3540 int TypeNarrowOop::hash(void) const {
3541   return _ptrtype->hash() + 7;
3542 }
3543 
3544 
3545 bool TypeNarrowOop::eq( const Type *t ) const {
3546   const TypeNarrowOop* tc = t->isa_narrowoop();
3547   if (tc != NULL) {
3548     if (_ptrtype->base() != tc->_ptrtype->base()) {
3549       return false;
3550     }
3551     return tc->_ptrtype->eq(_ptrtype);
3552   }
3553   return false;
3554 }
3555 
3556 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
3557   return _ptrtype->singleton();
3558 }
3559 
3560 bool TypeNarrowOop::empty(void) const {
3561   return _ptrtype->empty();
3562 }
3563 
3564 //------------------------------xmeet------------------------------------------
3565 // Compute the MEET of two types.  It returns a new Type object.
3566 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
3567   // Perform a fast test for common case; meeting the same types together.
3568   if( this == t ) return this;  // Meeting same type-rep?
3569 
3570 
3571   // Current "this->_base" is OopPtr
3572   switch (t->base()) {          // switch on original type
3573 
3574   case Int:                     // Mixing ints & oops happens when javac
3575   case Long:                    // reuses local variables
3576   case FloatTop:
3577   case FloatCon:
3578   case FloatBot:
3579   case DoubleTop:
3580   case DoubleCon:
3581   case DoubleBot:
3582   case AnyPtr:
3583   case RawPtr:
3584   case OopPtr:
3585   case InstPtr:
3586   case KlassPtr:
3587   case AryPtr:
3588 
3589   case Bottom:                  // Ye Olde Default
3590     return Type::BOTTOM;
3591   case Top:
3592     return this;
3593 
3594   case NarrowOop: {
3595     const Type* result = _ptrtype->xmeet(t->make_ptr());
3596     if (result->isa_ptr()) {
3597       return TypeNarrowOop::make(result->is_ptr());
3598     }
3599     return result;
3600   }
3601 
3602   default:                      // All else is a mistake
3603     typerr(t);
3604 
3605   } // End of switch
3606 
3607   return this;
3608 }
3609 
3610 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
3611   const TypePtr* odual = _ptrtype->dual()->is_ptr();
3612   return new TypeNarrowOop(odual);
3613 }
3614 
3615 const Type *TypeNarrowOop::filter( const Type *kills ) const {
3616   if (kills->isa_narrowoop()) {
3617     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
3618     if (ft->empty())
3619       return Type::TOP;           // Canonical empty value
3620     if (ft->isa_ptr()) {
3621       return make(ft->isa_ptr());
3622     }
3623     return ft;
3624   } else if (kills->isa_ptr()) {
3625     const Type* ft = _ptrtype->join(kills);
3626     if (ft->empty())
3627       return Type::TOP;           // Canonical empty value
3628     return ft;
3629   } else {
3630     return Type::TOP;
3631   }
3632 }
3633 
3634 
3635 intptr_t TypeNarrowOop::get_con() const {
3636   return _ptrtype->get_con();
3637 }
3638 
3639 #ifndef PRODUCT
3640 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3641   st->print("narrowoop: ");
3642   _ptrtype->dump2(d, depth, st);
3643 }
3644 #endif
3645 
3646 
3647 //=============================================================================
3648 // Convenience common pre-built types.
3649 
3650 // Not-null object klass or below
3651 const TypeKlassPtr *TypeKlassPtr::OBJECT;
3652 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
3653 
3654 //------------------------------TypeKlasPtr------------------------------------
3655 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
3656   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
3657 }
3658 
3659 //------------------------------make-------------------------------------------
3660 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
3661 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
3662   assert( k != NULL, "Expect a non-NULL klass");
3663   assert(k->is_instance_klass() || k->is_array_klass() ||
3664          k->is_method_klass(), "Incorrect type of klass oop");
3665   TypeKlassPtr *r =
3666     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
3667 
3668   return r;
3669 }
3670 
3671 //------------------------------eq---------------------------------------------
3672 // Structural equality check for Type representations
3673 bool TypeKlassPtr::eq( const Type *t ) const {
3674   const TypeKlassPtr *p = t->is_klassptr();
3675   return
3676     klass()->equals(p->klass()) &&
3677     TypeOopPtr::eq(p);
3678 }
3679 
3680 //------------------------------hash-------------------------------------------
3681 // Type-specific hashing function.
3682 int TypeKlassPtr::hash(void) const {
3683   return klass()->hash() + TypeOopPtr::hash();
3684 }
3685 
3686 
3687 //----------------------compute_klass------------------------------------------
3688 // Compute the defining klass for this class
3689 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
3690   // Compute _klass based on element type.
3691   ciKlass* k_ary = NULL;
3692   const TypeInstPtr *tinst;
3693   const TypeAryPtr *tary;
3694   const Type* el = elem();
3695   if (el->isa_narrowoop()) {
3696     el = el->make_ptr();
3697   }
3698 
3699   // Get element klass
3700   if ((tinst = el->isa_instptr()) != NULL) {
3701     // Compute array klass from element klass
3702     k_ary = ciObjArrayKlass::make(tinst->klass());
3703   } else if ((tary = el->isa_aryptr()) != NULL) {
3704     // Compute array klass from element klass
3705     ciKlass* k_elem = tary->klass();
3706     // If element type is something like bottom[], k_elem will be null.
3707     if (k_elem != NULL)
3708       k_ary = ciObjArrayKlass::make(k_elem);
3709   } else if ((el->base() == Type::Top) ||
3710              (el->base() == Type::Bottom)) {
3711     // element type of Bottom occurs from meet of basic type
3712     // and object; Top occurs when doing join on Bottom.
3713     // Leave k_ary at NULL.
3714   } else {
3715     // Cannot compute array klass directly from basic type,
3716     // since subtypes of TypeInt all have basic type T_INT.
3717 #ifdef ASSERT
3718     if (verify && el->isa_int()) {
3719       // Check simple cases when verifying klass.
3720       BasicType bt = T_ILLEGAL;
3721       if (el == TypeInt::BYTE) {
3722         bt = T_BYTE;
3723       } else if (el == TypeInt::SHORT) {
3724         bt = T_SHORT;
3725       } else if (el == TypeInt::CHAR) {
3726         bt = T_CHAR;
3727       } else if (el == TypeInt::INT) {
3728         bt = T_INT;
3729       } else {
3730         return _klass; // just return specified klass
3731       }
3732       return ciTypeArrayKlass::make(bt);
3733     }
3734 #endif
3735     assert(!el->isa_int(),
3736            "integral arrays must be pre-equipped with a class");
3737     // Compute array klass directly from basic type
3738     k_ary = ciTypeArrayKlass::make(el->basic_type());
3739   }
3740   return k_ary;
3741 }
3742 
3743 //------------------------------klass------------------------------------------
3744 // Return the defining klass for this class
3745 ciKlass* TypeAryPtr::klass() const {
3746   if( _klass ) return _klass;   // Return cached value, if possible
3747 
3748   // Oops, need to compute _klass and cache it
3749   ciKlass* k_ary = compute_klass();
3750 
3751   if( this != TypeAryPtr::OOPS ) {
3752     // The _klass field acts as a cache of the underlying
3753     // ciKlass for this array type.  In order to set the field,
3754     // we need to cast away const-ness.
3755     //
3756     // IMPORTANT NOTE: we *never* set the _klass field for the
3757     // type TypeAryPtr::OOPS.  This Type is shared between all
3758     // active compilations.  However, the ciKlass which represents
3759     // this Type is *not* shared between compilations, so caching
3760     // this value would result in fetching a dangling pointer.
3761     //
3762     // Recomputing the underlying ciKlass for each request is
3763     // a bit less efficient than caching, but calls to
3764     // TypeAryPtr::OOPS->klass() are not common enough to matter.
3765     ((TypeAryPtr*)this)->_klass = k_ary;
3766     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
3767         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
3768       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
3769     }
3770   }
3771   return k_ary;
3772 }
3773 
3774 
3775 //------------------------------add_offset-------------------------------------
3776 // Access internals of klass object
3777 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
3778   return make( _ptr, klass(), xadd_offset(offset) );
3779 }
3780 
3781 //------------------------------cast_to_ptr_type-------------------------------
3782 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
3783   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
3784   if( ptr == _ptr ) return this;
3785   return make(ptr, _klass, _offset);
3786 }
3787 
3788 
3789 //-----------------------------cast_to_exactness-------------------------------
3790 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
3791   if( klass_is_exact == _klass_is_exact ) return this;
3792   if (!UseExactTypes)  return this;
3793   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
3794 }
3795 
3796 
3797 //-----------------------------as_instance_type--------------------------------
3798 // Corresponding type for an instance of the given class.
3799 // It will be NotNull, and exact if and only if the klass type is exact.
3800 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
3801   ciKlass* k = klass();
3802   bool    xk = klass_is_exact();
3803   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
3804   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
3805   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3806   return toop->cast_to_exactness(xk)->is_oopptr();
3807 }
3808 
3809 
3810 //------------------------------xmeet------------------------------------------
3811 // Compute the MEET of two types, return a new Type object.
3812 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
3813   // Perform a fast test for common case; meeting the same types together.
3814   if( this == t ) return this;  // Meeting same type-rep?
3815 
3816   // Current "this->_base" is Pointer
3817   switch (t->base()) {          // switch on original type
3818 
3819   case Int:                     // Mixing ints & oops happens when javac
3820   case Long:                    // reuses local variables
3821   case FloatTop:
3822   case FloatCon:
3823   case FloatBot:
3824   case DoubleTop:
3825   case DoubleCon:
3826   case DoubleBot:
3827   case NarrowOop:
3828   case Bottom:                  // Ye Olde Default
3829     return Type::BOTTOM;
3830   case Top:
3831     return this;
3832 
3833   default:                      // All else is a mistake
3834     typerr(t);
3835 
3836   case RawPtr: return TypePtr::BOTTOM;
3837 
3838   case OopPtr: {                // Meeting to OopPtrs
3839     // Found a OopPtr type vs self-KlassPtr type
3840     const TypePtr *tp = t->is_oopptr();
3841     int offset = meet_offset(tp->offset());
3842     PTR ptr = meet_ptr(tp->ptr());
3843     switch (tp->ptr()) {
3844     case TopPTR:
3845     case AnyNull:
3846       return make(ptr, klass(), offset);
3847     case BotPTR:
3848     case NotNull:
3849       return TypePtr::make(AnyPtr, ptr, offset);
3850     default: typerr(t);
3851     }
3852   }
3853 
3854   case AnyPtr: {                // Meeting to AnyPtrs
3855     // Found an AnyPtr type vs self-KlassPtr type
3856     const TypePtr *tp = t->is_ptr();
3857     int offset = meet_offset(tp->offset());
3858     PTR ptr = meet_ptr(tp->ptr());
3859     switch (tp->ptr()) {
3860     case TopPTR:
3861       return this;
3862     case Null:
3863       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3864     case AnyNull:
3865       return make( ptr, klass(), offset );
3866     case BotPTR:
3867     case NotNull:
3868       return TypePtr::make(AnyPtr, ptr, offset);
3869     default: typerr(t);
3870     }
3871   }
3872 
3873   case AryPtr:                  // Meet with AryPtr
3874   case InstPtr:                 // Meet with InstPtr
3875     return TypeInstPtr::BOTTOM;
3876 
3877   //
3878   //             A-top         }
3879   //           /   |   \       }  Tops
3880   //       B-top A-any C-top   }
3881   //          | /  |  \ |      }  Any-nulls
3882   //       B-any   |   C-any   }
3883   //          |    |    |
3884   //       B-con A-con C-con   } constants; not comparable across classes
3885   //          |    |    |
3886   //       B-not   |   C-not   }
3887   //          | \  |  / |      }  not-nulls
3888   //       B-bot A-not C-bot   }
3889   //           \   |   /       }  Bottoms
3890   //             A-bot         }
3891   //
3892 
3893   case KlassPtr: {  // Meet two KlassPtr types
3894     const TypeKlassPtr *tkls = t->is_klassptr();
3895     int  off     = meet_offset(tkls->offset());
3896     PTR  ptr     = meet_ptr(tkls->ptr());
3897 
3898     // Check for easy case; klasses are equal (and perhaps not loaded!)
3899     // If we have constants, then we created oops so classes are loaded
3900     // and we can handle the constants further down.  This case handles
3901     // not-loaded classes
3902     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
3903       return make( ptr, klass(), off );
3904     }
3905 
3906     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3907     ciKlass* tkls_klass = tkls->klass();
3908     ciKlass* this_klass = this->klass();
3909     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
3910     assert( this_klass->is_loaded(), "This class should have been loaded.");
3911 
3912     // If 'this' type is above the centerline and is a superclass of the
3913     // other, we can treat 'this' as having the same type as the other.
3914     if ((above_centerline(this->ptr())) &&
3915         tkls_klass->is_subtype_of(this_klass)) {
3916       this_klass = tkls_klass;
3917     }
3918     // If 'tinst' type is above the centerline and is a superclass of the
3919     // other, we can treat 'tinst' as having the same type as the other.
3920     if ((above_centerline(tkls->ptr())) &&
3921         this_klass->is_subtype_of(tkls_klass)) {
3922       tkls_klass = this_klass;
3923     }
3924 
3925     // Check for classes now being equal
3926     if (tkls_klass->equals(this_klass)) {
3927       // If the klasses are equal, the constants may still differ.  Fall to
3928       // NotNull if they do (neither constant is NULL; that is a special case
3929       // handled elsewhere).
3930       ciObject* o = NULL;             // Assume not constant when done
3931       ciObject* this_oop = const_oop();
3932       ciObject* tkls_oop = tkls->const_oop();
3933       if( ptr == Constant ) {
3934         if (this_oop != NULL && tkls_oop != NULL &&
3935             this_oop->equals(tkls_oop) )
3936           o = this_oop;
3937         else if (above_centerline(this->ptr()))
3938           o = tkls_oop;
3939         else if (above_centerline(tkls->ptr()))
3940           o = this_oop;
3941         else
3942           ptr = NotNull;
3943       }
3944       return make( ptr, this_klass, off );
3945     } // Else classes are not equal
3946 
3947     // Since klasses are different, we require the LCA in the Java
3948     // class hierarchy - which means we have to fall to at least NotNull.
3949     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3950       ptr = NotNull;
3951     // Now we find the LCA of Java classes
3952     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
3953     return   make( ptr, k, off );
3954   } // End of case KlassPtr
3955 
3956   } // End of switch
3957   return this;                  // Return the double constant
3958 }
3959 
3960 //------------------------------xdual------------------------------------------
3961 // Dual: compute field-by-field dual
3962 const Type    *TypeKlassPtr::xdual() const {
3963   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
3964 }
3965 
3966 //------------------------------dump2------------------------------------------
3967 // Dump Klass Type
3968 #ifndef PRODUCT
3969 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
3970   switch( _ptr ) {
3971   case Constant:
3972     st->print("precise ");
3973   case NotNull:
3974     {
3975       const char *name = klass()->name()->as_utf8();
3976       if( name ) {
3977         st->print("klass %s: " INTPTR_FORMAT, name, klass());
3978       } else {
3979         ShouldNotReachHere();
3980       }
3981     }
3982   case BotPTR:
3983     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
3984   case TopPTR:
3985   case AnyNull:
3986     st->print(":%s", ptr_msg[_ptr]);
3987     if( _klass_is_exact ) st->print(":exact");
3988     break;
3989   }
3990 
3991   if( _offset ) {               // Dump offset, if any
3992     if( _offset == OffsetBot )      { st->print("+any"); }
3993     else if( _offset == OffsetTop ) { st->print("+unknown"); }
3994     else                            { st->print("+%d", _offset); }
3995   }
3996 
3997   st->print(" *");
3998 }
3999 #endif
4000 
4001 
4002 
4003 //=============================================================================
4004 // Convenience common pre-built types.
4005 
4006 //------------------------------make-------------------------------------------
4007 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4008   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4009 }
4010 
4011 //------------------------------make-------------------------------------------
4012 const TypeFunc *TypeFunc::make(ciMethod* method) {
4013   Compile* C = Compile::current();
4014   const TypeFunc* tf = C->last_tf(method); // check cache
4015   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4016   const TypeTuple *domain;
4017   if (method->is_static()) {
4018     domain = TypeTuple::make_domain(NULL, method->signature());
4019   } else {
4020     domain = TypeTuple::make_domain(method->holder(), method->signature());
4021   }
4022   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4023   tf = TypeFunc::make(domain, range);
4024   C->set_last_tf(method, tf);  // fill cache
4025   return tf;
4026 }
4027 
4028 //------------------------------meet-------------------------------------------
4029 // Compute the MEET of two types.  It returns a new Type object.
4030 const Type *TypeFunc::xmeet( const Type *t ) const {
4031   // Perform a fast test for common case; meeting the same types together.
4032   if( this == t ) return this;  // Meeting same type-rep?
4033 
4034   // Current "this->_base" is Func
4035   switch (t->base()) {          // switch on original type
4036 
4037   case Bottom:                  // Ye Olde Default
4038     return t;
4039 
4040   default:                      // All else is a mistake
4041     typerr(t);
4042 
4043   case Top:
4044     break;
4045   }
4046   return this;                  // Return the double constant
4047 }
4048 
4049 //------------------------------xdual------------------------------------------
4050 // Dual: compute field-by-field dual
4051 const Type *TypeFunc::xdual() const {
4052   return this;
4053 }
4054 
4055 //------------------------------eq---------------------------------------------
4056 // Structural equality check for Type representations
4057 bool TypeFunc::eq( const Type *t ) const {
4058   const TypeFunc *a = (const TypeFunc*)t;
4059   return _domain == a->_domain &&
4060     _range == a->_range;
4061 }
4062 
4063 //------------------------------hash-------------------------------------------
4064 // Type-specific hashing function.
4065 int TypeFunc::hash(void) const {
4066   return (intptr_t)_domain + (intptr_t)_range;
4067 }
4068 
4069 //------------------------------dump2------------------------------------------
4070 // Dump Function Type
4071 #ifndef PRODUCT
4072 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4073   if( _range->_cnt <= Parms )
4074     st->print("void");
4075   else {
4076     uint i;
4077     for (i = Parms; i < _range->_cnt-1; i++) {
4078       _range->field_at(i)->dump2(d,depth,st);
4079       st->print("/");
4080     }
4081     _range->field_at(i)->dump2(d,depth,st);
4082   }
4083   st->print(" ");
4084   st->print("( ");
4085   if( !depth || d[this] ) {     // Check for recursive dump
4086     st->print("...)");
4087     return;
4088   }
4089   d.Insert((void*)this,(void*)this);    // Stop recursion
4090   if (Parms < _domain->_cnt)
4091     _domain->field_at(Parms)->dump2(d,depth-1,st);
4092   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4093     st->print(", ");
4094     _domain->field_at(i)->dump2(d,depth-1,st);
4095   }
4096   st->print(" )");
4097 }
4098 
4099 //------------------------------print_flattened--------------------------------
4100 // Print a 'flattened' signature
4101 static const char * const flat_type_msg[Type::lastype] = {
4102   "bad","control","top","int","long","_", "narrowoop",
4103   "tuple:", "array:",
4104   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
4105   "func", "abIO", "return_address", "mem",
4106   "float_top", "ftcon:", "flt",
4107   "double_top", "dblcon:", "dbl",
4108   "bottom"
4109 };
4110 
4111 void TypeFunc::print_flattened() const {
4112   if( _range->_cnt <= Parms )
4113     tty->print("void");
4114   else {
4115     uint i;
4116     for (i = Parms; i < _range->_cnt-1; i++)
4117       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
4118     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
4119   }
4120   tty->print(" ( ");
4121   if (Parms < _domain->_cnt)
4122     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
4123   for (uint i = Parms+1; i < _domain->_cnt; i++)
4124     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
4125   tty->print(" )");
4126 }
4127 #endif
4128 
4129 //------------------------------singleton--------------------------------------
4130 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4131 // constants (Ldi nodes).  Singletons are integer, float or double constants
4132 // or a single symbol.
4133 bool TypeFunc::singleton(void) const {
4134   return false;                 // Never a singleton
4135 }
4136 
4137 bool TypeFunc::empty(void) const {
4138   return false;                 // Never empty
4139 }
4140 
4141 
4142 BasicType TypeFunc::return_type() const{
4143   if (range()->cnt() == TypeFunc::Parms) {
4144     return T_VOID;
4145   }
4146   return range()->field_at(TypeFunc::Parms)->basic_type();
4147 }