1 /*
   2  * Copyright (c) 2007, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "incls/_precompiled.incl"
  25 #include "incls/_vectornode.cpp.incl"
  26 
  27 //------------------------------VectorNode--------------------------------------
  28 
  29 // Return vector type for an element type and vector length.
  30 const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
  31   assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
  32   switch(elt_bt) {
  33   case T_BOOLEAN:
  34   case T_BYTE:
  35     switch(len) {
  36     case 2:  return TypeInt::CHAR;
  37     case 4:  return TypeInt::INT;
  38     case 8:  return TypeLong::LONG;
  39     }
  40     break;
  41   case T_CHAR:
  42   case T_SHORT:
  43     switch(len) {
  44     case 2:  return TypeInt::INT;
  45     case 4:  return TypeLong::LONG;
  46     }
  47     break;
  48   case T_INT:
  49     switch(len) {
  50     case 2:  return TypeLong::LONG;
  51     }
  52     break;
  53   case T_LONG:
  54     break;
  55   case T_FLOAT:
  56     switch(len) {
  57     case 2:  return Type::DOUBLE;
  58     }
  59     break;
  60   case T_DOUBLE:
  61     break;
  62   }
  63   ShouldNotReachHere();
  64   return NULL;
  65 }
  66 
  67 // Scalar promotion
  68 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
  69   BasicType bt = opd_t->array_element_basic_type();
  70   assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
  71   switch (bt) {
  72   case T_BOOLEAN:
  73   case T_BYTE:
  74     if (vlen == 16) return new (C, 2) Replicate16BNode(s);
  75     if (vlen ==  8) return new (C, 2) Replicate8BNode(s);
  76     if (vlen ==  4) return new (C, 2) Replicate4BNode(s);
  77     break;
  78   case T_CHAR:
  79     if (vlen == 8) return new (C, 2) Replicate8CNode(s);
  80     if (vlen == 4) return new (C, 2) Replicate4CNode(s);
  81     if (vlen == 2) return new (C, 2) Replicate2CNode(s);
  82     break;
  83   case T_SHORT:
  84     if (vlen == 8) return new (C, 2) Replicate8SNode(s);
  85     if (vlen == 4) return new (C, 2) Replicate4SNode(s);
  86     if (vlen == 2) return new (C, 2) Replicate2SNode(s);
  87     break;
  88   case T_INT:
  89     if (vlen == 4) return new (C, 2) Replicate4INode(s);
  90     if (vlen == 2) return new (C, 2) Replicate2INode(s);
  91     break;
  92   case T_LONG:
  93     if (vlen == 2) return new (C, 2) Replicate2LNode(s);
  94     break;
  95   case T_FLOAT:
  96     if (vlen == 4) return new (C, 2) Replicate4FNode(s);
  97     if (vlen == 2) return new (C, 2) Replicate2FNode(s);
  98     break;
  99   case T_DOUBLE:
 100     if (vlen == 2) return new (C, 2) Replicate2DNode(s);
 101     break;
 102   }
 103   ShouldNotReachHere();
 104   return NULL;
 105 }
 106 
 107 // Return initial Pack node. Additional operands added with add_opd() calls.
 108 PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
 109   BasicType bt = opd_t->array_element_basic_type();
 110   switch (bt) {
 111   case T_BOOLEAN:
 112   case T_BYTE:
 113     return new (C, 2) PackBNode(s);
 114   case T_CHAR:
 115     return new (C, 2) PackCNode(s);
 116   case T_SHORT:
 117     return new (C, 2) PackSNode(s);
 118   case T_INT:
 119     return new (C, 2) PackINode(s);
 120   case T_LONG:
 121     return new (C, 2) PackLNode(s);
 122   case T_FLOAT:
 123     return new (C, 2) PackFNode(s);
 124   case T_DOUBLE:
 125     return new (C, 2) PackDNode(s);
 126   }
 127   ShouldNotReachHere();
 128   return NULL;
 129 }
 130 
 131 // Create a binary tree form for Packs. [lo, hi) (half-open) range
 132 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
 133   int ct = hi - lo;
 134   assert(is_power_of_2(ct), "power of 2");
 135   int mid = lo + ct/2;
 136   Node* n1 = ct == 2 ? in(lo)   : binaryTreePack(C, lo,  mid);
 137   Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
 138   int rslt_bsize = ct * type2aelembytes(elt_basic_type());
 139   if (bottom_type()->is_floatingpoint()) {
 140     switch (rslt_bsize) {
 141     case  8: return new (C, 3) PackFNode(n1, n2);
 142     case 16: return new (C, 3) PackDNode(n1, n2);
 143     }
 144   } else {
 145     assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
 146     switch (rslt_bsize) {
 147     case  2: return new (C, 3) Pack2x1BNode(n1, n2);
 148     case  4: return new (C, 3) Pack2x2BNode(n1, n2);
 149     case  8: return new (C, 3) PackINode(n1, n2);
 150     case 16: return new (C, 3) PackLNode(n1, n2);
 151     }
 152   }
 153   ShouldNotReachHere();
 154   return NULL;
 155 }
 156 
 157 // Return the vector operator for the specified scalar operation
 158 // and vector length.  One use is to check if the code generator
 159 // supports the vector operation.
 160 int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
 161   BasicType bt = opd_t->array_element_basic_type();
 162   if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
 163     return 0; // unimplemented
 164   switch (sopc) {
 165   case Op_AddI:
 166     switch (bt) {
 167     case T_BOOLEAN:
 168     case T_BYTE:      return Op_AddVB;
 169     case T_CHAR:      return Op_AddVC;
 170     case T_SHORT:     return Op_AddVS;
 171     case T_INT:       return Op_AddVI;
 172     }
 173     ShouldNotReachHere();
 174   case Op_AddL:
 175     assert(bt == T_LONG, "must be");
 176     return Op_AddVL;
 177   case Op_AddF:
 178     assert(bt == T_FLOAT, "must be");
 179     return Op_AddVF;
 180   case Op_AddD:
 181     assert(bt == T_DOUBLE, "must be");
 182     return Op_AddVD;
 183   case Op_SubI:
 184     switch (bt) {
 185     case T_BOOLEAN:
 186     case T_BYTE:   return Op_SubVB;
 187     case T_CHAR:   return Op_SubVC;
 188     case T_SHORT:  return Op_SubVS;
 189     case T_INT:    return Op_SubVI;
 190     }
 191     ShouldNotReachHere();
 192   case Op_SubL:
 193     assert(bt == T_LONG, "must be");
 194     return Op_SubVL;
 195   case Op_SubF:
 196     assert(bt == T_FLOAT, "must be");
 197     return Op_SubVF;
 198   case Op_SubD:
 199     assert(bt == T_DOUBLE, "must be");
 200     return Op_SubVD;
 201   case Op_MulF:
 202     assert(bt == T_FLOAT, "must be");
 203     return Op_MulVF;
 204   case Op_MulD:
 205     assert(bt == T_DOUBLE, "must be");
 206     return Op_MulVD;
 207   case Op_DivF:
 208     assert(bt == T_FLOAT, "must be");
 209     return Op_DivVF;
 210   case Op_DivD:
 211     assert(bt == T_DOUBLE, "must be");
 212     return Op_DivVD;
 213   case Op_LShiftI:
 214     switch (bt) {
 215     case T_BOOLEAN:
 216     case T_BYTE:   return Op_LShiftVB;
 217     case T_CHAR:   return Op_LShiftVC;
 218     case T_SHORT:  return Op_LShiftVS;
 219     case T_INT:    return Op_LShiftVI;
 220     }
 221     ShouldNotReachHere();
 222   case Op_URShiftI:
 223     switch (bt) {
 224     case T_BOOLEAN:
 225     case T_BYTE:   return Op_URShiftVB;
 226     case T_CHAR:   return Op_URShiftVC;
 227     case T_SHORT:  return Op_URShiftVS;
 228     case T_INT:    return Op_URShiftVI;
 229     }
 230     ShouldNotReachHere();
 231   case Op_AndI:
 232   case Op_AndL:
 233     return Op_AndV;
 234   case Op_OrI:
 235   case Op_OrL:
 236     return Op_OrV;
 237   case Op_XorI:
 238   case Op_XorL:
 239     return Op_XorV;
 240 
 241   case Op_LoadB:
 242   case Op_LoadUS:
 243   case Op_LoadS:
 244   case Op_LoadI:
 245   case Op_LoadL:
 246   case Op_LoadF:
 247   case Op_LoadD:
 248     return VectorLoadNode::opcode(sopc, vlen);
 249 
 250   case Op_StoreB:
 251   case Op_StoreC:
 252   case Op_StoreI:
 253   case Op_StoreL:
 254   case Op_StoreF:
 255   case Op_StoreD:
 256     return VectorStoreNode::opcode(sopc, vlen);
 257   }
 258   return 0; // Unimplemented
 259 }
 260 
 261 // Helper for above.
 262 int VectorLoadNode::opcode(int sopc, uint vlen) {
 263   switch (sopc) {
 264   case Op_LoadB:
 265     switch (vlen) {
 266     case  2:       return 0; // Unimplemented
 267     case  4:       return Op_Load4B;
 268     case  8:       return Op_Load8B;
 269     case 16:       return Op_Load16B;
 270     }
 271     break;
 272   case Op_LoadUS:
 273     switch (vlen) {
 274     case  2:       return Op_Load2C;
 275     case  4:       return Op_Load4C;
 276     case  8:       return Op_Load8C;
 277     }
 278     break;
 279   case Op_LoadS:
 280     switch (vlen) {
 281     case  2:       return Op_Load2S;
 282     case  4:       return Op_Load4S;
 283     case  8:       return Op_Load8S;
 284     }
 285     break;
 286   case Op_LoadI:
 287     switch (vlen) {
 288     case  2:       return Op_Load2I;
 289     case  4:       return Op_Load4I;
 290     }
 291     break;
 292   case Op_LoadL:
 293     if (vlen == 2) return Op_Load2L;
 294     break;
 295   case Op_LoadF:
 296     switch (vlen) {
 297     case  2:       return Op_Load2F;
 298     case  4:       return Op_Load4F;
 299     }
 300     break;
 301   case Op_LoadD:
 302     if (vlen == 2) return Op_Load2D;
 303     break;
 304   }
 305   return 0; // Unimplemented
 306 }
 307 
 308 // Helper for above
 309 int VectorStoreNode::opcode(int sopc, uint vlen) {
 310   switch (sopc) {
 311   case Op_StoreB:
 312     switch (vlen) {
 313     case  2:       return 0; // Unimplemented
 314     case  4:       return Op_Store4B;
 315     case  8:       return Op_Store8B;
 316     case 16:       return Op_Store16B;
 317     }
 318     break;
 319   case Op_StoreC:
 320     switch (vlen) {
 321     case  2:       return Op_Store2C;
 322     case  4:       return Op_Store4C;
 323     case  8:       return Op_Store8C;
 324     }
 325     break;
 326   case Op_StoreI:
 327     switch (vlen) {
 328     case  2:       return Op_Store2I;
 329     case  4:       return Op_Store4I;
 330     }
 331     break;
 332   case Op_StoreL:
 333     if (vlen == 2) return Op_Store2L;
 334     break;
 335   case Op_StoreF:
 336     switch (vlen) {
 337     case  2:       return Op_Store2F;
 338     case  4:       return Op_Store4F;
 339     }
 340     break;
 341   case Op_StoreD:
 342     if (vlen == 2) return Op_Store2D;
 343     break;
 344   }
 345   return 0; // Unimplemented
 346 }
 347 
 348 // Return the vector version of a scalar operation node.
 349 VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
 350   int vopc = opcode(sopc, vlen, opd_t);
 351 
 352   switch (vopc) {
 353   case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
 354   case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
 355   case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
 356   case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
 357   case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
 358   case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
 359   case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);
 360 
 361   case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
 362   case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
 363   case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
 364   case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
 365   case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
 366   case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
 367   case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);
 368 
 369   case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
 370   case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);
 371 
 372   case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
 373   case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);
 374 
 375   case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
 376   case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
 377   case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
 378   case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);
 379 
 380   case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
 381   case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
 382   case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
 383   case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);
 384 
 385   case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
 386   case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
 387   case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
 388   }
 389   ShouldNotReachHere();
 390   return NULL;
 391 }
 392 
 393 // Return the vector version of a scalar load node.
 394 VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
 395                                      Node* adr, const TypePtr* atyp, uint vlen) {
 396   int vopc = opcode(opc, vlen);
 397 
 398   switch(vopc) {
 399   case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
 400   case Op_Load8B:  return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
 401   case Op_Load4B:  return new (C, 3) Load4BNode(ctl, mem, adr, atyp);
 402 
 403   case Op_Load8C:  return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
 404   case Op_Load4C:  return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
 405   case Op_Load2C:  return new (C, 3) Load2CNode(ctl, mem, adr, atyp);
 406 
 407   case Op_Load8S:  return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
 408   case Op_Load4S:  return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
 409   case Op_Load2S:  return new (C, 3) Load2SNode(ctl, mem, adr, atyp);
 410 
 411   case Op_Load4I:  return new (C, 3) Load4INode(ctl, mem, adr, atyp);
 412   case Op_Load2I:  return new (C, 3) Load2INode(ctl, mem, adr, atyp);
 413 
 414   case Op_Load2L:  return new (C, 3) Load2LNode(ctl, mem, adr, atyp);
 415 
 416   case Op_Load4F:  return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
 417   case Op_Load2F:  return new (C, 3) Load2FNode(ctl, mem, adr, atyp);
 418 
 419   case Op_Load2D:  return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
 420   }
 421   ShouldNotReachHere();
 422   return NULL;
 423 }
 424 
 425 // Return the vector version of a scalar store node.
 426 VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
 427                                        Node* adr, const TypePtr* atyp, VectorNode* val,
 428                                        uint vlen) {
 429   int vopc = opcode(opc, vlen);
 430 
 431   switch(vopc) {
 432   case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
 433   case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
 434   case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);
 435 
 436   case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
 437   case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
 438   case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);
 439 
 440   case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
 441   case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);
 442 
 443   case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);
 444 
 445   case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
 446   case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);
 447 
 448   case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
 449   }
 450   ShouldNotReachHere();
 451   return NULL;
 452 }
 453 
 454 // Extract a scalar element of vector.
 455 Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
 456   BasicType bt = opd_t->array_element_basic_type();
 457   assert(position < VectorNode::max_vlen(bt), "pos in range");
 458   ConINode* pos = ConINode::make(C, (int)position);
 459   switch (bt) {
 460   case T_BOOLEAN:
 461   case T_BYTE:
 462     return new (C, 3) ExtractBNode(v, pos);
 463   case T_CHAR:
 464     return new (C, 3) ExtractCNode(v, pos);
 465   case T_SHORT:
 466     return new (C, 3) ExtractSNode(v, pos);
 467   case T_INT:
 468     return new (C, 3) ExtractINode(v, pos);
 469   case T_LONG:
 470     return new (C, 3) ExtractLNode(v, pos);
 471   case T_FLOAT:
 472     return new (C, 3) ExtractFNode(v, pos);
 473   case T_DOUBLE:
 474     return new (C, 3) ExtractDNode(v, pos);
 475   }
 476   ShouldNotReachHere();
 477   return NULL;
 478 }