1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1MarkSweep.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  39 #include "gc_implementation/g1/vm_operations_g1.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "memory/gcLocker.inline.hpp"
  42 #include "memory/genOopClosures.inline.hpp"
  43 #include "memory/generationSpec.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.pcgc.inline.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/vmThread.hpp"
  48 
  49 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  50 
  51 // turn it on so that the contents of the young list (scan-only /
  52 // to-be-collected) are printed at "strategic" points before / during
  53 // / after the collection --- this is useful for debugging
  54 #define YOUNG_LIST_VERBOSE 0
  55 // CURRENT STATUS
  56 // This file is under construction.  Search for "FIXME".
  57 
  58 // INVARIANTS/NOTES
  59 //
  60 // All allocation activity covered by the G1CollectedHeap interface is
  61 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  62 // and allocate_new_tlab, which are the "entry" points to the
  63 // allocation code from the rest of the JVM.  (Note that this does not
  64 // apply to TLAB allocation, which is not part of this interface: it
  65 // is done by clients of this interface.)
  66 
  67 // Local to this file.
  68 
  69 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  70   SuspendibleThreadSet* _sts;
  71   G1RemSet* _g1rs;
  72   ConcurrentG1Refine* _cg1r;
  73   bool _concurrent;
  74 public:
  75   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  76                               G1RemSet* g1rs,
  77                               ConcurrentG1Refine* cg1r) :
  78     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  79   {}
  80   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  81     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  82     // This path is executed by the concurrent refine or mutator threads,
  83     // concurrently, and so we do not care if card_ptr contains references
  84     // that point into the collection set.
  85     assert(!oops_into_cset, "should be");
  86 
  87     if (_concurrent && _sts->should_yield()) {
  88       // Caller will actually yield.
  89       return false;
  90     }
  91     // Otherwise, we finished successfully; return true.
  92     return true;
  93   }
  94   void set_concurrent(bool b) { _concurrent = b; }
  95 };
  96 
  97 
  98 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  99   int _calls;
 100   G1CollectedHeap* _g1h;
 101   CardTableModRefBS* _ctbs;
 102   int _histo[256];
 103 public:
 104   ClearLoggedCardTableEntryClosure() :
 105     _calls(0)
 106   {
 107     _g1h = G1CollectedHeap::heap();
 108     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 109     for (int i = 0; i < 256; i++) _histo[i] = 0;
 110   }
 111   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 112     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 113       _calls++;
 114       unsigned char* ujb = (unsigned char*)card_ptr;
 115       int ind = (int)(*ujb);
 116       _histo[ind]++;
 117       *card_ptr = -1;
 118     }
 119     return true;
 120   }
 121   int calls() { return _calls; }
 122   void print_histo() {
 123     gclog_or_tty->print_cr("Card table value histogram:");
 124     for (int i = 0; i < 256; i++) {
 125       if (_histo[i] != 0) {
 126         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 127       }
 128     }
 129   }
 130 };
 131 
 132 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 133   int _calls;
 134   G1CollectedHeap* _g1h;
 135   CardTableModRefBS* _ctbs;
 136 public:
 137   RedirtyLoggedCardTableEntryClosure() :
 138     _calls(0)
 139   {
 140     _g1h = G1CollectedHeap::heap();
 141     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 142   }
 143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 144     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 145       _calls++;
 146       *card_ptr = 0;
 147     }
 148     return true;
 149   }
 150   int calls() { return _calls; }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 154 public:
 155   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 156     *card_ptr = CardTableModRefBS::dirty_card_val();
 157     return true;
 158   }
 159 };
 160 
 161 YoungList::YoungList(G1CollectedHeap* g1h)
 162   : _g1h(g1h), _head(NULL),
 163     _length(0),
 164     _last_sampled_rs_lengths(0),
 165     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 166 {
 167   guarantee( check_list_empty(false), "just making sure..." );
 168 }
 169 
 170 void YoungList::push_region(HeapRegion *hr) {
 171   assert(!hr->is_young(), "should not already be young");
 172   assert(hr->get_next_young_region() == NULL, "cause it should!");
 173 
 174   hr->set_next_young_region(_head);
 175   _head = hr;
 176 
 177   hr->set_young();
 178   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 179   ++_length;
 180 }
 181 
 182 void YoungList::add_survivor_region(HeapRegion* hr) {
 183   assert(hr->is_survivor(), "should be flagged as survivor region");
 184   assert(hr->get_next_young_region() == NULL, "cause it should!");
 185 
 186   hr->set_next_young_region(_survivor_head);
 187   if (_survivor_head == NULL) {
 188     _survivor_tail = hr;
 189   }
 190   _survivor_head = hr;
 191 
 192   ++_survivor_length;
 193 }
 194 
 195 void YoungList::empty_list(HeapRegion* list) {
 196   while (list != NULL) {
 197     HeapRegion* next = list->get_next_young_region();
 198     list->set_next_young_region(NULL);
 199     list->uninstall_surv_rate_group();
 200     list->set_not_young();
 201     list = next;
 202   }
 203 }
 204 
 205 void YoungList::empty_list() {
 206   assert(check_list_well_formed(), "young list should be well formed");
 207 
 208   empty_list(_head);
 209   _head = NULL;
 210   _length = 0;
 211 
 212   empty_list(_survivor_head);
 213   _survivor_head = NULL;
 214   _survivor_tail = NULL;
 215   _survivor_length = 0;
 216 
 217   _last_sampled_rs_lengths = 0;
 218 
 219   assert(check_list_empty(false), "just making sure...");
 220 }
 221 
 222 bool YoungList::check_list_well_formed() {
 223   bool ret = true;
 224 
 225   size_t length = 0;
 226   HeapRegion* curr = _head;
 227   HeapRegion* last = NULL;
 228   while (curr != NULL) {
 229     if (!curr->is_young()) {
 230       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 231                              "incorrectly tagged (y: %d, surv: %d)",
 232                              curr->bottom(), curr->end(),
 233                              curr->is_young(), curr->is_survivor());
 234       ret = false;
 235     }
 236     ++length;
 237     last = curr;
 238     curr = curr->get_next_young_region();
 239   }
 240   ret = ret && (length == _length);
 241 
 242   if (!ret) {
 243     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 244     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 245                            length, _length);
 246   }
 247 
 248   return ret;
 249 }
 250 
 251 bool YoungList::check_list_empty(bool check_sample) {
 252   bool ret = true;
 253 
 254   if (_length != 0) {
 255     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 256                   _length);
 257     ret = false;
 258   }
 259   if (check_sample && _last_sampled_rs_lengths != 0) {
 260     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 261     ret = false;
 262   }
 263   if (_head != NULL) {
 264     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 265     ret = false;
 266   }
 267   if (!ret) {
 268     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 269   }
 270 
 271   return ret;
 272 }
 273 
 274 void
 275 YoungList::rs_length_sampling_init() {
 276   _sampled_rs_lengths = 0;
 277   _curr               = _head;
 278 }
 279 
 280 bool
 281 YoungList::rs_length_sampling_more() {
 282   return _curr != NULL;
 283 }
 284 
 285 void
 286 YoungList::rs_length_sampling_next() {
 287   assert( _curr != NULL, "invariant" );
 288   size_t rs_length = _curr->rem_set()->occupied();
 289 
 290   _sampled_rs_lengths += rs_length;
 291 
 292   // The current region may not yet have been added to the
 293   // incremental collection set (it gets added when it is
 294   // retired as the current allocation region).
 295   if (_curr->in_collection_set()) {
 296     // Update the collection set policy information for this region
 297     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 298   }
 299 
 300   _curr = _curr->get_next_young_region();
 301   if (_curr == NULL) {
 302     _last_sampled_rs_lengths = _sampled_rs_lengths;
 303     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 304   }
 305 }
 306 
 307 void
 308 YoungList::reset_auxilary_lists() {
 309   guarantee( is_empty(), "young list should be empty" );
 310   assert(check_list_well_formed(), "young list should be well formed");
 311 
 312   // Add survivor regions to SurvRateGroup.
 313   _g1h->g1_policy()->note_start_adding_survivor_regions();
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 315 
 316   for (HeapRegion* curr = _survivor_head;
 317        curr != NULL;
 318        curr = curr->get_next_young_region()) {
 319     _g1h->g1_policy()->set_region_survivors(curr);
 320 
 321     // The region is a non-empty survivor so let's add it to
 322     // the incremental collection set for the next evacuation
 323     // pause.
 324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 325   }
 326   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 327 
 328   _head   = _survivor_head;
 329   _length = _survivor_length;
 330   if (_survivor_head != NULL) {
 331     assert(_survivor_tail != NULL, "cause it shouldn't be");
 332     assert(_survivor_length > 0, "invariant");
 333     _survivor_tail->set_next_young_region(NULL);
 334   }
 335 
 336   // Don't clear the survivor list handles until the start of
 337   // the next evacuation pause - we need it in order to re-tag
 338   // the survivor regions from this evacuation pause as 'young'
 339   // at the start of the next.
 340 
 341   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 342 
 343   assert(check_list_well_formed(), "young list should be well formed");
 344 }
 345 
 346 void YoungList::print() {
 347   HeapRegion* lists[] = {_head,   _survivor_head};
 348   const char* names[] = {"YOUNG", "SURVIVOR"};
 349 
 350   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 351     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 352     HeapRegion *curr = lists[list];
 353     if (curr == NULL)
 354       gclog_or_tty->print_cr("  empty");
 355     while (curr != NULL) {
 356       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 357                              "age: %4d, y: %d, surv: %d",
 358                              curr->bottom(), curr->end(),
 359                              curr->top(),
 360                              curr->prev_top_at_mark_start(),
 361                              curr->next_top_at_mark_start(),
 362                              curr->top_at_conc_mark_count(),
 363                              curr->age_in_surv_rate_group_cond(),
 364                              curr->is_young(),
 365                              curr->is_survivor());
 366       curr = curr->get_next_young_region();
 367     }
 368   }
 369 
 370   gclog_or_tty->print_cr("");
 371 }
 372 
 373 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 374 {
 375   // Claim the right to put the region on the dirty cards region list
 376   // by installing a self pointer.
 377   HeapRegion* next = hr->get_next_dirty_cards_region();
 378   if (next == NULL) {
 379     HeapRegion* res = (HeapRegion*)
 380       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 381                           NULL);
 382     if (res == NULL) {
 383       HeapRegion* head;
 384       do {
 385         // Put the region to the dirty cards region list.
 386         head = _dirty_cards_region_list;
 387         next = (HeapRegion*)
 388           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 389         if (next == head) {
 390           assert(hr->get_next_dirty_cards_region() == hr,
 391                  "hr->get_next_dirty_cards_region() != hr");
 392           if (next == NULL) {
 393             // The last region in the list points to itself.
 394             hr->set_next_dirty_cards_region(hr);
 395           } else {
 396             hr->set_next_dirty_cards_region(next);
 397           }
 398         }
 399       } while (next != head);
 400     }
 401   }
 402 }
 403 
 404 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 405 {
 406   HeapRegion* head;
 407   HeapRegion* hr;
 408   do {
 409     head = _dirty_cards_region_list;
 410     if (head == NULL) {
 411       return NULL;
 412     }
 413     HeapRegion* new_head = head->get_next_dirty_cards_region();
 414     if (head == new_head) {
 415       // The last region.
 416       new_head = NULL;
 417     }
 418     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 419                                           head);
 420   } while (hr != head);
 421   assert(hr != NULL, "invariant");
 422   hr->set_next_dirty_cards_region(NULL);
 423   return hr;
 424 }
 425 
 426 void G1CollectedHeap::stop_conc_gc_threads() {
 427   _cg1r->stop();
 428   _cmThread->stop();
 429 }
 430 
 431 #ifdef ASSERT
 432 // A region is added to the collection set as it is retired
 433 // so an address p can point to a region which will be in the
 434 // collection set but has not yet been retired.  This method
 435 // therefore is only accurate during a GC pause after all
 436 // regions have been retired.  It is used for debugging
 437 // to check if an nmethod has references to objects that can
 438 // be move during a partial collection.  Though it can be
 439 // inaccurate, it is sufficient for G1 because the conservative
 440 // implementation of is_scavengable() for G1 will indicate that
 441 // all nmethods must be scanned during a partial collection.
 442 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 443   HeapRegion* hr = heap_region_containing(p);
 444   return hr != NULL && hr->in_collection_set();
 445 }
 446 #endif
 447 
 448 // Returns true if the reference points to an object that
 449 // can move in an incremental collecction.
 450 bool G1CollectedHeap::is_scavengable(const void* p) {
 451   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 452   G1CollectorPolicy* g1p = g1h->g1_policy();
 453   HeapRegion* hr = heap_region_containing(p);
 454   if (hr == NULL) {
 455      // perm gen (or null)
 456      return false;
 457   } else {
 458     return !hr->isHumongous();
 459   }
 460 }
 461 
 462 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 464   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 465 
 466   // Count the dirty cards at the start.
 467   CountNonCleanMemRegionClosure count1(this);
 468   ct_bs->mod_card_iterate(&count1);
 469   int orig_count = count1.n();
 470 
 471   // First clear the logged cards.
 472   ClearLoggedCardTableEntryClosure clear;
 473   dcqs.set_closure(&clear);
 474   dcqs.apply_closure_to_all_completed_buffers();
 475   dcqs.iterate_closure_all_threads(false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 489   dcqs.apply_closure_to_all_completed_buffers();
 490   dcqs.iterate_closure_all_threads(false);
 491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 492                          clear.calls(), orig_count);
 493   guarantee(redirty.calls() == clear.calls(),
 494             "Or else mechanism is broken.");
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 
 504   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 505 }
 506 
 507 // Private class members.
 508 
 509 G1CollectedHeap* G1CollectedHeap::_g1h;
 510 
 511 // Private methods.
 512 
 513 HeapRegion*
 514 G1CollectedHeap::new_region_try_secondary_free_list() {
 515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 517     if (!_secondary_free_list.is_empty()) {
 518       if (G1ConcRegionFreeingVerbose) {
 519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 520                                "secondary_free_list has "SIZE_FORMAT" entries",
 521                                _secondary_free_list.length());
 522       }
 523       // It looks as if there are free regions available on the
 524       // secondary_free_list. Let's move them to the free_list and try
 525       // again to allocate from it.
 526       append_secondary_free_list();
 527 
 528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 529              "empty we should have moved at least one entry to the free_list");
 530       HeapRegion* res = _free_list.remove_head();
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "allocated "HR_FORMAT" from secondary_free_list",
 534                                HR_FORMAT_PARAMS(res));
 535       }
 536       return res;
 537     }
 538 
 539     // Wait here until we get notifed either when (a) there are no
 540     // more free regions coming or (b) some regions have been moved on
 541     // the secondary_free_list.
 542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 543   }
 544 
 545   if (G1ConcRegionFreeingVerbose) {
 546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 547                            "could not allocate from secondary_free_list");
 548   }
 549   return NULL;
 550 }
 551 
 552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 553   assert(!isHumongous(word_size) ||
 554                                   word_size <= (size_t) HeapRegion::GrainWords,
 555          "the only time we use this to allocate a humongous region is "
 556          "when we are allocating a single humongous region");
 557 
 558   HeapRegion* res;
 559   if (G1StressConcRegionFreeing) {
 560     if (!_secondary_free_list.is_empty()) {
 561       if (G1ConcRegionFreeingVerbose) {
 562         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                                "forced to look at the secondary_free_list");
 564       }
 565       res = new_region_try_secondary_free_list();
 566       if (res != NULL) {
 567         return res;
 568       }
 569     }
 570   }
 571   res = _free_list.remove_head_or_null();
 572   if (res == NULL) {
 573     if (G1ConcRegionFreeingVerbose) {
 574       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                              "res == NULL, trying the secondary_free_list");
 576     }
 577     res = new_region_try_secondary_free_list();
 578   }
 579   if (res == NULL && do_expand) {
 580     if (expand(word_size * HeapWordSize)) {
 581       // Even though the heap was expanded, it might not have reached
 582       // the desired size. So, we cannot assume that the allocation
 583       // will succeed.
 584       res = _free_list.remove_head_or_null();
 585     }
 586   }
 587   return res;
 588 }
 589 
 590 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 591                                                           size_t word_size) {
 592   assert(isHumongous(word_size), "word_size should be humongous");
 593   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 594 
 595   size_t first = G1_NULL_HRS_INDEX;
 596   if (num_regions == 1) {
 597     // Only one region to allocate, no need to go through the slower
 598     // path. The caller will attempt the expasion if this fails, so
 599     // let's not try to expand here too.
 600     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 601     if (hr != NULL) {
 602       first = hr->hrs_index();
 603     } else {
 604       first = G1_NULL_HRS_INDEX;
 605     }
 606   } else {
 607     // We can't allocate humongous regions while cleanupComplete() is
 608     // running, since some of the regions we find to be empty might not
 609     // yet be added to the free list and it is not straightforward to
 610     // know which list they are on so that we can remove them. Note
 611     // that we only need to do this if we need to allocate more than
 612     // one region to satisfy the current humongous allocation
 613     // request. If we are only allocating one region we use the common
 614     // region allocation code (see above).
 615     wait_while_free_regions_coming();
 616     append_secondary_free_list_if_not_empty_with_lock();
 617 
 618     if (free_regions() >= num_regions) {
 619       first = _hrs.find_contiguous(num_regions);
 620       if (first != G1_NULL_HRS_INDEX) {
 621         for (size_t i = first; i < first + num_regions; ++i) {
 622           HeapRegion* hr = region_at(i);
 623           assert(hr->is_empty(), "sanity");
 624           assert(is_on_master_free_list(hr), "sanity");
 625           hr->set_pending_removal(true);
 626         }
 627         _free_list.remove_all_pending(num_regions);
 628       }
 629     }
 630   }
 631   return first;
 632 }
 633 
 634 HeapWord*
 635 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
 636                                                            size_t num_regions,
 637                                                            size_t word_size) {
 638   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 639   assert(isHumongous(word_size), "word_size should be humongous");
 640   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 641 
 642   // Index of last region in the series + 1.
 643   size_t last = first + num_regions;
 644 
 645   // We need to initialize the region(s) we just discovered. This is
 646   // a bit tricky given that it can happen concurrently with
 647   // refinement threads refining cards on these regions and
 648   // potentially wanting to refine the BOT as they are scanning
 649   // those cards (this can happen shortly after a cleanup; see CR
 650   // 6991377). So we have to set up the region(s) carefully and in
 651   // a specific order.
 652 
 653   // The word size sum of all the regions we will allocate.
 654   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 655   assert(word_size <= word_size_sum, "sanity");
 656 
 657   // This will be the "starts humongous" region.
 658   HeapRegion* first_hr = region_at(first);
 659   // The header of the new object will be placed at the bottom of
 660   // the first region.
 661   HeapWord* new_obj = first_hr->bottom();
 662   // This will be the new end of the first region in the series that
 663   // should also match the end of the last region in the seriers.
 664   HeapWord* new_end = new_obj + word_size_sum;
 665   // This will be the new top of the first region that will reflect
 666   // this allocation.
 667   HeapWord* new_top = new_obj + word_size;
 668 
 669   // First, we need to zero the header of the space that we will be
 670   // allocating. When we update top further down, some refinement
 671   // threads might try to scan the region. By zeroing the header we
 672   // ensure that any thread that will try to scan the region will
 673   // come across the zero klass word and bail out.
 674   //
 675   // NOTE: It would not have been correct to have used
 676   // CollectedHeap::fill_with_object() and make the space look like
 677   // an int array. The thread that is doing the allocation will
 678   // later update the object header to a potentially different array
 679   // type and, for a very short period of time, the klass and length
 680   // fields will be inconsistent. This could cause a refinement
 681   // thread to calculate the object size incorrectly.
 682   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 683 
 684   // We will set up the first region as "starts humongous". This
 685   // will also update the BOT covering all the regions to reflect
 686   // that there is a single object that starts at the bottom of the
 687   // first region.
 688   first_hr->set_startsHumongous(new_top, new_end);
 689 
 690   // Then, if there are any, we will set up the "continues
 691   // humongous" regions.
 692   HeapRegion* hr = NULL;
 693   for (size_t i = first + 1; i < last; ++i) {
 694     hr = region_at(i);
 695     hr->set_continuesHumongous(first_hr);
 696   }
 697   // If we have "continues humongous" regions (hr != NULL), then the
 698   // end of the last one should match new_end.
 699   assert(hr == NULL || hr->end() == new_end, "sanity");
 700 
 701   // Up to this point no concurrent thread would have been able to
 702   // do any scanning on any region in this series. All the top
 703   // fields still point to bottom, so the intersection between
 704   // [bottom,top] and [card_start,card_end] will be empty. Before we
 705   // update the top fields, we'll do a storestore to make sure that
 706   // no thread sees the update to top before the zeroing of the
 707   // object header and the BOT initialization.
 708   OrderAccess::storestore();
 709 
 710   // Now that the BOT and the object header have been initialized,
 711   // we can update top of the "starts humongous" region.
 712   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 713          "new_top should be in this region");
 714   first_hr->set_top(new_top);
 715   if (_hr_printer.is_active()) {
 716     HeapWord* bottom = first_hr->bottom();
 717     HeapWord* end = first_hr->orig_end();
 718     if ((first + 1) == last) {
 719       // the series has a single humongous region
 720       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 721     } else {
 722       // the series has more than one humongous regions
 723       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 724     }
 725   }
 726 
 727   // Now, we will update the top fields of the "continues humongous"
 728   // regions. The reason we need to do this is that, otherwise,
 729   // these regions would look empty and this will confuse parts of
 730   // G1. For example, the code that looks for a consecutive number
 731   // of empty regions will consider them empty and try to
 732   // re-allocate them. We can extend is_empty() to also include
 733   // !continuesHumongous(), but it is easier to just update the top
 734   // fields here. The way we set top for all regions (i.e., top ==
 735   // end for all regions but the last one, top == new_top for the
 736   // last one) is actually used when we will free up the humongous
 737   // region in free_humongous_region().
 738   hr = NULL;
 739   for (size_t i = first + 1; i < last; ++i) {
 740     hr = region_at(i);
 741     if ((i + 1) == last) {
 742       // last continues humongous region
 743       assert(hr->bottom() < new_top && new_top <= hr->end(),
 744              "new_top should fall on this region");
 745       hr->set_top(new_top);
 746       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 747     } else {
 748       // not last one
 749       assert(new_top > hr->end(), "new_top should be above this region");
 750       hr->set_top(hr->end());
 751       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 752     }
 753   }
 754   // If we have continues humongous regions (hr != NULL), then the
 755   // end of the last one should match new_end and its top should
 756   // match new_top.
 757   assert(hr == NULL ||
 758          (hr->end() == new_end && hr->top() == new_top), "sanity");
 759 
 760   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 761   _summary_bytes_used += first_hr->used();
 762   _humongous_set.add(first_hr);
 763 
 764   return new_obj;
 765 }
 766 
 767 // If could fit into free regions w/o expansion, try.
 768 // Otherwise, if can expand, do so.
 769 // Otherwise, if using ex regions might help, try with ex given back.
 770 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 771   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 772 
 773   verify_region_sets_optional();
 774 
 775   size_t num_regions =
 776          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 777   size_t x_size = expansion_regions();
 778   size_t fs = _hrs.free_suffix();
 779   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
 780   if (first == G1_NULL_HRS_INDEX) {
 781     // The only thing we can do now is attempt expansion.
 782     if (fs + x_size >= num_regions) {
 783       // If the number of regions we're trying to allocate for this
 784       // object is at most the number of regions in the free suffix,
 785       // then the call to humongous_obj_allocate_find_first() above
 786       // should have succeeded and we wouldn't be here.
 787       //
 788       // We should only be trying to expand when the free suffix is
 789       // not sufficient for the object _and_ we have some expansion
 790       // room available.
 791       assert(num_regions > fs, "earlier allocation should have succeeded");
 792 
 793       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 794         // Even though the heap was expanded, it might not have
 795         // reached the desired size. So, we cannot assume that the
 796         // allocation will succeed.
 797         first = humongous_obj_allocate_find_first(num_regions, word_size);
 798       }
 799     }
 800   }
 801 
 802   HeapWord* result = NULL;
 803   if (first != G1_NULL_HRS_INDEX) {
 804     result =
 805       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 806     assert(result != NULL, "it should always return a valid result");
 807   }
 808 
 809   verify_region_sets_optional();
 810 
 811   return result;
 812 }
 813 
 814 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 815   assert_heap_not_locked_and_not_at_safepoint();
 816   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 817 
 818   unsigned int dummy_gc_count_before;
 819   return attempt_allocation(word_size, &dummy_gc_count_before);
 820 }
 821 
 822 HeapWord*
 823 G1CollectedHeap::mem_allocate(size_t word_size,
 824                               bool*  gc_overhead_limit_was_exceeded) {
 825   assert_heap_not_locked_and_not_at_safepoint();
 826 
 827   // Loop until the allocation is satisified, or unsatisfied after GC.
 828   for (int try_count = 1; /* we'll return */; try_count += 1) {
 829     unsigned int gc_count_before;
 830 
 831     HeapWord* result = NULL;
 832     if (!isHumongous(word_size)) {
 833       result = attempt_allocation(word_size, &gc_count_before);
 834     } else {
 835       result = attempt_allocation_humongous(word_size, &gc_count_before);
 836     }
 837     if (result != NULL) {
 838       return result;
 839     }
 840 
 841     // Create the garbage collection operation...
 842     VM_G1CollectForAllocation op(gc_count_before, word_size);
 843     // ...and get the VM thread to execute it.
 844     VMThread::execute(&op);
 845 
 846     if (op.prologue_succeeded() && op.pause_succeeded()) {
 847       // If the operation was successful we'll return the result even
 848       // if it is NULL. If the allocation attempt failed immediately
 849       // after a Full GC, it's unlikely we'll be able to allocate now.
 850       HeapWord* result = op.result();
 851       if (result != NULL && !isHumongous(word_size)) {
 852         // Allocations that take place on VM operations do not do any
 853         // card dirtying and we have to do it here. We only have to do
 854         // this for non-humongous allocations, though.
 855         dirty_young_block(result, word_size);
 856       }
 857       return result;
 858     } else {
 859       assert(op.result() == NULL,
 860              "the result should be NULL if the VM op did not succeed");
 861     }
 862 
 863     // Give a warning if we seem to be looping forever.
 864     if ((QueuedAllocationWarningCount > 0) &&
 865         (try_count % QueuedAllocationWarningCount == 0)) {
 866       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 867     }
 868   }
 869 
 870   ShouldNotReachHere();
 871   return NULL;
 872 }
 873 
 874 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 875                                            unsigned int *gc_count_before_ret) {
 876   // Make sure you read the note in attempt_allocation_humongous().
 877 
 878   assert_heap_not_locked_and_not_at_safepoint();
 879   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 880          "be called for humongous allocation requests");
 881 
 882   // We should only get here after the first-level allocation attempt
 883   // (attempt_allocation()) failed to allocate.
 884 
 885   // We will loop until a) we manage to successfully perform the
 886   // allocation or b) we successfully schedule a collection which
 887   // fails to perform the allocation. b) is the only case when we'll
 888   // return NULL.
 889   HeapWord* result = NULL;
 890   for (int try_count = 1; /* we'll return */; try_count += 1) {
 891     bool should_try_gc;
 892     unsigned int gc_count_before;
 893 
 894     {
 895       MutexLockerEx x(Heap_lock);
 896 
 897       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 898                                                       false /* bot_updates */);
 899       if (result != NULL) {
 900         return result;
 901       }
 902 
 903       // If we reach here, attempt_allocation_locked() above failed to
 904       // allocate a new region. So the mutator alloc region should be NULL.
 905       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 906 
 907       if (GC_locker::is_active_and_needs_gc()) {
 908         if (g1_policy()->can_expand_young_list()) {
 909           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 910                                                       false /* bot_updates */);
 911           if (result != NULL) {
 912             return result;
 913           }
 914         }
 915         should_try_gc = false;
 916       } else {
 917         // Read the GC count while still holding the Heap_lock.
 918         gc_count_before = SharedHeap::heap()->total_collections();
 919         should_try_gc = true;
 920       }
 921     }
 922 
 923     if (should_try_gc) {
 924       bool succeeded;
 925       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 926       if (result != NULL) {
 927         assert(succeeded, "only way to get back a non-NULL result");
 928         return result;
 929       }
 930 
 931       if (succeeded) {
 932         // If we get here we successfully scheduled a collection which
 933         // failed to allocate. No point in trying to allocate
 934         // further. We'll just return NULL.
 935         MutexLockerEx x(Heap_lock);
 936         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 937         return NULL;
 938       }
 939     } else {
 940       GC_locker::stall_until_clear();
 941     }
 942 
 943     // We can reach here if we were unsuccessul in scheduling a
 944     // collection (because another thread beat us to it) or if we were
 945     // stalled due to the GC locker. In either can we should retry the
 946     // allocation attempt in case another thread successfully
 947     // performed a collection and reclaimed enough space. We do the
 948     // first attempt (without holding the Heap_lock) here and the
 949     // follow-on attempt will be at the start of the next loop
 950     // iteration (after taking the Heap_lock).
 951     result = _mutator_alloc_region.attempt_allocation(word_size,
 952                                                       false /* bot_updates */);
 953     if (result != NULL ){
 954       return result;
 955     }
 956 
 957     // Give a warning if we seem to be looping forever.
 958     if ((QueuedAllocationWarningCount > 0) &&
 959         (try_count % QueuedAllocationWarningCount == 0)) {
 960       warning("G1CollectedHeap::attempt_allocation_slow() "
 961               "retries %d times", try_count);
 962     }
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 970                                           unsigned int * gc_count_before_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();
 983   assert(isHumongous(word_size), "attempt_allocation_humongous() "
 984          "should only be called for humongous allocations");
 985 
 986   // We will loop until a) we manage to successfully perform the
 987   // allocation or b) we successfully schedule a collection which
 988   // fails to perform the allocation. b) is the only case when we'll
 989   // return NULL.
 990   HeapWord* result = NULL;
 991   for (int try_count = 1; /* we'll return */; try_count += 1) {
 992     bool should_try_gc;
 993     unsigned int gc_count_before;
 994 
 995     {
 996       MutexLockerEx x(Heap_lock);
 997 
 998       // Given that humongous objects are not allocated in young
 999       // regions, we'll first try to do the allocation without doing a
1000       // collection hoping that there's enough space in the heap.
1001       result = humongous_obj_allocate(word_size);
1002       if (result != NULL) {
1003         return result;
1004       }
1005 
1006       if (GC_locker::is_active_and_needs_gc()) {
1007         should_try_gc = false;
1008       } else {
1009         // Read the GC count while still holding the Heap_lock.
1010         gc_count_before = SharedHeap::heap()->total_collections();
1011         should_try_gc = true;
1012       }
1013     }
1014 
1015     if (should_try_gc) {
1016       // If we failed to allocate the humongous object, we should try to
1017       // do a collection pause (if we're allowed) in case it reclaims
1018       // enough space for the allocation to succeed after the pause.
1019 
1020       bool succeeded;
1021       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1022       if (result != NULL) {
1023         assert(succeeded, "only way to get back a non-NULL result");
1024         return result;
1025       }
1026 
1027       if (succeeded) {
1028         // If we get here we successfully scheduled a collection which
1029         // failed to allocate. No point in trying to allocate
1030         // further. We'll just return NULL.
1031         MutexLockerEx x(Heap_lock);
1032         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1033         return NULL;
1034       }
1035     } else {
1036       GC_locker::stall_until_clear();
1037     }
1038 
1039     // We can reach here if we were unsuccessul in scheduling a
1040     // collection (because another thread beat us to it) or if we were
1041     // stalled due to the GC locker. In either can we should retry the
1042     // allocation attempt in case another thread successfully
1043     // performed a collection and reclaimed enough space.  Give a
1044     // warning if we seem to be looping forever.
1045 
1046     if ((QueuedAllocationWarningCount > 0) &&
1047         (try_count % QueuedAllocationWarningCount == 0)) {
1048       warning("G1CollectedHeap::attempt_allocation_humongous() "
1049               "retries %d times", try_count);
1050     }
1051   }
1052 
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1058                                        bool expect_null_mutator_alloc_region) {
1059   assert_at_safepoint(true /* should_be_vm_thread */);
1060   assert(_mutator_alloc_region.get() == NULL ||
1061                                              !expect_null_mutator_alloc_region,
1062          "the current alloc region was unexpectedly found to be non-NULL");
1063 
1064   if (!isHumongous(word_size)) {
1065     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1066                                                       false /* bot_updates */);
1067   } else {
1068     return humongous_obj_allocate(word_size);
1069   }
1070 
1071   ShouldNotReachHere();
1072 }
1073 
1074 class PostMCRemSetClearClosure: public HeapRegionClosure {
1075   ModRefBarrierSet* _mr_bs;
1076 public:
1077   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1078   bool doHeapRegion(HeapRegion* r) {
1079     r->reset_gc_time_stamp();
1080     if (r->continuesHumongous())
1081       return false;
1082     HeapRegionRemSet* hrrs = r->rem_set();
1083     if (hrrs != NULL) hrrs->clear();
1084     // You might think here that we could clear just the cards
1085     // corresponding to the used region.  But no: if we leave a dirty card
1086     // in a region we might allocate into, then it would prevent that card
1087     // from being enqueued, and cause it to be missed.
1088     // Re: the performance cost: we shouldn't be doing full GC anyway!
1089     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1090     return false;
1091   }
1092 };
1093 
1094 
1095 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1096   ModRefBarrierSet* _mr_bs;
1097 public:
1098   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1099   bool doHeapRegion(HeapRegion* r) {
1100     if (r->continuesHumongous()) return false;
1101     if (r->used_region().word_size() != 0) {
1102       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1103     }
1104     return false;
1105   }
1106 };
1107 
1108 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1109   G1CollectedHeap*   _g1h;
1110   UpdateRSOopClosure _cl;
1111   int                _worker_i;
1112 public:
1113   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1114     _cl(g1->g1_rem_set(), worker_i),
1115     _worker_i(worker_i),
1116     _g1h(g1)
1117   { }
1118 
1119   bool doHeapRegion(HeapRegion* r) {
1120     if (!r->continuesHumongous()) {
1121       _cl.set_from(r);
1122       r->oop_iterate(&_cl);
1123     }
1124     return false;
1125   }
1126 };
1127 
1128 class ParRebuildRSTask: public AbstractGangTask {
1129   G1CollectedHeap* _g1;
1130 public:
1131   ParRebuildRSTask(G1CollectedHeap* g1)
1132     : AbstractGangTask("ParRebuildRSTask"),
1133       _g1(g1)
1134   { }
1135 
1136   void work(int i) {
1137     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1138     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1139                                          HeapRegion::RebuildRSClaimValue);
1140   }
1141 };
1142 
1143 class PostCompactionPrinterClosure: public HeapRegionClosure {
1144 private:
1145   G1HRPrinter* _hr_printer;
1146 public:
1147   bool doHeapRegion(HeapRegion* hr) {
1148     assert(!hr->is_young(), "not expecting to find young regions");
1149     // We only generate output for non-empty regions.
1150     if (!hr->is_empty()) {
1151       if (!hr->isHumongous()) {
1152         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1153       } else if (hr->startsHumongous()) {
1154         if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
1155           // single humongous region
1156           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1157         } else {
1158           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1159         }
1160       } else {
1161         assert(hr->continuesHumongous(), "only way to get here");
1162         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1163       }
1164     }
1165     return false;
1166   }
1167 
1168   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1169     : _hr_printer(hr_printer) { }
1170 };
1171 
1172 bool G1CollectedHeap::do_collection(bool explicit_gc,
1173                                     bool clear_all_soft_refs,
1174                                     size_t word_size) {
1175   assert_at_safepoint(true /* should_be_vm_thread */);
1176 
1177   if (GC_locker::check_active_before_gc()) {
1178     return false;
1179   }
1180 
1181   SvcGCMarker sgcm(SvcGCMarker::FULL);
1182   ResourceMark rm;
1183 
1184   if (PrintHeapAtGC) {
1185     Universe::print_heap_before_gc();
1186   }
1187 
1188   verify_region_sets_optional();
1189 
1190   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1191                            collector_policy()->should_clear_all_soft_refs();
1192 
1193   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1194 
1195   {
1196     IsGCActiveMark x;
1197 
1198     // Timing
1199     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1200     assert(!system_gc || explicit_gc, "invariant");
1201     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1202     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1203     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1204                 PrintGC, true, gclog_or_tty);
1205 
1206     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1207     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1208 
1209     double start = os::elapsedTime();
1210     g1_policy()->record_full_collection_start();
1211 
1212     wait_while_free_regions_coming();
1213     append_secondary_free_list_if_not_empty_with_lock();
1214 
1215     gc_prologue(true);
1216     increment_total_collections(true /* full gc */);
1217 
1218     size_t g1h_prev_used = used();
1219     assert(used() == recalculate_used(), "Should be equal");
1220 
1221     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1222       HandleMark hm;  // Discard invalid handles created during verification
1223       gclog_or_tty->print(" VerifyBeforeGC:");
1224       prepare_for_verify();
1225       Universe::verify(/* allow dirty */ true,
1226                        /* silent      */ false,
1227                        /* option      */ VerifyOption_G1UsePrevMarking);
1228 
1229     }
1230     pre_full_gc_dump();
1231 
1232     COMPILER2_PRESENT(DerivedPointerTable::clear());
1233 
1234     // We want to discover references, but not process them yet.
1235     // This mode is disabled in
1236     // instanceRefKlass::process_discovered_references if the
1237     // generation does some collection work, or
1238     // instanceRefKlass::enqueue_discovered_references if the
1239     // generation returns without doing any work.
1240     ref_processor()->disable_discovery();
1241     ref_processor()->abandon_partial_discovery();
1242     ref_processor()->verify_no_references_recorded();
1243 
1244     // Abandon current iterations of concurrent marking and concurrent
1245     // refinement, if any are in progress.
1246     concurrent_mark()->abort();
1247 
1248     // Make sure we'll choose a new allocation region afterwards.
1249     release_mutator_alloc_region();
1250     abandon_gc_alloc_regions();
1251     g1_rem_set()->cleanupHRRS();
1252     tear_down_region_lists();
1253 
1254     // We should call this after we retire any currently active alloc
1255     // regions so that all the ALLOC / RETIRE events are generated
1256     // before the start GC event.
1257     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1258 
1259     // We may have added regions to the current incremental collection
1260     // set between the last GC or pause and now. We need to clear the
1261     // incremental collection set and then start rebuilding it afresh
1262     // after this full GC.
1263     abandon_collection_set(g1_policy()->inc_cset_head());
1264     g1_policy()->clear_incremental_cset();
1265     g1_policy()->stop_incremental_cset_building();
1266 
1267     empty_young_list();
1268     g1_policy()->set_full_young_gcs(true);
1269 
1270     // See the comment in G1CollectedHeap::ref_processing_init() about
1271     // how reference processing currently works in G1.
1272 
1273     // Temporarily make reference _discovery_ single threaded (non-MT).
1274     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1275 
1276     // Temporarily make refs discovery atomic
1277     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
1278 
1279     // Temporarily clear _is_alive_non_header
1280     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
1281 
1282     ref_processor()->enable_discovery();
1283     ref_processor()->setup_policy(do_clear_all_soft_refs);
1284     // Do collection work
1285     {
1286       HandleMark hm;  // Discard invalid handles created during gc
1287       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1288     }
1289     assert(free_regions() == 0, "we should not have added any free regions");
1290     rebuild_region_lists();
1291 
1292     _summary_bytes_used = recalculate_used();
1293 
1294     ref_processor()->enqueue_discovered_references();
1295 
1296     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1297 
1298     MemoryService::track_memory_usage();
1299 
1300     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1301       HandleMark hm;  // Discard invalid handles created during verification
1302       gclog_or_tty->print(" VerifyAfterGC:");
1303       prepare_for_verify();
1304       Universe::verify(/* allow dirty */ false,
1305                        /* silent      */ false,
1306                        /* option      */ VerifyOption_G1UsePrevMarking);
1307 
1308     }
1309     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1310 
1311     reset_gc_time_stamp();
1312     // Since everything potentially moved, we will clear all remembered
1313     // sets, and clear all cards.  Later we will rebuild remebered
1314     // sets. We will also reset the GC time stamps of the regions.
1315     PostMCRemSetClearClosure rs_clear(mr_bs());
1316     heap_region_iterate(&rs_clear);
1317 
1318     // Resize the heap if necessary.
1319     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1320 
1321     if (_hr_printer.is_active()) {
1322       // We should do this after we potentially resize the heap so
1323       // that all the COMMIT / UNCOMMIT events are generated before
1324       // the end GC event.
1325 
1326       PostCompactionPrinterClosure cl(hr_printer());
1327       heap_region_iterate(&cl);
1328 
1329       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1330     }
1331 
1332     if (_cg1r->use_cache()) {
1333       _cg1r->clear_and_record_card_counts();
1334       _cg1r->clear_hot_cache();
1335     }
1336 
1337     // Rebuild remembered sets of all regions.
1338 
1339     if (G1CollectedHeap::use_parallel_gc_threads()) {
1340       ParRebuildRSTask rebuild_rs_task(this);
1341       assert(check_heap_region_claim_values(
1342              HeapRegion::InitialClaimValue), "sanity check");
1343       set_par_threads(workers()->total_workers());
1344       workers()->run_task(&rebuild_rs_task);
1345       set_par_threads(0);
1346       assert(check_heap_region_claim_values(
1347              HeapRegion::RebuildRSClaimValue), "sanity check");
1348       reset_heap_region_claim_values();
1349     } else {
1350       RebuildRSOutOfRegionClosure rebuild_rs(this);
1351       heap_region_iterate(&rebuild_rs);
1352     }
1353 
1354     if (PrintGC) {
1355       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1356     }
1357 
1358     if (true) { // FIXME
1359       // Ask the permanent generation to adjust size for full collections
1360       perm()->compute_new_size();
1361     }
1362 
1363     // Start a new incremental collection set for the next pause
1364     assert(g1_policy()->collection_set() == NULL, "must be");
1365     g1_policy()->start_incremental_cset_building();
1366 
1367     // Clear the _cset_fast_test bitmap in anticipation of adding
1368     // regions to the incremental collection set for the next
1369     // evacuation pause.
1370     clear_cset_fast_test();
1371 
1372     init_mutator_alloc_region();
1373 
1374     double end = os::elapsedTime();
1375     g1_policy()->record_full_collection_end();
1376 
1377 #ifdef TRACESPINNING
1378     ParallelTaskTerminator::print_termination_counts();
1379 #endif
1380 
1381     gc_epilogue(true);
1382 
1383     // Discard all rset updates
1384     JavaThread::dirty_card_queue_set().abandon_logs();
1385     assert(!G1DeferredRSUpdate
1386            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1387   }
1388 
1389   _young_list->reset_sampled_info();
1390   // At this point there should be no regions in the
1391   // entire heap tagged as young.
1392   assert( check_young_list_empty(true /* check_heap */),
1393     "young list should be empty at this point");
1394 
1395   // Update the number of full collections that have been completed.
1396   increment_full_collections_completed(false /* concurrent */);
1397 
1398   _hrs.verify_optional();
1399   verify_region_sets_optional();
1400 
1401   if (PrintHeapAtGC) {
1402     Universe::print_heap_after_gc();
1403   }
1404   g1mm()->update_counters();
1405   post_full_gc_dump();
1406 
1407   return true;
1408 }
1409 
1410 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1411   // do_collection() will return whether it succeeded in performing
1412   // the GC. Currently, there is no facility on the
1413   // do_full_collection() API to notify the caller than the collection
1414   // did not succeed (e.g., because it was locked out by the GC
1415   // locker). So, right now, we'll ignore the return value.
1416   bool dummy = do_collection(true,                /* explicit_gc */
1417                              clear_all_soft_refs,
1418                              0                    /* word_size */);
1419 }
1420 
1421 // This code is mostly copied from TenuredGeneration.
1422 void
1423 G1CollectedHeap::
1424 resize_if_necessary_after_full_collection(size_t word_size) {
1425   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1426 
1427   // Include the current allocation, if any, and bytes that will be
1428   // pre-allocated to support collections, as "used".
1429   const size_t used_after_gc = used();
1430   const size_t capacity_after_gc = capacity();
1431   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1432 
1433   // This is enforced in arguments.cpp.
1434   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1435          "otherwise the code below doesn't make sense");
1436 
1437   // We don't have floating point command-line arguments
1438   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1439   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1440   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1441   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1442 
1443   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1444   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1445 
1446   // We have to be careful here as these two calculations can overflow
1447   // 32-bit size_t's.
1448   double used_after_gc_d = (double) used_after_gc;
1449   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1450   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1451 
1452   // Let's make sure that they are both under the max heap size, which
1453   // by default will make them fit into a size_t.
1454   double desired_capacity_upper_bound = (double) max_heap_size;
1455   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1456                                     desired_capacity_upper_bound);
1457   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1458                                     desired_capacity_upper_bound);
1459 
1460   // We can now safely turn them into size_t's.
1461   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1462   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1463 
1464   // This assert only makes sense here, before we adjust them
1465   // with respect to the min and max heap size.
1466   assert(minimum_desired_capacity <= maximum_desired_capacity,
1467          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1468                  "maximum_desired_capacity = "SIZE_FORMAT,
1469                  minimum_desired_capacity, maximum_desired_capacity));
1470 
1471   // Should not be greater than the heap max size. No need to adjust
1472   // it with respect to the heap min size as it's a lower bound (i.e.,
1473   // we'll try to make the capacity larger than it, not smaller).
1474   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1475   // Should not be less than the heap min size. No need to adjust it
1476   // with respect to the heap max size as it's an upper bound (i.e.,
1477   // we'll try to make the capacity smaller than it, not greater).
1478   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1479 
1480   if (PrintGC && Verbose) {
1481     const double free_percentage =
1482       (double) free_after_gc / (double) capacity_after_gc;
1483     gclog_or_tty->print_cr("Computing new size after full GC ");
1484     gclog_or_tty->print_cr("  "
1485                            "  minimum_free_percentage: %6.2f",
1486                            minimum_free_percentage);
1487     gclog_or_tty->print_cr("  "
1488                            "  maximum_free_percentage: %6.2f",
1489                            maximum_free_percentage);
1490     gclog_or_tty->print_cr("  "
1491                            "  capacity: %6.1fK"
1492                            "  minimum_desired_capacity: %6.1fK"
1493                            "  maximum_desired_capacity: %6.1fK",
1494                            (double) capacity_after_gc / (double) K,
1495                            (double) minimum_desired_capacity / (double) K,
1496                            (double) maximum_desired_capacity / (double) K);
1497     gclog_or_tty->print_cr("  "
1498                            "  free_after_gc: %6.1fK"
1499                            "  used_after_gc: %6.1fK",
1500                            (double) free_after_gc / (double) K,
1501                            (double) used_after_gc / (double) K);
1502     gclog_or_tty->print_cr("  "
1503                            "   free_percentage: %6.2f",
1504                            free_percentage);
1505   }
1506   if (capacity_after_gc < minimum_desired_capacity) {
1507     // Don't expand unless it's significant
1508     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1509     if (expand(expand_bytes)) {
1510       if (PrintGC && Verbose) {
1511         gclog_or_tty->print_cr("  "
1512                                "  expanding:"
1513                                "  max_heap_size: %6.1fK"
1514                                "  minimum_desired_capacity: %6.1fK"
1515                                "  expand_bytes: %6.1fK",
1516                                (double) max_heap_size / (double) K,
1517                                (double) minimum_desired_capacity / (double) K,
1518                                (double) expand_bytes / (double) K);
1519       }
1520     }
1521 
1522     // No expansion, now see if we want to shrink
1523   } else if (capacity_after_gc > maximum_desired_capacity) {
1524     // Capacity too large, compute shrinking size
1525     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1526     shrink(shrink_bytes);
1527     if (PrintGC && Verbose) {
1528       gclog_or_tty->print_cr("  "
1529                              "  shrinking:"
1530                              "  min_heap_size: %6.1fK"
1531                              "  maximum_desired_capacity: %6.1fK"
1532                              "  shrink_bytes: %6.1fK",
1533                              (double) min_heap_size / (double) K,
1534                              (double) maximum_desired_capacity / (double) K,
1535                              (double) shrink_bytes / (double) K);
1536     }
1537   }
1538 }
1539 
1540 
1541 HeapWord*
1542 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1543                                            bool* succeeded) {
1544   assert_at_safepoint(true /* should_be_vm_thread */);
1545 
1546   *succeeded = true;
1547   // Let's attempt the allocation first.
1548   HeapWord* result =
1549     attempt_allocation_at_safepoint(word_size,
1550                                  false /* expect_null_mutator_alloc_region */);
1551   if (result != NULL) {
1552     assert(*succeeded, "sanity");
1553     return result;
1554   }
1555 
1556   // In a G1 heap, we're supposed to keep allocation from failing by
1557   // incremental pauses.  Therefore, at least for now, we'll favor
1558   // expansion over collection.  (This might change in the future if we can
1559   // do something smarter than full collection to satisfy a failed alloc.)
1560   result = expand_and_allocate(word_size);
1561   if (result != NULL) {
1562     assert(*succeeded, "sanity");
1563     return result;
1564   }
1565 
1566   // Expansion didn't work, we'll try to do a Full GC.
1567   bool gc_succeeded = do_collection(false, /* explicit_gc */
1568                                     false, /* clear_all_soft_refs */
1569                                     word_size);
1570   if (!gc_succeeded) {
1571     *succeeded = false;
1572     return NULL;
1573   }
1574 
1575   // Retry the allocation
1576   result = attempt_allocation_at_safepoint(word_size,
1577                                   true /* expect_null_mutator_alloc_region */);
1578   if (result != NULL) {
1579     assert(*succeeded, "sanity");
1580     return result;
1581   }
1582 
1583   // Then, try a Full GC that will collect all soft references.
1584   gc_succeeded = do_collection(false, /* explicit_gc */
1585                                true,  /* clear_all_soft_refs */
1586                                word_size);
1587   if (!gc_succeeded) {
1588     *succeeded = false;
1589     return NULL;
1590   }
1591 
1592   // Retry the allocation once more
1593   result = attempt_allocation_at_safepoint(word_size,
1594                                   true /* expect_null_mutator_alloc_region */);
1595   if (result != NULL) {
1596     assert(*succeeded, "sanity");
1597     return result;
1598   }
1599 
1600   assert(!collector_policy()->should_clear_all_soft_refs(),
1601          "Flag should have been handled and cleared prior to this point");
1602 
1603   // What else?  We might try synchronous finalization later.  If the total
1604   // space available is large enough for the allocation, then a more
1605   // complete compaction phase than we've tried so far might be
1606   // appropriate.
1607   assert(*succeeded, "sanity");
1608   return NULL;
1609 }
1610 
1611 // Attempting to expand the heap sufficiently
1612 // to support an allocation of the given "word_size".  If
1613 // successful, perform the allocation and return the address of the
1614 // allocated block, or else "NULL".
1615 
1616 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1617   assert_at_safepoint(true /* should_be_vm_thread */);
1618 
1619   verify_region_sets_optional();
1620 
1621   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1622   if (expand(expand_bytes)) {
1623     _hrs.verify_optional();
1624     verify_region_sets_optional();
1625     return attempt_allocation_at_safepoint(word_size,
1626                                  false /* expect_null_mutator_alloc_region */);
1627   }
1628   return NULL;
1629 }
1630 
1631 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1632                                              HeapWord* new_end) {
1633   assert(old_end != new_end, "don't call this otherwise");
1634   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1635 
1636   // Update the committed mem region.
1637   _g1_committed.set_end(new_end);
1638   // Tell the card table about the update.
1639   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1640   // Tell the BOT about the update.
1641   _bot_shared->resize(_g1_committed.word_size());
1642 }
1643 
1644 bool G1CollectedHeap::expand(size_t expand_bytes) {
1645   size_t old_mem_size = _g1_storage.committed_size();
1646   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1647   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1648                                        HeapRegion::GrainBytes);
1649 
1650   if (Verbose && PrintGC) {
1651     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
1652                            old_mem_size/K, aligned_expand_bytes/K);
1653   }
1654 
1655   // First commit the memory.
1656   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1657   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1658   if (successful) {
1659     // Then propagate this update to the necessary data structures.
1660     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1661     update_committed_space(old_end, new_end);
1662 
1663     FreeRegionList expansion_list("Local Expansion List");
1664     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1665     assert(mr.start() == old_end, "post-condition");
1666     // mr might be a smaller region than what was requested if
1667     // expand_by() was unable to allocate the HeapRegion instances
1668     assert(mr.end() <= new_end, "post-condition");
1669 
1670     size_t actual_expand_bytes = mr.byte_size();
1671     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1672     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1673            "post-condition");
1674     if (actual_expand_bytes < aligned_expand_bytes) {
1675       // We could not expand _hrs to the desired size. In this case we
1676       // need to shrink the committed space accordingly.
1677       assert(mr.end() < new_end, "invariant");
1678 
1679       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1680       // First uncommit the memory.
1681       _g1_storage.shrink_by(diff_bytes);
1682       // Then propagate this update to the necessary data structures.
1683       update_committed_space(new_end, mr.end());
1684     }
1685     _free_list.add_as_tail(&expansion_list);
1686 
1687     if (_hr_printer.is_active()) {
1688       HeapWord* curr = mr.start();
1689       while (curr < mr.end()) {
1690         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1691         _hr_printer.commit(curr, curr_end);
1692         curr = curr_end;
1693       }
1694       assert(curr == mr.end(), "post-condition");
1695     }
1696   } else {
1697     // The expansion of the virtual storage space was unsuccessful.
1698     // Let's see if it was because we ran out of swap.
1699     if (G1ExitOnExpansionFailure &&
1700         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1701       // We had head room...
1702       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1703     }
1704   }
1705 
1706   if (Verbose && PrintGC) {
1707     size_t new_mem_size = _g1_storage.committed_size();
1708     gclog_or_tty->print_cr("...%s, expanded to %ldK",
1709                            (successful ? "Successful" : "Failed"),
1710                            new_mem_size/K);
1711   }
1712   return successful;
1713 }
1714 
1715 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1716   size_t old_mem_size = _g1_storage.committed_size();
1717   size_t aligned_shrink_bytes =
1718     ReservedSpace::page_align_size_down(shrink_bytes);
1719   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1720                                          HeapRegion::GrainBytes);
1721   size_t num_regions_deleted = 0;
1722   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1723   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1724   assert(mr.end() == old_end, "post-condition");
1725   if (mr.byte_size() > 0) {
1726     if (_hr_printer.is_active()) {
1727       HeapWord* curr = mr.end();
1728       while (curr > mr.start()) {
1729         HeapWord* curr_end = curr;
1730         curr -= HeapRegion::GrainWords;
1731         _hr_printer.uncommit(curr, curr_end);
1732       }
1733       assert(curr == mr.start(), "post-condition");
1734     }
1735 
1736     _g1_storage.shrink_by(mr.byte_size());
1737     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1738     assert(mr.start() == new_end, "post-condition");
1739 
1740     _expansion_regions += num_regions_deleted;
1741     update_committed_space(old_end, new_end);
1742     HeapRegionRemSet::shrink_heap(n_regions());
1743 
1744     if (Verbose && PrintGC) {
1745       size_t new_mem_size = _g1_storage.committed_size();
1746       gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1747                              old_mem_size/K, aligned_shrink_bytes/K,
1748                              new_mem_size/K);
1749     }
1750   }
1751 }
1752 
1753 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1754   verify_region_sets_optional();
1755 
1756   // We should only reach here at the end of a Full GC which means we
1757   // should not not be holding to any GC alloc regions. The method
1758   // below will make sure of that and do any remaining clean up.
1759   abandon_gc_alloc_regions();
1760 
1761   // Instead of tearing down / rebuilding the free lists here, we
1762   // could instead use the remove_all_pending() method on free_list to
1763   // remove only the ones that we need to remove.
1764   tear_down_region_lists();  // We will rebuild them in a moment.
1765   shrink_helper(shrink_bytes);
1766   rebuild_region_lists();
1767 
1768   _hrs.verify_optional();
1769   verify_region_sets_optional();
1770 }
1771 
1772 // Public methods.
1773 
1774 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1775 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1776 #endif // _MSC_VER
1777 
1778 
1779 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1780   SharedHeap(policy_),
1781   _g1_policy(policy_),
1782   _dirty_card_queue_set(false),
1783   _into_cset_dirty_card_queue_set(false),
1784   _is_alive_closure(this),
1785   _ref_processor(NULL),
1786   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1787   _bot_shared(NULL),
1788   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1789   _evac_failure_scan_stack(NULL) ,
1790   _mark_in_progress(false),
1791   _cg1r(NULL), _summary_bytes_used(0),
1792   _refine_cte_cl(NULL),
1793   _full_collection(false),
1794   _free_list("Master Free List"),
1795   _secondary_free_list("Secondary Free List"),
1796   _humongous_set("Master Humongous Set"),
1797   _free_regions_coming(false),
1798   _young_list(new YoungList(this)),
1799   _gc_time_stamp(0),
1800   _retained_old_gc_alloc_region(NULL),
1801   _surviving_young_words(NULL),
1802   _full_collections_completed(0),
1803   _in_cset_fast_test(NULL),
1804   _in_cset_fast_test_base(NULL),
1805   _dirty_cards_region_list(NULL) {
1806   _g1h = this; // To catch bugs.
1807   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1808     vm_exit_during_initialization("Failed necessary allocation.");
1809   }
1810 
1811   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1812 
1813   int n_queues = MAX2((int)ParallelGCThreads, 1);
1814   _task_queues = new RefToScanQueueSet(n_queues);
1815 
1816   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1817   assert(n_rem_sets > 0, "Invariant.");
1818 
1819   HeapRegionRemSetIterator** iter_arr =
1820     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1821   for (int i = 0; i < n_queues; i++) {
1822     iter_arr[i] = new HeapRegionRemSetIterator();
1823   }
1824   _rem_set_iterator = iter_arr;
1825 
1826   for (int i = 0; i < n_queues; i++) {
1827     RefToScanQueue* q = new RefToScanQueue();
1828     q->initialize();
1829     _task_queues->register_queue(i, q);
1830   }
1831 
1832   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1833 }
1834 
1835 jint G1CollectedHeap::initialize() {
1836   CollectedHeap::pre_initialize();
1837   os::enable_vtime();
1838 
1839   // Necessary to satisfy locking discipline assertions.
1840 
1841   MutexLocker x(Heap_lock);
1842 
1843   // We have to initialize the printer before committing the heap, as
1844   // it will be used then.
1845   _hr_printer.set_active(G1PrintHeapRegions);
1846 
1847   // While there are no constraints in the GC code that HeapWordSize
1848   // be any particular value, there are multiple other areas in the
1849   // system which believe this to be true (e.g. oop->object_size in some
1850   // cases incorrectly returns the size in wordSize units rather than
1851   // HeapWordSize).
1852   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1853 
1854   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1855   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1856 
1857   // Ensure that the sizes are properly aligned.
1858   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1859   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1860 
1861   _cg1r = new ConcurrentG1Refine();
1862 
1863   // Reserve the maximum.
1864   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1865   // Includes the perm-gen.
1866 
1867   // When compressed oops are enabled, the preferred heap base
1868   // is calculated by subtracting the requested size from the
1869   // 32Gb boundary and using the result as the base address for
1870   // heap reservation. If the requested size is not aligned to
1871   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1872   // into the ReservedHeapSpace constructor) then the actual
1873   // base of the reserved heap may end up differing from the
1874   // address that was requested (i.e. the preferred heap base).
1875   // If this happens then we could end up using a non-optimal
1876   // compressed oops mode.
1877 
1878   // Since max_byte_size is aligned to the size of a heap region (checked
1879   // above), we also need to align the perm gen size as it might not be.
1880   const size_t total_reserved = max_byte_size +
1881                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1882   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1883 
1884   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1885 
1886   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1887                             UseLargePages, addr);
1888 
1889   if (UseCompressedOops) {
1890     if (addr != NULL && !heap_rs.is_reserved()) {
1891       // Failed to reserve at specified address - the requested memory
1892       // region is taken already, for example, by 'java' launcher.
1893       // Try again to reserver heap higher.
1894       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1895 
1896       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1897                                  UseLargePages, addr);
1898 
1899       if (addr != NULL && !heap_rs0.is_reserved()) {
1900         // Failed to reserve at specified address again - give up.
1901         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1902         assert(addr == NULL, "");
1903 
1904         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1905                                    UseLargePages, addr);
1906         heap_rs = heap_rs1;
1907       } else {
1908         heap_rs = heap_rs0;
1909       }
1910     }
1911   }
1912 
1913   if (!heap_rs.is_reserved()) {
1914     vm_exit_during_initialization("Could not reserve enough space for object heap");
1915     return JNI_ENOMEM;
1916   }
1917 
1918   // It is important to do this in a way such that concurrent readers can't
1919   // temporarily think somethings in the heap.  (I've actually seen this
1920   // happen in asserts: DLD.)
1921   _reserved.set_word_size(0);
1922   _reserved.set_start((HeapWord*)heap_rs.base());
1923   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1924 
1925   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1926 
1927   // Create the gen rem set (and barrier set) for the entire reserved region.
1928   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1929   set_barrier_set(rem_set()->bs());
1930   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1931     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1932   } else {
1933     vm_exit_during_initialization("G1 requires a mod ref bs.");
1934     return JNI_ENOMEM;
1935   }
1936 
1937   // Also create a G1 rem set.
1938   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1939     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1940   } else {
1941     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1942     return JNI_ENOMEM;
1943   }
1944 
1945   // Carve out the G1 part of the heap.
1946 
1947   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1948   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1949                            g1_rs.size()/HeapWordSize);
1950   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1951 
1952   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1953 
1954   _g1_storage.initialize(g1_rs, 0);
1955   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1956   _hrs.initialize((HeapWord*) _g1_reserved.start(),
1957                   (HeapWord*) _g1_reserved.end(),
1958                   _expansion_regions);
1959 
1960   // 6843694 - ensure that the maximum region index can fit
1961   // in the remembered set structures.
1962   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1963   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1964 
1965   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1966   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1967   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
1968             "too many cards per region");
1969 
1970   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
1971 
1972   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1973                                              heap_word_size(init_byte_size));
1974 
1975   _g1h = this;
1976 
1977    _in_cset_fast_test_length = max_regions();
1978    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
1979 
1980    // We're biasing _in_cset_fast_test to avoid subtracting the
1981    // beginning of the heap every time we want to index; basically
1982    // it's the same with what we do with the card table.
1983    _in_cset_fast_test = _in_cset_fast_test_base -
1984                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
1985 
1986    // Clear the _cset_fast_test bitmap in anticipation of adding
1987    // regions to the incremental collection set for the first
1988    // evacuation pause.
1989    clear_cset_fast_test();
1990 
1991   // Create the ConcurrentMark data structure and thread.
1992   // (Must do this late, so that "max_regions" is defined.)
1993   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1994   _cmThread = _cm->cmThread();
1995 
1996   // Initialize the from_card cache structure of HeapRegionRemSet.
1997   HeapRegionRemSet::init_heap(max_regions());
1998 
1999   // Now expand into the initial heap size.
2000   if (!expand(init_byte_size)) {
2001     vm_exit_during_initialization("Failed to allocate initial heap.");
2002     return JNI_ENOMEM;
2003   }
2004 
2005   // Perform any initialization actions delegated to the policy.
2006   g1_policy()->init();
2007 
2008   g1_policy()->note_start_of_mark_thread();
2009 
2010   _refine_cte_cl =
2011     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2012                                     g1_rem_set(),
2013                                     concurrent_g1_refine());
2014   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2015 
2016   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2017                                                SATB_Q_FL_lock,
2018                                                G1SATBProcessCompletedThreshold,
2019                                                Shared_SATB_Q_lock);
2020 
2021   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2022                                                 DirtyCardQ_FL_lock,
2023                                                 concurrent_g1_refine()->yellow_zone(),
2024                                                 concurrent_g1_refine()->red_zone(),
2025                                                 Shared_DirtyCardQ_lock);
2026 
2027   if (G1DeferredRSUpdate) {
2028     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2029                                       DirtyCardQ_FL_lock,
2030                                       -1, // never trigger processing
2031                                       -1, // no limit on length
2032                                       Shared_DirtyCardQ_lock,
2033                                       &JavaThread::dirty_card_queue_set());
2034   }
2035 
2036   // Initialize the card queue set used to hold cards containing
2037   // references into the collection set.
2038   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2039                                              DirtyCardQ_FL_lock,
2040                                              -1, // never trigger processing
2041                                              -1, // no limit on length
2042                                              Shared_DirtyCardQ_lock,
2043                                              &JavaThread::dirty_card_queue_set());
2044 
2045   // In case we're keeping closure specialization stats, initialize those
2046   // counts and that mechanism.
2047   SpecializationStats::clear();
2048 
2049   // Do later initialization work for concurrent refinement.
2050   _cg1r->init();
2051 
2052   // Here we allocate the dummy full region that is required by the
2053   // G1AllocRegion class. If we don't pass an address in the reserved
2054   // space here, lots of asserts fire.
2055 
2056   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2057                                              _g1_reserved.start());
2058   // We'll re-use the same region whether the alloc region will
2059   // require BOT updates or not and, if it doesn't, then a non-young
2060   // region will complain that it cannot support allocations without
2061   // BOT updates. So we'll tag the dummy region as young to avoid that.
2062   dummy_region->set_young();
2063   // Make sure it's full.
2064   dummy_region->set_top(dummy_region->end());
2065   G1AllocRegion::setup(this, dummy_region);
2066 
2067   init_mutator_alloc_region();
2068 
2069   // Do create of the monitoring and management support so that
2070   // values in the heap have been properly initialized.
2071   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
2072 
2073   return JNI_OK;
2074 }
2075 
2076 void G1CollectedHeap::ref_processing_init() {
2077   // Reference processing in G1 currently works as follows:
2078   //
2079   // * There is only one reference processor instance that
2080   //   'spans' the entire heap. It is created by the code
2081   //   below.
2082   // * Reference discovery is not enabled during an incremental
2083   //   pause (see 6484982).
2084   // * Discoverered refs are not enqueued nor are they processed
2085   //   during an incremental pause (see 6484982).
2086   // * Reference discovery is enabled at initial marking.
2087   // * Reference discovery is disabled and the discovered
2088   //   references processed etc during remarking.
2089   // * Reference discovery is MT (see below).
2090   // * Reference discovery requires a barrier (see below).
2091   // * Reference processing is currently not MT (see 6608385).
2092   // * A full GC enables (non-MT) reference discovery and
2093   //   processes any discovered references.
2094 
2095   SharedHeap::ref_processing_init();
2096   MemRegion mr = reserved_region();
2097   _ref_processor =
2098     new ReferenceProcessor(mr,    // span
2099                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
2100                            (int) ParallelGCThreads,   // degree of mt processing
2101                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
2102                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
2103                            false,                     // Reference discovery is not atomic
2104                            &_is_alive_closure,        // is alive closure for efficiency
2105                            true);                     // Setting next fields of discovered
2106                                                       // lists requires a barrier.
2107 }
2108 
2109 size_t G1CollectedHeap::capacity() const {
2110   return _g1_committed.byte_size();
2111 }
2112 
2113 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2114                                                  DirtyCardQueue* into_cset_dcq,
2115                                                  bool concurrent,
2116                                                  int worker_i) {
2117   // Clean cards in the hot card cache
2118   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2119 
2120   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2121   int n_completed_buffers = 0;
2122   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2123     n_completed_buffers++;
2124   }
2125   g1_policy()->record_update_rs_processed_buffers(worker_i,
2126                                                   (double) n_completed_buffers);
2127   dcqs.clear_n_completed_buffers();
2128   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2129 }
2130 
2131 
2132 // Computes the sum of the storage used by the various regions.
2133 
2134 size_t G1CollectedHeap::used() const {
2135   assert(Heap_lock->owner() != NULL,
2136          "Should be owned on this thread's behalf.");
2137   size_t result = _summary_bytes_used;
2138   // Read only once in case it is set to NULL concurrently
2139   HeapRegion* hr = _mutator_alloc_region.get();
2140   if (hr != NULL)
2141     result += hr->used();
2142   return result;
2143 }
2144 
2145 size_t G1CollectedHeap::used_unlocked() const {
2146   size_t result = _summary_bytes_used;
2147   return result;
2148 }
2149 
2150 class SumUsedClosure: public HeapRegionClosure {
2151   size_t _used;
2152 public:
2153   SumUsedClosure() : _used(0) {}
2154   bool doHeapRegion(HeapRegion* r) {
2155     if (!r->continuesHumongous()) {
2156       _used += r->used();
2157     }
2158     return false;
2159   }
2160   size_t result() { return _used; }
2161 };
2162 
2163 size_t G1CollectedHeap::recalculate_used() const {
2164   SumUsedClosure blk;
2165   heap_region_iterate(&blk);
2166   return blk.result();
2167 }
2168 
2169 size_t G1CollectedHeap::unsafe_max_alloc() {
2170   if (free_regions() > 0) return HeapRegion::GrainBytes;
2171   // otherwise, is there space in the current allocation region?
2172 
2173   // We need to store the current allocation region in a local variable
2174   // here. The problem is that this method doesn't take any locks and
2175   // there may be other threads which overwrite the current allocation
2176   // region field. attempt_allocation(), for example, sets it to NULL
2177   // and this can happen *after* the NULL check here but before the call
2178   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2179   // to be a problem in the optimized build, since the two loads of the
2180   // current allocation region field are optimized away.
2181   HeapRegion* hr = _mutator_alloc_region.get();
2182   if (hr == NULL) {
2183     return 0;
2184   }
2185   return hr->free();
2186 }
2187 
2188 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2189   return
2190     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2191      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2192 }
2193 
2194 #ifndef PRODUCT
2195 void G1CollectedHeap::allocate_dummy_regions() {
2196   // Let's fill up most of the region
2197   size_t word_size = HeapRegion::GrainWords - 1024;
2198   // And as a result the region we'll allocate will be humongous.
2199   guarantee(isHumongous(word_size), "sanity");
2200 
2201   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2202     // Let's use the existing mechanism for the allocation
2203     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2204     if (dummy_obj != NULL) {
2205       MemRegion mr(dummy_obj, word_size);
2206       CollectedHeap::fill_with_object(mr);
2207     } else {
2208       // If we can't allocate once, we probably cannot allocate
2209       // again. Let's get out of the loop.
2210       break;
2211     }
2212   }
2213 }
2214 #endif // !PRODUCT
2215 
2216 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2217   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2218 
2219   // We assume that if concurrent == true, then the caller is a
2220   // concurrent thread that was joined the Suspendible Thread
2221   // Set. If there's ever a cheap way to check this, we should add an
2222   // assert here.
2223 
2224   // We have already incremented _total_full_collections at the start
2225   // of the GC, so total_full_collections() represents how many full
2226   // collections have been started.
2227   unsigned int full_collections_started = total_full_collections();
2228 
2229   // Given that this method is called at the end of a Full GC or of a
2230   // concurrent cycle, and those can be nested (i.e., a Full GC can
2231   // interrupt a concurrent cycle), the number of full collections
2232   // completed should be either one (in the case where there was no
2233   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2234   // behind the number of full collections started.
2235 
2236   // This is the case for the inner caller, i.e. a Full GC.
2237   assert(concurrent ||
2238          (full_collections_started == _full_collections_completed + 1) ||
2239          (full_collections_started == _full_collections_completed + 2),
2240          err_msg("for inner caller (Full GC): full_collections_started = %u "
2241                  "is inconsistent with _full_collections_completed = %u",
2242                  full_collections_started, _full_collections_completed));
2243 
2244   // This is the case for the outer caller, i.e. the concurrent cycle.
2245   assert(!concurrent ||
2246          (full_collections_started == _full_collections_completed + 1),
2247          err_msg("for outer caller (concurrent cycle): "
2248                  "full_collections_started = %u "
2249                  "is inconsistent with _full_collections_completed = %u",
2250                  full_collections_started, _full_collections_completed));
2251 
2252   _full_collections_completed += 1;
2253 
2254   // We need to clear the "in_progress" flag in the CM thread before
2255   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2256   // is set) so that if a waiter requests another System.gc() it doesn't
2257   // incorrectly see that a marking cyle is still in progress.
2258   if (concurrent) {
2259     _cmThread->clear_in_progress();
2260   }
2261 
2262   // This notify_all() will ensure that a thread that called
2263   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2264   // and it's waiting for a full GC to finish will be woken up. It is
2265   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2266   FullGCCount_lock->notify_all();
2267 }
2268 
2269 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2270   assert_at_safepoint(true /* should_be_vm_thread */);
2271   GCCauseSetter gcs(this, cause);
2272   switch (cause) {
2273     case GCCause::_heap_inspection:
2274     case GCCause::_heap_dump: {
2275       HandleMark hm;
2276       do_full_collection(false);         // don't clear all soft refs
2277       break;
2278     }
2279     default: // XXX FIX ME
2280       ShouldNotReachHere(); // Unexpected use of this function
2281   }
2282 }
2283 
2284 void G1CollectedHeap::collect(GCCause::Cause cause) {
2285   // The caller doesn't have the Heap_lock
2286   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2287 
2288   unsigned int gc_count_before;
2289   unsigned int full_gc_count_before;
2290   {
2291     MutexLocker ml(Heap_lock);
2292 
2293     // Read the GC count while holding the Heap_lock
2294     gc_count_before = SharedHeap::heap()->total_collections();
2295     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2296   }
2297 
2298   if (should_do_concurrent_full_gc(cause)) {
2299     // Schedule an initial-mark evacuation pause that will start a
2300     // concurrent cycle. We're setting word_size to 0 which means that
2301     // we are not requesting a post-GC allocation.
2302     VM_G1IncCollectionPause op(gc_count_before,
2303                                0,     /* word_size */
2304                                true,  /* should_initiate_conc_mark */
2305                                g1_policy()->max_pause_time_ms(),
2306                                cause);
2307     VMThread::execute(&op);
2308   } else {
2309     if (cause == GCCause::_gc_locker
2310         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2311 
2312       // Schedule a standard evacuation pause. We're setting word_size
2313       // to 0 which means that we are not requesting a post-GC allocation.
2314       VM_G1IncCollectionPause op(gc_count_before,
2315                                  0,     /* word_size */
2316                                  false, /* should_initiate_conc_mark */
2317                                  g1_policy()->max_pause_time_ms(),
2318                                  cause);
2319       VMThread::execute(&op);
2320     } else {
2321       // Schedule a Full GC.
2322       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2323       VMThread::execute(&op);
2324     }
2325   }
2326 }
2327 
2328 bool G1CollectedHeap::is_in(const void* p) const {
2329   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
2330   if (hr != NULL) {
2331     return hr->is_in(p);
2332   } else {
2333     return _perm_gen->as_gen()->is_in(p);
2334   }
2335 }
2336 
2337 // Iteration functions.
2338 
2339 // Iterates an OopClosure over all ref-containing fields of objects
2340 // within a HeapRegion.
2341 
2342 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2343   MemRegion _mr;
2344   OopClosure* _cl;
2345 public:
2346   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2347     : _mr(mr), _cl(cl) {}
2348   bool doHeapRegion(HeapRegion* r) {
2349     if (! r->continuesHumongous()) {
2350       r->oop_iterate(_cl);
2351     }
2352     return false;
2353   }
2354 };
2355 
2356 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2357   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2358   heap_region_iterate(&blk);
2359   if (do_perm) {
2360     perm_gen()->oop_iterate(cl);
2361   }
2362 }
2363 
2364 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2365   IterateOopClosureRegionClosure blk(mr, cl);
2366   heap_region_iterate(&blk);
2367   if (do_perm) {
2368     perm_gen()->oop_iterate(cl);
2369   }
2370 }
2371 
2372 // Iterates an ObjectClosure over all objects within a HeapRegion.
2373 
2374 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2375   ObjectClosure* _cl;
2376 public:
2377   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2378   bool doHeapRegion(HeapRegion* r) {
2379     if (! r->continuesHumongous()) {
2380       r->object_iterate(_cl);
2381     }
2382     return false;
2383   }
2384 };
2385 
2386 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2387   IterateObjectClosureRegionClosure blk(cl);
2388   heap_region_iterate(&blk);
2389   if (do_perm) {
2390     perm_gen()->object_iterate(cl);
2391   }
2392 }
2393 
2394 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2395   // FIXME: is this right?
2396   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2397 }
2398 
2399 // Calls a SpaceClosure on a HeapRegion.
2400 
2401 class SpaceClosureRegionClosure: public HeapRegionClosure {
2402   SpaceClosure* _cl;
2403 public:
2404   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2405   bool doHeapRegion(HeapRegion* r) {
2406     _cl->do_space(r);
2407     return false;
2408   }
2409 };
2410 
2411 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2412   SpaceClosureRegionClosure blk(cl);
2413   heap_region_iterate(&blk);
2414 }
2415 
2416 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2417   _hrs.iterate(cl);
2418 }
2419 
2420 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2421                                                HeapRegionClosure* cl) const {
2422   _hrs.iterate_from(r, cl);
2423 }
2424 
2425 void
2426 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2427                                                  int worker,
2428                                                  jint claim_value) {
2429   const size_t regions = n_regions();
2430   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2431   // try to spread out the starting points of the workers
2432   const size_t start_index = regions / worker_num * (size_t) worker;
2433 
2434   // each worker will actually look at all regions
2435   for (size_t count = 0; count < regions; ++count) {
2436     const size_t index = (start_index + count) % regions;
2437     assert(0 <= index && index < regions, "sanity");
2438     HeapRegion* r = region_at(index);
2439     // we'll ignore "continues humongous" regions (we'll process them
2440     // when we come across their corresponding "start humongous"
2441     // region) and regions already claimed
2442     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2443       continue;
2444     }
2445     // OK, try to claim it
2446     if (r->claimHeapRegion(claim_value)) {
2447       // success!
2448       assert(!r->continuesHumongous(), "sanity");
2449       if (r->startsHumongous()) {
2450         // If the region is "starts humongous" we'll iterate over its
2451         // "continues humongous" first; in fact we'll do them
2452         // first. The order is important. In on case, calling the
2453         // closure on the "starts humongous" region might de-allocate
2454         // and clear all its "continues humongous" regions and, as a
2455         // result, we might end up processing them twice. So, we'll do
2456         // them first (notice: most closures will ignore them anyway) and
2457         // then we'll do the "starts humongous" region.
2458         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2459           HeapRegion* chr = region_at(ch_index);
2460 
2461           // if the region has already been claimed or it's not
2462           // "continues humongous" we're done
2463           if (chr->claim_value() == claim_value ||
2464               !chr->continuesHumongous()) {
2465             break;
2466           }
2467 
2468           // Noone should have claimed it directly. We can given
2469           // that we claimed its "starts humongous" region.
2470           assert(chr->claim_value() != claim_value, "sanity");
2471           assert(chr->humongous_start_region() == r, "sanity");
2472 
2473           if (chr->claimHeapRegion(claim_value)) {
2474             // we should always be able to claim it; noone else should
2475             // be trying to claim this region
2476 
2477             bool res2 = cl->doHeapRegion(chr);
2478             assert(!res2, "Should not abort");
2479 
2480             // Right now, this holds (i.e., no closure that actually
2481             // does something with "continues humongous" regions
2482             // clears them). We might have to weaken it in the future,
2483             // but let's leave these two asserts here for extra safety.
2484             assert(chr->continuesHumongous(), "should still be the case");
2485             assert(chr->humongous_start_region() == r, "sanity");
2486           } else {
2487             guarantee(false, "we should not reach here");
2488           }
2489         }
2490       }
2491 
2492       assert(!r->continuesHumongous(), "sanity");
2493       bool res = cl->doHeapRegion(r);
2494       assert(!res, "Should not abort");
2495     }
2496   }
2497 }
2498 
2499 class ResetClaimValuesClosure: public HeapRegionClosure {
2500 public:
2501   bool doHeapRegion(HeapRegion* r) {
2502     r->set_claim_value(HeapRegion::InitialClaimValue);
2503     return false;
2504   }
2505 };
2506 
2507 void
2508 G1CollectedHeap::reset_heap_region_claim_values() {
2509   ResetClaimValuesClosure blk;
2510   heap_region_iterate(&blk);
2511 }
2512 
2513 #ifdef ASSERT
2514 // This checks whether all regions in the heap have the correct claim
2515 // value. I also piggy-backed on this a check to ensure that the
2516 // humongous_start_region() information on "continues humongous"
2517 // regions is correct.
2518 
2519 class CheckClaimValuesClosure : public HeapRegionClosure {
2520 private:
2521   jint _claim_value;
2522   size_t _failures;
2523   HeapRegion* _sh_region;
2524 public:
2525   CheckClaimValuesClosure(jint claim_value) :
2526     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2527   bool doHeapRegion(HeapRegion* r) {
2528     if (r->claim_value() != _claim_value) {
2529       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2530                              "claim value = %d, should be %d",
2531                              r->bottom(), r->end(), r->claim_value(),
2532                              _claim_value);
2533       ++_failures;
2534     }
2535     if (!r->isHumongous()) {
2536       _sh_region = NULL;
2537     } else if (r->startsHumongous()) {
2538       _sh_region = r;
2539     } else if (r->continuesHumongous()) {
2540       if (r->humongous_start_region() != _sh_region) {
2541         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2542                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2543                                r->bottom(), r->end(),
2544                                r->humongous_start_region(),
2545                                _sh_region);
2546         ++_failures;
2547       }
2548     }
2549     return false;
2550   }
2551   size_t failures() {
2552     return _failures;
2553   }
2554 };
2555 
2556 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2557   CheckClaimValuesClosure cl(claim_value);
2558   heap_region_iterate(&cl);
2559   return cl.failures() == 0;
2560 }
2561 #endif // ASSERT
2562 
2563 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2564   HeapRegion* r = g1_policy()->collection_set();
2565   while (r != NULL) {
2566     HeapRegion* next = r->next_in_collection_set();
2567     if (cl->doHeapRegion(r)) {
2568       cl->incomplete();
2569       return;
2570     }
2571     r = next;
2572   }
2573 }
2574 
2575 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2576                                                   HeapRegionClosure *cl) {
2577   if (r == NULL) {
2578     // The CSet is empty so there's nothing to do.
2579     return;
2580   }
2581 
2582   assert(r->in_collection_set(),
2583          "Start region must be a member of the collection set.");
2584   HeapRegion* cur = r;
2585   while (cur != NULL) {
2586     HeapRegion* next = cur->next_in_collection_set();
2587     if (cl->doHeapRegion(cur) && false) {
2588       cl->incomplete();
2589       return;
2590     }
2591     cur = next;
2592   }
2593   cur = g1_policy()->collection_set();
2594   while (cur != r) {
2595     HeapRegion* next = cur->next_in_collection_set();
2596     if (cl->doHeapRegion(cur) && false) {
2597       cl->incomplete();
2598       return;
2599     }
2600     cur = next;
2601   }
2602 }
2603 
2604 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2605   return n_regions() > 0 ? region_at(0) : NULL;
2606 }
2607 
2608 
2609 Space* G1CollectedHeap::space_containing(const void* addr) const {
2610   Space* res = heap_region_containing(addr);
2611   if (res == NULL)
2612     res = perm_gen()->space_containing(addr);
2613   return res;
2614 }
2615 
2616 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2617   Space* sp = space_containing(addr);
2618   if (sp != NULL) {
2619     return sp->block_start(addr);
2620   }
2621   return NULL;
2622 }
2623 
2624 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2625   Space* sp = space_containing(addr);
2626   assert(sp != NULL, "block_size of address outside of heap");
2627   return sp->block_size(addr);
2628 }
2629 
2630 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2631   Space* sp = space_containing(addr);
2632   return sp->block_is_obj(addr);
2633 }
2634 
2635 bool G1CollectedHeap::supports_tlab_allocation() const {
2636   return true;
2637 }
2638 
2639 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2640   return HeapRegion::GrainBytes;
2641 }
2642 
2643 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2644   // Return the remaining space in the cur alloc region, but not less than
2645   // the min TLAB size.
2646 
2647   // Also, this value can be at most the humongous object threshold,
2648   // since we can't allow tlabs to grow big enough to accomodate
2649   // humongous objects.
2650 
2651   HeapRegion* hr = _mutator_alloc_region.get();
2652   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2653   if (hr == NULL) {
2654     return max_tlab_size;
2655   } else {
2656     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2657   }
2658 }
2659 
2660 size_t G1CollectedHeap::max_capacity() const {
2661   return _g1_reserved.byte_size();
2662 }
2663 
2664 jlong G1CollectedHeap::millis_since_last_gc() {
2665   // assert(false, "NYI");
2666   return 0;
2667 }
2668 
2669 void G1CollectedHeap::prepare_for_verify() {
2670   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2671     ensure_parsability(false);
2672   }
2673   g1_rem_set()->prepare_for_verify();
2674 }
2675 
2676 class VerifyLivenessOopClosure: public OopClosure {
2677   G1CollectedHeap* _g1h;
2678   VerifyOption _vo;
2679 public:
2680   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2681     _g1h(g1h), _vo(vo)
2682   { }
2683   void do_oop(narrowOop *p) { do_oop_work(p); }
2684   void do_oop(      oop *p) { do_oop_work(p); }
2685 
2686   template <class T> void do_oop_work(T *p) {
2687     oop obj = oopDesc::load_decode_heap_oop(p);
2688     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2689               "Dead object referenced by a not dead object");
2690   }
2691 };
2692 
2693 class VerifyObjsInRegionClosure: public ObjectClosure {
2694 private:
2695   G1CollectedHeap* _g1h;
2696   size_t _live_bytes;
2697   HeapRegion *_hr;
2698   VerifyOption _vo;
2699 public:
2700   // _vo == UsePrevMarking -> use "prev" marking information,
2701   // _vo == UseNextMarking -> use "next" marking information,
2702   // _vo == UseMarkWord    -> use mark word from object header.
2703   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2704     : _live_bytes(0), _hr(hr), _vo(vo) {
2705     _g1h = G1CollectedHeap::heap();
2706   }
2707   void do_object(oop o) {
2708     VerifyLivenessOopClosure isLive(_g1h, _vo);
2709     assert(o != NULL, "Huh?");
2710     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2711       // If the object is alive according to the mark word,
2712       // then verify that the marking information agrees.
2713       // Note we can't verify the contra-positive of the
2714       // above: if the object is dead (according to the mark
2715       // word), it may not be marked, or may have been marked
2716       // but has since became dead, or may have been allocated
2717       // since the last marking.
2718       if (_vo == VerifyOption_G1UseMarkWord) {
2719         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2720       }
2721 
2722       o->oop_iterate(&isLive);
2723       if (!_hr->obj_allocated_since_prev_marking(o)) {
2724         size_t obj_size = o->size();    // Make sure we don't overflow
2725         _live_bytes += (obj_size * HeapWordSize);
2726       }
2727     }
2728   }
2729   size_t live_bytes() { return _live_bytes; }
2730 };
2731 
2732 class PrintObjsInRegionClosure : public ObjectClosure {
2733   HeapRegion *_hr;
2734   G1CollectedHeap *_g1;
2735 public:
2736   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2737     _g1 = G1CollectedHeap::heap();
2738   };
2739 
2740   void do_object(oop o) {
2741     if (o != NULL) {
2742       HeapWord *start = (HeapWord *) o;
2743       size_t word_sz = o->size();
2744       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2745                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2746                           (void*) o, word_sz,
2747                           _g1->isMarkedPrev(o),
2748                           _g1->isMarkedNext(o),
2749                           _hr->obj_allocated_since_prev_marking(o));
2750       HeapWord *end = start + word_sz;
2751       HeapWord *cur;
2752       int *val;
2753       for (cur = start; cur < end; cur++) {
2754         val = (int *) cur;
2755         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2756       }
2757     }
2758   }
2759 };
2760 
2761 class VerifyRegionClosure: public HeapRegionClosure {
2762 private:
2763   bool         _allow_dirty;
2764   bool         _par;
2765   VerifyOption _vo;
2766   bool         _failures;
2767 public:
2768   // _vo == UsePrevMarking -> use "prev" marking information,
2769   // _vo == UseNextMarking -> use "next" marking information,
2770   // _vo == UseMarkWord    -> use mark word from object header.
2771   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2772     : _allow_dirty(allow_dirty),
2773       _par(par),
2774       _vo(vo),
2775       _failures(false) {}
2776 
2777   bool failures() {
2778     return _failures;
2779   }
2780 
2781   bool doHeapRegion(HeapRegion* r) {
2782     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2783               "Should be unclaimed at verify points.");
2784     if (!r->continuesHumongous()) {
2785       bool failures = false;
2786       r->verify(_allow_dirty, _vo, &failures);
2787       if (failures) {
2788         _failures = true;
2789       } else {
2790         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2791         r->object_iterate(&not_dead_yet_cl);
2792         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2793           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2794                                  "max_live_bytes "SIZE_FORMAT" "
2795                                  "< calculated "SIZE_FORMAT,
2796                                  r->bottom(), r->end(),
2797                                  r->max_live_bytes(),
2798                                  not_dead_yet_cl.live_bytes());
2799           _failures = true;
2800         }
2801       }
2802     }
2803     return false; // stop the region iteration if we hit a failure
2804   }
2805 };
2806 
2807 class VerifyRootsClosure: public OopsInGenClosure {
2808 private:
2809   G1CollectedHeap* _g1h;
2810   VerifyOption     _vo;
2811   bool             _failures;
2812 public:
2813   // _vo == UsePrevMarking -> use "prev" marking information,
2814   // _vo == UseNextMarking -> use "next" marking information,
2815   // _vo == UseMarkWord    -> use mark word from object header.
2816   VerifyRootsClosure(VerifyOption vo) :
2817     _g1h(G1CollectedHeap::heap()),
2818     _vo(vo),
2819     _failures(false) { }
2820 
2821   bool failures() { return _failures; }
2822 
2823   template <class T> void do_oop_nv(T* p) {
2824     T heap_oop = oopDesc::load_heap_oop(p);
2825     if (!oopDesc::is_null(heap_oop)) {
2826       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2827       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2828         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2829                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2830         if (_vo == VerifyOption_G1UseMarkWord) {
2831           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2832         }
2833         obj->print_on(gclog_or_tty);
2834         _failures = true;
2835       }
2836     }
2837   }
2838 
2839   void do_oop(oop* p)       { do_oop_nv(p); }
2840   void do_oop(narrowOop* p) { do_oop_nv(p); }
2841 };
2842 
2843 // This is the task used for parallel heap verification.
2844 
2845 class G1ParVerifyTask: public AbstractGangTask {
2846 private:
2847   G1CollectedHeap* _g1h;
2848   bool             _allow_dirty;
2849   VerifyOption     _vo;
2850   bool             _failures;
2851 
2852 public:
2853   // _vo == UsePrevMarking -> use "prev" marking information,
2854   // _vo == UseNextMarking -> use "next" marking information,
2855   // _vo == UseMarkWord    -> use mark word from object header.
2856   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
2857     AbstractGangTask("Parallel verify task"),
2858     _g1h(g1h),
2859     _allow_dirty(allow_dirty),
2860     _vo(vo),
2861     _failures(false) { }
2862 
2863   bool failures() {
2864     return _failures;
2865   }
2866 
2867   void work(int worker_i) {
2868     HandleMark hm;
2869     VerifyRegionClosure blk(_allow_dirty, true, _vo);
2870     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2871                                           HeapRegion::ParVerifyClaimValue);
2872     if (blk.failures()) {
2873       _failures = true;
2874     }
2875   }
2876 };
2877 
2878 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2879   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
2880 }
2881 
2882 void G1CollectedHeap::verify(bool allow_dirty,
2883                              bool silent,
2884                              VerifyOption vo) {
2885   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2886     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2887     VerifyRootsClosure rootsCl(vo);
2888     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2889 
2890     // We apply the relevant closures to all the oops in the
2891     // system dictionary, the string table and the code cache.
2892     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
2893 
2894     process_strong_roots(true,      // activate StrongRootsScope
2895                          true,      // we set "collecting perm gen" to true,
2896                                     // so we don't reset the dirty cards in the perm gen.
2897                          SharedHeap::ScanningOption(so),  // roots scanning options
2898                          &rootsCl,
2899                          &blobsCl,
2900                          &rootsCl);
2901 
2902     // If we're verifying after the marking phase of a Full GC then we can't
2903     // treat the perm gen as roots into the G1 heap. Some of the objects in
2904     // the perm gen may be dead and hence not marked. If one of these dead
2905     // objects is considered to be a root then we may end up with a false
2906     // "Root location <x> points to dead ob <y>" failure.
2907     if (vo != VerifyOption_G1UseMarkWord) {
2908       // Since we used "collecting_perm_gen" == true above, we will not have
2909       // checked the refs from perm into the G1-collected heap. We check those
2910       // references explicitly below. Whether the relevant cards are dirty
2911       // is checked further below in the rem set verification.
2912       if (!silent) { gclog_or_tty->print("Permgen roots "); }
2913       perm_gen()->oop_iterate(&rootsCl);
2914     }
2915     bool failures = rootsCl.failures();
2916 
2917     if (vo != VerifyOption_G1UseMarkWord) {
2918       // If we're verifying during a full GC then the region sets
2919       // will have been torn down at the start of the GC. Therefore
2920       // verifying the region sets will fail. So we only verify
2921       // the region sets when not in a full GC.
2922       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
2923       verify_region_sets();
2924     }
2925 
2926     if (!silent) { gclog_or_tty->print("HeapRegions "); }
2927     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2928       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2929              "sanity check");
2930 
2931       G1ParVerifyTask task(this, allow_dirty, vo);
2932       int n_workers = workers()->total_workers();
2933       set_par_threads(n_workers);
2934       workers()->run_task(&task);
2935       set_par_threads(0);
2936       if (task.failures()) {
2937         failures = true;
2938       }
2939 
2940       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2941              "sanity check");
2942 
2943       reset_heap_region_claim_values();
2944 
2945       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2946              "sanity check");
2947     } else {
2948       VerifyRegionClosure blk(allow_dirty, false, vo);
2949       heap_region_iterate(&blk);
2950       if (blk.failures()) {
2951         failures = true;
2952       }
2953     }
2954     if (!silent) gclog_or_tty->print("RemSet ");
2955     rem_set()->verify();
2956 
2957     if (failures) {
2958       gclog_or_tty->print_cr("Heap:");
2959       print_on(gclog_or_tty, true /* extended */);
2960       gclog_or_tty->print_cr("");
2961 #ifndef PRODUCT
2962       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2963         concurrent_mark()->print_reachable("at-verification-failure",
2964                                            vo, false /* all */);
2965       }
2966 #endif
2967       gclog_or_tty->flush();
2968     }
2969     guarantee(!failures, "there should not have been any failures");
2970   } else {
2971     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2972   }
2973 }
2974 
2975 class PrintRegionClosure: public HeapRegionClosure {
2976   outputStream* _st;
2977 public:
2978   PrintRegionClosure(outputStream* st) : _st(st) {}
2979   bool doHeapRegion(HeapRegion* r) {
2980     r->print_on(_st);
2981     return false;
2982   }
2983 };
2984 
2985 void G1CollectedHeap::print() const { print_on(tty); }
2986 
2987 void G1CollectedHeap::print_on(outputStream* st) const {
2988   print_on(st, PrintHeapAtGCExtended);
2989 }
2990 
2991 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
2992   st->print(" %-20s", "garbage-first heap");
2993   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2994             capacity()/K, used_unlocked()/K);
2995   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
2996             _g1_storage.low_boundary(),
2997             _g1_storage.high(),
2998             _g1_storage.high_boundary());
2999   st->cr();
3000   st->print("  region size " SIZE_FORMAT "K, ",
3001             HeapRegion::GrainBytes/K);
3002   size_t young_regions = _young_list->length();
3003   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
3004             young_regions, young_regions * HeapRegion::GrainBytes / K);
3005   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
3006   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
3007             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
3008   st->cr();
3009   perm()->as_gen()->print_on(st);
3010   if (extended) {
3011     st->cr();
3012     print_on_extended(st);
3013   }
3014 }
3015 
3016 void G1CollectedHeap::print_on_extended(outputStream* st) const {
3017   PrintRegionClosure blk(st);
3018   heap_region_iterate(&blk);
3019 }
3020 
3021 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3022   if (G1CollectedHeap::use_parallel_gc_threads()) {
3023     workers()->print_worker_threads_on(st);
3024   }
3025   _cmThread->print_on(st);
3026   st->cr();
3027   _cm->print_worker_threads_on(st);
3028   _cg1r->print_worker_threads_on(st);
3029   st->cr();
3030 }
3031 
3032 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3033   if (G1CollectedHeap::use_parallel_gc_threads()) {
3034     workers()->threads_do(tc);
3035   }
3036   tc->do_thread(_cmThread);
3037   _cg1r->threads_do(tc);
3038 }
3039 
3040 void G1CollectedHeap::print_tracing_info() const {
3041   // We'll overload this to mean "trace GC pause statistics."
3042   if (TraceGen0Time || TraceGen1Time) {
3043     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3044     // to that.
3045     g1_policy()->print_tracing_info();
3046   }
3047   if (G1SummarizeRSetStats) {
3048     g1_rem_set()->print_summary_info();
3049   }
3050   if (G1SummarizeConcMark) {
3051     concurrent_mark()->print_summary_info();
3052   }
3053   g1_policy()->print_yg_surv_rate_info();
3054   SpecializationStats::print();
3055 }
3056 
3057 #ifndef PRODUCT
3058 // Helpful for debugging RSet issues.
3059 
3060 class PrintRSetsClosure : public HeapRegionClosure {
3061 private:
3062   const char* _msg;
3063   size_t _occupied_sum;
3064 
3065 public:
3066   bool doHeapRegion(HeapRegion* r) {
3067     HeapRegionRemSet* hrrs = r->rem_set();
3068     size_t occupied = hrrs->occupied();
3069     _occupied_sum += occupied;
3070 
3071     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3072                            HR_FORMAT_PARAMS(r));
3073     if (occupied == 0) {
3074       gclog_or_tty->print_cr("  RSet is empty");
3075     } else {
3076       hrrs->print();
3077     }
3078     gclog_or_tty->print_cr("----------");
3079     return false;
3080   }
3081 
3082   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3083     gclog_or_tty->cr();
3084     gclog_or_tty->print_cr("========================================");
3085     gclog_or_tty->print_cr(msg);
3086     gclog_or_tty->cr();
3087   }
3088 
3089   ~PrintRSetsClosure() {
3090     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3091     gclog_or_tty->print_cr("========================================");
3092     gclog_or_tty->cr();
3093   }
3094 };
3095 
3096 void G1CollectedHeap::print_cset_rsets() {
3097   PrintRSetsClosure cl("Printing CSet RSets");
3098   collection_set_iterate(&cl);
3099 }
3100 
3101 void G1CollectedHeap::print_all_rsets() {
3102   PrintRSetsClosure cl("Printing All RSets");;
3103   heap_region_iterate(&cl);
3104 }
3105 #endif // PRODUCT
3106 
3107 G1CollectedHeap* G1CollectedHeap::heap() {
3108   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3109          "not a garbage-first heap");
3110   return _g1h;
3111 }
3112 
3113 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3114   // always_do_update_barrier = false;
3115   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3116   // Call allocation profiler
3117   AllocationProfiler::iterate_since_last_gc();
3118   // Fill TLAB's and such
3119   ensure_parsability(true);
3120 }
3121 
3122 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3123   // FIXME: what is this about?
3124   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3125   // is set.
3126   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3127                         "derived pointer present"));
3128   // always_do_update_barrier = true;
3129 }
3130 
3131 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3132                                                unsigned int gc_count_before,
3133                                                bool* succeeded) {
3134   assert_heap_not_locked_and_not_at_safepoint();
3135   g1_policy()->record_stop_world_start();
3136   VM_G1IncCollectionPause op(gc_count_before,
3137                              word_size,
3138                              false, /* should_initiate_conc_mark */
3139                              g1_policy()->max_pause_time_ms(),
3140                              GCCause::_g1_inc_collection_pause);
3141   VMThread::execute(&op);
3142 
3143   HeapWord* result = op.result();
3144   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3145   assert(result == NULL || ret_succeeded,
3146          "the result should be NULL if the VM did not succeed");
3147   *succeeded = ret_succeeded;
3148 
3149   assert_heap_not_locked();
3150   return result;
3151 }
3152 
3153 void
3154 G1CollectedHeap::doConcurrentMark() {
3155   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3156   if (!_cmThread->in_progress()) {
3157     _cmThread->set_started();
3158     CGC_lock->notify();
3159   }
3160 }
3161 
3162 // <NEW PREDICTION>
3163 
3164 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3165                                                        bool young) {
3166   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3167 }
3168 
3169 void G1CollectedHeap::check_if_region_is_too_expensive(double
3170                                                            predicted_time_ms) {
3171   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3172 }
3173 
3174 size_t G1CollectedHeap::pending_card_num() {
3175   size_t extra_cards = 0;
3176   JavaThread *curr = Threads::first();
3177   while (curr != NULL) {
3178     DirtyCardQueue& dcq = curr->dirty_card_queue();
3179     extra_cards += dcq.size();
3180     curr = curr->next();
3181   }
3182   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3183   size_t buffer_size = dcqs.buffer_size();
3184   size_t buffer_num = dcqs.completed_buffers_num();
3185   return buffer_size * buffer_num + extra_cards;
3186 }
3187 
3188 size_t G1CollectedHeap::max_pending_card_num() {
3189   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3190   size_t buffer_size = dcqs.buffer_size();
3191   size_t buffer_num  = dcqs.completed_buffers_num();
3192   int thread_num  = Threads::number_of_threads();
3193   return (buffer_num + thread_num) * buffer_size;
3194 }
3195 
3196 size_t G1CollectedHeap::cards_scanned() {
3197   return g1_rem_set()->cardsScanned();
3198 }
3199 
3200 void
3201 G1CollectedHeap::setup_surviving_young_words() {
3202   guarantee( _surviving_young_words == NULL, "pre-condition" );
3203   size_t array_length = g1_policy()->young_cset_length();
3204   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3205   if (_surviving_young_words == NULL) {
3206     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3207                           "Not enough space for young surv words summary.");
3208   }
3209   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3210 #ifdef ASSERT
3211   for (size_t i = 0;  i < array_length; ++i) {
3212     assert( _surviving_young_words[i] == 0, "memset above" );
3213   }
3214 #endif // !ASSERT
3215 }
3216 
3217 void
3218 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3219   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3220   size_t array_length = g1_policy()->young_cset_length();
3221   for (size_t i = 0; i < array_length; ++i)
3222     _surviving_young_words[i] += surv_young_words[i];
3223 }
3224 
3225 void
3226 G1CollectedHeap::cleanup_surviving_young_words() {
3227   guarantee( _surviving_young_words != NULL, "pre-condition" );
3228   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3229   _surviving_young_words = NULL;
3230 }
3231 
3232 // </NEW PREDICTION>
3233 
3234 #ifdef ASSERT
3235 class VerifyCSetClosure: public HeapRegionClosure {
3236 public:
3237   bool doHeapRegion(HeapRegion* hr) {
3238     // Here we check that the CSet region's RSet is ready for parallel
3239     // iteration. The fields that we'll verify are only manipulated
3240     // when the region is part of a CSet and is collected. Afterwards,
3241     // we reset these fields when we clear the region's RSet (when the
3242     // region is freed) so they are ready when the region is
3243     // re-allocated. The only exception to this is if there's an
3244     // evacuation failure and instead of freeing the region we leave
3245     // it in the heap. In that case, we reset these fields during
3246     // evacuation failure handling.
3247     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3248 
3249     // Here's a good place to add any other checks we'd like to
3250     // perform on CSet regions.
3251     return false;
3252   }
3253 };
3254 #endif // ASSERT
3255 
3256 #if TASKQUEUE_STATS
3257 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3258   st->print_raw_cr("GC Task Stats");
3259   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3260   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3261 }
3262 
3263 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3264   print_taskqueue_stats_hdr(st);
3265 
3266   TaskQueueStats totals;
3267   const int n = workers() != NULL ? workers()->total_workers() : 1;
3268   for (int i = 0; i < n; ++i) {
3269     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3270     totals += task_queue(i)->stats;
3271   }
3272   st->print_raw("tot "); totals.print(st); st->cr();
3273 
3274   DEBUG_ONLY(totals.verify());
3275 }
3276 
3277 void G1CollectedHeap::reset_taskqueue_stats() {
3278   const int n = workers() != NULL ? workers()->total_workers() : 1;
3279   for (int i = 0; i < n; ++i) {
3280     task_queue(i)->stats.reset();
3281   }
3282 }
3283 #endif // TASKQUEUE_STATS
3284 
3285 bool
3286 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3287   assert_at_safepoint(true /* should_be_vm_thread */);
3288   guarantee(!is_gc_active(), "collection is not reentrant");
3289 
3290   if (GC_locker::check_active_before_gc()) {
3291     return false;
3292   }
3293 
3294   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3295   ResourceMark rm;
3296 
3297   if (PrintHeapAtGC) {
3298     Universe::print_heap_before_gc();
3299   }
3300 
3301   verify_region_sets_optional();
3302   verify_dirty_young_regions();
3303 
3304   {
3305     // This call will decide whether this pause is an initial-mark
3306     // pause. If it is, during_initial_mark_pause() will return true
3307     // for the duration of this pause.
3308     g1_policy()->decide_on_conc_mark_initiation();
3309 
3310     char verbose_str[128];
3311     sprintf(verbose_str, "GC pause ");
3312     if (g1_policy()->full_young_gcs()) {
3313       strcat(verbose_str, "(young)");
3314     } else {
3315       strcat(verbose_str, "(partial)");
3316     }
3317     if (g1_policy()->during_initial_mark_pause()) {
3318       strcat(verbose_str, " (initial-mark)");
3319       // We are about to start a marking cycle, so we increment the
3320       // full collection counter.
3321       increment_total_full_collections();
3322     }
3323 
3324     // if PrintGCDetails is on, we'll print long statistics information
3325     // in the collector policy code, so let's not print this as the output
3326     // is messy if we do.
3327     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3328     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3329     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3330 
3331     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3332     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3333 
3334     // If the secondary_free_list is not empty, append it to the
3335     // free_list. No need to wait for the cleanup operation to finish;
3336     // the region allocation code will check the secondary_free_list
3337     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3338     // set, skip this step so that the region allocation code has to
3339     // get entries from the secondary_free_list.
3340     if (!G1StressConcRegionFreeing) {
3341       append_secondary_free_list_if_not_empty_with_lock();
3342     }
3343 
3344     assert(check_young_list_well_formed(),
3345       "young list should be well formed");
3346 
3347     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3348       IsGCActiveMark x;
3349 
3350       gc_prologue(false);
3351       increment_total_collections(false /* full gc */);
3352       increment_gc_time_stamp();
3353 
3354       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3355         HandleMark hm;  // Discard invalid handles created during verification
3356         gclog_or_tty->print(" VerifyBeforeGC:");
3357         prepare_for_verify();
3358         Universe::verify(/* allow dirty */ false,
3359                          /* silent      */ false,
3360                          /* option      */ VerifyOption_G1UsePrevMarking);
3361 
3362       }
3363 
3364       COMPILER2_PRESENT(DerivedPointerTable::clear());
3365 
3366       // Please see comment in G1CollectedHeap::ref_processing_init()
3367       // to see how reference processing currently works in G1.
3368       //
3369       // We want to turn off ref discovery, if necessary, and turn it back on
3370       // on again later if we do. XXX Dubious: why is discovery disabled?
3371       bool was_enabled = ref_processor()->discovery_enabled();
3372       if (was_enabled) ref_processor()->disable_discovery();
3373 
3374       // Forget the current alloc region (we might even choose it to be part
3375       // of the collection set!).
3376       release_mutator_alloc_region();
3377 
3378       // We should call this after we retire the mutator alloc
3379       // region(s) so that all the ALLOC / RETIRE events are generated
3380       // before the start GC event.
3381       _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3382 
3383       // The elapsed time induced by the start time below deliberately elides
3384       // the possible verification above.
3385       double start_time_sec = os::elapsedTime();
3386       size_t start_used_bytes = used();
3387 
3388 #if YOUNG_LIST_VERBOSE
3389       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3390       _young_list->print();
3391       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3392 #endif // YOUNG_LIST_VERBOSE
3393 
3394       g1_policy()->record_collection_pause_start(start_time_sec,
3395                                                  start_used_bytes);
3396 
3397 #if YOUNG_LIST_VERBOSE
3398       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3399       _young_list->print();
3400 #endif // YOUNG_LIST_VERBOSE
3401 
3402       if (g1_policy()->during_initial_mark_pause()) {
3403         concurrent_mark()->checkpointRootsInitialPre();
3404       }
3405       perm_gen()->save_marks();
3406 
3407       // We must do this before any possible evacuation that should propagate
3408       // marks.
3409       if (mark_in_progress()) {
3410         double start_time_sec = os::elapsedTime();
3411 
3412         _cm->drainAllSATBBuffers();
3413         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3414         g1_policy()->record_satb_drain_time(finish_mark_ms);
3415       }
3416       // Record the number of elements currently on the mark stack, so we
3417       // only iterate over these.  (Since evacuation may add to the mark
3418       // stack, doing more exposes race conditions.)  If no mark is in
3419       // progress, this will be zero.
3420       _cm->set_oops_do_bound();
3421 
3422       if (mark_in_progress()) {
3423         concurrent_mark()->newCSet();
3424       }
3425 
3426 #if YOUNG_LIST_VERBOSE
3427       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3428       _young_list->print();
3429       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3430 #endif // YOUNG_LIST_VERBOSE
3431 
3432       g1_policy()->choose_collection_set(target_pause_time_ms);
3433 
3434       if (_hr_printer.is_active()) {
3435         HeapRegion* hr = g1_policy()->collection_set();
3436         while (hr != NULL) {
3437           G1HRPrinter::RegionType type;
3438           if (!hr->is_young()) {
3439             type = G1HRPrinter::Old;
3440           } else if (hr->is_survivor()) {
3441             type = G1HRPrinter::Survivor;
3442           } else {
3443             type = G1HRPrinter::Eden;
3444           }
3445           _hr_printer.cset(hr);
3446           hr = hr->next_in_collection_set();
3447         }
3448       }
3449 
3450       // We have chosen the complete collection set. If marking is
3451       // active then, we clear the region fields of any of the
3452       // concurrent marking tasks whose region fields point into
3453       // the collection set as these values will become stale. This
3454       // will cause the owning marking threads to claim a new region
3455       // when marking restarts.
3456       if (mark_in_progress()) {
3457         concurrent_mark()->reset_active_task_region_fields_in_cset();
3458       }
3459 
3460 #ifdef ASSERT
3461       VerifyCSetClosure cl;
3462       collection_set_iterate(&cl);
3463 #endif // ASSERT
3464 
3465       setup_surviving_young_words();
3466 
3467       // Initialize the GC alloc regions.
3468       init_gc_alloc_regions();
3469 
3470       // Actually do the work...
3471       evacuate_collection_set();
3472 
3473       free_collection_set(g1_policy()->collection_set());
3474       g1_policy()->clear_collection_set();
3475 
3476       cleanup_surviving_young_words();
3477 
3478       // Start a new incremental collection set for the next pause.
3479       g1_policy()->start_incremental_cset_building();
3480 
3481       // Clear the _cset_fast_test bitmap in anticipation of adding
3482       // regions to the incremental collection set for the next
3483       // evacuation pause.
3484       clear_cset_fast_test();
3485 
3486       _young_list->reset_sampled_info();
3487 
3488       // Don't check the whole heap at this point as the
3489       // GC alloc regions from this pause have been tagged
3490       // as survivors and moved on to the survivor list.
3491       // Survivor regions will fail the !is_young() check.
3492       assert(check_young_list_empty(false /* check_heap */),
3493         "young list should be empty");
3494 
3495 #if YOUNG_LIST_VERBOSE
3496       gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3497       _young_list->print();
3498 #endif // YOUNG_LIST_VERBOSE
3499 
3500       g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3501         _young_list->first_survivor_region(),
3502         _young_list->last_survivor_region());
3503 
3504       _young_list->reset_auxilary_lists();
3505 
3506       if (evacuation_failed()) {
3507         _summary_bytes_used = recalculate_used();
3508       } else {
3509         // The "used" of the the collection set have already been subtracted
3510         // when they were freed.  Add in the bytes evacuated.
3511         _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3512       }
3513 
3514       if (g1_policy()->during_initial_mark_pause()) {
3515         concurrent_mark()->checkpointRootsInitialPost();
3516         set_marking_started();
3517         // CAUTION: after the doConcurrentMark() call below,
3518         // the concurrent marking thread(s) could be running
3519         // concurrently with us. Make sure that anything after
3520         // this point does not assume that we are the only GC thread
3521         // running. Note: of course, the actual marking work will
3522         // not start until the safepoint itself is released in
3523         // ConcurrentGCThread::safepoint_desynchronize().
3524         doConcurrentMark();
3525       }
3526 
3527       allocate_dummy_regions();
3528 
3529 #if YOUNG_LIST_VERBOSE
3530       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3531       _young_list->print();
3532       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3533 #endif // YOUNG_LIST_VERBOSE
3534 
3535       init_mutator_alloc_region();
3536 
3537       double end_time_sec = os::elapsedTime();
3538       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3539       g1_policy()->record_pause_time_ms(pause_time_ms);
3540       g1_policy()->record_collection_pause_end();
3541 
3542       MemoryService::track_memory_usage();
3543 
3544       // In prepare_for_verify() below we'll need to scan the deferred
3545       // update buffers to bring the RSets up-to-date if
3546       // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3547       // the update buffers we'll probably need to scan cards on the
3548       // regions we just allocated to (i.e., the GC alloc
3549       // regions). However, during the last GC we called
3550       // set_saved_mark() on all the GC alloc regions, so card
3551       // scanning might skip the [saved_mark_word()...top()] area of
3552       // those regions (i.e., the area we allocated objects into
3553       // during the last GC). But it shouldn't. Given that
3554       // saved_mark_word() is conditional on whether the GC time stamp
3555       // on the region is current or not, by incrementing the GC time
3556       // stamp here we invalidate all the GC time stamps on all the
3557       // regions and saved_mark_word() will simply return top() for
3558       // all the regions. This is a nicer way of ensuring this rather
3559       // than iterating over the regions and fixing them. In fact, the
3560       // GC time stamp increment here also ensures that
3561       // saved_mark_word() will return top() between pauses, i.e.,
3562       // during concurrent refinement. So we don't need the
3563       // is_gc_active() check to decided which top to use when
3564       // scanning cards (see CR 7039627).
3565       increment_gc_time_stamp();
3566 
3567       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3568         HandleMark hm;  // Discard invalid handles created during verification
3569         gclog_or_tty->print(" VerifyAfterGC:");
3570         prepare_for_verify();
3571         Universe::verify(/* allow dirty */ true,
3572                          /* silent      */ false,
3573                          /* option      */ VerifyOption_G1UsePrevMarking);
3574       }
3575 
3576       if (was_enabled) ref_processor()->enable_discovery();
3577 
3578       {
3579         size_t expand_bytes = g1_policy()->expansion_amount();
3580         if (expand_bytes > 0) {
3581           size_t bytes_before = capacity();
3582           if (!expand(expand_bytes)) {
3583             // We failed to expand the heap so let's verify that
3584             // committed/uncommitted amount match the backing store
3585             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3586             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3587           }
3588         }
3589       }
3590 
3591       // We should do this after we potentially expand the heap so
3592       // that all the COMMIT events are generated before the end GC
3593       // event, and after we retire the GC alloc regions so that all
3594       // RETIRE events are generated before the end GC event.
3595       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3596 
3597       // We have to do this after we decide whether to expand the heap or not.
3598       g1_policy()->print_heap_transition();
3599 
3600       if (mark_in_progress()) {
3601         concurrent_mark()->update_g1_committed();
3602       }
3603 
3604 #ifdef TRACESPINNING
3605       ParallelTaskTerminator::print_termination_counts();
3606 #endif
3607 
3608       gc_epilogue(false);
3609     }
3610 
3611     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3612       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3613       print_tracing_info();
3614       vm_exit(-1);
3615     }
3616   }
3617 
3618   _hrs.verify_optional();
3619   verify_region_sets_optional();
3620 
3621   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3622   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3623 
3624   if (PrintHeapAtGC) {
3625     Universe::print_heap_after_gc();
3626   }
3627   g1mm()->update_counters();
3628 
3629   if (G1SummarizeRSetStats &&
3630       (G1SummarizeRSetStatsPeriod > 0) &&
3631       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3632     g1_rem_set()->print_summary_info();
3633   }
3634 
3635   return true;
3636 }
3637 
3638 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3639 {
3640   size_t gclab_word_size;
3641   switch (purpose) {
3642     case GCAllocForSurvived:
3643       gclab_word_size = YoungPLABSize;
3644       break;
3645     case GCAllocForTenured:
3646       gclab_word_size = OldPLABSize;
3647       break;
3648     default:
3649       assert(false, "unknown GCAllocPurpose");
3650       gclab_word_size = OldPLABSize;
3651       break;
3652   }
3653   return gclab_word_size;
3654 }
3655 
3656 void G1CollectedHeap::init_mutator_alloc_region() {
3657   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3658   _mutator_alloc_region.init();
3659 }
3660 
3661 void G1CollectedHeap::release_mutator_alloc_region() {
3662   _mutator_alloc_region.release();
3663   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3664 }
3665 
3666 void G1CollectedHeap::init_gc_alloc_regions() {
3667   assert_at_safepoint(true /* should_be_vm_thread */);
3668 
3669   _survivor_gc_alloc_region.init();
3670   _old_gc_alloc_region.init();
3671   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3672   _retained_old_gc_alloc_region = NULL;
3673 
3674   // We will discard the current GC alloc region if:
3675   // a) it's in the collection set (it can happen!),
3676   // b) it's already full (no point in using it),
3677   // c) it's empty (this means that it was emptied during
3678   // a cleanup and it should be on the free list now), or
3679   // d) it's humongous (this means that it was emptied
3680   // during a cleanup and was added to the free list, but
3681   // has been subseqently used to allocate a humongous
3682   // object that may be less than the region size).
3683   if (retained_region != NULL &&
3684       !retained_region->in_collection_set() &&
3685       !(retained_region->top() == retained_region->end()) &&
3686       !retained_region->is_empty() &&
3687       !retained_region->isHumongous()) {
3688     retained_region->set_saved_mark();
3689     _old_gc_alloc_region.set(retained_region);
3690     _hr_printer.reuse(retained_region);
3691   }
3692 }
3693 
3694 void G1CollectedHeap::release_gc_alloc_regions() {
3695   _survivor_gc_alloc_region.release();
3696   // If we have an old GC alloc region to release, we'll save it in
3697   // _retained_old_gc_alloc_region. If we don't
3698   // _retained_old_gc_alloc_region will become NULL. This is what we
3699   // want either way so no reason to check explicitly for either
3700   // condition.
3701   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3702 }
3703 
3704 void G1CollectedHeap::abandon_gc_alloc_regions() {
3705   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
3706   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
3707   _retained_old_gc_alloc_region = NULL;
3708 }
3709 
3710 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3711   _drain_in_progress = false;
3712   set_evac_failure_closure(cl);
3713   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3714 }
3715 
3716 void G1CollectedHeap::finalize_for_evac_failure() {
3717   assert(_evac_failure_scan_stack != NULL &&
3718          _evac_failure_scan_stack->length() == 0,
3719          "Postcondition");
3720   assert(!_drain_in_progress, "Postcondition");
3721   delete _evac_failure_scan_stack;
3722   _evac_failure_scan_stack = NULL;
3723 }
3724 
3725 // *** Sequential G1 Evacuation
3726 
3727 class G1IsAliveClosure: public BoolObjectClosure {
3728   G1CollectedHeap* _g1;
3729 public:
3730   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3731   void do_object(oop p) { assert(false, "Do not call."); }
3732   bool do_object_b(oop p) {
3733     // It is reachable if it is outside the collection set, or is inside
3734     // and forwarded.
3735 
3736 #ifdef G1_DEBUG
3737     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
3738                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
3739                            !_g1->obj_in_cs(p) || p->is_forwarded());
3740 #endif // G1_DEBUG
3741 
3742     return !_g1->obj_in_cs(p) || p->is_forwarded();
3743   }
3744 };
3745 
3746 class G1KeepAliveClosure: public OopClosure {
3747   G1CollectedHeap* _g1;
3748 public:
3749   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3750   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3751   void do_oop(      oop* p) {
3752     oop obj = *p;
3753 #ifdef G1_DEBUG
3754     if (PrintGC && Verbose) {
3755       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
3756                              p, (void*) obj, (void*) *p);
3757     }
3758 #endif // G1_DEBUG
3759 
3760     if (_g1->obj_in_cs(obj)) {
3761       assert( obj->is_forwarded(), "invariant" );
3762       *p = obj->forwardee();
3763 #ifdef G1_DEBUG
3764       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
3765                              (void*) obj, (void*) *p);
3766 #endif // G1_DEBUG
3767     }
3768   }
3769 };
3770 
3771 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3772 private:
3773   G1CollectedHeap* _g1;
3774   DirtyCardQueue *_dcq;
3775   CardTableModRefBS* _ct_bs;
3776 
3777 public:
3778   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3779     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3780 
3781   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3782   virtual void do_oop(      oop* p) { do_oop_work(p); }
3783   template <class T> void do_oop_work(T* p) {
3784     assert(_from->is_in_reserved(p), "paranoia");
3785     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
3786         !_from->is_survivor()) {
3787       size_t card_index = _ct_bs->index_for(p);
3788       if (_ct_bs->mark_card_deferred(card_index)) {
3789         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3790       }
3791     }
3792   }
3793 };
3794 
3795 class RemoveSelfPointerClosure: public ObjectClosure {
3796 private:
3797   G1CollectedHeap* _g1;
3798   ConcurrentMark* _cm;
3799   HeapRegion* _hr;
3800   size_t _prev_marked_bytes;
3801   size_t _next_marked_bytes;
3802   OopsInHeapRegionClosure *_cl;
3803 public:
3804   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
3805                            OopsInHeapRegionClosure* cl) :
3806     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3807     _next_marked_bytes(0), _cl(cl) {}
3808 
3809   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3810   size_t next_marked_bytes() { return _next_marked_bytes; }
3811 
3812   // <original comment>
3813   // The original idea here was to coalesce evacuated and dead objects.
3814   // However that caused complications with the block offset table (BOT).
3815   // In particular if there were two TLABs, one of them partially refined.
3816   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3817   // The BOT entries of the unrefined part of TLAB_2 point to the start
3818   // of TLAB_2. If the last object of the TLAB_1 and the first object
3819   // of TLAB_2 are coalesced, then the cards of the unrefined part
3820   // would point into middle of the filler object.
3821   // The current approach is to not coalesce and leave the BOT contents intact.
3822   // </original comment>
3823   //
3824   // We now reset the BOT when we start the object iteration over the
3825   // region and refine its entries for every object we come across. So
3826   // the above comment is not really relevant and we should be able
3827   // to coalesce dead objects if we want to.
3828   void do_object(oop obj) {
3829     HeapWord* obj_addr = (HeapWord*) obj;
3830     assert(_hr->is_in(obj_addr), "sanity");
3831     size_t obj_size = obj->size();
3832     _hr->update_bot_for_object(obj_addr, obj_size);
3833     if (obj->is_forwarded() && obj->forwardee() == obj) {
3834       // The object failed to move.
3835       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3836       _cm->markPrev(obj);
3837       assert(_cm->isPrevMarked(obj), "Should be marked!");
3838       _prev_marked_bytes += (obj_size * HeapWordSize);
3839       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3840         _cm->markAndGrayObjectIfNecessary(obj);
3841       }
3842       obj->set_mark(markOopDesc::prototype());
3843       // While we were processing RSet buffers during the
3844       // collection, we actually didn't scan any cards on the
3845       // collection set, since we didn't want to update remebered
3846       // sets with entries that point into the collection set, given
3847       // that live objects fromthe collection set are about to move
3848       // and such entries will be stale very soon. This change also
3849       // dealt with a reliability issue which involved scanning a
3850       // card in the collection set and coming across an array that
3851       // was being chunked and looking malformed. The problem is
3852       // that, if evacuation fails, we might have remembered set
3853       // entries missing given that we skipped cards on the
3854       // collection set. So, we'll recreate such entries now.
3855       obj->oop_iterate(_cl);
3856       assert(_cm->isPrevMarked(obj), "Should be marked!");
3857     } else {
3858       // The object has been either evacuated or is dead. Fill it with a
3859       // dummy object.
3860       MemRegion mr((HeapWord*)obj, obj_size);
3861       CollectedHeap::fill_with_object(mr);
3862       _cm->clearRangeBothMaps(mr);
3863     }
3864   }
3865 };
3866 
3867 void G1CollectedHeap::remove_self_forwarding_pointers() {
3868   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3869   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3870   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3871   OopsInHeapRegionClosure *cl;
3872   if (G1DeferredRSUpdate) {
3873     cl = &deferred_update;
3874   } else {
3875     cl = &immediate_update;
3876   }
3877   HeapRegion* cur = g1_policy()->collection_set();
3878   while (cur != NULL) {
3879     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3880     assert(!cur->isHumongous(), "sanity");
3881 
3882     if (cur->evacuation_failed()) {
3883       assert(cur->in_collection_set(), "bad CS");
3884       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
3885 
3886       // In the common case we make sure that this is done when the
3887       // region is freed so that it is "ready-to-go" when it's
3888       // re-allocated. However, when evacuation failure happens, a
3889       // region will remain in the heap and might ultimately be added
3890       // to a CSet in the future. So we have to be careful here and
3891       // make sure the region's RSet is ready for parallel iteration
3892       // whenever this might be required in the future.
3893       cur->rem_set()->reset_for_par_iteration();
3894       cur->reset_bot();
3895       cl->set_region(cur);
3896       cur->object_iterate(&rspc);
3897 
3898       // A number of manipulations to make the TAMS be the current top,
3899       // and the marked bytes be the ones observed in the iteration.
3900       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3901         // The comments below are the postconditions achieved by the
3902         // calls.  Note especially the last such condition, which says that
3903         // the count of marked bytes has been properly restored.
3904         cur->note_start_of_marking(false);
3905         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3906         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3907         // _next_marked_bytes == prev_marked_bytes.
3908         cur->note_end_of_marking();
3909         // _prev_top_at_mark_start == top(),
3910         // _prev_marked_bytes == prev_marked_bytes
3911       }
3912       // If there is no mark in progress, we modified the _next variables
3913       // above needlessly, but harmlessly.
3914       if (_g1h->mark_in_progress()) {
3915         cur->note_start_of_marking(false);
3916         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3917         // _next_marked_bytes == next_marked_bytes.
3918       }
3919 
3920       // Now make sure the region has the right index in the sorted array.
3921       g1_policy()->note_change_in_marked_bytes(cur);
3922     }
3923     cur = cur->next_in_collection_set();
3924   }
3925   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3926 
3927   // Now restore saved marks, if any.
3928   if (_objs_with_preserved_marks != NULL) {
3929     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3930     guarantee(_objs_with_preserved_marks->length() ==
3931               _preserved_marks_of_objs->length(), "Both or none.");
3932     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3933       oop obj   = _objs_with_preserved_marks->at(i);
3934       markOop m = _preserved_marks_of_objs->at(i);
3935       obj->set_mark(m);
3936     }
3937     // Delete the preserved marks growable arrays (allocated on the C heap).
3938     delete _objs_with_preserved_marks;
3939     delete _preserved_marks_of_objs;
3940     _objs_with_preserved_marks = NULL;
3941     _preserved_marks_of_objs = NULL;
3942   }
3943 }
3944 
3945 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3946   _evac_failure_scan_stack->push(obj);
3947 }
3948 
3949 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3950   assert(_evac_failure_scan_stack != NULL, "precondition");
3951 
3952   while (_evac_failure_scan_stack->length() > 0) {
3953      oop obj = _evac_failure_scan_stack->pop();
3954      _evac_failure_closure->set_region(heap_region_containing(obj));
3955      obj->oop_iterate_backwards(_evac_failure_closure);
3956   }
3957 }
3958 
3959 oop
3960 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
3961                                                oop old) {
3962   assert(obj_in_cs(old),
3963          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
3964                  (HeapWord*) old));
3965   markOop m = old->mark();
3966   oop forward_ptr = old->forward_to_atomic(old);
3967   if (forward_ptr == NULL) {
3968     // Forward-to-self succeeded.
3969     if (_evac_failure_closure != cl) {
3970       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
3971       assert(!_drain_in_progress,
3972              "Should only be true while someone holds the lock.");
3973       // Set the global evac-failure closure to the current thread's.
3974       assert(_evac_failure_closure == NULL, "Or locking has failed.");
3975       set_evac_failure_closure(cl);
3976       // Now do the common part.
3977       handle_evacuation_failure_common(old, m);
3978       // Reset to NULL.
3979       set_evac_failure_closure(NULL);
3980     } else {
3981       // The lock is already held, and this is recursive.
3982       assert(_drain_in_progress, "This should only be the recursive case.");
3983       handle_evacuation_failure_common(old, m);
3984     }
3985     return old;
3986   } else {
3987     // Forward-to-self failed. Either someone else managed to allocate
3988     // space for this object (old != forward_ptr) or they beat us in
3989     // self-forwarding it (old == forward_ptr).
3990     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
3991            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
3992                    "should not be in the CSet",
3993                    (HeapWord*) old, (HeapWord*) forward_ptr));
3994     return forward_ptr;
3995   }
3996 }
3997 
3998 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
3999   set_evacuation_failed(true);
4000 
4001   preserve_mark_if_necessary(old, m);
4002 
4003   HeapRegion* r = heap_region_containing(old);
4004   if (!r->evacuation_failed()) {
4005     r->set_evacuation_failed(true);
4006     _hr_printer.evac_failure(r);
4007   }
4008 
4009   push_on_evac_failure_scan_stack(old);
4010 
4011   if (!_drain_in_progress) {
4012     // prevent recursion in copy_to_survivor_space()
4013     _drain_in_progress = true;
4014     drain_evac_failure_scan_stack();
4015     _drain_in_progress = false;
4016   }
4017 }
4018 
4019 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4020   assert(evacuation_failed(), "Oversaving!");
4021   // We want to call the "for_promotion_failure" version only in the
4022   // case of a promotion failure.
4023   if (m->must_be_preserved_for_promotion_failure(obj)) {
4024     if (_objs_with_preserved_marks == NULL) {
4025       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4026       _objs_with_preserved_marks =
4027         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4028       _preserved_marks_of_objs =
4029         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4030     }
4031     _objs_with_preserved_marks->push(obj);
4032     _preserved_marks_of_objs->push(m);
4033   }
4034 }
4035 
4036 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4037                                                   size_t word_size) {
4038   if (purpose == GCAllocForSurvived) {
4039     HeapWord* result = survivor_attempt_allocation(word_size);
4040     if (result != NULL) {
4041       return result;
4042     } else {
4043       // Let's try to allocate in the old gen in case we can fit the
4044       // object there.
4045       return old_attempt_allocation(word_size);
4046     }
4047   } else {
4048     assert(purpose ==  GCAllocForTenured, "sanity");
4049     HeapWord* result = old_attempt_allocation(word_size);
4050     if (result != NULL) {
4051       return result;
4052     } else {
4053       // Let's try to allocate in the survivors in case we can fit the
4054       // object there.
4055       return survivor_attempt_allocation(word_size);
4056     }
4057   }
4058 
4059   ShouldNotReachHere();
4060   // Trying to keep some compilers happy.
4061   return NULL;
4062 }
4063 
4064 #ifndef PRODUCT
4065 bool GCLabBitMapClosure::do_bit(size_t offset) {
4066   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4067   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4068   return true;
4069 }
4070 #endif // PRODUCT
4071 
4072 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4073   ParGCAllocBuffer(gclab_word_size),
4074   _should_mark_objects(false),
4075   _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
4076   _retired(false)
4077 {
4078   //_should_mark_objects is set to true when G1ParCopyHelper needs to
4079   // mark the forwarded location of an evacuated object.
4080   // We set _should_mark_objects to true if marking is active, i.e. when we
4081   // need to propagate a mark, or during an initial mark pause, i.e. when we
4082   // need to mark objects immediately reachable by the roots.
4083   if (G1CollectedHeap::heap()->mark_in_progress() ||
4084       G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
4085     _should_mark_objects = true;
4086   }
4087 }
4088 
4089 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4090   : _g1h(g1h),
4091     _refs(g1h->task_queue(queue_num)),
4092     _dcq(&g1h->dirty_card_queue_set()),
4093     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4094     _g1_rem(g1h->g1_rem_set()),
4095     _hash_seed(17), _queue_num(queue_num),
4096     _term_attempts(0),
4097     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4098     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4099     _age_table(false),
4100     _strong_roots_time(0), _term_time(0),
4101     _alloc_buffer_waste(0), _undo_waste(0)
4102 {
4103   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4104   // we "sacrifice" entry 0 to keep track of surviving bytes for
4105   // non-young regions (where the age is -1)
4106   // We also add a few elements at the beginning and at the end in
4107   // an attempt to eliminate cache contention
4108   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
4109   size_t array_length = PADDING_ELEM_NUM +
4110                         real_length +
4111                         PADDING_ELEM_NUM;
4112   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4113   if (_surviving_young_words_base == NULL)
4114     vm_exit_out_of_memory(array_length * sizeof(size_t),
4115                           "Not enough space for young surv histo.");
4116   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4117   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4118 
4119   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4120   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4121 
4122   _start = os::elapsedTime();
4123 }
4124 
4125 void
4126 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4127 {
4128   st->print_raw_cr("GC Termination Stats");
4129   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4130                    " ------waste (KiB)------");
4131   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4132                    "  total   alloc    undo");
4133   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4134                    " ------- ------- -------");
4135 }
4136 
4137 void
4138 G1ParScanThreadState::print_termination_stats(int i,
4139                                               outputStream* const st) const
4140 {
4141   const double elapsed_ms = elapsed_time() * 1000.0;
4142   const double s_roots_ms = strong_roots_time() * 1000.0;
4143   const double term_ms    = term_time() * 1000.0;
4144   st->print_cr("%3d %9.2f %9.2f %6.2f "
4145                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4146                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4147                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4148                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4149                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4150                alloc_buffer_waste() * HeapWordSize / K,
4151                undo_waste() * HeapWordSize / K);
4152 }
4153 
4154 #ifdef ASSERT
4155 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4156   assert(ref != NULL, "invariant");
4157   assert(UseCompressedOops, "sanity");
4158   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4159   oop p = oopDesc::load_decode_heap_oop(ref);
4160   assert(_g1h->is_in_g1_reserved(p),
4161          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4162   return true;
4163 }
4164 
4165 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4166   assert(ref != NULL, "invariant");
4167   if (has_partial_array_mask(ref)) {
4168     // Must be in the collection set--it's already been copied.
4169     oop p = clear_partial_array_mask(ref);
4170     assert(_g1h->obj_in_cs(p),
4171            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4172   } else {
4173     oop p = oopDesc::load_decode_heap_oop(ref);
4174     assert(_g1h->is_in_g1_reserved(p),
4175            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4176   }
4177   return true;
4178 }
4179 
4180 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4181   if (ref.is_narrow()) {
4182     return verify_ref((narrowOop*) ref);
4183   } else {
4184     return verify_ref((oop*) ref);
4185   }
4186 }
4187 #endif // ASSERT
4188 
4189 void G1ParScanThreadState::trim_queue() {
4190   StarTask ref;
4191   do {
4192     // Drain the overflow stack first, so other threads can steal.
4193     while (refs()->pop_overflow(ref)) {
4194       deal_with_reference(ref);
4195     }
4196     while (refs()->pop_local(ref)) {
4197       deal_with_reference(ref);
4198     }
4199   } while (!refs()->is_empty());
4200 }
4201 
4202 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4203   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4204   _par_scan_state(par_scan_state),
4205   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4206   _mark_in_progress(_g1->mark_in_progress()) { }
4207 
4208 template <class T> void G1ParCopyHelper::mark_object(T* p) {
4209   // This is called from do_oop_work for objects that are not
4210   // in the collection set. Objects in the collection set
4211   // are marked after they have been evacuated.
4212 
4213   T heap_oop = oopDesc::load_heap_oop(p);
4214   if (!oopDesc::is_null(heap_oop)) {
4215     oop obj = oopDesc::decode_heap_oop(heap_oop);
4216     HeapWord* addr = (HeapWord*)obj;
4217     if (_g1->is_in_g1_reserved(addr)) {
4218       _cm->grayRoot(oop(addr));
4219     }
4220   }
4221 }
4222 
4223 oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_copy) {
4224   size_t    word_sz = old->size();
4225   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4226   // +1 to make the -1 indexes valid...
4227   int       young_index = from_region->young_index_in_cset()+1;
4228   assert( (from_region->is_young() && young_index > 0) ||
4229           (!from_region->is_young() && young_index == 0), "invariant" );
4230   G1CollectorPolicy* g1p = _g1->g1_policy();
4231   markOop m = old->mark();
4232   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4233                                            : m->age();
4234   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4235                                                              word_sz);
4236   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4237   oop       obj     = oop(obj_ptr);
4238 
4239   if (obj_ptr == NULL) {
4240     // This will either forward-to-self, or detect that someone else has
4241     // installed a forwarding pointer.
4242     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4243     return _g1->handle_evacuation_failure_par(cl, old);
4244   }
4245 
4246   // We're going to allocate linearly, so might as well prefetch ahead.
4247   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4248 
4249   oop forward_ptr = old->forward_to_atomic(obj);
4250   if (forward_ptr == NULL) {
4251     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4252     if (g1p->track_object_age(alloc_purpose)) {
4253       // We could simply do obj->incr_age(). However, this causes a
4254       // performance issue. obj->incr_age() will first check whether
4255       // the object has a displaced mark by checking its mark word;
4256       // getting the mark word from the new location of the object
4257       // stalls. So, given that we already have the mark word and we
4258       // are about to install it anyway, it's better to increase the
4259       // age on the mark word, when the object does not have a
4260       // displaced mark word. We're not expecting many objects to have
4261       // a displaced marked word, so that case is not optimized
4262       // further (it could be...) and we simply call obj->incr_age().
4263 
4264       if (m->has_displaced_mark_helper()) {
4265         // in this case, we have to install the mark word first,
4266         // otherwise obj looks to be forwarded (the old mark word,
4267         // which contains the forward pointer, was copied)
4268         obj->set_mark(m);
4269         obj->incr_age();
4270       } else {
4271         m = m->incr_age();
4272         obj->set_mark(m);
4273       }
4274       _par_scan_state->age_table()->add(obj, word_sz);
4275     } else {
4276       obj->set_mark(m);
4277     }
4278 
4279     // Mark the evacuated object or propagate "next" mark bit
4280     if (should_mark_copy) {
4281       if (!use_local_bitmaps ||
4282           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4283         // if we couldn't mark it on the local bitmap (this happens when
4284         // the object was not allocated in the GCLab), we have to bite
4285         // the bullet and do the standard parallel mark
4286         _cm->markAndGrayObjectIfNecessary(obj);
4287       }
4288 
4289       if (_g1->isMarkedNext(old)) {
4290         // Unmark the object's old location so that marking
4291         // doesn't think the old object is alive.
4292         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4293       }
4294     }
4295 
4296     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4297     surv_young_words[young_index] += word_sz;
4298 
4299     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4300       arrayOop(old)->set_length(0);
4301       oop* old_p = set_partial_array_mask(old);
4302       _par_scan_state->push_on_queue(old_p);
4303     } else {
4304       // No point in using the slower heap_region_containing() method,
4305       // given that we know obj is in the heap.
4306       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4307       obj->oop_iterate_backwards(_scanner);
4308     }
4309   } else {
4310     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4311     obj = forward_ptr;
4312   }
4313   return obj;
4314 }
4315 
4316 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4317 template <class T>
4318 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4319 ::do_oop_work(T* p) {
4320   oop obj = oopDesc::load_decode_heap_oop(p);
4321   assert(barrier != G1BarrierRS || obj != NULL,
4322          "Precondition: G1BarrierRS implies obj is nonNull");
4323 
4324   // Marking:
4325   // If the object is in the collection set, then the thread
4326   // that copies the object should mark, or propagate the
4327   // mark to, the evacuated object.
4328   // If the object is not in the collection set then we
4329   // should call the mark_object() method depending on the
4330   // value of the template parameter do_mark_object (which will
4331   // be true for root scanning closures during an initial mark
4332   // pause).
4333   // The mark_object() method first checks whether the object
4334   // is marked and, if not, attempts to mark the object.
4335 
4336   // here the null check is implicit in the cset_fast_test() test
4337   if (_g1->in_cset_fast_test(obj)) {
4338     if (obj->is_forwarded()) {
4339       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4340       // If we are a root scanning closure during an initial
4341       // mark pause (i.e. do_mark_object will be true) then
4342       // we also need to handle marking of roots in the
4343       // event of an evacuation failure. In the event of an
4344       // evacuation failure, the object is forwarded to itself
4345       // and not copied so let's mark it here.
4346       if (do_mark_object && obj->forwardee() == obj) {
4347         mark_object(p);
4348       }
4349     } else {
4350       // We need to mark the copied object if we're a root scanning
4351       // closure during an initial mark pause (i.e. do_mark_object
4352       // will be true), or the object is already marked and we need
4353       // to propagate the mark to the evacuated copy.
4354       bool should_mark_copy = do_mark_object ||
4355                               _during_initial_mark ||
4356                               (_mark_in_progress && !_g1->is_obj_ill(obj));
4357 
4358       oop copy_oop = copy_to_survivor_space(obj, should_mark_copy);
4359       oopDesc::encode_store_heap_oop(p, copy_oop);
4360     }
4361     // When scanning the RS, we only care about objs in CS.
4362     if (barrier == G1BarrierRS) {
4363       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4364     }
4365   } else {
4366     // The object is not in collection set. If we're a root scanning
4367     // closure during an initial mark pause (i.e. do_mark_object will
4368     // be true) then attempt to mark the object.
4369     if (do_mark_object) {
4370       mark_object(p);
4371     }
4372   }
4373 
4374   if (barrier == G1BarrierEvac && obj != NULL) {
4375     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4376   }
4377 
4378   if (do_gen_barrier && obj != NULL) {
4379     par_do_barrier(p);
4380   }
4381 }
4382 
4383 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4384 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4385 
4386 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4387   assert(has_partial_array_mask(p), "invariant");
4388   oop old = clear_partial_array_mask(p);
4389   assert(old->is_objArray(), "must be obj array");
4390   assert(old->is_forwarded(), "must be forwarded");
4391   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4392 
4393   objArrayOop obj = objArrayOop(old->forwardee());
4394   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4395   // Process ParGCArrayScanChunk elements now
4396   // and push the remainder back onto queue
4397   int start     = arrayOop(old)->length();
4398   int end       = obj->length();
4399   int remainder = end - start;
4400   assert(start <= end, "just checking");
4401   if (remainder > 2 * ParGCArrayScanChunk) {
4402     // Test above combines last partial chunk with a full chunk
4403     end = start + ParGCArrayScanChunk;
4404     arrayOop(old)->set_length(end);
4405     // Push remainder.
4406     oop* old_p = set_partial_array_mask(old);
4407     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4408     _par_scan_state->push_on_queue(old_p);
4409   } else {
4410     // Restore length so that the heap remains parsable in
4411     // case of evacuation failure.
4412     arrayOop(old)->set_length(end);
4413   }
4414   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4415   // process our set of indices (include header in first chunk)
4416   obj->oop_iterate_range(&_scanner, start, end);
4417 }
4418 
4419 class G1ParEvacuateFollowersClosure : public VoidClosure {
4420 protected:
4421   G1CollectedHeap*              _g1h;
4422   G1ParScanThreadState*         _par_scan_state;
4423   RefToScanQueueSet*            _queues;
4424   ParallelTaskTerminator*       _terminator;
4425 
4426   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4427   RefToScanQueueSet*      queues()         { return _queues; }
4428   ParallelTaskTerminator* terminator()     { return _terminator; }
4429 
4430 public:
4431   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4432                                 G1ParScanThreadState* par_scan_state,
4433                                 RefToScanQueueSet* queues,
4434                                 ParallelTaskTerminator* terminator)
4435     : _g1h(g1h), _par_scan_state(par_scan_state),
4436       _queues(queues), _terminator(terminator) {}
4437 
4438   void do_void();
4439 
4440 private:
4441   inline bool offer_termination();
4442 };
4443 
4444 bool G1ParEvacuateFollowersClosure::offer_termination() {
4445   G1ParScanThreadState* const pss = par_scan_state();
4446   pss->start_term_time();
4447   const bool res = terminator()->offer_termination();
4448   pss->end_term_time();
4449   return res;
4450 }
4451 
4452 void G1ParEvacuateFollowersClosure::do_void() {
4453   StarTask stolen_task;
4454   G1ParScanThreadState* const pss = par_scan_state();
4455   pss->trim_queue();
4456 
4457   do {
4458     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4459       assert(pss->verify_task(stolen_task), "sanity");
4460       if (stolen_task.is_narrow()) {
4461         pss->deal_with_reference((narrowOop*) stolen_task);
4462       } else {
4463         pss->deal_with_reference((oop*) stolen_task);
4464       }
4465 
4466       // We've just processed a reference and we might have made
4467       // available new entries on the queues. So we have to make sure
4468       // we drain the queues as necessary.
4469       pss->trim_queue();
4470     }
4471   } while (!offer_termination());
4472 
4473   pss->retire_alloc_buffers();
4474 }
4475 
4476 class G1ParTask : public AbstractGangTask {
4477 protected:
4478   G1CollectedHeap*       _g1h;
4479   RefToScanQueueSet      *_queues;
4480   ParallelTaskTerminator _terminator;
4481   int _n_workers;
4482 
4483   Mutex _stats_lock;
4484   Mutex* stats_lock() { return &_stats_lock; }
4485 
4486   size_t getNCards() {
4487     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4488       / G1BlockOffsetSharedArray::N_bytes;
4489   }
4490 
4491 public:
4492   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4493     : AbstractGangTask("G1 collection"),
4494       _g1h(g1h),
4495       _queues(task_queues),
4496       _terminator(workers, _queues),
4497       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
4498       _n_workers(workers)
4499   {}
4500 
4501   RefToScanQueueSet* queues() { return _queues; }
4502 
4503   RefToScanQueue *work_queue(int i) {
4504     return queues()->queue(i);
4505   }
4506 
4507   void work(int i) {
4508     if (i >= _n_workers) return;  // no work needed this round
4509 
4510     double start_time_ms = os::elapsedTime() * 1000.0;
4511     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4512 
4513     ResourceMark rm;
4514     HandleMark   hm;
4515 
4516     G1ParScanThreadState            pss(_g1h, i);
4517     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4518     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4519     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4520 
4521     pss.set_evac_closure(&scan_evac_cl);
4522     pss.set_evac_failure_closure(&evac_failure_cl);
4523     pss.set_partial_scan_closure(&partial_scan_cl);
4524 
4525     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4526     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4527     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4528     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4529 
4530     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4531     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4532     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4533 
4534     OopsInHeapRegionClosure        *scan_root_cl;
4535     OopsInHeapRegionClosure        *scan_perm_cl;
4536 
4537     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4538       scan_root_cl = &scan_mark_root_cl;
4539       scan_perm_cl = &scan_mark_perm_cl;
4540     } else {
4541       scan_root_cl = &only_scan_root_cl;
4542       scan_perm_cl = &only_scan_perm_cl;
4543     }
4544 
4545     pss.start_strong_roots();
4546     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4547                                   SharedHeap::SO_AllClasses,
4548                                   scan_root_cl,
4549                                   &push_heap_rs_cl,
4550                                   scan_perm_cl,
4551                                   i);
4552     pss.end_strong_roots();
4553 
4554     {
4555       double start = os::elapsedTime();
4556       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4557       evac.do_void();
4558       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4559       double term_ms = pss.term_time()*1000.0;
4560       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4561       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4562     }
4563     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4564     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4565 
4566     // Clean up any par-expanded rem sets.
4567     HeapRegionRemSet::par_cleanup();
4568 
4569     if (ParallelGCVerbose) {
4570       MutexLocker x(stats_lock());
4571       pss.print_termination_stats(i);
4572     }
4573 
4574     assert(pss.refs()->is_empty(), "should be empty");
4575     double end_time_ms = os::elapsedTime() * 1000.0;
4576     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4577   }
4578 };
4579 
4580 // *** Common G1 Evacuation Stuff
4581 
4582 // This method is run in a GC worker.
4583 
4584 void
4585 G1CollectedHeap::
4586 g1_process_strong_roots(bool collecting_perm_gen,
4587                         SharedHeap::ScanningOption so,
4588                         OopClosure* scan_non_heap_roots,
4589                         OopsInHeapRegionClosure* scan_rs,
4590                         OopsInGenClosure* scan_perm,
4591                         int worker_i) {
4592   // First scan the strong roots, including the perm gen.
4593   double ext_roots_start = os::elapsedTime();
4594   double closure_app_time_sec = 0.0;
4595 
4596   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4597   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4598   buf_scan_perm.set_generation(perm_gen());
4599 
4600   // Walk the code cache w/o buffering, because StarTask cannot handle
4601   // unaligned oop locations.
4602   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4603 
4604   process_strong_roots(false, // no scoping; this is parallel code
4605                        collecting_perm_gen, so,
4606                        &buf_scan_non_heap_roots,
4607                        &eager_scan_code_roots,
4608                        &buf_scan_perm);
4609 
4610   // Now the ref_processor roots.
4611   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4612     // We need to treat the discovered reference lists as roots and
4613     // keep entries (which are added by the marking threads) on them
4614     // live until they can be processed at the end of marking.
4615     ref_processor()->weak_oops_do(&buf_scan_non_heap_roots);
4616     ref_processor()->oops_do(&buf_scan_non_heap_roots);
4617   }
4618 
4619   // Finish up any enqueued closure apps (attributed as object copy time).
4620   buf_scan_non_heap_roots.done();
4621   buf_scan_perm.done();
4622 
4623   double ext_roots_end = os::elapsedTime();
4624 
4625   g1_policy()->reset_obj_copy_time(worker_i);
4626   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4627                                 buf_scan_non_heap_roots.closure_app_seconds();
4628   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4629 
4630   double ext_root_time_ms =
4631     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4632 
4633   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4634 
4635   // Scan strong roots in mark stack.
4636   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4637     concurrent_mark()->oops_do(scan_non_heap_roots);
4638   }
4639   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4640   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4641 
4642   // Now scan the complement of the collection set.
4643   if (scan_rs != NULL) {
4644     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4645   }
4646 
4647   _process_strong_tasks->all_tasks_completed();
4648 }
4649 
4650 void
4651 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4652                                        OopClosure* non_root_closure) {
4653   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4654   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4655 }
4656 
4657 void G1CollectedHeap::evacuate_collection_set() {
4658   set_evacuation_failed(false);
4659 
4660   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4661   concurrent_g1_refine()->set_use_cache(false);
4662   concurrent_g1_refine()->clear_hot_cache_claimed_index();
4663 
4664   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4665   set_par_threads(n_workers);
4666   G1ParTask g1_par_task(this, n_workers, _task_queues);
4667 
4668   init_for_evac_failure(NULL);
4669 
4670   rem_set()->prepare_for_younger_refs_iterate(true);
4671 
4672   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4673   double start_par = os::elapsedTime();
4674   if (G1CollectedHeap::use_parallel_gc_threads()) {
4675     // The individual threads will set their evac-failure closures.
4676     StrongRootsScope srs(this);
4677     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4678     workers()->run_task(&g1_par_task);
4679   } else {
4680     StrongRootsScope srs(this);
4681     g1_par_task.work(0);
4682   }
4683 
4684   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4685   g1_policy()->record_par_time(par_time);
4686   set_par_threads(0);
4687 
4688   // Weak root processing.
4689   // Note: when JSR 292 is enabled and code blobs can contain
4690   // non-perm oops then we will need to process the code blobs
4691   // here too.
4692   {
4693     G1IsAliveClosure is_alive(this);
4694     G1KeepAliveClosure keep_alive(this);
4695     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4696   }
4697   release_gc_alloc_regions();
4698   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4699 
4700   concurrent_g1_refine()->clear_hot_cache();
4701   concurrent_g1_refine()->set_use_cache(true);
4702 
4703   finalize_for_evac_failure();
4704 
4705   // Must do this before removing self-forwarding pointers, which clears
4706   // the per-region evac-failure flags.
4707   concurrent_mark()->complete_marking_in_collection_set();
4708 
4709   if (evacuation_failed()) {
4710     remove_self_forwarding_pointers();
4711     if (PrintGCDetails) {
4712       gclog_or_tty->print(" (to-space overflow)");
4713     } else if (PrintGC) {
4714       gclog_or_tty->print("--");
4715     }
4716   }
4717 
4718   if (G1DeferredRSUpdate) {
4719     RedirtyLoggedCardTableEntryFastClosure redirty;
4720     dirty_card_queue_set().set_closure(&redirty);
4721     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4722 
4723     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4724     dcq.merge_bufferlists(&dirty_card_queue_set());
4725     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4726   }
4727   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4728 }
4729 
4730 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4731                                      size_t* pre_used,
4732                                      FreeRegionList* free_list,
4733                                      HumongousRegionSet* humongous_proxy_set,
4734                                      HRRSCleanupTask* hrrs_cleanup_task,
4735                                      bool par) {
4736   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
4737     if (hr->isHumongous()) {
4738       assert(hr->startsHumongous(), "we should only see starts humongous");
4739       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
4740     } else {
4741       free_region(hr, pre_used, free_list, par);
4742     }
4743   } else {
4744     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4745   }
4746 }
4747 
4748 void G1CollectedHeap::free_region(HeapRegion* hr,
4749                                   size_t* pre_used,
4750                                   FreeRegionList* free_list,
4751                                   bool par) {
4752   assert(!hr->isHumongous(), "this is only for non-humongous regions");
4753   assert(!hr->is_empty(), "the region should not be empty");
4754   assert(free_list != NULL, "pre-condition");
4755 
4756   *pre_used += hr->used();
4757   hr->hr_clear(par, true /* clear_space */);
4758   free_list->add_as_head(hr);
4759 }
4760 
4761 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4762                                      size_t* pre_used,
4763                                      FreeRegionList* free_list,
4764                                      HumongousRegionSet* humongous_proxy_set,
4765                                      bool par) {
4766   assert(hr->startsHumongous(), "this is only for starts humongous regions");
4767   assert(free_list != NULL, "pre-condition");
4768   assert(humongous_proxy_set != NULL, "pre-condition");
4769 
4770   size_t hr_used = hr->used();
4771   size_t hr_capacity = hr->capacity();
4772   size_t hr_pre_used = 0;
4773   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
4774   hr->set_notHumongous();
4775   free_region(hr, &hr_pre_used, free_list, par);
4776 
4777   size_t i = hr->hrs_index() + 1;
4778   size_t num = 1;
4779   while (i < n_regions()) {
4780     HeapRegion* curr_hr = region_at(i);
4781     if (!curr_hr->continuesHumongous()) {
4782       break;
4783     }
4784     curr_hr->set_notHumongous();
4785     free_region(curr_hr, &hr_pre_used, free_list, par);
4786     num += 1;
4787     i += 1;
4788   }
4789   assert(hr_pre_used == hr_used,
4790          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
4791                  "should be the same", hr_pre_used, hr_used));
4792   *pre_used += hr_pre_used;
4793 }
4794 
4795 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
4796                                        FreeRegionList* free_list,
4797                                        HumongousRegionSet* humongous_proxy_set,
4798                                        bool par) {
4799   if (pre_used > 0) {
4800     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
4801     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4802     assert(_summary_bytes_used >= pre_used,
4803            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
4804                    "should be >= pre_used: "SIZE_FORMAT,
4805                    _summary_bytes_used, pre_used));
4806     _summary_bytes_used -= pre_used;
4807   }
4808   if (free_list != NULL && !free_list->is_empty()) {
4809     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4810     _free_list.add_as_head(free_list);
4811   }
4812   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
4813     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4814     _humongous_set.update_from_proxy(humongous_proxy_set);
4815   }
4816 }
4817 
4818 class G1ParCleanupCTTask : public AbstractGangTask {
4819   CardTableModRefBS* _ct_bs;
4820   G1CollectedHeap* _g1h;
4821   HeapRegion* volatile _su_head;
4822 public:
4823   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4824                      G1CollectedHeap* g1h) :
4825     AbstractGangTask("G1 Par Cleanup CT Task"),
4826     _ct_bs(ct_bs), _g1h(g1h) { }
4827 
4828   void work(int i) {
4829     HeapRegion* r;
4830     while (r = _g1h->pop_dirty_cards_region()) {
4831       clear_cards(r);
4832     }
4833   }
4834 
4835   void clear_cards(HeapRegion* r) {
4836     // Cards of the survivors should have already been dirtied.
4837     if (!r->is_survivor()) {
4838       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4839     }
4840   }
4841 };
4842 
4843 #ifndef PRODUCT
4844 class G1VerifyCardTableCleanup: public HeapRegionClosure {
4845   G1CollectedHeap* _g1h;
4846   CardTableModRefBS* _ct_bs;
4847 public:
4848   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
4849     : _g1h(g1h), _ct_bs(ct_bs) { }
4850   virtual bool doHeapRegion(HeapRegion* r) {
4851     if (r->is_survivor()) {
4852       _g1h->verify_dirty_region(r);
4853     } else {
4854       _g1h->verify_not_dirty_region(r);
4855     }
4856     return false;
4857   }
4858 };
4859 
4860 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
4861   // All of the region should be clean.
4862   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
4863   MemRegion mr(hr->bottom(), hr->end());
4864   ct_bs->verify_not_dirty_region(mr);
4865 }
4866 
4867 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
4868   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
4869   // dirty allocated blocks as they allocate them. The thread that
4870   // retires each region and replaces it with a new one will do a
4871   // maximal allocation to fill in [pre_dummy_top(),end()] but will
4872   // not dirty that area (one less thing to have to do while holding
4873   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
4874   // is dirty.
4875   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4876   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
4877   ct_bs->verify_dirty_region(mr);
4878 }
4879 
4880 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
4881   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4882   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
4883     verify_dirty_region(hr);
4884   }
4885 }
4886 
4887 void G1CollectedHeap::verify_dirty_young_regions() {
4888   verify_dirty_young_list(_young_list->first_region());
4889   verify_dirty_young_list(_young_list->first_survivor_region());
4890 }
4891 #endif
4892 
4893 void G1CollectedHeap::cleanUpCardTable() {
4894   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4895   double start = os::elapsedTime();
4896 
4897   // Iterate over the dirty cards region list.
4898   G1ParCleanupCTTask cleanup_task(ct_bs, this);
4899 
4900   if (ParallelGCThreads > 0) {
4901     set_par_threads(workers()->total_workers());
4902     workers()->run_task(&cleanup_task);
4903     set_par_threads(0);
4904   } else {
4905     while (_dirty_cards_region_list) {
4906       HeapRegion* r = _dirty_cards_region_list;
4907       cleanup_task.clear_cards(r);
4908       _dirty_cards_region_list = r->get_next_dirty_cards_region();
4909       if (_dirty_cards_region_list == r) {
4910         // The last region.
4911         _dirty_cards_region_list = NULL;
4912       }
4913       r->set_next_dirty_cards_region(NULL);
4914     }
4915   }
4916 
4917   double elapsed = os::elapsedTime() - start;
4918   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4919 #ifndef PRODUCT
4920   if (G1VerifyCTCleanup || VerifyAfterGC) {
4921     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
4922     heap_region_iterate(&cleanup_verifier);
4923   }
4924 #endif
4925 }
4926 
4927 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4928   size_t pre_used = 0;
4929   FreeRegionList local_free_list("Local List for CSet Freeing");
4930 
4931   double young_time_ms     = 0.0;
4932   double non_young_time_ms = 0.0;
4933 
4934   // Since the collection set is a superset of the the young list,
4935   // all we need to do to clear the young list is clear its
4936   // head and length, and unlink any young regions in the code below
4937   _young_list->clear();
4938 
4939   G1CollectorPolicy* policy = g1_policy();
4940 
4941   double start_sec = os::elapsedTime();
4942   bool non_young = true;
4943 
4944   HeapRegion* cur = cs_head;
4945   int age_bound = -1;
4946   size_t rs_lengths = 0;
4947 
4948   while (cur != NULL) {
4949     assert(!is_on_master_free_list(cur), "sanity");
4950 
4951     if (non_young) {
4952       if (cur->is_young()) {
4953         double end_sec = os::elapsedTime();
4954         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4955         non_young_time_ms += elapsed_ms;
4956 
4957         start_sec = os::elapsedTime();
4958         non_young = false;
4959       }
4960     } else {
4961       double end_sec = os::elapsedTime();
4962       double elapsed_ms = (end_sec - start_sec) * 1000.0;
4963       young_time_ms += elapsed_ms;
4964 
4965       start_sec = os::elapsedTime();
4966       non_young = true;
4967     }
4968 
4969     rs_lengths += cur->rem_set()->occupied();
4970 
4971     HeapRegion* next = cur->next_in_collection_set();
4972     assert(cur->in_collection_set(), "bad CS");
4973     cur->set_next_in_collection_set(NULL);
4974     cur->set_in_collection_set(false);
4975 
4976     if (cur->is_young()) {
4977       int index = cur->young_index_in_cset();
4978       guarantee( index != -1, "invariant" );
4979       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4980       size_t words_survived = _surviving_young_words[index];
4981       cur->record_surv_words_in_group(words_survived);
4982 
4983       // At this point the we have 'popped' cur from the collection set
4984       // (linked via next_in_collection_set()) but it is still in the
4985       // young list (linked via next_young_region()). Clear the
4986       // _next_young_region field.
4987       cur->set_next_young_region(NULL);
4988     } else {
4989       int index = cur->young_index_in_cset();
4990       guarantee( index == -1, "invariant" );
4991     }
4992 
4993     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4994             (!cur->is_young() && cur->young_index_in_cset() == -1),
4995             "invariant" );
4996 
4997     if (!cur->evacuation_failed()) {
4998       // And the region is empty.
4999       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
5000       free_region(cur, &pre_used, &local_free_list, false /* par */);
5001     } else {
5002       cur->uninstall_surv_rate_group();
5003       if (cur->is_young())
5004         cur->set_young_index_in_cset(-1);
5005       cur->set_not_young();
5006       cur->set_evacuation_failed(false);
5007     }
5008     cur = next;
5009   }
5010 
5011   policy->record_max_rs_lengths(rs_lengths);
5012   policy->cset_regions_freed();
5013 
5014   double end_sec = os::elapsedTime();
5015   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5016   if (non_young)
5017     non_young_time_ms += elapsed_ms;
5018   else
5019     young_time_ms += elapsed_ms;
5020 
5021   update_sets_after_freeing_regions(pre_used, &local_free_list,
5022                                     NULL /* humongous_proxy_set */,
5023                                     false /* par */);
5024   policy->record_young_free_cset_time_ms(young_time_ms);
5025   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5026 }
5027 
5028 // This routine is similar to the above but does not record
5029 // any policy statistics or update free lists; we are abandoning
5030 // the current incremental collection set in preparation of a
5031 // full collection. After the full GC we will start to build up
5032 // the incremental collection set again.
5033 // This is only called when we're doing a full collection
5034 // and is immediately followed by the tearing down of the young list.
5035 
5036 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5037   HeapRegion* cur = cs_head;
5038 
5039   while (cur != NULL) {
5040     HeapRegion* next = cur->next_in_collection_set();
5041     assert(cur->in_collection_set(), "bad CS");
5042     cur->set_next_in_collection_set(NULL);
5043     cur->set_in_collection_set(false);
5044     cur->set_young_index_in_cset(-1);
5045     cur = next;
5046   }
5047 }
5048 
5049 void G1CollectedHeap::set_free_regions_coming() {
5050   if (G1ConcRegionFreeingVerbose) {
5051     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5052                            "setting free regions coming");
5053   }
5054 
5055   assert(!free_regions_coming(), "pre-condition");
5056   _free_regions_coming = true;
5057 }
5058 
5059 void G1CollectedHeap::reset_free_regions_coming() {
5060   {
5061     assert(free_regions_coming(), "pre-condition");
5062     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5063     _free_regions_coming = false;
5064     SecondaryFreeList_lock->notify_all();
5065   }
5066 
5067   if (G1ConcRegionFreeingVerbose) {
5068     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5069                            "reset free regions coming");
5070   }
5071 }
5072 
5073 void G1CollectedHeap::wait_while_free_regions_coming() {
5074   // Most of the time we won't have to wait, so let's do a quick test
5075   // first before we take the lock.
5076   if (!free_regions_coming()) {
5077     return;
5078   }
5079 
5080   if (G1ConcRegionFreeingVerbose) {
5081     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5082                            "waiting for free regions");
5083   }
5084 
5085   {
5086     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5087     while (free_regions_coming()) {
5088       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5089     }
5090   }
5091 
5092   if (G1ConcRegionFreeingVerbose) {
5093     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5094                            "done waiting for free regions");
5095   }
5096 }
5097 
5098 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5099   assert(heap_lock_held_for_gc(),
5100               "the heap lock should already be held by or for this thread");
5101   _young_list->push_region(hr);
5102   g1_policy()->set_region_short_lived(hr);
5103 }
5104 
5105 class NoYoungRegionsClosure: public HeapRegionClosure {
5106 private:
5107   bool _success;
5108 public:
5109   NoYoungRegionsClosure() : _success(true) { }
5110   bool doHeapRegion(HeapRegion* r) {
5111     if (r->is_young()) {
5112       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5113                              r->bottom(), r->end());
5114       _success = false;
5115     }
5116     return false;
5117   }
5118   bool success() { return _success; }
5119 };
5120 
5121 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5122   bool ret = _young_list->check_list_empty(check_sample);
5123 
5124   if (check_heap) {
5125     NoYoungRegionsClosure closure;
5126     heap_region_iterate(&closure);
5127     ret = ret && closure.success();
5128   }
5129 
5130   return ret;
5131 }
5132 
5133 void G1CollectedHeap::empty_young_list() {
5134   assert(heap_lock_held_for_gc(),
5135               "the heap lock should already be held by or for this thread");
5136 
5137   _young_list->empty_list();
5138 }
5139 
5140 // Done at the start of full GC.
5141 void G1CollectedHeap::tear_down_region_lists() {
5142   _free_list.remove_all();
5143 }
5144 
5145 class RegionResetter: public HeapRegionClosure {
5146   G1CollectedHeap* _g1h;
5147   FreeRegionList _local_free_list;
5148 
5149 public:
5150   RegionResetter() : _g1h(G1CollectedHeap::heap()),
5151                      _local_free_list("Local Free List for RegionResetter") { }
5152 
5153   bool doHeapRegion(HeapRegion* r) {
5154     if (r->continuesHumongous()) return false;
5155     if (r->top() > r->bottom()) {
5156       if (r->top() < r->end()) {
5157         Copy::fill_to_words(r->top(),
5158                           pointer_delta(r->end(), r->top()));
5159       }
5160     } else {
5161       assert(r->is_empty(), "tautology");
5162       _local_free_list.add_as_tail(r);
5163     }
5164     return false;
5165   }
5166 
5167   void update_free_lists() {
5168     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
5169                                             false /* par */);
5170   }
5171 };
5172 
5173 // Done at the end of full GC.
5174 void G1CollectedHeap::rebuild_region_lists() {
5175   // This needs to go at the end of the full GC.
5176   RegionResetter rs;
5177   heap_region_iterate(&rs);
5178   rs.update_free_lists();
5179 }
5180 
5181 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5182   _refine_cte_cl->set_concurrent(concurrent);
5183 }
5184 
5185 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5186   HeapRegion* hr = heap_region_containing(p);
5187   if (hr == NULL) {
5188     return is_in_permanent(p);
5189   } else {
5190     return hr->is_in(p);
5191   }
5192 }
5193 
5194 // Methods for the mutator alloc region
5195 
5196 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5197                                                       bool force) {
5198   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5199   assert(!force || g1_policy()->can_expand_young_list(),
5200          "if force is true we should be able to expand the young list");
5201   bool young_list_full = g1_policy()->is_young_list_full();
5202   if (force || !young_list_full) {
5203     HeapRegion* new_alloc_region = new_region(word_size,
5204                                               false /* do_expand */);
5205     if (new_alloc_region != NULL) {
5206       g1_policy()->update_region_num(true /* next_is_young */);
5207       set_region_short_lived_locked(new_alloc_region);
5208       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5209       g1mm()->update_eden_counters();
5210       return new_alloc_region;
5211     }
5212   }
5213   return NULL;
5214 }
5215 
5216 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5217                                                   size_t allocated_bytes) {
5218   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5219   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
5220 
5221   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5222   _summary_bytes_used += allocated_bytes;
5223   _hr_printer.retire(alloc_region);
5224 }
5225 
5226 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
5227                                                     bool force) {
5228   return _g1h->new_mutator_alloc_region(word_size, force);
5229 }
5230 
5231 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
5232                                        size_t allocated_bytes) {
5233   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
5234 }
5235 
5236 // Methods for the GC alloc regions
5237 
5238 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5239                                                  size_t count,
5240                                                  GCAllocPurpose ap) {
5241   assert(FreeList_lock->owned_by_self(), "pre-condition");
5242 
5243   if (count < g1_policy()->max_regions(ap)) {
5244     HeapRegion* new_alloc_region = new_region(word_size,
5245                                               true /* do_expand */);
5246     if (new_alloc_region != NULL) {
5247       // We really only need to do this for old regions given that we
5248       // should never scan survivors. But it doesn't hurt to do it
5249       // for survivors too.
5250       new_alloc_region->set_saved_mark();
5251       if (ap == GCAllocForSurvived) {
5252         new_alloc_region->set_survivor();
5253         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
5254       } else {
5255         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
5256       }
5257       return new_alloc_region;
5258     } else {
5259       g1_policy()->note_alloc_region_limit_reached(ap);
5260     }
5261   }
5262   return NULL;
5263 }
5264 
5265 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5266                                              size_t allocated_bytes,
5267                                              GCAllocPurpose ap) {
5268   alloc_region->note_end_of_copying();
5269   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5270   if (ap == GCAllocForSurvived) {
5271     young_list()->add_survivor_region(alloc_region);
5272   }
5273   _hr_printer.retire(alloc_region);
5274 }
5275 
5276 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
5277                                                        bool force) {
5278   assert(!force, "not supported for GC alloc regions");
5279   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
5280 }
5281 
5282 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
5283                                           size_t allocated_bytes) {
5284   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5285                                GCAllocForSurvived);
5286 }
5287 
5288 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
5289                                                   bool force) {
5290   assert(!force, "not supported for GC alloc regions");
5291   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
5292 }
5293 
5294 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
5295                                      size_t allocated_bytes) {
5296   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5297                                GCAllocForTenured);
5298 }
5299 // Heap region set verification
5300 
5301 class VerifyRegionListsClosure : public HeapRegionClosure {
5302 private:
5303   HumongousRegionSet* _humongous_set;
5304   FreeRegionList*     _free_list;
5305   size_t              _region_count;
5306 
5307 public:
5308   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
5309                            FreeRegionList* free_list) :
5310     _humongous_set(humongous_set), _free_list(free_list),
5311     _region_count(0) { }
5312 
5313   size_t region_count()      { return _region_count;      }
5314 
5315   bool doHeapRegion(HeapRegion* hr) {
5316     _region_count += 1;
5317 
5318     if (hr->continuesHumongous()) {
5319       return false;
5320     }
5321 
5322     if (hr->is_young()) {
5323       // TODO
5324     } else if (hr->startsHumongous()) {
5325       _humongous_set->verify_next_region(hr);
5326     } else if (hr->is_empty()) {
5327       _free_list->verify_next_region(hr);
5328     }
5329     return false;
5330   }
5331 };
5332 
5333 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
5334                                              HeapWord* bottom) {
5335   HeapWord* end = bottom + HeapRegion::GrainWords;
5336   MemRegion mr(bottom, end);
5337   assert(_g1_reserved.contains(mr), "invariant");
5338   // This might return NULL if the allocation fails
5339   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
5340 }
5341 
5342 void G1CollectedHeap::verify_region_sets() {
5343   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5344 
5345   // First, check the explicit lists.
5346   _free_list.verify();
5347   {
5348     // Given that a concurrent operation might be adding regions to
5349     // the secondary free list we have to take the lock before
5350     // verifying it.
5351     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5352     _secondary_free_list.verify();
5353   }
5354   _humongous_set.verify();
5355 
5356   // If a concurrent region freeing operation is in progress it will
5357   // be difficult to correctly attributed any free regions we come
5358   // across to the correct free list given that they might belong to
5359   // one of several (free_list, secondary_free_list, any local lists,
5360   // etc.). So, if that's the case we will skip the rest of the
5361   // verification operation. Alternatively, waiting for the concurrent
5362   // operation to complete will have a non-trivial effect on the GC's
5363   // operation (no concurrent operation will last longer than the
5364   // interval between two calls to verification) and it might hide
5365   // any issues that we would like to catch during testing.
5366   if (free_regions_coming()) {
5367     return;
5368   }
5369 
5370   // Make sure we append the secondary_free_list on the free_list so
5371   // that all free regions we will come across can be safely
5372   // attributed to the free_list.
5373   append_secondary_free_list_if_not_empty_with_lock();
5374 
5375   // Finally, make sure that the region accounting in the lists is
5376   // consistent with what we see in the heap.
5377   _humongous_set.verify_start();
5378   _free_list.verify_start();
5379 
5380   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
5381   heap_region_iterate(&cl);
5382 
5383   _humongous_set.verify_end();
5384   _free_list.verify_end();
5385 }