1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/methodOop.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/top.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_windows
  48 # include "thread_windows.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_bsd
  51 # include "thread_bsd.inline.hpp"
  52 #endif
  53 #ifdef COMPILER2
  54 #include "opto/runtime.hpp"
  55 #endif
  56 
  57 // Declaration and definition of StubGenerator (no .hpp file).
  58 // For a more detailed description of the stub routine structure
  59 // see the comment in stubRoutines.hpp
  60 
  61 #define __ _masm->
  62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  63 #define a__ ((Assembler*)_masm)->
  64 
  65 #ifdef PRODUCT
  66 #define BLOCK_COMMENT(str) /* nothing */
  67 #else
  68 #define BLOCK_COMMENT(str) __ block_comment(str)
  69 #endif
  70 
  71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  72 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  73 
  74 // Stub Code definitions
  75 
  76 static address handle_unsafe_access() {
  77   JavaThread* thread = JavaThread::current();
  78   address pc = thread->saved_exception_pc();
  79   // pc is the instruction which we must emulate
  80   // doing a no-op is fine:  return garbage from the load
  81   // therefore, compute npc
  82   address npc = Assembler::locate_next_instruction(pc);
  83 
  84   // request an async exception
  85   thread->set_pending_unsafe_access_error();
  86 
  87   // return address of next instruction to execute
  88   return npc;
  89 }
  90 
  91 class StubGenerator: public StubCodeGenerator {
  92  private:
  93 
  94 #ifdef PRODUCT
  95 #define inc_counter_np(counter) (0)
  96 #else
  97   void inc_counter_np_(int& counter) {
  98     // This can destroy rscratch1 if counter is far from the code cache
  99     __ incrementl(ExternalAddress((address)&counter));
 100   }
 101 #define inc_counter_np(counter) \
 102   BLOCK_COMMENT("inc_counter " #counter); \
 103   inc_counter_np_(counter);
 104 #endif
 105 
 106   // Call stubs are used to call Java from C
 107   //
 108   // Linux Arguments:
 109   //    c_rarg0:   call wrapper address                   address
 110   //    c_rarg1:   result                                 address
 111   //    c_rarg2:   result type                            BasicType
 112   //    c_rarg3:   method                                 methodOop
 113   //    c_rarg4:   (interpreter) entry point              address
 114   //    c_rarg5:   parameters                             intptr_t*
 115   //    16(rbp): parameter size (in words)              int
 116   //    24(rbp): thread                                 Thread*
 117   //
 118   //     [ return_from_Java     ] <--- rsp
 119   //     [ argument word n      ]
 120   //      ...
 121   // -12 [ argument word 1      ]
 122   // -11 [ saved r15            ] <--- rsp_after_call
 123   // -10 [ saved r14            ]
 124   //  -9 [ saved r13            ]
 125   //  -8 [ saved r12            ]
 126   //  -7 [ saved rbx            ]
 127   //  -6 [ call wrapper         ]
 128   //  -5 [ result               ]
 129   //  -4 [ result type          ]
 130   //  -3 [ method               ]
 131   //  -2 [ entry point          ]
 132   //  -1 [ parameters           ]
 133   //   0 [ saved rbp            ] <--- rbp
 134   //   1 [ return address       ]
 135   //   2 [ parameter size       ]
 136   //   3 [ thread               ]
 137   //
 138   // Windows Arguments:
 139   //    c_rarg0:   call wrapper address                   address
 140   //    c_rarg1:   result                                 address
 141   //    c_rarg2:   result type                            BasicType
 142   //    c_rarg3:   method                                 methodOop
 143   //    48(rbp): (interpreter) entry point              address
 144   //    56(rbp): parameters                             intptr_t*
 145   //    64(rbp): parameter size (in words)              int
 146   //    72(rbp): thread                                 Thread*
 147   //
 148   //     [ return_from_Java     ] <--- rsp
 149   //     [ argument word n      ]
 150   //      ...
 151   // -28 [ argument word 1      ]
 152   // -27 [ saved xmm15          ] <--- rsp_after_call
 153   //     [ saved xmm7-xmm14     ]
 154   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 155   //  -7 [ saved r15            ]
 156   //  -6 [ saved r14            ]
 157   //  -5 [ saved r13            ]
 158   //  -4 [ saved r12            ]
 159   //  -3 [ saved rdi            ]
 160   //  -2 [ saved rsi            ]
 161   //  -1 [ saved rbx            ]
 162   //   0 [ saved rbp            ] <--- rbp
 163   //   1 [ return address       ]
 164   //   2 [ call wrapper         ]
 165   //   3 [ result               ]
 166   //   4 [ result type          ]
 167   //   5 [ method               ]
 168   //   6 [ entry point          ]
 169   //   7 [ parameters           ]
 170   //   8 [ parameter size       ]
 171   //   9 [ thread               ]
 172   //
 173   //    Windows reserves the callers stack space for arguments 1-4.
 174   //    We spill c_rarg0-c_rarg3 to this space.
 175 
 176   // Call stub stack layout word offsets from rbp
 177   enum call_stub_layout {
 178 #ifdef _WIN64
 179     xmm_save_first     = 6,  // save from xmm6
 180     xmm_save_last      = 15, // to xmm15
 181     xmm_save_base      = -9,
 182     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 183     r15_off            = -7,
 184     r14_off            = -6,
 185     r13_off            = -5,
 186     r12_off            = -4,
 187     rdi_off            = -3,
 188     rsi_off            = -2,
 189     rbx_off            = -1,
 190     rbp_off            =  0,
 191     retaddr_off        =  1,
 192     call_wrapper_off   =  2,
 193     result_off         =  3,
 194     result_type_off    =  4,
 195     method_off         =  5,
 196     entry_point_off    =  6,
 197     parameters_off     =  7,
 198     parameter_size_off =  8,
 199     thread_off         =  9
 200 #else
 201     rsp_after_call_off = -12,
 202     mxcsr_off          = rsp_after_call_off,
 203     r15_off            = -11,
 204     r14_off            = -10,
 205     r13_off            = -9,
 206     r12_off            = -8,
 207     rbx_off            = -7,
 208     call_wrapper_off   = -6,
 209     result_off         = -5,
 210     result_type_off    = -4,
 211     method_off         = -3,
 212     entry_point_off    = -2,
 213     parameters_off     = -1,
 214     rbp_off            =  0,
 215     retaddr_off        =  1,
 216     parameter_size_off =  2,
 217     thread_off         =  3
 218 #endif
 219   };
 220 
 221 #ifdef _WIN64
 222   Address xmm_save(int reg) {
 223     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 224     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 225   }
 226 #endif
 227 
 228   address generate_call_stub(address& return_address) {
 229     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 230            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 231            "adjust this code");
 232     StubCodeMark mark(this, "StubRoutines", "call_stub");
 233     address start = __ pc();
 234 
 235     // same as in generate_catch_exception()!
 236     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 237 
 238     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 239     const Address result        (rbp, result_off         * wordSize);
 240     const Address result_type   (rbp, result_type_off    * wordSize);
 241     const Address method        (rbp, method_off         * wordSize);
 242     const Address entry_point   (rbp, entry_point_off    * wordSize);
 243     const Address parameters    (rbp, parameters_off     * wordSize);
 244     const Address parameter_size(rbp, parameter_size_off * wordSize);
 245 
 246     // same as in generate_catch_exception()!
 247     const Address thread        (rbp, thread_off         * wordSize);
 248 
 249     const Address r15_save(rbp, r15_off * wordSize);
 250     const Address r14_save(rbp, r14_off * wordSize);
 251     const Address r13_save(rbp, r13_off * wordSize);
 252     const Address r12_save(rbp, r12_off * wordSize);
 253     const Address rbx_save(rbp, rbx_off * wordSize);
 254 
 255     // stub code
 256     __ enter();
 257     __ subptr(rsp, -rsp_after_call_off * wordSize);
 258 
 259     // save register parameters
 260 #ifndef _WIN64
 261     __ movptr(parameters,   c_rarg5); // parameters
 262     __ movptr(entry_point,  c_rarg4); // entry_point
 263 #endif
 264 
 265     __ movptr(method,       c_rarg3); // method
 266     __ movl(result_type,  c_rarg2);   // result type
 267     __ movptr(result,       c_rarg1); // result
 268     __ movptr(call_wrapper, c_rarg0); // call wrapper
 269 
 270     // save regs belonging to calling function
 271     __ movptr(rbx_save, rbx);
 272     __ movptr(r12_save, r12);
 273     __ movptr(r13_save, r13);
 274     __ movptr(r14_save, r14);
 275     __ movptr(r15_save, r15);
 276 #ifdef _WIN64
 277     for (int i = 6; i <= 15; i++) {
 278       __ movdqu(xmm_save(i), as_XMMRegister(i));
 279     }
 280 
 281     const Address rdi_save(rbp, rdi_off * wordSize);
 282     const Address rsi_save(rbp, rsi_off * wordSize);
 283 
 284     __ movptr(rsi_save, rsi);
 285     __ movptr(rdi_save, rdi);
 286 #else
 287     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 288     {
 289       Label skip_ldmx;
 290       __ stmxcsr(mxcsr_save);
 291       __ movl(rax, mxcsr_save);
 292       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 293       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
 294       __ cmp32(rax, mxcsr_std);
 295       __ jcc(Assembler::equal, skip_ldmx);
 296       __ ldmxcsr(mxcsr_std);
 297       __ bind(skip_ldmx);
 298     }
 299 #endif
 300 
 301     // Load up thread register
 302     __ movptr(r15_thread, thread);
 303     __ reinit_heapbase();
 304 
 305 #ifdef ASSERT
 306     // make sure we have no pending exceptions
 307     {
 308       Label L;
 309       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 310       __ jcc(Assembler::equal, L);
 311       __ stop("StubRoutines::call_stub: entered with pending exception");
 312       __ bind(L);
 313     }
 314 #endif
 315 
 316     // pass parameters if any
 317     BLOCK_COMMENT("pass parameters if any");
 318     Label parameters_done;
 319     __ movl(c_rarg3, parameter_size);
 320     __ testl(c_rarg3, c_rarg3);
 321     __ jcc(Assembler::zero, parameters_done);
 322 
 323     Label loop;
 324     __ movptr(c_rarg2, parameters);       // parameter pointer
 325     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 326     __ BIND(loop);
 327     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 328     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 329     __ decrementl(c_rarg1);             // decrement counter
 330     __ push(rax);                       // pass parameter
 331     __ jcc(Assembler::notZero, loop);
 332 
 333     // call Java function
 334     __ BIND(parameters_done);
 335     __ movptr(rbx, method);             // get methodOop
 336     __ movptr(c_rarg1, entry_point);    // get entry_point
 337     __ mov(r13, rsp);                   // set sender sp
 338     BLOCK_COMMENT("call Java function");
 339     __ call(c_rarg1);
 340 
 341     BLOCK_COMMENT("call_stub_return_address:");
 342     return_address = __ pc();
 343 
 344     // store result depending on type (everything that is not
 345     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 346     __ movptr(c_rarg0, result);
 347     Label is_long, is_float, is_double, exit;
 348     __ movl(c_rarg1, result_type);
 349     __ cmpl(c_rarg1, T_OBJECT);
 350     __ jcc(Assembler::equal, is_long);
 351     __ cmpl(c_rarg1, T_LONG);
 352     __ jcc(Assembler::equal, is_long);
 353     __ cmpl(c_rarg1, T_FLOAT);
 354     __ jcc(Assembler::equal, is_float);
 355     __ cmpl(c_rarg1, T_DOUBLE);
 356     __ jcc(Assembler::equal, is_double);
 357 
 358     // handle T_INT case
 359     __ movl(Address(c_rarg0, 0), rax);
 360 
 361     __ BIND(exit);
 362 
 363     // pop parameters
 364     __ lea(rsp, rsp_after_call);
 365 
 366 #ifdef ASSERT
 367     // verify that threads correspond
 368     {
 369       Label L, S;
 370       __ cmpptr(r15_thread, thread);
 371       __ jcc(Assembler::notEqual, S);
 372       __ get_thread(rbx);
 373       __ cmpptr(r15_thread, rbx);
 374       __ jcc(Assembler::equal, L);
 375       __ bind(S);
 376       __ jcc(Assembler::equal, L);
 377       __ stop("StubRoutines::call_stub: threads must correspond");
 378       __ bind(L);
 379     }
 380 #endif
 381 
 382     // restore regs belonging to calling function
 383 #ifdef _WIN64
 384     for (int i = 15; i >= 6; i--) {
 385       __ movdqu(as_XMMRegister(i), xmm_save(i));
 386     }
 387 #endif
 388     __ movptr(r15, r15_save);
 389     __ movptr(r14, r14_save);
 390     __ movptr(r13, r13_save);
 391     __ movptr(r12, r12_save);
 392     __ movptr(rbx, rbx_save);
 393 
 394 #ifdef _WIN64
 395     __ movptr(rdi, rdi_save);
 396     __ movptr(rsi, rsi_save);
 397 #else
 398     __ ldmxcsr(mxcsr_save);
 399 #endif
 400 
 401     // restore rsp
 402     __ addptr(rsp, -rsp_after_call_off * wordSize);
 403 
 404     // return
 405     __ pop(rbp);
 406     __ ret(0);
 407 
 408     // handle return types different from T_INT
 409     __ BIND(is_long);
 410     __ movq(Address(c_rarg0, 0), rax);
 411     __ jmp(exit);
 412 
 413     __ BIND(is_float);
 414     __ movflt(Address(c_rarg0, 0), xmm0);
 415     __ jmp(exit);
 416 
 417     __ BIND(is_double);
 418     __ movdbl(Address(c_rarg0, 0), xmm0);
 419     __ jmp(exit);
 420 
 421     return start;
 422   }
 423 
 424   // Return point for a Java call if there's an exception thrown in
 425   // Java code.  The exception is caught and transformed into a
 426   // pending exception stored in JavaThread that can be tested from
 427   // within the VM.
 428   //
 429   // Note: Usually the parameters are removed by the callee. In case
 430   // of an exception crossing an activation frame boundary, that is
 431   // not the case if the callee is compiled code => need to setup the
 432   // rsp.
 433   //
 434   // rax: exception oop
 435 
 436   address generate_catch_exception() {
 437     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 438     address start = __ pc();
 439 
 440     // same as in generate_call_stub():
 441     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 442     const Address thread        (rbp, thread_off         * wordSize);
 443 
 444 #ifdef ASSERT
 445     // verify that threads correspond
 446     {
 447       Label L, S;
 448       __ cmpptr(r15_thread, thread);
 449       __ jcc(Assembler::notEqual, S);
 450       __ get_thread(rbx);
 451       __ cmpptr(r15_thread, rbx);
 452       __ jcc(Assembler::equal, L);
 453       __ bind(S);
 454       __ stop("StubRoutines::catch_exception: threads must correspond");
 455       __ bind(L);
 456     }
 457 #endif
 458 
 459     // set pending exception
 460     __ verify_oop(rax);
 461 
 462     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 463     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 464     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 465     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 466 
 467     // complete return to VM
 468     assert(StubRoutines::_call_stub_return_address != NULL,
 469            "_call_stub_return_address must have been generated before");
 470     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 471 
 472     return start;
 473   }
 474 
 475   // Continuation point for runtime calls returning with a pending
 476   // exception.  The pending exception check happened in the runtime
 477   // or native call stub.  The pending exception in Thread is
 478   // converted into a Java-level exception.
 479   //
 480   // Contract with Java-level exception handlers:
 481   // rax: exception
 482   // rdx: throwing pc
 483   //
 484   // NOTE: At entry of this stub, exception-pc must be on stack !!
 485 
 486   address generate_forward_exception() {
 487     StubCodeMark mark(this, "StubRoutines", "forward exception");
 488     address start = __ pc();
 489 
 490     // Upon entry, the sp points to the return address returning into
 491     // Java (interpreted or compiled) code; i.e., the return address
 492     // becomes the throwing pc.
 493     //
 494     // Arguments pushed before the runtime call are still on the stack
 495     // but the exception handler will reset the stack pointer ->
 496     // ignore them.  A potential result in registers can be ignored as
 497     // well.
 498 
 499 #ifdef ASSERT
 500     // make sure this code is only executed if there is a pending exception
 501     {
 502       Label L;
 503       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 504       __ jcc(Assembler::notEqual, L);
 505       __ stop("StubRoutines::forward exception: no pending exception (1)");
 506       __ bind(L);
 507     }
 508 #endif
 509 
 510     // compute exception handler into rbx
 511     __ movptr(c_rarg0, Address(rsp, 0));
 512     BLOCK_COMMENT("call exception_handler_for_return_address");
 513     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 514                          SharedRuntime::exception_handler_for_return_address),
 515                     r15_thread, c_rarg0);
 516     __ mov(rbx, rax);
 517 
 518     // setup rax & rdx, remove return address & clear pending exception
 519     __ pop(rdx);
 520     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 521     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 522 
 523 #ifdef ASSERT
 524     // make sure exception is set
 525     {
 526       Label L;
 527       __ testptr(rax, rax);
 528       __ jcc(Assembler::notEqual, L);
 529       __ stop("StubRoutines::forward exception: no pending exception (2)");
 530       __ bind(L);
 531     }
 532 #endif
 533 
 534     // continue at exception handler (return address removed)
 535     // rax: exception
 536     // rbx: exception handler
 537     // rdx: throwing pc
 538     __ verify_oop(rax);
 539     __ jmp(rbx);
 540 
 541     return start;
 542   }
 543 
 544   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 545   //
 546   // Arguments :
 547   //    c_rarg0: exchange_value
 548   //    c_rarg0: dest
 549   //
 550   // Result:
 551   //    *dest <- ex, return (orig *dest)
 552   address generate_atomic_xchg() {
 553     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 554     address start = __ pc();
 555 
 556     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 557     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 558     __ ret(0);
 559 
 560     return start;
 561   }
 562 
 563   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 564   //
 565   // Arguments :
 566   //    c_rarg0: exchange_value
 567   //    c_rarg1: dest
 568   //
 569   // Result:
 570   //    *dest <- ex, return (orig *dest)
 571   address generate_atomic_xchg_ptr() {
 572     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 573     address start = __ pc();
 574 
 575     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 576     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 577     __ ret(0);
 578 
 579     return start;
 580   }
 581 
 582   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 583   //                                         jint compare_value)
 584   //
 585   // Arguments :
 586   //    c_rarg0: exchange_value
 587   //    c_rarg1: dest
 588   //    c_rarg2: compare_value
 589   //
 590   // Result:
 591   //    if ( compare_value == *dest ) {
 592   //       *dest = exchange_value
 593   //       return compare_value;
 594   //    else
 595   //       return *dest;
 596   address generate_atomic_cmpxchg() {
 597     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 598     address start = __ pc();
 599 
 600     __ movl(rax, c_rarg2);
 601    if ( os::is_MP() ) __ lock();
 602     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 603     __ ret(0);
 604 
 605     return start;
 606   }
 607 
 608   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
 609   //                                             volatile jlong* dest,
 610   //                                             jlong compare_value)
 611   // Arguments :
 612   //    c_rarg0: exchange_value
 613   //    c_rarg1: dest
 614   //    c_rarg2: compare_value
 615   //
 616   // Result:
 617   //    if ( compare_value == *dest ) {
 618   //       *dest = exchange_value
 619   //       return compare_value;
 620   //    else
 621   //       return *dest;
 622   address generate_atomic_cmpxchg_long() {
 623     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 624     address start = __ pc();
 625 
 626     __ movq(rax, c_rarg2);
 627    if ( os::is_MP() ) __ lock();
 628     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 629     __ ret(0);
 630 
 631     return start;
 632   }
 633 
 634   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 635   //
 636   // Arguments :
 637   //    c_rarg0: add_value
 638   //    c_rarg1: dest
 639   //
 640   // Result:
 641   //    *dest += add_value
 642   //    return *dest;
 643   address generate_atomic_add() {
 644     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 645     address start = __ pc();
 646 
 647     __ movl(rax, c_rarg0);
 648    if ( os::is_MP() ) __ lock();
 649     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 650     __ addl(rax, c_rarg0);
 651     __ ret(0);
 652 
 653     return start;
 654   }
 655 
 656   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 657   //
 658   // Arguments :
 659   //    c_rarg0: add_value
 660   //    c_rarg1: dest
 661   //
 662   // Result:
 663   //    *dest += add_value
 664   //    return *dest;
 665   address generate_atomic_add_ptr() {
 666     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 667     address start = __ pc();
 668 
 669     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 670    if ( os::is_MP() ) __ lock();
 671     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 672     __ addptr(rax, c_rarg0);
 673     __ ret(0);
 674 
 675     return start;
 676   }
 677 
 678   // Support for intptr_t OrderAccess::fence()
 679   //
 680   // Arguments :
 681   //
 682   // Result:
 683   address generate_orderaccess_fence() {
 684     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 685     address start = __ pc();
 686     __ membar(Assembler::StoreLoad);
 687     __ ret(0);
 688 
 689     return start;
 690   }
 691 
 692   // Support for intptr_t get_previous_fp()
 693   //
 694   // This routine is used to find the previous frame pointer for the
 695   // caller (current_frame_guess). This is used as part of debugging
 696   // ps() is seemingly lost trying to find frames.
 697   // This code assumes that caller current_frame_guess) has a frame.
 698   address generate_get_previous_fp() {
 699     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 700     const Address old_fp(rbp, 0);
 701     const Address older_fp(rax, 0);
 702     address start = __ pc();
 703 
 704     __ enter();
 705     __ movptr(rax, old_fp); // callers fp
 706     __ movptr(rax, older_fp); // the frame for ps()
 707     __ pop(rbp);
 708     __ ret(0);
 709 
 710     return start;
 711   }
 712 
 713   //----------------------------------------------------------------------------------------------------
 714   // Support for void verify_mxcsr()
 715   //
 716   // This routine is used with -Xcheck:jni to verify that native
 717   // JNI code does not return to Java code without restoring the
 718   // MXCSR register to our expected state.
 719 
 720   address generate_verify_mxcsr() {
 721     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 722     address start = __ pc();
 723 
 724     const Address mxcsr_save(rsp, 0);
 725 
 726     if (CheckJNICalls) {
 727       Label ok_ret;
 728       __ push(rax);
 729       __ subptr(rsp, wordSize);      // allocate a temp location
 730       __ stmxcsr(mxcsr_save);
 731       __ movl(rax, mxcsr_save);
 732       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 733       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
 734       __ jcc(Assembler::equal, ok_ret);
 735 
 736       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 737 
 738       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
 739 
 740       __ bind(ok_ret);
 741       __ addptr(rsp, wordSize);
 742       __ pop(rax);
 743     }
 744 
 745     __ ret(0);
 746 
 747     return start;
 748   }
 749 
 750   address generate_f2i_fixup() {
 751     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 752     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 753 
 754     address start = __ pc();
 755 
 756     Label L;
 757 
 758     __ push(rax);
 759     __ push(c_rarg3);
 760     __ push(c_rarg2);
 761     __ push(c_rarg1);
 762 
 763     __ movl(rax, 0x7f800000);
 764     __ xorl(c_rarg3, c_rarg3);
 765     __ movl(c_rarg2, inout);
 766     __ movl(c_rarg1, c_rarg2);
 767     __ andl(c_rarg1, 0x7fffffff);
 768     __ cmpl(rax, c_rarg1); // NaN? -> 0
 769     __ jcc(Assembler::negative, L);
 770     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 771     __ movl(c_rarg3, 0x80000000);
 772     __ movl(rax, 0x7fffffff);
 773     __ cmovl(Assembler::positive, c_rarg3, rax);
 774 
 775     __ bind(L);
 776     __ movptr(inout, c_rarg3);
 777 
 778     __ pop(c_rarg1);
 779     __ pop(c_rarg2);
 780     __ pop(c_rarg3);
 781     __ pop(rax);
 782 
 783     __ ret(0);
 784 
 785     return start;
 786   }
 787 
 788   address generate_f2l_fixup() {
 789     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 790     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 791     address start = __ pc();
 792 
 793     Label L;
 794 
 795     __ push(rax);
 796     __ push(c_rarg3);
 797     __ push(c_rarg2);
 798     __ push(c_rarg1);
 799 
 800     __ movl(rax, 0x7f800000);
 801     __ xorl(c_rarg3, c_rarg3);
 802     __ movl(c_rarg2, inout);
 803     __ movl(c_rarg1, c_rarg2);
 804     __ andl(c_rarg1, 0x7fffffff);
 805     __ cmpl(rax, c_rarg1); // NaN? -> 0
 806     __ jcc(Assembler::negative, L);
 807     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 808     __ mov64(c_rarg3, 0x8000000000000000);
 809     __ mov64(rax, 0x7fffffffffffffff);
 810     __ cmov(Assembler::positive, c_rarg3, rax);
 811 
 812     __ bind(L);
 813     __ movptr(inout, c_rarg3);
 814 
 815     __ pop(c_rarg1);
 816     __ pop(c_rarg2);
 817     __ pop(c_rarg3);
 818     __ pop(rax);
 819 
 820     __ ret(0);
 821 
 822     return start;
 823   }
 824 
 825   address generate_d2i_fixup() {
 826     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 827     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 828 
 829     address start = __ pc();
 830 
 831     Label L;
 832 
 833     __ push(rax);
 834     __ push(c_rarg3);
 835     __ push(c_rarg2);
 836     __ push(c_rarg1);
 837     __ push(c_rarg0);
 838 
 839     __ movl(rax, 0x7ff00000);
 840     __ movq(c_rarg2, inout);
 841     __ movl(c_rarg3, c_rarg2);
 842     __ mov(c_rarg1, c_rarg2);
 843     __ mov(c_rarg0, c_rarg2);
 844     __ negl(c_rarg3);
 845     __ shrptr(c_rarg1, 0x20);
 846     __ orl(c_rarg3, c_rarg2);
 847     __ andl(c_rarg1, 0x7fffffff);
 848     __ xorl(c_rarg2, c_rarg2);
 849     __ shrl(c_rarg3, 0x1f);
 850     __ orl(c_rarg1, c_rarg3);
 851     __ cmpl(rax, c_rarg1);
 852     __ jcc(Assembler::negative, L); // NaN -> 0
 853     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 854     __ movl(c_rarg2, 0x80000000);
 855     __ movl(rax, 0x7fffffff);
 856     __ cmov(Assembler::positive, c_rarg2, rax);
 857 
 858     __ bind(L);
 859     __ movptr(inout, c_rarg2);
 860 
 861     __ pop(c_rarg0);
 862     __ pop(c_rarg1);
 863     __ pop(c_rarg2);
 864     __ pop(c_rarg3);
 865     __ pop(rax);
 866 
 867     __ ret(0);
 868 
 869     return start;
 870   }
 871 
 872   address generate_d2l_fixup() {
 873     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 874     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 875 
 876     address start = __ pc();
 877 
 878     Label L;
 879 
 880     __ push(rax);
 881     __ push(c_rarg3);
 882     __ push(c_rarg2);
 883     __ push(c_rarg1);
 884     __ push(c_rarg0);
 885 
 886     __ movl(rax, 0x7ff00000);
 887     __ movq(c_rarg2, inout);
 888     __ movl(c_rarg3, c_rarg2);
 889     __ mov(c_rarg1, c_rarg2);
 890     __ mov(c_rarg0, c_rarg2);
 891     __ negl(c_rarg3);
 892     __ shrptr(c_rarg1, 0x20);
 893     __ orl(c_rarg3, c_rarg2);
 894     __ andl(c_rarg1, 0x7fffffff);
 895     __ xorl(c_rarg2, c_rarg2);
 896     __ shrl(c_rarg3, 0x1f);
 897     __ orl(c_rarg1, c_rarg3);
 898     __ cmpl(rax, c_rarg1);
 899     __ jcc(Assembler::negative, L); // NaN -> 0
 900     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 901     __ mov64(c_rarg2, 0x8000000000000000);
 902     __ mov64(rax, 0x7fffffffffffffff);
 903     __ cmovq(Assembler::positive, c_rarg2, rax);
 904 
 905     __ bind(L);
 906     __ movq(inout, c_rarg2);
 907 
 908     __ pop(c_rarg0);
 909     __ pop(c_rarg1);
 910     __ pop(c_rarg2);
 911     __ pop(c_rarg3);
 912     __ pop(rax);
 913 
 914     __ ret(0);
 915 
 916     return start;
 917   }
 918 
 919   address generate_fp_mask(const char *stub_name, int64_t mask) {
 920     __ align(CodeEntryAlignment);
 921     StubCodeMark mark(this, "StubRoutines", stub_name);
 922     address start = __ pc();
 923 
 924     __ emit_data64( mask, relocInfo::none );
 925     __ emit_data64( mask, relocInfo::none );
 926 
 927     return start;
 928   }
 929 
 930   // The following routine generates a subroutine to throw an
 931   // asynchronous UnknownError when an unsafe access gets a fault that
 932   // could not be reasonably prevented by the programmer.  (Example:
 933   // SIGBUS/OBJERR.)
 934   address generate_handler_for_unsafe_access() {
 935     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 936     address start = __ pc();
 937 
 938     __ push(0);                       // hole for return address-to-be
 939     __ pusha();                       // push registers
 940     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 941 
 942     // FIXME: this probably needs alignment logic
 943 
 944     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 945     BLOCK_COMMENT("call handle_unsafe_access");
 946     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 947     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 948 
 949     __ movptr(next_pc, rax);          // stuff next address
 950     __ popa();
 951     __ ret(0);                        // jump to next address
 952 
 953     return start;
 954   }
 955 
 956   // Non-destructive plausibility checks for oops
 957   //
 958   // Arguments:
 959   //    all args on stack!
 960   //
 961   // Stack after saving c_rarg3:
 962   //    [tos + 0]: saved c_rarg3
 963   //    [tos + 1]: saved c_rarg2
 964   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 965   //    [tos + 3]: saved flags
 966   //    [tos + 4]: return address
 967   //  * [tos + 5]: error message (char*)
 968   //  * [tos + 6]: object to verify (oop)
 969   //  * [tos + 7]: saved rax - saved by caller and bashed
 970   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
 971   //  * = popped on exit
 972   address generate_verify_oop() {
 973     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 974     address start = __ pc();
 975 
 976     Label exit, error;
 977 
 978     __ pushf();
 979     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 980 
 981     __ push(r12);
 982 
 983     // save c_rarg2 and c_rarg3
 984     __ push(c_rarg2);
 985     __ push(c_rarg3);
 986 
 987     enum {
 988            // After previous pushes.
 989            oop_to_verify = 6 * wordSize,
 990            saved_rax     = 7 * wordSize,
 991            saved_r10     = 8 * wordSize,
 992 
 993            // Before the call to MacroAssembler::debug(), see below.
 994            return_addr   = 16 * wordSize,
 995            error_msg     = 17 * wordSize
 996     };
 997 
 998     // get object
 999     __ movptr(rax, Address(rsp, oop_to_verify));
1000 
1001     // make sure object is 'reasonable'
1002     __ testptr(rax, rax);
1003     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
1004     // Check if the oop is in the right area of memory
1005     __ movptr(c_rarg2, rax);
1006     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
1007     __ andptr(c_rarg2, c_rarg3);
1008     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
1009     __ cmpptr(c_rarg2, c_rarg3);
1010     __ jcc(Assembler::notZero, error);
1011 
1012     // set r12 to heapbase for load_klass()
1013     __ reinit_heapbase();
1014 
1015     // make sure klass is 'reasonable'
1016     __ load_klass(rax, rax);  // get klass
1017     __ testptr(rax, rax);
1018     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
1019     // Check if the klass is in the right area of memory
1020     __ mov(c_rarg2, rax);
1021     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
1022     __ andptr(c_rarg2, c_rarg3);
1023     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
1024     __ cmpptr(c_rarg2, c_rarg3);
1025     __ jcc(Assembler::notZero, error);
1026 
1027     // make sure klass' klass is 'reasonable'
1028     __ load_klass(rax, rax);
1029     __ testptr(rax, rax);
1030     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
1031     // Check if the klass' klass is in the right area of memory
1032     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
1033     __ andptr(rax, c_rarg3);
1034     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
1035     __ cmpptr(rax, c_rarg3);
1036     __ jcc(Assembler::notZero, error);
1037 
1038     // return if everything seems ok
1039     __ bind(exit);
1040     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1041     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1042     __ pop(c_rarg3);                             // restore c_rarg3
1043     __ pop(c_rarg2);                             // restore c_rarg2
1044     __ pop(r12);                                 // restore r12
1045     __ popf();                                   // restore flags
1046     __ ret(4 * wordSize);                        // pop caller saved stuff
1047 
1048     // handle errors
1049     __ bind(error);
1050     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1051     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1052     __ pop(c_rarg3);                             // get saved c_rarg3 back
1053     __ pop(c_rarg2);                             // get saved c_rarg2 back
1054     __ pop(r12);                                 // get saved r12 back
1055     __ popf();                                   // get saved flags off stack --
1056                                                  // will be ignored
1057 
1058     __ pusha();                                  // push registers
1059                                                  // (rip is already
1060                                                  // already pushed)
1061     // debug(char* msg, int64_t pc, int64_t regs[])
1062     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1063     // pushed all the registers, so now the stack looks like:
1064     //     [tos +  0] 16 saved registers
1065     //     [tos + 16] return address
1066     //   * [tos + 17] error message (char*)
1067     //   * [tos + 18] object to verify (oop)
1068     //   * [tos + 19] saved rax - saved by caller and bashed
1069     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1070     //   * = popped on exit
1071 
1072     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1073     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1074     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1075     __ mov(r12, rsp);                               // remember rsp
1076     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1077     __ andptr(rsp, -16);                            // align stack as required by ABI
1078     BLOCK_COMMENT("call MacroAssembler::debug");
1079     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1080     __ mov(rsp, r12);                               // restore rsp
1081     __ popa();                                      // pop registers (includes r12)
1082     __ ret(4 * wordSize);                           // pop caller saved stuff
1083 
1084     return start;
1085   }
1086 
1087   //
1088   // Verify that a register contains clean 32-bits positive value
1089   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1090   //
1091   //  Input:
1092   //    Rint  -  32-bits value
1093   //    Rtmp  -  scratch
1094   //
1095   void assert_clean_int(Register Rint, Register Rtmp) {
1096 #ifdef ASSERT
1097     Label L;
1098     assert_different_registers(Rtmp, Rint);
1099     __ movslq(Rtmp, Rint);
1100     __ cmpq(Rtmp, Rint);
1101     __ jcc(Assembler::equal, L);
1102     __ stop("high 32-bits of int value are not 0");
1103     __ bind(L);
1104 #endif
1105   }
1106 
1107   //  Generate overlap test for array copy stubs
1108   //
1109   //  Input:
1110   //     c_rarg0 - from
1111   //     c_rarg1 - to
1112   //     c_rarg2 - element count
1113   //
1114   //  Output:
1115   //     rax   - &from[element count - 1]
1116   //
1117   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1118     assert(no_overlap_target != NULL, "must be generated");
1119     array_overlap_test(no_overlap_target, NULL, sf);
1120   }
1121   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1122     array_overlap_test(NULL, &L_no_overlap, sf);
1123   }
1124   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1125     const Register from     = c_rarg0;
1126     const Register to       = c_rarg1;
1127     const Register count    = c_rarg2;
1128     const Register end_from = rax;
1129 
1130     __ cmpptr(to, from);
1131     __ lea(end_from, Address(from, count, sf, 0));
1132     if (NOLp == NULL) {
1133       ExternalAddress no_overlap(no_overlap_target);
1134       __ jump_cc(Assembler::belowEqual, no_overlap);
1135       __ cmpptr(to, end_from);
1136       __ jump_cc(Assembler::aboveEqual, no_overlap);
1137     } else {
1138       __ jcc(Assembler::belowEqual, (*NOLp));
1139       __ cmpptr(to, end_from);
1140       __ jcc(Assembler::aboveEqual, (*NOLp));
1141     }
1142   }
1143 
1144   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1145   //
1146   // Outputs:
1147   //    rdi - rcx
1148   //    rsi - rdx
1149   //    rdx - r8
1150   //    rcx - r9
1151   //
1152   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1153   // are non-volatile.  r9 and r10 should not be used by the caller.
1154   //
1155   void setup_arg_regs(int nargs = 3) {
1156     const Register saved_rdi = r9;
1157     const Register saved_rsi = r10;
1158     assert(nargs == 3 || nargs == 4, "else fix");
1159 #ifdef _WIN64
1160     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1161            "unexpected argument registers");
1162     if (nargs >= 4)
1163       __ mov(rax, r9);  // r9 is also saved_rdi
1164     __ movptr(saved_rdi, rdi);
1165     __ movptr(saved_rsi, rsi);
1166     __ mov(rdi, rcx); // c_rarg0
1167     __ mov(rsi, rdx); // c_rarg1
1168     __ mov(rdx, r8);  // c_rarg2
1169     if (nargs >= 4)
1170       __ mov(rcx, rax); // c_rarg3 (via rax)
1171 #else
1172     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1173            "unexpected argument registers");
1174 #endif
1175   }
1176 
1177   void restore_arg_regs() {
1178     const Register saved_rdi = r9;
1179     const Register saved_rsi = r10;
1180 #ifdef _WIN64
1181     __ movptr(rdi, saved_rdi);
1182     __ movptr(rsi, saved_rsi);
1183 #endif
1184   }
1185 
1186   // Generate code for an array write pre barrier
1187   //
1188   //     addr    -  starting address
1189   //     count   -  element count
1190   //     tmp     - scratch register
1191   //
1192   //     Destroy no registers!
1193   //
1194   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
1195     BarrierSet* bs = Universe::heap()->barrier_set();
1196     switch (bs->kind()) {
1197       case BarrierSet::G1SATBCT:
1198       case BarrierSet::G1SATBCTLogging:
1199         // With G1, don't generate the call if we statically know that the target in uninitialized
1200         if (!dest_uninitialized) {
1201            __ pusha();                      // push registers
1202            if (count == c_rarg0) {
1203              if (addr == c_rarg1) {
1204                // exactly backwards!!
1205                __ xchgptr(c_rarg1, c_rarg0);
1206              } else {
1207                __ movptr(c_rarg1, count);
1208                __ movptr(c_rarg0, addr);
1209              }
1210            } else {
1211              __ movptr(c_rarg0, addr);
1212              __ movptr(c_rarg1, count);
1213            }
1214            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1215            __ popa();
1216         }
1217          break;
1218       case BarrierSet::CardTableModRef:
1219       case BarrierSet::CardTableExtension:
1220       case BarrierSet::ModRef:
1221         break;
1222       default:
1223         ShouldNotReachHere();
1224 
1225     }
1226   }
1227 
1228   //
1229   // Generate code for an array write post barrier
1230   //
1231   //  Input:
1232   //     start    - register containing starting address of destination array
1233   //     end      - register containing ending address of destination array
1234   //     scratch  - scratch register
1235   //
1236   //  The input registers are overwritten.
1237   //  The ending address is inclusive.
1238   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1239     assert_different_registers(start, end, scratch);
1240     BarrierSet* bs = Universe::heap()->barrier_set();
1241     switch (bs->kind()) {
1242       case BarrierSet::G1SATBCT:
1243       case BarrierSet::G1SATBCTLogging:
1244 
1245         {
1246           __ pusha();                      // push registers (overkill)
1247           // must compute element count unless barrier set interface is changed (other platforms supply count)
1248           assert_different_registers(start, end, scratch);
1249           __ lea(scratch, Address(end, BytesPerHeapOop));
1250           __ subptr(scratch, start);               // subtract start to get #bytes
1251           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
1252           __ mov(c_rarg0, start);
1253           __ mov(c_rarg1, scratch);
1254           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1255           __ popa();
1256         }
1257         break;
1258       case BarrierSet::CardTableModRef:
1259       case BarrierSet::CardTableExtension:
1260         {
1261           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1262           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1263 
1264           Label L_loop;
1265 
1266            __ shrptr(start, CardTableModRefBS::card_shift);
1267            __ addptr(end, BytesPerHeapOop);
1268            __ shrptr(end, CardTableModRefBS::card_shift);
1269            __ subptr(end, start); // number of bytes to copy
1270 
1271           intptr_t disp = (intptr_t) ct->byte_map_base;
1272           if (Assembler::is_simm32(disp)) {
1273             Address cardtable(noreg, noreg, Address::no_scale, disp);
1274             __ lea(scratch, cardtable);
1275           } else {
1276             ExternalAddress cardtable((address)disp);
1277             __ lea(scratch, cardtable);
1278           }
1279 
1280           const Register count = end; // 'end' register contains bytes count now
1281           __ addptr(start, scratch);
1282         __ BIND(L_loop);
1283           __ movb(Address(start, count, Address::times_1), 0);
1284           __ decrement(count);
1285           __ jcc(Assembler::greaterEqual, L_loop);
1286         }
1287         break;
1288       default:
1289         ShouldNotReachHere();
1290 
1291     }
1292   }
1293 
1294 
1295   // Copy big chunks forward
1296   //
1297   // Inputs:
1298   //   end_from     - source arrays end address
1299   //   end_to       - destination array end address
1300   //   qword_count  - 64-bits element count, negative
1301   //   to           - scratch
1302   //   L_copy_32_bytes - entry label
1303   //   L_copy_8_bytes  - exit  label
1304   //
1305   void copy_32_bytes_forward(Register end_from, Register end_to,
1306                              Register qword_count, Register to,
1307                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1308     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1309     Label L_loop;
1310     __ align(OptoLoopAlignment);
1311   __ BIND(L_loop);
1312     if(UseUnalignedLoadStores) {
1313       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1314       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1315       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1316       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1317 
1318     } else {
1319       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1320       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1321       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1322       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1323       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1324       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1325       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1326       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1327     }
1328   __ BIND(L_copy_32_bytes);
1329     __ addptr(qword_count, 4);
1330     __ jcc(Assembler::lessEqual, L_loop);
1331     __ subptr(qword_count, 4);
1332     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1333   }
1334 
1335 
1336   // Copy big chunks backward
1337   //
1338   // Inputs:
1339   //   from         - source arrays address
1340   //   dest         - destination array address
1341   //   qword_count  - 64-bits element count
1342   //   to           - scratch
1343   //   L_copy_32_bytes - entry label
1344   //   L_copy_8_bytes  - exit  label
1345   //
1346   void copy_32_bytes_backward(Register from, Register dest,
1347                               Register qword_count, Register to,
1348                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1349     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1350     Label L_loop;
1351     __ align(OptoLoopAlignment);
1352   __ BIND(L_loop);
1353     if(UseUnalignedLoadStores) {
1354       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1355       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1356       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1357       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1358 
1359     } else {
1360       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1361       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1362       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1363       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1364       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1365       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1366       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1367       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1368     }
1369   __ BIND(L_copy_32_bytes);
1370     __ subptr(qword_count, 4);
1371     __ jcc(Assembler::greaterEqual, L_loop);
1372     __ addptr(qword_count, 4);
1373     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1374   }
1375 
1376 
1377   // Arguments:
1378   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1379   //             ignored
1380   //   name    - stub name string
1381   //
1382   // Inputs:
1383   //   c_rarg0   - source array address
1384   //   c_rarg1   - destination array address
1385   //   c_rarg2   - element count, treated as ssize_t, can be zero
1386   //
1387   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1388   // we let the hardware handle it.  The one to eight bytes within words,
1389   // dwords or qwords that span cache line boundaries will still be loaded
1390   // and stored atomically.
1391   //
1392   // Side Effects:
1393   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1394   //   used by generate_conjoint_byte_copy().
1395   //
1396   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
1397     __ align(CodeEntryAlignment);
1398     StubCodeMark mark(this, "StubRoutines", name);
1399     address start = __ pc();
1400 
1401     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1402     Label L_copy_byte, L_exit;
1403     const Register from        = rdi;  // source array address
1404     const Register to          = rsi;  // destination array address
1405     const Register count       = rdx;  // elements count
1406     const Register byte_count  = rcx;
1407     const Register qword_count = count;
1408     const Register end_from    = from; // source array end address
1409     const Register end_to      = to;   // destination array end address
1410     // End pointers are inclusive, and if count is not zero they point
1411     // to the last unit copied:  end_to[0] := end_from[0]
1412 
1413     __ enter(); // required for proper stackwalking of RuntimeStub frame
1414     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1415 
1416     if (entry != NULL) {
1417       *entry = __ pc();
1418        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1419       BLOCK_COMMENT("Entry:");
1420     }
1421 
1422     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1423                       // r9 and r10 may be used to save non-volatile registers
1424 
1425     // 'from', 'to' and 'count' are now valid
1426     __ movptr(byte_count, count);
1427     __ shrptr(count, 3); // count => qword_count
1428 
1429     // Copy from low to high addresses.  Use 'to' as scratch.
1430     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1431     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1432     __ negptr(qword_count); // make the count negative
1433     __ jmp(L_copy_32_bytes);
1434 
1435     // Copy trailing qwords
1436   __ BIND(L_copy_8_bytes);
1437     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1438     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1439     __ increment(qword_count);
1440     __ jcc(Assembler::notZero, L_copy_8_bytes);
1441 
1442     // Check for and copy trailing dword
1443   __ BIND(L_copy_4_bytes);
1444     __ testl(byte_count, 4);
1445     __ jccb(Assembler::zero, L_copy_2_bytes);
1446     __ movl(rax, Address(end_from, 8));
1447     __ movl(Address(end_to, 8), rax);
1448 
1449     __ addptr(end_from, 4);
1450     __ addptr(end_to, 4);
1451 
1452     // Check for and copy trailing word
1453   __ BIND(L_copy_2_bytes);
1454     __ testl(byte_count, 2);
1455     __ jccb(Assembler::zero, L_copy_byte);
1456     __ movw(rax, Address(end_from, 8));
1457     __ movw(Address(end_to, 8), rax);
1458 
1459     __ addptr(end_from, 2);
1460     __ addptr(end_to, 2);
1461 
1462     // Check for and copy trailing byte
1463   __ BIND(L_copy_byte);
1464     __ testl(byte_count, 1);
1465     __ jccb(Assembler::zero, L_exit);
1466     __ movb(rax, Address(end_from, 8));
1467     __ movb(Address(end_to, 8), rax);
1468 
1469   __ BIND(L_exit);
1470     restore_arg_regs();
1471     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1472     __ xorptr(rax, rax); // return 0
1473     __ leave(); // required for proper stackwalking of RuntimeStub frame
1474     __ ret(0);
1475 
1476     // Copy in 32-bytes chunks
1477     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1478     __ jmp(L_copy_4_bytes);
1479 
1480     return start;
1481   }
1482 
1483   // Arguments:
1484   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1485   //             ignored
1486   //   name    - stub name string
1487   //
1488   // Inputs:
1489   //   c_rarg0   - source array address
1490   //   c_rarg1   - destination array address
1491   //   c_rarg2   - element count, treated as ssize_t, can be zero
1492   //
1493   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1494   // we let the hardware handle it.  The one to eight bytes within words,
1495   // dwords or qwords that span cache line boundaries will still be loaded
1496   // and stored atomically.
1497   //
1498   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1499                                       address* entry, const char *name) {
1500     __ align(CodeEntryAlignment);
1501     StubCodeMark mark(this, "StubRoutines", name);
1502     address start = __ pc();
1503 
1504     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1505     const Register from        = rdi;  // source array address
1506     const Register to          = rsi;  // destination array address
1507     const Register count       = rdx;  // elements count
1508     const Register byte_count  = rcx;
1509     const Register qword_count = count;
1510 
1511     __ enter(); // required for proper stackwalking of RuntimeStub frame
1512     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1513 
1514     if (entry != NULL) {
1515       *entry = __ pc();
1516       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1517       BLOCK_COMMENT("Entry:");
1518     }
1519 
1520     array_overlap_test(nooverlap_target, Address::times_1);
1521     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1522                       // r9 and r10 may be used to save non-volatile registers
1523 
1524     // 'from', 'to' and 'count' are now valid
1525     __ movptr(byte_count, count);
1526     __ shrptr(count, 3);   // count => qword_count
1527 
1528     // Copy from high to low addresses.
1529 
1530     // Check for and copy trailing byte
1531     __ testl(byte_count, 1);
1532     __ jcc(Assembler::zero, L_copy_2_bytes);
1533     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1534     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1535     __ decrement(byte_count); // Adjust for possible trailing word
1536 
1537     // Check for and copy trailing word
1538   __ BIND(L_copy_2_bytes);
1539     __ testl(byte_count, 2);
1540     __ jcc(Assembler::zero, L_copy_4_bytes);
1541     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1542     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1543 
1544     // Check for and copy trailing dword
1545   __ BIND(L_copy_4_bytes);
1546     __ testl(byte_count, 4);
1547     __ jcc(Assembler::zero, L_copy_32_bytes);
1548     __ movl(rax, Address(from, qword_count, Address::times_8));
1549     __ movl(Address(to, qword_count, Address::times_8), rax);
1550     __ jmp(L_copy_32_bytes);
1551 
1552     // Copy trailing qwords
1553   __ BIND(L_copy_8_bytes);
1554     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1555     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1556     __ decrement(qword_count);
1557     __ jcc(Assembler::notZero, L_copy_8_bytes);
1558 
1559     restore_arg_regs();
1560     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1561     __ xorptr(rax, rax); // return 0
1562     __ leave(); // required for proper stackwalking of RuntimeStub frame
1563     __ ret(0);
1564 
1565     // Copy in 32-bytes chunks
1566     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1567 
1568     restore_arg_regs();
1569     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1570     __ xorptr(rax, rax); // return 0
1571     __ leave(); // required for proper stackwalking of RuntimeStub frame
1572     __ ret(0);
1573 
1574     return start;
1575   }
1576 
1577   // Arguments:
1578   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1579   //             ignored
1580   //   name    - stub name string
1581   //
1582   // Inputs:
1583   //   c_rarg0   - source array address
1584   //   c_rarg1   - destination array address
1585   //   c_rarg2   - element count, treated as ssize_t, can be zero
1586   //
1587   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1588   // let the hardware handle it.  The two or four words within dwords
1589   // or qwords that span cache line boundaries will still be loaded
1590   // and stored atomically.
1591   //
1592   // Side Effects:
1593   //   disjoint_short_copy_entry is set to the no-overlap entry point
1594   //   used by generate_conjoint_short_copy().
1595   //
1596   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
1597     __ align(CodeEntryAlignment);
1598     StubCodeMark mark(this, "StubRoutines", name);
1599     address start = __ pc();
1600 
1601     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1602     const Register from        = rdi;  // source array address
1603     const Register to          = rsi;  // destination array address
1604     const Register count       = rdx;  // elements count
1605     const Register word_count  = rcx;
1606     const Register qword_count = count;
1607     const Register end_from    = from; // source array end address
1608     const Register end_to      = to;   // destination array end address
1609     // End pointers are inclusive, and if count is not zero they point
1610     // to the last unit copied:  end_to[0] := end_from[0]
1611 
1612     __ enter(); // required for proper stackwalking of RuntimeStub frame
1613     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1614 
1615     if (entry != NULL) {
1616       *entry = __ pc();
1617       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1618       BLOCK_COMMENT("Entry:");
1619     }
1620 
1621     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1622                       // r9 and r10 may be used to save non-volatile registers
1623 
1624     // 'from', 'to' and 'count' are now valid
1625     __ movptr(word_count, count);
1626     __ shrptr(count, 2); // count => qword_count
1627 
1628     // Copy from low to high addresses.  Use 'to' as scratch.
1629     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1630     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1631     __ negptr(qword_count);
1632     __ jmp(L_copy_32_bytes);
1633 
1634     // Copy trailing qwords
1635   __ BIND(L_copy_8_bytes);
1636     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1637     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1638     __ increment(qword_count);
1639     __ jcc(Assembler::notZero, L_copy_8_bytes);
1640 
1641     // Original 'dest' is trashed, so we can't use it as a
1642     // base register for a possible trailing word copy
1643 
1644     // Check for and copy trailing dword
1645   __ BIND(L_copy_4_bytes);
1646     __ testl(word_count, 2);
1647     __ jccb(Assembler::zero, L_copy_2_bytes);
1648     __ movl(rax, Address(end_from, 8));
1649     __ movl(Address(end_to, 8), rax);
1650 
1651     __ addptr(end_from, 4);
1652     __ addptr(end_to, 4);
1653 
1654     // Check for and copy trailing word
1655   __ BIND(L_copy_2_bytes);
1656     __ testl(word_count, 1);
1657     __ jccb(Assembler::zero, L_exit);
1658     __ movw(rax, Address(end_from, 8));
1659     __ movw(Address(end_to, 8), rax);
1660 
1661   __ BIND(L_exit);
1662     restore_arg_regs();
1663     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1664     __ xorptr(rax, rax); // return 0
1665     __ leave(); // required for proper stackwalking of RuntimeStub frame
1666     __ ret(0);
1667 
1668     // Copy in 32-bytes chunks
1669     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1670     __ jmp(L_copy_4_bytes);
1671 
1672     return start;
1673   }
1674 
1675   address generate_fill(BasicType t, bool aligned, const char *name) {
1676     __ align(CodeEntryAlignment);
1677     StubCodeMark mark(this, "StubRoutines", name);
1678     address start = __ pc();
1679 
1680     BLOCK_COMMENT("Entry:");
1681 
1682     const Register to       = c_rarg0;  // source array address
1683     const Register value    = c_rarg1;  // value
1684     const Register count    = c_rarg2;  // elements count
1685 
1686     __ enter(); // required for proper stackwalking of RuntimeStub frame
1687 
1688     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1689 
1690     __ leave(); // required for proper stackwalking of RuntimeStub frame
1691     __ ret(0);
1692     return start;
1693   }
1694 
1695   // Arguments:
1696   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1697   //             ignored
1698   //   name    - stub name string
1699   //
1700   // Inputs:
1701   //   c_rarg0   - source array address
1702   //   c_rarg1   - destination array address
1703   //   c_rarg2   - element count, treated as ssize_t, can be zero
1704   //
1705   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1706   // let the hardware handle it.  The two or four words within dwords
1707   // or qwords that span cache line boundaries will still be loaded
1708   // and stored atomically.
1709   //
1710   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1711                                        address *entry, const char *name) {
1712     __ align(CodeEntryAlignment);
1713     StubCodeMark mark(this, "StubRoutines", name);
1714     address start = __ pc();
1715 
1716     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1717     const Register from        = rdi;  // source array address
1718     const Register to          = rsi;  // destination array address
1719     const Register count       = rdx;  // elements count
1720     const Register word_count  = rcx;
1721     const Register qword_count = count;
1722 
1723     __ enter(); // required for proper stackwalking of RuntimeStub frame
1724     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1725 
1726     if (entry != NULL) {
1727       *entry = __ pc();
1728       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1729       BLOCK_COMMENT("Entry:");
1730     }
1731 
1732     array_overlap_test(nooverlap_target, Address::times_2);
1733     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1734                       // r9 and r10 may be used to save non-volatile registers
1735 
1736     // 'from', 'to' and 'count' are now valid
1737     __ movptr(word_count, count);
1738     __ shrptr(count, 2); // count => qword_count
1739 
1740     // Copy from high to low addresses.  Use 'to' as scratch.
1741 
1742     // Check for and copy trailing word
1743     __ testl(word_count, 1);
1744     __ jccb(Assembler::zero, L_copy_4_bytes);
1745     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1746     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1747 
1748     // Check for and copy trailing dword
1749   __ BIND(L_copy_4_bytes);
1750     __ testl(word_count, 2);
1751     __ jcc(Assembler::zero, L_copy_32_bytes);
1752     __ movl(rax, Address(from, qword_count, Address::times_8));
1753     __ movl(Address(to, qword_count, Address::times_8), rax);
1754     __ jmp(L_copy_32_bytes);
1755 
1756     // Copy trailing qwords
1757   __ BIND(L_copy_8_bytes);
1758     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1759     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1760     __ decrement(qword_count);
1761     __ jcc(Assembler::notZero, L_copy_8_bytes);
1762 
1763     restore_arg_regs();
1764     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1765     __ xorptr(rax, rax); // return 0
1766     __ leave(); // required for proper stackwalking of RuntimeStub frame
1767     __ ret(0);
1768 
1769     // Copy in 32-bytes chunks
1770     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1771 
1772     restore_arg_regs();
1773     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1774     __ xorptr(rax, rax); // return 0
1775     __ leave(); // required for proper stackwalking of RuntimeStub frame
1776     __ ret(0);
1777 
1778     return start;
1779   }
1780 
1781   // Arguments:
1782   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1783   //             ignored
1784   //   is_oop  - true => oop array, so generate store check code
1785   //   name    - stub name string
1786   //
1787   // Inputs:
1788   //   c_rarg0   - source array address
1789   //   c_rarg1   - destination array address
1790   //   c_rarg2   - element count, treated as ssize_t, can be zero
1791   //
1792   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1793   // the hardware handle it.  The two dwords within qwords that span
1794   // cache line boundaries will still be loaded and stored atomicly.
1795   //
1796   // Side Effects:
1797   //   disjoint_int_copy_entry is set to the no-overlap entry point
1798   //   used by generate_conjoint_int_oop_copy().
1799   //
1800   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
1801                                          const char *name, bool dest_uninitialized = false) {
1802     __ align(CodeEntryAlignment);
1803     StubCodeMark mark(this, "StubRoutines", name);
1804     address start = __ pc();
1805 
1806     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1807     const Register from        = rdi;  // source array address
1808     const Register to          = rsi;  // destination array address
1809     const Register count       = rdx;  // elements count
1810     const Register dword_count = rcx;
1811     const Register qword_count = count;
1812     const Register end_from    = from; // source array end address
1813     const Register end_to      = to;   // destination array end address
1814     const Register saved_to    = r11;  // saved destination array address
1815     // End pointers are inclusive, and if count is not zero they point
1816     // to the last unit copied:  end_to[0] := end_from[0]
1817 
1818     __ enter(); // required for proper stackwalking of RuntimeStub frame
1819     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1820 
1821     if (entry != NULL) {
1822       *entry = __ pc();
1823       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1824       BLOCK_COMMENT("Entry:");
1825     }
1826 
1827     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1828                       // r9 and r10 may be used to save non-volatile registers
1829     if (is_oop) {
1830       __ movq(saved_to, to);
1831       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1832     }
1833 
1834     // 'from', 'to' and 'count' are now valid
1835     __ movptr(dword_count, count);
1836     __ shrptr(count, 1); // count => qword_count
1837 
1838     // Copy from low to high addresses.  Use 'to' as scratch.
1839     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1840     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1841     __ negptr(qword_count);
1842     __ jmp(L_copy_32_bytes);
1843 
1844     // Copy trailing qwords
1845   __ BIND(L_copy_8_bytes);
1846     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1847     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1848     __ increment(qword_count);
1849     __ jcc(Assembler::notZero, L_copy_8_bytes);
1850 
1851     // Check for and copy trailing dword
1852   __ BIND(L_copy_4_bytes);
1853     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1854     __ jccb(Assembler::zero, L_exit);
1855     __ movl(rax, Address(end_from, 8));
1856     __ movl(Address(end_to, 8), rax);
1857 
1858   __ BIND(L_exit);
1859     if (is_oop) {
1860       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1861       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1862     }
1863     restore_arg_regs();
1864     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1865     __ xorptr(rax, rax); // return 0
1866     __ leave(); // required for proper stackwalking of RuntimeStub frame
1867     __ ret(0);
1868 
1869     // Copy 32-bytes chunks
1870     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1871     __ jmp(L_copy_4_bytes);
1872 
1873     return start;
1874   }
1875 
1876   // Arguments:
1877   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1878   //             ignored
1879   //   is_oop  - true => oop array, so generate store check code
1880   //   name    - stub name string
1881   //
1882   // Inputs:
1883   //   c_rarg0   - source array address
1884   //   c_rarg1   - destination array address
1885   //   c_rarg2   - element count, treated as ssize_t, can be zero
1886   //
1887   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1888   // the hardware handle it.  The two dwords within qwords that span
1889   // cache line boundaries will still be loaded and stored atomicly.
1890   //
1891   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
1892                                          address *entry, const char *name,
1893                                          bool dest_uninitialized = false) {
1894     __ align(CodeEntryAlignment);
1895     StubCodeMark mark(this, "StubRoutines", name);
1896     address start = __ pc();
1897 
1898     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1899     const Register from        = rdi;  // source array address
1900     const Register to          = rsi;  // destination array address
1901     const Register count       = rdx;  // elements count
1902     const Register dword_count = rcx;
1903     const Register qword_count = count;
1904 
1905     __ enter(); // required for proper stackwalking of RuntimeStub frame
1906     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1907 
1908     if (entry != NULL) {
1909       *entry = __ pc();
1910        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1911       BLOCK_COMMENT("Entry:");
1912     }
1913 
1914     array_overlap_test(nooverlap_target, Address::times_4);
1915     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1916                       // r9 and r10 may be used to save non-volatile registers
1917 
1918     if (is_oop) {
1919       // no registers are destroyed by this call
1920       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1921     }
1922 
1923     assert_clean_int(count, rax); // Make sure 'count' is clean int.
1924     // 'from', 'to' and 'count' are now valid
1925     __ movptr(dword_count, count);
1926     __ shrptr(count, 1); // count => qword_count
1927 
1928     // Copy from high to low addresses.  Use 'to' as scratch.
1929 
1930     // Check for and copy trailing dword
1931     __ testl(dword_count, 1);
1932     __ jcc(Assembler::zero, L_copy_32_bytes);
1933     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1934     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1935     __ jmp(L_copy_32_bytes);
1936 
1937     // Copy trailing qwords
1938   __ BIND(L_copy_8_bytes);
1939     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1940     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1941     __ decrement(qword_count);
1942     __ jcc(Assembler::notZero, L_copy_8_bytes);
1943 
1944     if (is_oop) {
1945       __ jmp(L_exit);
1946     }
1947     restore_arg_regs();
1948     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1949     __ xorptr(rax, rax); // return 0
1950     __ leave(); // required for proper stackwalking of RuntimeStub frame
1951     __ ret(0);
1952 
1953     // Copy in 32-bytes chunks
1954     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1955 
1956    __ bind(L_exit);
1957      if (is_oop) {
1958        Register end_to = rdx;
1959        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1960        gen_write_ref_array_post_barrier(to, end_to, rax);
1961      }
1962     restore_arg_regs();
1963     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1964     __ xorptr(rax, rax); // return 0
1965     __ leave(); // required for proper stackwalking of RuntimeStub frame
1966     __ ret(0);
1967 
1968     return start;
1969   }
1970 
1971   // Arguments:
1972   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1973   //             ignored
1974   //   is_oop  - true => oop array, so generate store check code
1975   //   name    - stub name string
1976   //
1977   // Inputs:
1978   //   c_rarg0   - source array address
1979   //   c_rarg1   - destination array address
1980   //   c_rarg2   - element count, treated as ssize_t, can be zero
1981   //
1982  // Side Effects:
1983   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1984   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1985   //
1986   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
1987                                           const char *name, bool dest_uninitialized = false) {
1988     __ align(CodeEntryAlignment);
1989     StubCodeMark mark(this, "StubRoutines", name);
1990     address start = __ pc();
1991 
1992     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1993     const Register from        = rdi;  // source array address
1994     const Register to          = rsi;  // destination array address
1995     const Register qword_count = rdx;  // elements count
1996     const Register end_from    = from; // source array end address
1997     const Register end_to      = rcx;  // destination array end address
1998     const Register saved_to    = to;
1999     // End pointers are inclusive, and if count is not zero they point
2000     // to the last unit copied:  end_to[0] := end_from[0]
2001 
2002     __ enter(); // required for proper stackwalking of RuntimeStub frame
2003     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
2004     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2005 
2006     if (entry != NULL) {
2007       *entry = __ pc();
2008       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2009       BLOCK_COMMENT("Entry:");
2010     }
2011 
2012     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2013                       // r9 and r10 may be used to save non-volatile registers
2014     // 'from', 'to' and 'qword_count' are now valid
2015     if (is_oop) {
2016       // no registers are destroyed by this call
2017       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
2018     }
2019 
2020     // Copy from low to high addresses.  Use 'to' as scratch.
2021     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
2022     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
2023     __ negptr(qword_count);
2024     __ jmp(L_copy_32_bytes);
2025 
2026     // Copy trailing qwords
2027   __ BIND(L_copy_8_bytes);
2028     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
2029     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
2030     __ increment(qword_count);
2031     __ jcc(Assembler::notZero, L_copy_8_bytes);
2032 
2033     if (is_oop) {
2034       __ jmp(L_exit);
2035     } else {
2036       restore_arg_regs();
2037       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2038       __ xorptr(rax, rax); // return 0
2039       __ leave(); // required for proper stackwalking of RuntimeStub frame
2040       __ ret(0);
2041     }
2042 
2043     // Copy 64-byte chunks
2044     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2045 
2046     if (is_oop) {
2047     __ BIND(L_exit);
2048       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
2049     }
2050     restore_arg_regs();
2051     if (is_oop) {
2052       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2053     } else {
2054       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2055     }
2056     __ xorptr(rax, rax); // return 0
2057     __ leave(); // required for proper stackwalking of RuntimeStub frame
2058     __ ret(0);
2059 
2060     return start;
2061   }
2062 
2063   // Arguments:
2064   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2065   //             ignored
2066   //   is_oop  - true => oop array, so generate store check code
2067   //   name    - stub name string
2068   //
2069   // Inputs:
2070   //   c_rarg0   - source array address
2071   //   c_rarg1   - destination array address
2072   //   c_rarg2   - element count, treated as ssize_t, can be zero
2073   //
2074   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
2075                                           address nooverlap_target, address *entry,
2076                                           const char *name, bool dest_uninitialized = false) {
2077     __ align(CodeEntryAlignment);
2078     StubCodeMark mark(this, "StubRoutines", name);
2079     address start = __ pc();
2080 
2081     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
2082     const Register from        = rdi;  // source array address
2083     const Register to          = rsi;  // destination array address
2084     const Register qword_count = rdx;  // elements count
2085     const Register saved_count = rcx;
2086 
2087     __ enter(); // required for proper stackwalking of RuntimeStub frame
2088     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2089 
2090     if (entry != NULL) {
2091       *entry = __ pc();
2092       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2093       BLOCK_COMMENT("Entry:");
2094     }
2095 
2096     array_overlap_test(nooverlap_target, Address::times_8);
2097     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2098                       // r9 and r10 may be used to save non-volatile registers
2099     // 'from', 'to' and 'qword_count' are now valid
2100     if (is_oop) {
2101       // Save to and count for store barrier
2102       __ movptr(saved_count, qword_count);
2103       // No registers are destroyed by this call
2104       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
2105     }
2106 
2107     __ jmp(L_copy_32_bytes);
2108 
2109     // Copy trailing qwords
2110   __ BIND(L_copy_8_bytes);
2111     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2112     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2113     __ decrement(qword_count);
2114     __ jcc(Assembler::notZero, L_copy_8_bytes);
2115 
2116     if (is_oop) {
2117       __ jmp(L_exit);
2118     } else {
2119       restore_arg_regs();
2120       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2121       __ xorptr(rax, rax); // return 0
2122       __ leave(); // required for proper stackwalking of RuntimeStub frame
2123       __ ret(0);
2124     }
2125 
2126     // Copy in 32-bytes chunks
2127     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2128 
2129     if (is_oop) {
2130     __ BIND(L_exit);
2131       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
2132       gen_write_ref_array_post_barrier(to, rcx, rax);
2133     }
2134     restore_arg_regs();
2135     if (is_oop) {
2136       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2137     } else {
2138       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2139     }
2140     __ xorptr(rax, rax); // return 0
2141     __ leave(); // required for proper stackwalking of RuntimeStub frame
2142     __ ret(0);
2143 
2144     return start;
2145   }
2146 
2147 
2148   // Helper for generating a dynamic type check.
2149   // Smashes no registers.
2150   void generate_type_check(Register sub_klass,
2151                            Register super_check_offset,
2152                            Register super_klass,
2153                            Label& L_success) {
2154     assert_different_registers(sub_klass, super_check_offset, super_klass);
2155 
2156     BLOCK_COMMENT("type_check:");
2157 
2158     Label L_miss;
2159 
2160     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2161                                      super_check_offset);
2162     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2163 
2164     // Fall through on failure!
2165     __ BIND(L_miss);
2166   }
2167 
2168   //
2169   //  Generate checkcasting array copy stub
2170   //
2171   //  Input:
2172   //    c_rarg0   - source array address
2173   //    c_rarg1   - destination array address
2174   //    c_rarg2   - element count, treated as ssize_t, can be zero
2175   //    c_rarg3   - size_t ckoff (super_check_offset)
2176   // not Win64
2177   //    c_rarg4   - oop ckval (super_klass)
2178   // Win64
2179   //    rsp+40    - oop ckval (super_klass)
2180   //
2181   //  Output:
2182   //    rax ==  0  -  success
2183   //    rax == -1^K - failure, where K is partial transfer count
2184   //
2185   address generate_checkcast_copy(const char *name, address *entry,
2186                                   bool dest_uninitialized = false) {
2187 
2188     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2189 
2190     // Input registers (after setup_arg_regs)
2191     const Register from        = rdi;   // source array address
2192     const Register to          = rsi;   // destination array address
2193     const Register length      = rdx;   // elements count
2194     const Register ckoff       = rcx;   // super_check_offset
2195     const Register ckval       = r8;    // super_klass
2196 
2197     // Registers used as temps (r13, r14 are save-on-entry)
2198     const Register end_from    = from;  // source array end address
2199     const Register end_to      = r13;   // destination array end address
2200     const Register count       = rdx;   // -(count_remaining)
2201     const Register r14_length  = r14;   // saved copy of length
2202     // End pointers are inclusive, and if length is not zero they point
2203     // to the last unit copied:  end_to[0] := end_from[0]
2204 
2205     const Register rax_oop    = rax;    // actual oop copied
2206     const Register r11_klass  = r11;    // oop._klass
2207 
2208     //---------------------------------------------------------------
2209     // Assembler stub will be used for this call to arraycopy
2210     // if the two arrays are subtypes of Object[] but the
2211     // destination array type is not equal to or a supertype
2212     // of the source type.  Each element must be separately
2213     // checked.
2214 
2215     __ align(CodeEntryAlignment);
2216     StubCodeMark mark(this, "StubRoutines", name);
2217     address start = __ pc();
2218 
2219     __ enter(); // required for proper stackwalking of RuntimeStub frame
2220 
2221 #ifdef ASSERT
2222     // caller guarantees that the arrays really are different
2223     // otherwise, we would have to make conjoint checks
2224     { Label L;
2225       array_overlap_test(L, TIMES_OOP);
2226       __ stop("checkcast_copy within a single array");
2227       __ bind(L);
2228     }
2229 #endif //ASSERT
2230 
2231     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2232                        // ckoff => rcx, ckval => r8
2233                        // r9 and r10 may be used to save non-volatile registers
2234 #ifdef _WIN64
2235     // last argument (#4) is on stack on Win64
2236     __ movptr(ckval, Address(rsp, 6 * wordSize));
2237 #endif
2238 
2239     // Caller of this entry point must set up the argument registers.
2240     if (entry != NULL) {
2241       *entry = __ pc();
2242       BLOCK_COMMENT("Entry:");
2243     }
2244 
2245     // allocate spill slots for r13, r14
2246     enum {
2247       saved_r13_offset,
2248       saved_r14_offset,
2249       saved_rbp_offset
2250     };
2251     __ subptr(rsp, saved_rbp_offset * wordSize);
2252     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2253     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2254 
2255     // check that int operands are properly extended to size_t
2256     assert_clean_int(length, rax);
2257     assert_clean_int(ckoff, rax);
2258 
2259 #ifdef ASSERT
2260     BLOCK_COMMENT("assert consistent ckoff/ckval");
2261     // The ckoff and ckval must be mutually consistent,
2262     // even though caller generates both.
2263     { Label L;
2264       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2265                         Klass::super_check_offset_offset_in_bytes());
2266       __ cmpl(ckoff, Address(ckval, sco_offset));
2267       __ jcc(Assembler::equal, L);
2268       __ stop("super_check_offset inconsistent");
2269       __ bind(L);
2270     }
2271 #endif //ASSERT
2272 
2273     // Loop-invariant addresses.  They are exclusive end pointers.
2274     Address end_from_addr(from, length, TIMES_OOP, 0);
2275     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2276     // Loop-variant addresses.  They assume post-incremented count < 0.
2277     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2278     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2279 
2280     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
2281 
2282     // Copy from low to high addresses, indexed from the end of each array.
2283     __ lea(end_from, end_from_addr);
2284     __ lea(end_to,   end_to_addr);
2285     __ movptr(r14_length, length);        // save a copy of the length
2286     assert(length == count, "");          // else fix next line:
2287     __ negptr(count);                     // negate and test the length
2288     __ jcc(Assembler::notZero, L_load_element);
2289 
2290     // Empty array:  Nothing to do.
2291     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2292     __ jmp(L_done);
2293 
2294     // ======== begin loop ========
2295     // (Loop is rotated; its entry is L_load_element.)
2296     // Loop control:
2297     //   for (count = -count; count != 0; count++)
2298     // Base pointers src, dst are biased by 8*(count-1),to last element.
2299     __ align(OptoLoopAlignment);
2300 
2301     __ BIND(L_store_element);
2302     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2303     __ increment(count);               // increment the count toward zero
2304     __ jcc(Assembler::zero, L_do_card_marks);
2305 
2306     // ======== loop entry is here ========
2307     __ BIND(L_load_element);
2308     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2309     __ testptr(rax_oop, rax_oop);
2310     __ jcc(Assembler::zero, L_store_element);
2311 
2312     __ load_klass(r11_klass, rax_oop);// query the object klass
2313     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2314     // ======== end loop ========
2315 
2316     // It was a real error; we must depend on the caller to finish the job.
2317     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2318     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2319     // and report their number to the caller.
2320     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2321     __ lea(end_to, to_element_addr);
2322     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
2323     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2324     __ movptr(rax, r14_length);           // original oops
2325     __ addptr(rax, count);                // K = (original - remaining) oops
2326     __ notptr(rax);                       // report (-1^K) to caller
2327     __ jmp(L_done);
2328 
2329     // Come here on success only.
2330     __ BIND(L_do_card_marks);
2331     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
2332     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2333     __ xorptr(rax, rax);                  // return 0 on success
2334 
2335     // Common exit point (success or failure).
2336     __ BIND(L_done);
2337     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2338     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2339     restore_arg_regs();
2340     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
2341     __ leave(); // required for proper stackwalking of RuntimeStub frame
2342     __ ret(0);
2343 
2344     return start;
2345   }
2346 
2347   //
2348   //  Generate 'unsafe' array copy stub
2349   //  Though just as safe as the other stubs, it takes an unscaled
2350   //  size_t argument instead of an element count.
2351   //
2352   //  Input:
2353   //    c_rarg0   - source array address
2354   //    c_rarg1   - destination array address
2355   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2356   //
2357   // Examines the alignment of the operands and dispatches
2358   // to a long, int, short, or byte copy loop.
2359   //
2360   address generate_unsafe_copy(const char *name,
2361                                address byte_copy_entry, address short_copy_entry,
2362                                address int_copy_entry, address long_copy_entry) {
2363 
2364     Label L_long_aligned, L_int_aligned, L_short_aligned;
2365 
2366     // Input registers (before setup_arg_regs)
2367     const Register from        = c_rarg0;  // source array address
2368     const Register to          = c_rarg1;  // destination array address
2369     const Register size        = c_rarg2;  // byte count (size_t)
2370 
2371     // Register used as a temp
2372     const Register bits        = rax;      // test copy of low bits
2373 
2374     __ align(CodeEntryAlignment);
2375     StubCodeMark mark(this, "StubRoutines", name);
2376     address start = __ pc();
2377 
2378     __ enter(); // required for proper stackwalking of RuntimeStub frame
2379 
2380     // bump this on entry, not on exit:
2381     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2382 
2383     __ mov(bits, from);
2384     __ orptr(bits, to);
2385     __ orptr(bits, size);
2386 
2387     __ testb(bits, BytesPerLong-1);
2388     __ jccb(Assembler::zero, L_long_aligned);
2389 
2390     __ testb(bits, BytesPerInt-1);
2391     __ jccb(Assembler::zero, L_int_aligned);
2392 
2393     __ testb(bits, BytesPerShort-1);
2394     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2395 
2396     __ BIND(L_short_aligned);
2397     __ shrptr(size, LogBytesPerShort); // size => short_count
2398     __ jump(RuntimeAddress(short_copy_entry));
2399 
2400     __ BIND(L_int_aligned);
2401     __ shrptr(size, LogBytesPerInt); // size => int_count
2402     __ jump(RuntimeAddress(int_copy_entry));
2403 
2404     __ BIND(L_long_aligned);
2405     __ shrptr(size, LogBytesPerLong); // size => qword_count
2406     __ jump(RuntimeAddress(long_copy_entry));
2407 
2408     return start;
2409   }
2410 
2411   // Perform range checks on the proposed arraycopy.
2412   // Kills temp, but nothing else.
2413   // Also, clean the sign bits of src_pos and dst_pos.
2414   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2415                               Register src_pos, // source position (c_rarg1)
2416                               Register dst,     // destination array oo (c_rarg2)
2417                               Register dst_pos, // destination position (c_rarg3)
2418                               Register length,
2419                               Register temp,
2420                               Label& L_failed) {
2421     BLOCK_COMMENT("arraycopy_range_checks:");
2422 
2423     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2424     __ movl(temp, length);
2425     __ addl(temp, src_pos);             // src_pos + length
2426     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2427     __ jcc(Assembler::above, L_failed);
2428 
2429     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2430     __ movl(temp, length);
2431     __ addl(temp, dst_pos);             // dst_pos + length
2432     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2433     __ jcc(Assembler::above, L_failed);
2434 
2435     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2436     // Move with sign extension can be used since they are positive.
2437     __ movslq(src_pos, src_pos);
2438     __ movslq(dst_pos, dst_pos);
2439 
2440     BLOCK_COMMENT("arraycopy_range_checks done");
2441   }
2442 
2443   //
2444   //  Generate generic array copy stubs
2445   //
2446   //  Input:
2447   //    c_rarg0    -  src oop
2448   //    c_rarg1    -  src_pos (32-bits)
2449   //    c_rarg2    -  dst oop
2450   //    c_rarg3    -  dst_pos (32-bits)
2451   // not Win64
2452   //    c_rarg4    -  element count (32-bits)
2453   // Win64
2454   //    rsp+40     -  element count (32-bits)
2455   //
2456   //  Output:
2457   //    rax ==  0  -  success
2458   //    rax == -1^K - failure, where K is partial transfer count
2459   //
2460   address generate_generic_copy(const char *name,
2461                                 address byte_copy_entry, address short_copy_entry,
2462                                 address int_copy_entry, address oop_copy_entry,
2463                                 address long_copy_entry, address checkcast_copy_entry) {
2464 
2465     Label L_failed, L_failed_0, L_objArray;
2466     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2467 
2468     // Input registers
2469     const Register src        = c_rarg0;  // source array oop
2470     const Register src_pos    = c_rarg1;  // source position
2471     const Register dst        = c_rarg2;  // destination array oop
2472     const Register dst_pos    = c_rarg3;  // destination position
2473 #ifndef _WIN64
2474     const Register length     = c_rarg4;
2475 #else
2476     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
2477 #endif
2478 
2479     { int modulus = CodeEntryAlignment;
2480       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2481       int advance = target - (__ offset() % modulus);
2482       if (advance < 0)  advance += modulus;
2483       if (advance > 0)  __ nop(advance);
2484     }
2485     StubCodeMark mark(this, "StubRoutines", name);
2486 
2487     // Short-hop target to L_failed.  Makes for denser prologue code.
2488     __ BIND(L_failed_0);
2489     __ jmp(L_failed);
2490     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2491 
2492     __ align(CodeEntryAlignment);
2493     address start = __ pc();
2494 
2495     __ enter(); // required for proper stackwalking of RuntimeStub frame
2496 
2497     // bump this on entry, not on exit:
2498     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2499 
2500     //-----------------------------------------------------------------------
2501     // Assembler stub will be used for this call to arraycopy
2502     // if the following conditions are met:
2503     //
2504     // (1) src and dst must not be null.
2505     // (2) src_pos must not be negative.
2506     // (3) dst_pos must not be negative.
2507     // (4) length  must not be negative.
2508     // (5) src klass and dst klass should be the same and not NULL.
2509     // (6) src and dst should be arrays.
2510     // (7) src_pos + length must not exceed length of src.
2511     // (8) dst_pos + length must not exceed length of dst.
2512     //
2513 
2514     //  if (src == NULL) return -1;
2515     __ testptr(src, src);         // src oop
2516     size_t j1off = __ offset();
2517     __ jccb(Assembler::zero, L_failed_0);
2518 
2519     //  if (src_pos < 0) return -1;
2520     __ testl(src_pos, src_pos); // src_pos (32-bits)
2521     __ jccb(Assembler::negative, L_failed_0);
2522 
2523     //  if (dst == NULL) return -1;
2524     __ testptr(dst, dst);         // dst oop
2525     __ jccb(Assembler::zero, L_failed_0);
2526 
2527     //  if (dst_pos < 0) return -1;
2528     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2529     size_t j4off = __ offset();
2530     __ jccb(Assembler::negative, L_failed_0);
2531 
2532     // The first four tests are very dense code,
2533     // but not quite dense enough to put four
2534     // jumps in a 16-byte instruction fetch buffer.
2535     // That's good, because some branch predicters
2536     // do not like jumps so close together.
2537     // Make sure of this.
2538     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2539 
2540     // registers used as temp
2541     const Register r11_length    = r11; // elements count to copy
2542     const Register r10_src_klass = r10; // array klass
2543 
2544     //  if (length < 0) return -1;
2545     __ movl(r11_length, length);        // length (elements count, 32-bits value)
2546     __ testl(r11_length, r11_length);
2547     __ jccb(Assembler::negative, L_failed_0);
2548 
2549     __ load_klass(r10_src_klass, src);
2550 #ifdef ASSERT
2551     //  assert(src->klass() != NULL);
2552     {
2553       BLOCK_COMMENT("assert klasses not null {");
2554       Label L1, L2;
2555       __ testptr(r10_src_klass, r10_src_klass);
2556       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2557       __ bind(L1);
2558       __ stop("broken null klass");
2559       __ bind(L2);
2560       __ load_klass(rax, dst);
2561       __ cmpq(rax, 0);
2562       __ jcc(Assembler::equal, L1);     // this would be broken also
2563       BLOCK_COMMENT("} assert klasses not null done");
2564     }
2565 #endif
2566 
2567     // Load layout helper (32-bits)
2568     //
2569     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2570     // 32        30    24            16              8     2                 0
2571     //
2572     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2573     //
2574 
2575     const int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2576                           Klass::layout_helper_offset_in_bytes();
2577 
2578     // Handle objArrays completely differently...
2579     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2580     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
2581     __ jcc(Assembler::equal, L_objArray);
2582 
2583     //  if (src->klass() != dst->klass()) return -1;
2584     __ load_klass(rax, dst);
2585     __ cmpq(r10_src_klass, rax);
2586     __ jcc(Assembler::notEqual, L_failed);
2587 
2588     const Register rax_lh = rax;  // layout helper
2589     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2590 
2591     //  if (!src->is_Array()) return -1;
2592     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2593     __ jcc(Assembler::greaterEqual, L_failed);
2594 
2595     // At this point, it is known to be a typeArray (array_tag 0x3).
2596 #ifdef ASSERT
2597     {
2598       BLOCK_COMMENT("assert primitive array {");
2599       Label L;
2600       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2601       __ jcc(Assembler::greaterEqual, L);
2602       __ stop("must be a primitive array");
2603       __ bind(L);
2604       BLOCK_COMMENT("} assert primitive array done");
2605     }
2606 #endif
2607 
2608     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2609                            r10, L_failed);
2610 
2611     // typeArrayKlass
2612     //
2613     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2614     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2615     //
2616 
2617     const Register r10_offset = r10;    // array offset
2618     const Register rax_elsize = rax_lh; // element size
2619 
2620     __ movl(r10_offset, rax_lh);
2621     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2622     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2623     __ addptr(src, r10_offset);           // src array offset
2624     __ addptr(dst, r10_offset);           // dst array offset
2625     BLOCK_COMMENT("choose copy loop based on element size");
2626     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2627 
2628     // next registers should be set before the jump to corresponding stub
2629     const Register from     = c_rarg0;  // source array address
2630     const Register to       = c_rarg1;  // destination array address
2631     const Register count    = c_rarg2;  // elements count
2632 
2633     // 'from', 'to', 'count' registers should be set in such order
2634     // since they are the same as 'src', 'src_pos', 'dst'.
2635 
2636   __ BIND(L_copy_bytes);
2637     __ cmpl(rax_elsize, 0);
2638     __ jccb(Assembler::notEqual, L_copy_shorts);
2639     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2640     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2641     __ movl2ptr(count, r11_length); // length
2642     __ jump(RuntimeAddress(byte_copy_entry));
2643 
2644   __ BIND(L_copy_shorts);
2645     __ cmpl(rax_elsize, LogBytesPerShort);
2646     __ jccb(Assembler::notEqual, L_copy_ints);
2647     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2648     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2649     __ movl2ptr(count, r11_length); // length
2650     __ jump(RuntimeAddress(short_copy_entry));
2651 
2652   __ BIND(L_copy_ints);
2653     __ cmpl(rax_elsize, LogBytesPerInt);
2654     __ jccb(Assembler::notEqual, L_copy_longs);
2655     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2656     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2657     __ movl2ptr(count, r11_length); // length
2658     __ jump(RuntimeAddress(int_copy_entry));
2659 
2660   __ BIND(L_copy_longs);
2661 #ifdef ASSERT
2662     {
2663       BLOCK_COMMENT("assert long copy {");
2664       Label L;
2665       __ cmpl(rax_elsize, LogBytesPerLong);
2666       __ jcc(Assembler::equal, L);
2667       __ stop("must be long copy, but elsize is wrong");
2668       __ bind(L);
2669       BLOCK_COMMENT("} assert long copy done");
2670     }
2671 #endif
2672     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2673     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2674     __ movl2ptr(count, r11_length); // length
2675     __ jump(RuntimeAddress(long_copy_entry));
2676 
2677     // objArrayKlass
2678   __ BIND(L_objArray);
2679     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
2680 
2681     Label L_plain_copy, L_checkcast_copy;
2682     //  test array classes for subtyping
2683     __ load_klass(rax, dst);
2684     __ cmpq(r10_src_klass, rax); // usual case is exact equality
2685     __ jcc(Assembler::notEqual, L_checkcast_copy);
2686 
2687     // Identically typed arrays can be copied without element-wise checks.
2688     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2689                            r10, L_failed);
2690 
2691     __ lea(from, Address(src, src_pos, TIMES_OOP,
2692                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2693     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2694                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2695     __ movl2ptr(count, r11_length); // length
2696   __ BIND(L_plain_copy);
2697     __ jump(RuntimeAddress(oop_copy_entry));
2698 
2699   __ BIND(L_checkcast_copy);
2700     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
2701     {
2702       // Before looking at dst.length, make sure dst is also an objArray.
2703       __ cmpl(Address(rax, lh_offset), objArray_lh);
2704       __ jcc(Assembler::notEqual, L_failed);
2705 
2706       // It is safe to examine both src.length and dst.length.
2707       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2708                              rax, L_failed);
2709 
2710       const Register r11_dst_klass = r11;
2711       __ load_klass(r11_dst_klass, dst); // reload
2712 
2713       // Marshal the base address arguments now, freeing registers.
2714       __ lea(from, Address(src, src_pos, TIMES_OOP,
2715                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2716       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2717                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2718       __ movl(count, length);           // length (reloaded)
2719       Register sco_temp = c_rarg3;      // this register is free now
2720       assert_different_registers(from, to, count, sco_temp,
2721                                  r11_dst_klass, r10_src_klass);
2722       assert_clean_int(count, sco_temp);
2723 
2724       // Generate the type check.
2725       const int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2726                               Klass::super_check_offset_offset_in_bytes());
2727       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2728       assert_clean_int(sco_temp, rax);
2729       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2730 
2731       // Fetch destination element klass from the objArrayKlass header.
2732       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2733                        objArrayKlass::element_klass_offset_in_bytes());
2734       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2735       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
2736       assert_clean_int(sco_temp, rax);
2737 
2738       // the checkcast_copy loop needs two extra arguments:
2739       assert(c_rarg3 == sco_temp, "#3 already in place");
2740       // Set up arguments for checkcast_copy_entry.
2741       setup_arg_regs(4);
2742       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
2743       __ jump(RuntimeAddress(checkcast_copy_entry));
2744     }
2745 
2746   __ BIND(L_failed);
2747     __ xorptr(rax, rax);
2748     __ notptr(rax); // return -1
2749     __ leave();   // required for proper stackwalking of RuntimeStub frame
2750     __ ret(0);
2751 
2752     return start;
2753   }
2754 
2755   void generate_arraycopy_stubs() {
2756     address entry;
2757     address entry_jbyte_arraycopy;
2758     address entry_jshort_arraycopy;
2759     address entry_jint_arraycopy;
2760     address entry_oop_arraycopy;
2761     address entry_jlong_arraycopy;
2762     address entry_checkcast_arraycopy;
2763 
2764     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
2765                                                                            "jbyte_disjoint_arraycopy");
2766     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
2767                                                                            "jbyte_arraycopy");
2768 
2769     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
2770                                                                             "jshort_disjoint_arraycopy");
2771     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
2772                                                                             "jshort_arraycopy");
2773 
2774     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
2775                                                                               "jint_disjoint_arraycopy");
2776     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
2777                                                                               &entry_jint_arraycopy, "jint_arraycopy");
2778 
2779     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
2780                                                                                "jlong_disjoint_arraycopy");
2781     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
2782                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
2783 
2784 
2785     if (UseCompressedOops) {
2786       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
2787                                                                               "oop_disjoint_arraycopy");
2788       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
2789                                                                               &entry_oop_arraycopy, "oop_arraycopy");
2790       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
2791                                                                                      "oop_disjoint_arraycopy_uninit",
2792                                                                                      /*dest_uninitialized*/true);
2793       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
2794                                                                                      NULL, "oop_arraycopy_uninit",
2795                                                                                      /*dest_uninitialized*/true);
2796     } else {
2797       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
2798                                                                                "oop_disjoint_arraycopy");
2799       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
2800                                                                                &entry_oop_arraycopy, "oop_arraycopy");
2801       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
2802                                                                                       "oop_disjoint_arraycopy_uninit",
2803                                                                                       /*dest_uninitialized*/true);
2804       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
2805                                                                                       NULL, "oop_arraycopy_uninit",
2806                                                                                       /*dest_uninitialized*/true);
2807     }
2808 
2809     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2810     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
2811                                                                         /*dest_uninitialized*/true);
2812 
2813     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
2814                                                               entry_jbyte_arraycopy,
2815                                                               entry_jshort_arraycopy,
2816                                                               entry_jint_arraycopy,
2817                                                               entry_jlong_arraycopy);
2818     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
2819                                                                entry_jbyte_arraycopy,
2820                                                                entry_jshort_arraycopy,
2821                                                                entry_jint_arraycopy,
2822                                                                entry_oop_arraycopy,
2823                                                                entry_jlong_arraycopy,
2824                                                                entry_checkcast_arraycopy);
2825 
2826     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2827     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2828     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2829     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2830     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2831     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2832 
2833     // We don't generate specialized code for HeapWord-aligned source
2834     // arrays, so just use the code we've already generated
2835     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2836     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2837 
2838     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2839     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2840 
2841     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2842     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2843 
2844     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2845     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2846 
2847     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2848     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2849 
2850     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
2851     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
2852   }
2853 
2854   void generate_math_stubs() {
2855     {
2856       StubCodeMark mark(this, "StubRoutines", "log");
2857       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2858 
2859       __ subq(rsp, 8);
2860       __ movdbl(Address(rsp, 0), xmm0);
2861       __ fld_d(Address(rsp, 0));
2862       __ flog();
2863       __ fstp_d(Address(rsp, 0));
2864       __ movdbl(xmm0, Address(rsp, 0));
2865       __ addq(rsp, 8);
2866       __ ret(0);
2867     }
2868     {
2869       StubCodeMark mark(this, "StubRoutines", "log10");
2870       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2871 
2872       __ subq(rsp, 8);
2873       __ movdbl(Address(rsp, 0), xmm0);
2874       __ fld_d(Address(rsp, 0));
2875       __ flog10();
2876       __ fstp_d(Address(rsp, 0));
2877       __ movdbl(xmm0, Address(rsp, 0));
2878       __ addq(rsp, 8);
2879       __ ret(0);
2880     }
2881     {
2882       StubCodeMark mark(this, "StubRoutines", "sin");
2883       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2884 
2885       __ subq(rsp, 8);
2886       __ movdbl(Address(rsp, 0), xmm0);
2887       __ fld_d(Address(rsp, 0));
2888       __ trigfunc('s');
2889       __ fstp_d(Address(rsp, 0));
2890       __ movdbl(xmm0, Address(rsp, 0));
2891       __ addq(rsp, 8);
2892       __ ret(0);
2893     }
2894     {
2895       StubCodeMark mark(this, "StubRoutines", "cos");
2896       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2897 
2898       __ subq(rsp, 8);
2899       __ movdbl(Address(rsp, 0), xmm0);
2900       __ fld_d(Address(rsp, 0));
2901       __ trigfunc('c');
2902       __ fstp_d(Address(rsp, 0));
2903       __ movdbl(xmm0, Address(rsp, 0));
2904       __ addq(rsp, 8);
2905       __ ret(0);
2906     }
2907     {
2908       StubCodeMark mark(this, "StubRoutines", "tan");
2909       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2910 
2911       __ subq(rsp, 8);
2912       __ movdbl(Address(rsp, 0), xmm0);
2913       __ fld_d(Address(rsp, 0));
2914       __ trigfunc('t');
2915       __ fstp_d(Address(rsp, 0));
2916       __ movdbl(xmm0, Address(rsp, 0));
2917       __ addq(rsp, 8);
2918       __ ret(0);
2919     }
2920 
2921     // The intrinsic version of these seem to return the same value as
2922     // the strict version.
2923     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
2924     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
2925   }
2926 
2927 #undef __
2928 #define __ masm->
2929 
2930   // Continuation point for throwing of implicit exceptions that are
2931   // not handled in the current activation. Fabricates an exception
2932   // oop and initiates normal exception dispatching in this
2933   // frame. Since we need to preserve callee-saved values (currently
2934   // only for C2, but done for C1 as well) we need a callee-saved oop
2935   // map and therefore have to make these stubs into RuntimeStubs
2936   // rather than BufferBlobs.  If the compiler needs all registers to
2937   // be preserved between the fault point and the exception handler
2938   // then it must assume responsibility for that in
2939   // AbstractCompiler::continuation_for_implicit_null_exception or
2940   // continuation_for_implicit_division_by_zero_exception. All other
2941   // implicit exceptions (e.g., NullPointerException or
2942   // AbstractMethodError on entry) are either at call sites or
2943   // otherwise assume that stack unwinding will be initiated, so
2944   // caller saved registers were assumed volatile in the compiler.
2945   address generate_throw_exception(const char* name,
2946                                    address runtime_entry,
2947                                    Register arg1 = noreg,
2948                                    Register arg2 = noreg) {
2949     // Information about frame layout at time of blocking runtime call.
2950     // Note that we only have to preserve callee-saved registers since
2951     // the compilers are responsible for supplying a continuation point
2952     // if they expect all registers to be preserved.
2953     enum layout {
2954       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2955       rbp_off2,
2956       return_off,
2957       return_off2,
2958       framesize // inclusive of return address
2959     };
2960 
2961     int insts_size = 512;
2962     int locs_size  = 64;
2963 
2964     CodeBuffer code(name, insts_size, locs_size);
2965     OopMapSet* oop_maps  = new OopMapSet();
2966     MacroAssembler* masm = new MacroAssembler(&code);
2967 
2968     address start = __ pc();
2969 
2970     // This is an inlined and slightly modified version of call_VM
2971     // which has the ability to fetch the return PC out of
2972     // thread-local storage and also sets up last_Java_sp slightly
2973     // differently than the real call_VM
2974 
2975     __ enter(); // required for proper stackwalking of RuntimeStub frame
2976 
2977     assert(is_even(framesize/2), "sp not 16-byte aligned");
2978 
2979     // return address and rbp are already in place
2980     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
2981 
2982     int frame_complete = __ pc() - start;
2983 
2984     // Set up last_Java_sp and last_Java_fp
2985     __ set_last_Java_frame(rsp, rbp, NULL);
2986 
2987     // Call runtime
2988     if (arg1 != noreg) {
2989       assert(arg2 != c_rarg1, "clobbered");
2990       __ movptr(c_rarg1, arg1);
2991     }
2992     if (arg2 != noreg) {
2993       __ movptr(c_rarg2, arg2);
2994     }
2995     __ movptr(c_rarg0, r15_thread);
2996     BLOCK_COMMENT("call runtime_entry");
2997     __ call(RuntimeAddress(runtime_entry));
2998 
2999     // Generate oop map
3000     OopMap* map = new OopMap(framesize, 0);
3001 
3002     oop_maps->add_gc_map(__ pc() - start, map);
3003 
3004     __ reset_last_Java_frame(true, false);
3005 
3006     __ leave(); // required for proper stackwalking of RuntimeStub frame
3007 
3008     // check for pending exceptions
3009 #ifdef ASSERT
3010     Label L;
3011     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
3012             (int32_t) NULL_WORD);
3013     __ jcc(Assembler::notEqual, L);
3014     __ should_not_reach_here();
3015     __ bind(L);
3016 #endif // ASSERT
3017     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3018 
3019 
3020     // codeBlob framesize is in words (not VMRegImpl::slot_size)
3021     RuntimeStub* stub =
3022       RuntimeStub::new_runtime_stub(name,
3023                                     &code,
3024                                     frame_complete,
3025                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3026                                     oop_maps, false);
3027     return stub->entry_point();
3028   }
3029 
3030   // Initialization
3031   void generate_initial() {
3032     // Generates all stubs and initializes the entry points
3033 
3034     // This platform-specific stub is needed by generate_call_stub()
3035     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
3036 
3037     // entry points that exist in all platforms Note: This is code
3038     // that could be shared among different platforms - however the
3039     // benefit seems to be smaller than the disadvantage of having a
3040     // much more complicated generator structure. See also comment in
3041     // stubRoutines.hpp.
3042 
3043     StubRoutines::_forward_exception_entry = generate_forward_exception();
3044 
3045     StubRoutines::_call_stub_entry =
3046       generate_call_stub(StubRoutines::_call_stub_return_address);
3047 
3048     // is referenced by megamorphic call
3049     StubRoutines::_catch_exception_entry = generate_catch_exception();
3050 
3051     // atomic calls
3052     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3053     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
3054     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3055     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3056     StubRoutines::_atomic_add_entry          = generate_atomic_add();
3057     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
3058     StubRoutines::_fence_entry               = generate_orderaccess_fence();
3059 
3060     StubRoutines::_handler_for_unsafe_access_entry =
3061       generate_handler_for_unsafe_access();
3062 
3063     // platform dependent
3064     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
3065 
3066     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3067 
3068     // Build this early so it's available for the interpreter.  Stub
3069     // expects the required and actual types as register arguments in
3070     // j_rarg0 and j_rarg1 respectively.
3071     StubRoutines::_throw_WrongMethodTypeException_entry =
3072       generate_throw_exception("WrongMethodTypeException throw_exception",
3073                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
3074                                rax, rcx);
3075   }
3076 
3077   void generate_all() {
3078     // Generates all stubs and initializes the entry points
3079 
3080     // These entry points require SharedInfo::stack0 to be set up in
3081     // non-core builds and need to be relocatable, so they each
3082     // fabricate a RuntimeStub internally.
3083     StubRoutines::_throw_AbstractMethodError_entry =
3084       generate_throw_exception("AbstractMethodError throw_exception",
3085                                CAST_FROM_FN_PTR(address,
3086                                                 SharedRuntime::
3087                                                 throw_AbstractMethodError));
3088 
3089     StubRoutines::_throw_IncompatibleClassChangeError_entry =
3090       generate_throw_exception("IncompatibleClassChangeError throw_exception",
3091                                CAST_FROM_FN_PTR(address,
3092                                                 SharedRuntime::
3093                                                 throw_IncompatibleClassChangeError));
3094 
3095     StubRoutines::_throw_NullPointerException_at_call_entry =
3096       generate_throw_exception("NullPointerException at call throw_exception",
3097                                CAST_FROM_FN_PTR(address,
3098                                                 SharedRuntime::
3099                                                 throw_NullPointerException_at_call));
3100 
3101     StubRoutines::_throw_StackOverflowError_entry =
3102       generate_throw_exception("StackOverflowError throw_exception",
3103                                CAST_FROM_FN_PTR(address,
3104                                                 SharedRuntime::
3105                                                 throw_StackOverflowError));
3106 
3107     // entry points that are platform specific
3108     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
3109     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
3110     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
3111     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
3112 
3113     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3114     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3115     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3116     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3117 
3118     // support for verify_oop (must happen after universe_init)
3119     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3120 
3121     // arraycopy stubs used by compilers
3122     generate_arraycopy_stubs();
3123 
3124     generate_math_stubs();
3125   }
3126 
3127  public:
3128   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3129     if (all) {
3130       generate_all();
3131     } else {
3132       generate_initial();
3133     }
3134   }
3135 }; // end class declaration
3136 
3137 void StubGenerator_generate(CodeBuffer* code, bool all) {
3138   StubGenerator g(code, all);
3139 }