1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodDataOop.hpp"
  34 #include "oops/methodOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 
  48 #define __ _masm->
  49 
  50 
  51 #ifndef CC_INTERP
  52 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  53 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
  54 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
  55 
  56 //------------------------------------------------------------------------------------------------------------------------
  57 
  58 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  59   address entry = __ pc();
  60 
  61   // Note: There should be a minimal interpreter frame set up when stack
  62   // overflow occurs since we check explicitly for it now.
  63   //
  64 #ifdef ASSERT
  65   { Label L;
  66     __ lea(rax, Address(rbp,
  67                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
  68     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
  69                         //  (stack grows negative)
  70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
  71     __ stop ("interpreter frame not set up");
  72     __ bind(L);
  73   }
  74 #endif // ASSERT
  75   // Restore bcp under the assumption that the current frame is still
  76   // interpreted
  77   __ restore_bcp();
  78 
  79   // expression stack must be empty before entering the VM if an exception
  80   // happened
  81   __ empty_expression_stack();
  82   __ empty_FPU_stack();
  83   // throw exception
  84   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  85   return entry;
  86 }
  87 
  88 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
  89   address entry = __ pc();
  90   // expression stack must be empty before entering the VM if an exception happened
  91   __ empty_expression_stack();
  92   __ empty_FPU_stack();
  93   // setup parameters
  94   // ??? convention: expect aberrant index in register rbx,
  95   __ lea(rax, ExternalAddress((address)name));
  96   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
  97   return entry;
  98 }
  99 
 100 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 101   address entry = __ pc();
 102   // object is at TOS
 103   __ pop(rax);
 104   // expression stack must be empty before entering the VM if an exception
 105   // happened
 106   __ empty_expression_stack();
 107   __ empty_FPU_stack();
 108   __ call_VM(noreg,
 109              CAST_FROM_FN_PTR(address,
 110                               InterpreterRuntime::throw_ClassCastException),
 111              rax);
 112   return entry;
 113 }
 114 
 115 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 116   assert(!pass_oop || message == NULL, "either oop or message but not both");
 117   address entry = __ pc();
 118   if (pass_oop) {
 119     // object is at TOS
 120     __ pop(rbx);
 121   }
 122   // expression stack must be empty before entering the VM if an exception happened
 123   __ empty_expression_stack();
 124   __ empty_FPU_stack();
 125   // setup parameters
 126   __ lea(rax, ExternalAddress((address)name));
 127   if (pass_oop) {
 128     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
 129   } else {
 130     if (message != NULL) {
 131       __ lea(rbx, ExternalAddress((address)message));
 132     } else {
 133       __ movptr(rbx, NULL_WORD);
 134     }
 135     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
 136   }
 137   // throw exception
 138   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 139   return entry;
 140 }
 141 
 142 
 143 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 144   address entry = __ pc();
 145   // NULL last_sp until next java call
 146   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 147   __ dispatch_next(state);
 148   return entry;
 149 }
 150 
 151 
 152 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 153   TosState incoming_state = state;
 154   address entry = __ pc();
 155 
 156 #ifdef COMPILER2
 157   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
 158   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
 159     for (int i = 1; i < 8; i++) {
 160         __ ffree(i);
 161     }
 162   } else if (UseSSE < 2) {
 163     __ empty_FPU_stack();
 164   }
 165 #endif
 166   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
 167     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
 168   } else {
 169     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
 170   }
 171 
 172   // In SSE mode, interpreter returns FP results in xmm0 but they need
 173   // to end up back on the FPU so it can operate on them.
 174   if (incoming_state == ftos && UseSSE >= 1) {
 175     __ subptr(rsp, wordSize);
 176     __ movflt(Address(rsp, 0), xmm0);
 177     __ fld_s(Address(rsp, 0));
 178     __ addptr(rsp, wordSize);
 179   } else if (incoming_state == dtos && UseSSE >= 2) {
 180     __ subptr(rsp, 2*wordSize);
 181     __ movdbl(Address(rsp, 0), xmm0);
 182     __ fld_d(Address(rsp, 0));
 183     __ addptr(rsp, 2*wordSize);
 184   }
 185 
 186   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
 187 
 188   // Restore stack bottom in case i2c adjusted stack
 189   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
 190   // and NULL it as marker that rsp is now tos until next java call
 191   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 192 
 193   __ restore_bcp();
 194   __ restore_locals();
 195 
 196   Label L_got_cache, L_giant_index;
 197   if (EnableInvokeDynamic) {
 198     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
 199     __ jcc(Assembler::equal, L_giant_index);
 200   }
 201   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
 202   __ bind(L_got_cache);
 203   __ movl(rbx, Address(rbx, rcx,
 204                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() +
 205                     ConstantPoolCacheEntry::flags_offset()));
 206   __ andptr(rbx, 0xFF);
 207   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
 208   __ dispatch_next(state, step);
 209 
 210   // out of the main line of code...
 211   if (EnableInvokeDynamic) {
 212     __ bind(L_giant_index);
 213     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
 214     __ jmp(L_got_cache);
 215   }
 216 
 217   return entry;
 218 }
 219 
 220 
 221 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 222   address entry = __ pc();
 223 
 224   // In SSE mode, FP results are in xmm0
 225   if (state == ftos && UseSSE > 0) {
 226     __ subptr(rsp, wordSize);
 227     __ movflt(Address(rsp, 0), xmm0);
 228     __ fld_s(Address(rsp, 0));
 229     __ addptr(rsp, wordSize);
 230   } else if (state == dtos && UseSSE >= 2) {
 231     __ subptr(rsp, 2*wordSize);
 232     __ movdbl(Address(rsp, 0), xmm0);
 233     __ fld_d(Address(rsp, 0));
 234     __ addptr(rsp, 2*wordSize);
 235   }
 236 
 237   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
 238 
 239   // The stack is not extended by deopt but we must NULL last_sp as this
 240   // entry is like a "return".
 241   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 242   __ restore_bcp();
 243   __ restore_locals();
 244   // handle exceptions
 245   { Label L;
 246     const Register thread = rcx;
 247     __ get_thread(thread);
 248     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 249     __ jcc(Assembler::zero, L);
 250     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 251     __ should_not_reach_here();
 252     __ bind(L);
 253   }
 254   __ dispatch_next(state, step);
 255   return entry;
 256 }
 257 
 258 
 259 int AbstractInterpreter::BasicType_as_index(BasicType type) {
 260   int i = 0;
 261   switch (type) {
 262     case T_BOOLEAN: i = 0; break;
 263     case T_CHAR   : i = 1; break;
 264     case T_BYTE   : i = 2; break;
 265     case T_SHORT  : i = 3; break;
 266     case T_INT    : // fall through
 267     case T_LONG   : // fall through
 268     case T_VOID   : i = 4; break;
 269     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
 270     case T_DOUBLE : i = 6; break;
 271     case T_OBJECT : // fall through
 272     case T_ARRAY  : i = 7; break;
 273     default       : ShouldNotReachHere();
 274   }
 275   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
 276   return i;
 277 }
 278 
 279 
 280 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 281   address entry = __ pc();
 282   switch (type) {
 283     case T_BOOLEAN: __ c2bool(rax);            break;
 284     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
 285     case T_BYTE   : __ sign_extend_byte (rax); break;
 286     case T_SHORT  : __ sign_extend_short(rax); break;
 287     case T_INT    : /* nothing to do */        break;
 288     case T_DOUBLE :
 289     case T_FLOAT  :
 290       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 291         __ pop(t);                            // remove return address first
 292         // Must return a result for interpreter or compiler. In SSE
 293         // mode, results are returned in xmm0 and the FPU stack must
 294         // be empty.
 295         if (type == T_FLOAT && UseSSE >= 1) {
 296           // Load ST0
 297           __ fld_d(Address(rsp, 0));
 298           // Store as float and empty fpu stack
 299           __ fstp_s(Address(rsp, 0));
 300           // and reload
 301           __ movflt(xmm0, Address(rsp, 0));
 302         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 303           __ movdbl(xmm0, Address(rsp, 0));
 304         } else {
 305           // restore ST0
 306           __ fld_d(Address(rsp, 0));
 307         }
 308         // and pop the temp
 309         __ addptr(rsp, 2 * wordSize);
 310         __ push(t);                           // restore return address
 311       }
 312       break;
 313     case T_OBJECT :
 314       // retrieve result from frame
 315       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
 316       // and verify it
 317       __ verify_oop(rax);
 318       break;
 319     default       : ShouldNotReachHere();
 320   }
 321   __ ret(0);                                   // return from result handler
 322   return entry;
 323 }
 324 
 325 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 326   address entry = __ pc();
 327   __ push(state);
 328   __ call_VM(noreg, runtime_entry);
 329   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 330   return entry;
 331 }
 332 
 333 
 334 // Helpers for commoning out cases in the various type of method entries.
 335 //
 336 
 337 // increment invocation count & check for overflow
 338 //
 339 // Note: checking for negative value instead of overflow
 340 //       so we have a 'sticky' overflow test
 341 //
 342 // rbx,: method
 343 // rcx: invocation counter
 344 //
 345 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 346   const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
 347                                         in_bytes(InvocationCounter::counter_offset()));
 348   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
 349   if (TieredCompilation) {
 350     int increment = InvocationCounter::count_increment;
 351     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
 352     Label no_mdo, done;
 353     if (ProfileInterpreter) {
 354       // Are we profiling?
 355       __ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
 356       __ testptr(rax, rax);
 357       __ jccb(Assembler::zero, no_mdo);
 358       // Increment counter in the MDO
 359       const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
 360                                                 in_bytes(InvocationCounter::counter_offset()));
 361       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
 362       __ jmpb(done);
 363     }
 364     __ bind(no_mdo);
 365     // Increment counter in methodOop (we don't need to load it, it's in rcx).
 366     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
 367     __ bind(done);
 368   } else {
 369     const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() +
 370                                           InvocationCounter::counter_offset());
 371 
 372     if (ProfileInterpreter) { // %%% Merge this into methodDataOop
 373       __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
 374     }
 375     // Update standard invocation counters
 376     __ movl(rax, backedge_counter);               // load backedge counter
 377 
 378     __ incrementl(rcx, InvocationCounter::count_increment);
 379     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 380 
 381     __ movl(invocation_counter, rcx);             // save invocation count
 382     __ addl(rcx, rax);                            // add both counters
 383 
 384     // profile_method is non-null only for interpreted method so
 385     // profile_method != NULL == !native_call
 386     // BytecodeInterpreter only calls for native so code is elided.
 387 
 388     if (ProfileInterpreter && profile_method != NULL) {
 389       // Test to see if we should create a method data oop
 390       __ cmp32(rcx,
 391                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
 392       __ jcc(Assembler::less, *profile_method_continue);
 393 
 394       // if no method data exists, go to profile_method
 395       __ test_method_data_pointer(rax, *profile_method);
 396     }
 397 
 398     __ cmp32(rcx,
 399              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 400     __ jcc(Assembler::aboveEqual, *overflow);
 401   }
 402 }
 403 
 404 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 405 
 406   // Asm interpreter on entry
 407   // rdi - locals
 408   // rsi - bcp
 409   // rbx, - method
 410   // rdx - cpool
 411   // rbp, - interpreter frame
 412 
 413   // C++ interpreter on entry
 414   // rsi - new interpreter state pointer
 415   // rbp - interpreter frame pointer
 416   // rbx - method
 417 
 418   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 419   // rbx, - method
 420   // rcx - rcvr (assuming there is one)
 421   // top of stack return address of interpreter caller
 422   // rsp - sender_sp
 423 
 424   // C++ interpreter only
 425   // rsi - previous interpreter state pointer
 426 
 427   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 428 
 429   // InterpreterRuntime::frequency_counter_overflow takes one argument
 430   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 431   // The call returns the address of the verified entry point for the method or NULL
 432   // if the compilation did not complete (either went background or bailed out).
 433   __ movptr(rax, (intptr_t)false);
 434   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 435 
 436   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
 437 
 438   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
 439   // and jump to the interpreted entry.
 440   __ jmp(*do_continue, relocInfo::none);
 441 
 442 }
 443 
 444 void InterpreterGenerator::generate_stack_overflow_check(void) {
 445   // see if we've got enough room on the stack for locals plus overhead.
 446   // the expression stack grows down incrementally, so the normal guard
 447   // page mechanism will work for that.
 448   //
 449   // Registers live on entry:
 450   //
 451   // Asm interpreter
 452   // rdx: number of additional locals this frame needs (what we must check)
 453   // rbx,: methodOop
 454 
 455   // destroyed on exit
 456   // rax,
 457 
 458   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 459   // generate_method_entry) so the guard should work for them too.
 460   //
 461 
 462   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
 463   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 464 
 465   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 466   // be sure to change this if you add/subtract anything to/from the overhead area
 467   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
 468 
 469   const int page_size = os::vm_page_size();
 470 
 471   Label after_frame_check;
 472 
 473   // see if the frame is greater than one page in size. If so,
 474   // then we need to verify there is enough stack space remaining
 475   // for the additional locals.
 476   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
 477   __ jcc(Assembler::belowEqual, after_frame_check);
 478 
 479   // compute rsp as if this were going to be the last frame on
 480   // the stack before the red zone
 481 
 482   Label after_frame_check_pop;
 483 
 484   __ push(rsi);
 485 
 486   const Register thread = rsi;
 487 
 488   __ get_thread(thread);
 489 
 490   const Address stack_base(thread, Thread::stack_base_offset());
 491   const Address stack_size(thread, Thread::stack_size_offset());
 492 
 493   // locals + overhead, in bytes
 494   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
 495 
 496 #ifdef ASSERT
 497   Label stack_base_okay, stack_size_okay;
 498   // verify that thread stack base is non-zero
 499   __ cmpptr(stack_base, (int32_t)NULL_WORD);
 500   __ jcc(Assembler::notEqual, stack_base_okay);
 501   __ stop("stack base is zero");
 502   __ bind(stack_base_okay);
 503   // verify that thread stack size is non-zero
 504   __ cmpptr(stack_size, 0);
 505   __ jcc(Assembler::notEqual, stack_size_okay);
 506   __ stop("stack size is zero");
 507   __ bind(stack_size_okay);
 508 #endif
 509 
 510   // Add stack base to locals and subtract stack size
 511   __ addptr(rax, stack_base);
 512   __ subptr(rax, stack_size);
 513 
 514   // Use the maximum number of pages we might bang.
 515   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 516                                                                               (StackRedPages+StackYellowPages);
 517   __ addptr(rax, max_pages * page_size);
 518 
 519   // check against the current stack bottom
 520   __ cmpptr(rsp, rax);
 521   __ jcc(Assembler::above, after_frame_check_pop);
 522 
 523   __ pop(rsi);  // get saved bcp / (c++ prev state ).
 524 
 525   __ pop(rax);  // get return address
 526   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
 527 
 528   // all done with frame size check
 529   __ bind(after_frame_check_pop);
 530   __ pop(rsi);
 531 
 532   __ bind(after_frame_check);
 533 }
 534 
 535 // Allocate monitor and lock method (asm interpreter)
 536 // rbx, - methodOop
 537 //
 538 void InterpreterGenerator::lock_method(void) {
 539   // synchronize method
 540   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 541   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 542   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 543 
 544   #ifdef ASSERT
 545     { Label L;
 546       __ movl(rax, access_flags);
 547       __ testl(rax, JVM_ACC_SYNCHRONIZED);
 548       __ jcc(Assembler::notZero, L);
 549       __ stop("method doesn't need synchronization");
 550       __ bind(L);
 551     }
 552   #endif // ASSERT
 553   // get synchronization object
 554   { Label done;
 555     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 556     __ movl(rax, access_flags);
 557     __ testl(rax, JVM_ACC_STATIC);
 558     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
 559     __ jcc(Assembler::zero, done);
 560     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
 561     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 562     __ movptr(rax, Address(rax, mirror_offset));
 563     __ bind(done);
 564   }
 565   // add space for monitor & lock
 566   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 567   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
 568   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 569   __ mov(rdx, rsp);                                                    // object address
 570   __ lock_object(rdx);
 571 }
 572 
 573 //
 574 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
 575 // and for native methods hence the shared code.
 576 
 577 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 578   // initialize fixed part of activation frame
 579   __ push(rax);                                       // save return address
 580   __ enter();                                         // save old & set new rbp,
 581 
 582 
 583   __ push(rsi);                                       // set sender sp
 584   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
 585   __ movptr(rsi, Address(rbx,methodOopDesc::const_offset())); // get constMethodOop
 586   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
 587   __ push(rbx);                                      // save methodOop
 588   if (ProfileInterpreter) {
 589     Label method_data_continue;
 590     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 591     __ testptr(rdx, rdx);
 592     __ jcc(Assembler::zero, method_data_continue);
 593     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
 594     __ bind(method_data_continue);
 595     __ push(rdx);                                       // set the mdp (method data pointer)
 596   } else {
 597     __ push(0);
 598   }
 599 
 600   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
 601   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
 602   __ push(rdx);                                       // set constant pool cache
 603   __ push(rdi);                                       // set locals pointer
 604   if (native_call) {
 605     __ push(0);                                       // no bcp
 606   } else {
 607     __ push(rsi);                                     // set bcp
 608     }
 609   __ push(0);                                         // reserve word for pointer to expression stack bottom
 610   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
 611 }
 612 
 613 // End of helpers
 614 
 615 //
 616 // Various method entries
 617 //------------------------------------------------------------------------------------------------------------------------
 618 //
 619 //
 620 
 621 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
 622 
 623 address InterpreterGenerator::generate_accessor_entry(void) {
 624 
 625   // rbx,: methodOop
 626   // rcx: receiver (preserve for slow entry into asm interpreter)
 627 
 628   // rsi: senderSP must preserved for slow path, set SP to it on fast path
 629 
 630   address entry_point = __ pc();
 631   Label xreturn_path;
 632 
 633   // do fastpath for resolved accessor methods
 634   if (UseFastAccessorMethods) {
 635     Label slow_path;
 636     // If we need a safepoint check, generate full interpreter entry.
 637     ExternalAddress state(SafepointSynchronize::address_of_state());
 638     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 639              SafepointSynchronize::_not_synchronized);
 640 
 641     __ jcc(Assembler::notEqual, slow_path);
 642     // ASM/C++ Interpreter
 643     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
 644     // Note: We can only use this code if the getfield has been resolved
 645     //       and if we don't have a null-pointer exception => check for
 646     //       these conditions first and use slow path if necessary.
 647     // rbx,: method
 648     // rcx: receiver
 649     __ movptr(rax, Address(rsp, wordSize));
 650 
 651     // check if local 0 != NULL and read field
 652     __ testptr(rax, rax);
 653     __ jcc(Assembler::zero, slow_path);
 654 
 655     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
 656     // read first instruction word and extract bytecode @ 1 and index @ 2
 657     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 658     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 659     // Shift codes right to get the index on the right.
 660     // The bytecode fetched looks like <index><0xb4><0x2a>
 661     __ shrl(rdx, 2*BitsPerByte);
 662     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 663     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
 664 
 665     // rax,: local 0
 666     // rbx,: method
 667     // rcx: receiver - do not destroy since it is needed for slow path!
 668     // rcx: scratch
 669     // rdx: constant pool cache index
 670     // rdi: constant pool cache
 671     // rsi: sender sp
 672 
 673     // check if getfield has been resolved and read constant pool cache entry
 674     // check the validity of the cache entry by testing whether _indices field
 675     // contains Bytecode::_getfield in b1 byte.
 676     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
 677     __ movl(rcx,
 678             Address(rdi,
 679                     rdx,
 680                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 681     __ shrl(rcx, 2*BitsPerByte);
 682     __ andl(rcx, 0xFF);
 683     __ cmpl(rcx, Bytecodes::_getfield);
 684     __ jcc(Assembler::notEqual, slow_path);
 685 
 686     // Note: constant pool entry is not valid before bytecode is resolved
 687     __ movptr(rcx,
 688               Address(rdi,
 689                       rdx,
 690                       Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
 691     __ movl(rdx,
 692             Address(rdi,
 693                     rdx,
 694                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 695 
 696     Label notByte, notShort, notChar;
 697     const Address field_address (rax, rcx, Address::times_1);
 698 
 699     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 700     // because they are different sizes.
 701     // Use the type from the constant pool cache
 702     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
 703     // Make sure we don't need to mask rdx for tosBits after the above shift
 704     ConstantPoolCacheEntry::verify_tosBits();
 705     __ cmpl(rdx, btos);
 706     __ jcc(Assembler::notEqual, notByte);
 707     __ load_signed_byte(rax, field_address);
 708     __ jmp(xreturn_path);
 709 
 710     __ bind(notByte);
 711     __ cmpl(rdx, stos);
 712     __ jcc(Assembler::notEqual, notShort);
 713     __ load_signed_short(rax, field_address);
 714     __ jmp(xreturn_path);
 715 
 716     __ bind(notShort);
 717     __ cmpl(rdx, ctos);
 718     __ jcc(Assembler::notEqual, notChar);
 719     __ load_unsigned_short(rax, field_address);
 720     __ jmp(xreturn_path);
 721 
 722     __ bind(notChar);
 723 #ifdef ASSERT
 724     Label okay;
 725     __ cmpl(rdx, atos);
 726     __ jcc(Assembler::equal, okay);
 727     __ cmpl(rdx, itos);
 728     __ jcc(Assembler::equal, okay);
 729     __ stop("what type is this?");
 730     __ bind(okay);
 731 #endif // ASSERT
 732     // All the rest are a 32 bit wordsize
 733     // This is ok for now. Since fast accessors should be going away
 734     __ movptr(rax, field_address);
 735 
 736     __ bind(xreturn_path);
 737 
 738     // _ireturn/_areturn
 739     __ pop(rdi);                               // get return address
 740     __ mov(rsp, rsi);                          // set sp to sender sp
 741     __ jmp(rdi);
 742 
 743     // generate a vanilla interpreter entry as the slow path
 744     __ bind(slow_path);
 745 
 746     (void) generate_normal_entry(false);
 747     return entry_point;
 748   }
 749   return NULL;
 750 
 751 }
 752 
 753 // Method entry for java.lang.ref.Reference.get.
 754 address InterpreterGenerator::generate_Reference_get_entry(void) {
 755 #ifndef SERIALGC
 756   // Code: _aload_0, _getfield, _areturn
 757   // parameter size = 1
 758   //
 759   // The code that gets generated by this routine is split into 2 parts:
 760   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 761   //    2. The slow path - which is an expansion of the regular method entry.
 762   //
 763   // Notes:-
 764   // * In the G1 code we do not check whether we need to block for
 765   //   a safepoint. If G1 is enabled then we must execute the specialized
 766   //   code for Reference.get (except when the Reference object is null)
 767   //   so that we can log the value in the referent field with an SATB
 768   //   update buffer.
 769   //   If the code for the getfield template is modified so that the
 770   //   G1 pre-barrier code is executed when the current method is
 771   //   Reference.get() then going through the normal method entry
 772   //   will be fine.
 773   // * The G1 code below can, however, check the receiver object (the instance
 774   //   of java.lang.Reference) and jump to the slow path if null. If the
 775   //   Reference object is null then we obviously cannot fetch the referent
 776   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 777   //   regular method entry code to generate the NPE.
 778   //
 779   // This code is based on generate_accessor_enty.
 780 
 781   // rbx,: methodOop
 782   // rcx: receiver (preserve for slow entry into asm interpreter)
 783 
 784   // rsi: senderSP must preserved for slow path, set SP to it on fast path
 785 
 786   address entry = __ pc();
 787 
 788   const int referent_offset = java_lang_ref_Reference::referent_offset;
 789   guarantee(referent_offset > 0, "referent offset not initialized");
 790 
 791   if (UseG1GC) {
 792     Label slow_path;
 793 
 794     // Check if local 0 != NULL
 795     // If the receiver is null then it is OK to jump to the slow path.
 796     __ movptr(rax, Address(rsp, wordSize));
 797     __ testptr(rax, rax);
 798     __ jcc(Assembler::zero, slow_path);
 799 
 800     // rax: local 0 (must be preserved across the G1 barrier call)
 801     //
 802     // rbx: method (at this point it's scratch)
 803     // rcx: receiver (at this point it's scratch)
 804     // rdx: scratch
 805     // rdi: scratch
 806     //
 807     // rsi: sender sp
 808 
 809     // Preserve the sender sp in case the pre-barrier
 810     // calls the runtime
 811     __ push(rsi);
 812 
 813     // Load the value of the referent field.
 814     const Address field_address(rax, referent_offset);
 815     __ movptr(rax, field_address);
 816 
 817     // Generate the G1 pre-barrier code to log the value of
 818     // the referent field in an SATB buffer.
 819     __ get_thread(rcx);
 820     __ g1_write_barrier_pre(noreg /* obj */,
 821                             rax /* pre_val */,
 822                             rcx /* thread */,
 823                             rbx /* tmp */,
 824                             true /* tosca_save */,
 825                             true /* expand_call */);
 826 
 827     // _areturn
 828     __ pop(rsi);                // get sender sp
 829     __ pop(rdi);                // get return address
 830     __ mov(rsp, rsi);           // set sp to sender sp
 831     __ jmp(rdi);
 832 
 833     __ bind(slow_path);
 834     (void) generate_normal_entry(false);
 835 
 836     return entry;
 837   }
 838 #endif // SERIALGC
 839 
 840   // If G1 is not enabled then attempt to go through the accessor entry point
 841   // Reference.get is an accessor
 842   return generate_accessor_entry();
 843 }
 844 
 845 //
 846 // Interpreter stub for calling a native method. (asm interpreter)
 847 // This sets up a somewhat different looking stack for calling the native method
 848 // than the typical interpreter frame setup.
 849 //
 850 
 851 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 852   // determine code generation flags
 853   bool inc_counter  = UseCompiler || CountCompiledCalls;
 854 
 855   // rbx,: methodOop
 856   // rsi: sender sp
 857   // rsi: previous interpreter state (C++ interpreter) must preserve
 858   address entry_point = __ pc();
 859 
 860 
 861   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 862   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 863   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 864 
 865   // get parameter size (always needed)
 866   __ load_unsigned_short(rcx, size_of_parameters);
 867 
 868   // native calls don't need the stack size check since they have no expression stack
 869   // and the arguments are already on the stack and we only add a handful of words
 870   // to the stack
 871 
 872   // rbx,: methodOop
 873   // rcx: size of parameters
 874   // rsi: sender sp
 875 
 876   __ pop(rax);                                       // get return address
 877   // for natives the size of locals is zero
 878 
 879   // compute beginning of parameters (rdi)
 880   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
 881 
 882 
 883   // add 2 zero-initialized slots for native calls
 884   // NULL result handler
 885   __ push((int32_t)NULL_WORD);
 886   // NULL oop temp (mirror or jni oop result)
 887   __ push((int32_t)NULL_WORD);
 888 
 889   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
 890   // initialize fixed part of activation frame
 891 
 892   generate_fixed_frame(true);
 893 
 894   // make sure method is native & not abstract
 895 #ifdef ASSERT
 896   __ movl(rax, access_flags);
 897   {
 898     Label L;
 899     __ testl(rax, JVM_ACC_NATIVE);
 900     __ jcc(Assembler::notZero, L);
 901     __ stop("tried to execute non-native method as native");
 902     __ bind(L);
 903   }
 904   { Label L;
 905     __ testl(rax, JVM_ACC_ABSTRACT);
 906     __ jcc(Assembler::zero, L);
 907     __ stop("tried to execute abstract method in interpreter");
 908     __ bind(L);
 909   }
 910 #endif
 911 
 912   // Since at this point in the method invocation the exception handler
 913   // would try to exit the monitor of synchronized methods which hasn't
 914   // been entered yet, we set the thread local variable
 915   // _do_not_unlock_if_synchronized to true. The remove_activation will
 916   // check this flag.
 917 
 918   __ get_thread(rax);
 919   const Address do_not_unlock_if_synchronized(rax,
 920         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 921   __ movbool(do_not_unlock_if_synchronized, true);
 922 
 923   // increment invocation count & check for overflow
 924   Label invocation_counter_overflow;
 925   if (inc_counter) {
 926     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 927   }
 928 
 929   Label continue_after_compile;
 930   __ bind(continue_after_compile);
 931 
 932   bang_stack_shadow_pages(true);
 933 
 934   // reset the _do_not_unlock_if_synchronized flag
 935   __ get_thread(rax);
 936   __ movbool(do_not_unlock_if_synchronized, false);
 937 
 938   // check for synchronized methods
 939   // Must happen AFTER invocation_counter check and stack overflow check,
 940   // so method is not locked if overflows.
 941   //
 942   if (synchronized) {
 943     lock_method();
 944   } else {
 945     // no synchronization necessary
 946 #ifdef ASSERT
 947       { Label L;
 948         __ movl(rax, access_flags);
 949         __ testl(rax, JVM_ACC_SYNCHRONIZED);
 950         __ jcc(Assembler::zero, L);
 951         __ stop("method needs synchronization");
 952         __ bind(L);
 953       }
 954 #endif
 955   }
 956 
 957   // start execution
 958 #ifdef ASSERT
 959   { Label L;
 960     const Address monitor_block_top (rbp,
 961                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
 962     __ movptr(rax, monitor_block_top);
 963     __ cmpptr(rax, rsp);
 964     __ jcc(Assembler::equal, L);
 965     __ stop("broken stack frame setup in interpreter");
 966     __ bind(L);
 967   }
 968 #endif
 969 
 970   // jvmti/dtrace support
 971   __ notify_method_entry();
 972 
 973   // work registers
 974   const Register method = rbx;
 975   const Register thread = rdi;
 976   const Register t      = rcx;
 977 
 978   // allocate space for parameters
 979   __ get_method(method);
 980   __ verify_oop(method);
 981   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
 982   __ shlptr(t, Interpreter::logStackElementSize);
 983   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
 984   __ subptr(rsp, t);
 985   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
 986 
 987   // get signature handler
 988   { Label L;
 989     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
 990     __ testptr(t, t);
 991     __ jcc(Assembler::notZero, L);
 992     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
 993     __ get_method(method);
 994     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
 995     __ bind(L);
 996   }
 997 
 998   // call signature handler
 999   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
1000   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1001   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
1002   // The generated handlers do not touch RBX (the method oop).
1003   // However, large signatures cannot be cached and are generated
1004   // each time here.  The slow-path generator will blow RBX
1005   // sometime, so we must reload it after the call.
1006   __ call(t);
1007   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
1008 
1009   // result handler is in rax,
1010   // set result handler
1011   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
1012 
1013   // pass mirror handle if static call
1014   { Label L;
1015     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1016     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1017     __ testl(t, JVM_ACC_STATIC);
1018     __ jcc(Assembler::zero, L);
1019     // get mirror
1020     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
1021     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
1022     __ movptr(t, Address(t, mirror_offset));
1023     // copy mirror into activation frame
1024     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
1025     // pass handle to mirror
1026     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1027     __ movptr(Address(rsp, wordSize), t);
1028     __ bind(L);
1029   }
1030 
1031   // get native function entry point
1032   { Label L;
1033     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1034     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1035     __ cmpptr(rax, unsatisfied.addr());
1036     __ jcc(Assembler::notEqual, L);
1037     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1038     __ get_method(method);
1039     __ verify_oop(method);
1040     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1041     __ bind(L);
1042   }
1043 
1044   // pass JNIEnv
1045   __ get_thread(thread);
1046   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1047   __ movptr(Address(rsp, 0), t);
1048 
1049   // set_last_Java_frame_before_call
1050   // It is enough that the pc()
1051   // points into the right code segment. It does not have to be the correct return pc.
1052   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1053 
1054   // change thread state
1055 #ifdef ASSERT
1056   { Label L;
1057     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1058     __ cmpl(t, _thread_in_Java);
1059     __ jcc(Assembler::equal, L);
1060     __ stop("Wrong thread state in native stub");
1061     __ bind(L);
1062   }
1063 #endif
1064 
1065   // Change state to native
1066   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1067   __ call(rax);
1068 
1069   // result potentially in rdx:rax or ST0
1070 
1071   // Either restore the MXCSR register after returning from the JNI Call
1072   // or verify that it wasn't changed.
1073   if (VM_Version::supports_sse()) {
1074     if (RestoreMXCSROnJNICalls) {
1075       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
1076     }
1077     else if (CheckJNICalls ) {
1078       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
1079     }
1080   }
1081 
1082   // Either restore the x87 floating pointer control word after returning
1083   // from the JNI call or verify that it wasn't changed.
1084   if (CheckJNICalls) {
1085     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
1086   }
1087 
1088   // save potential result in ST(0) & rdx:rax
1089   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
1090   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
1091   // It is safe to do this push because state is _thread_in_native and return address will be found
1092   // via _last_native_pc and not via _last_jave_sp
1093 
1094   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
1095   // If the order changes or anything else is added to the stack the code in
1096   // interpreter_frame_result will have to be changed.
1097 
1098   { Label L;
1099     Label push_double;
1100     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1101     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1102     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1103               float_handler.addr());
1104     __ jcc(Assembler::equal, push_double);
1105     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1106               double_handler.addr());
1107     __ jcc(Assembler::notEqual, L);
1108     __ bind(push_double);
1109     __ push(dtos);
1110     __ bind(L);
1111   }
1112   __ push(ltos);
1113 
1114   // change thread state
1115   __ get_thread(thread);
1116   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1117   if(os::is_MP()) {
1118     if (UseMembar) {
1119       // Force this write out before the read below
1120       __ membar(Assembler::Membar_mask_bits(
1121            Assembler::LoadLoad | Assembler::LoadStore |
1122            Assembler::StoreLoad | Assembler::StoreStore));
1123     } else {
1124       // Write serialization page so VM thread can do a pseudo remote membar.
1125       // We use the current thread pointer to calculate a thread specific
1126       // offset to write to within the page. This minimizes bus traffic
1127       // due to cache line collision.
1128       __ serialize_memory(thread, rcx);
1129     }
1130   }
1131 
1132   if (AlwaysRestoreFPU) {
1133     //  Make sure the control word is correct.
1134     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1135   }
1136 
1137   // check for safepoint operation in progress and/or pending suspend requests
1138   { Label Continue;
1139 
1140     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1141              SafepointSynchronize::_not_synchronized);
1142 
1143     Label L;
1144     __ jcc(Assembler::notEqual, L);
1145     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1146     __ jcc(Assembler::equal, Continue);
1147     __ bind(L);
1148 
1149     // Don't use call_VM as it will see a possible pending exception and forward it
1150     // and never return here preventing us from clearing _last_native_pc down below.
1151     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1152     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1153     // by hand.
1154     //
1155     __ push(thread);
1156     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1157                                             JavaThread::check_special_condition_for_native_trans)));
1158     __ increment(rsp, wordSize);
1159     __ get_thread(thread);
1160 
1161     __ bind(Continue);
1162   }
1163 
1164   // change thread state
1165   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1166 
1167   __ reset_last_Java_frame(thread, true, true);
1168 
1169   // reset handle block
1170   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1171   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1172 
1173   // If result was an oop then unbox and save it in the frame
1174   { Label L;
1175     Label no_oop, store_result;
1176     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
1177     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
1178               handler.addr());
1179     __ jcc(Assembler::notEqual, no_oop);
1180     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
1181     __ pop(ltos);
1182     __ testptr(rax, rax);
1183     __ jcc(Assembler::zero, store_result);
1184     // unbox
1185     __ movptr(rax, Address(rax, 0));
1186     __ bind(store_result);
1187     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
1188     // keep stack depth as expected by pushing oop which will eventually be discarded
1189     __ push(ltos);
1190     __ bind(no_oop);
1191   }
1192 
1193   {
1194      Label no_reguard;
1195      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1196      __ jcc(Assembler::notEqual, no_reguard);
1197 
1198      __ pusha();
1199      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1200      __ popa();
1201 
1202      __ bind(no_reguard);
1203    }
1204 
1205   // restore rsi to have legal interpreter frame,
1206   // i.e., bci == 0 <=> rsi == code_base()
1207   // Can't call_VM until bcp is within reasonable.
1208   __ get_method(method);      // method is junk from thread_in_native to now.
1209   __ verify_oop(method);
1210   __ movptr(rsi, Address(method,methodOopDesc::const_offset()));   // get constMethodOop
1211   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset()));    // get codebase
1212 
1213   // handle exceptions (exception handling will handle unlocking!)
1214   { Label L;
1215     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1216     __ jcc(Assembler::zero, L);
1217     // Note: At some point we may want to unify this with the code used in call_VM_base();
1218     //       i.e., we should use the StubRoutines::forward_exception code. For now this
1219     //       doesn't work here because the rsp is not correctly set at this point.
1220     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1221     __ should_not_reach_here();
1222     __ bind(L);
1223   }
1224 
1225   // do unlocking if necessary
1226   { Label L;
1227     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1228     __ testl(t, JVM_ACC_SYNCHRONIZED);
1229     __ jcc(Assembler::zero, L);
1230     // the code below should be shared with interpreter macro assembler implementation
1231     { Label unlock;
1232       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1233       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1234       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1235 
1236       __ lea(rdx, monitor);                   // address of first monitor
1237 
1238       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
1239       __ testptr(t, t);
1240       __ jcc(Assembler::notZero, unlock);
1241 
1242       // Entry already unlocked, need to throw exception
1243       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1244       __ should_not_reach_here();
1245 
1246       __ bind(unlock);
1247       __ unlock_object(rdx);
1248     }
1249     __ bind(L);
1250   }
1251 
1252   // jvmti/dtrace support
1253   // Note: This must happen _after_ handling/throwing any exceptions since
1254   //       the exception handler code notifies the runtime of method exits
1255   //       too. If this happens before, method entry/exit notifications are
1256   //       not properly paired (was bug - gri 11/22/99).
1257   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1258 
1259   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1260   __ pop(ltos);
1261   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1262   __ call(t);
1263 
1264   // remove activation
1265   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1266   __ leave();                                // remove frame anchor
1267   __ pop(rdi);                               // get return address
1268   __ mov(rsp, t);                            // set sp to sender sp
1269   __ jmp(rdi);
1270 
1271   if (inc_counter) {
1272     // Handle overflow of counter and compile method
1273     __ bind(invocation_counter_overflow);
1274     generate_counter_overflow(&continue_after_compile);
1275   }
1276 
1277   return entry_point;
1278 }
1279 
1280 //
1281 // Generic interpreted method entry to (asm) interpreter
1282 //
1283 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1284   // determine code generation flags
1285   bool inc_counter  = UseCompiler || CountCompiledCalls;
1286 
1287   // rbx,: methodOop
1288   // rsi: sender sp
1289   address entry_point = __ pc();
1290 
1291 
1292   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
1293   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
1294   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
1295   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
1296 
1297   // get parameter size (always needed)
1298   __ load_unsigned_short(rcx, size_of_parameters);
1299 
1300   // rbx,: methodOop
1301   // rcx: size of parameters
1302 
1303   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
1304 
1305   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
1306   __ subl(rdx, rcx);                                // rdx = no. of additional locals
1307 
1308   // see if we've got enough room on the stack for locals plus overhead.
1309   generate_stack_overflow_check();
1310 
1311   // get return address
1312   __ pop(rax);
1313 
1314   // compute beginning of parameters (rdi)
1315   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
1316 
1317   // rdx - # of additional locals
1318   // allocate space for locals
1319   // explicitly initialize locals
1320   {
1321     Label exit, loop;
1322     __ testl(rdx, rdx);
1323     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1324     __ bind(loop);
1325     __ push((int32_t)NULL_WORD);                      // initialize local variables
1326     __ decrement(rdx);                                // until everything initialized
1327     __ jcc(Assembler::greater, loop);
1328     __ bind(exit);
1329   }
1330 
1331   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
1332   // initialize fixed part of activation frame
1333   generate_fixed_frame(false);
1334 
1335   // make sure method is not native & not abstract
1336 #ifdef ASSERT
1337   __ movl(rax, access_flags);
1338   {
1339     Label L;
1340     __ testl(rax, JVM_ACC_NATIVE);
1341     __ jcc(Assembler::zero, L);
1342     __ stop("tried to execute native method as non-native");
1343     __ bind(L);
1344   }
1345   { Label L;
1346     __ testl(rax, JVM_ACC_ABSTRACT);
1347     __ jcc(Assembler::zero, L);
1348     __ stop("tried to execute abstract method in interpreter");
1349     __ bind(L);
1350   }
1351 #endif
1352 
1353   // Since at this point in the method invocation the exception handler
1354   // would try to exit the monitor of synchronized methods which hasn't
1355   // been entered yet, we set the thread local variable
1356   // _do_not_unlock_if_synchronized to true. The remove_activation will
1357   // check this flag.
1358 
1359   __ get_thread(rax);
1360   const Address do_not_unlock_if_synchronized(rax,
1361         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1362   __ movbool(do_not_unlock_if_synchronized, true);
1363 
1364   // increment invocation count & check for overflow
1365   Label invocation_counter_overflow;
1366   Label profile_method;
1367   Label profile_method_continue;
1368   if (inc_counter) {
1369     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1370     if (ProfileInterpreter) {
1371       __ bind(profile_method_continue);
1372     }
1373   }
1374   Label continue_after_compile;
1375   __ bind(continue_after_compile);
1376 
1377   bang_stack_shadow_pages(false);
1378 
1379   // reset the _do_not_unlock_if_synchronized flag
1380   __ get_thread(rax);
1381   __ movbool(do_not_unlock_if_synchronized, false);
1382 
1383   // check for synchronized methods
1384   // Must happen AFTER invocation_counter check and stack overflow check,
1385   // so method is not locked if overflows.
1386   //
1387   if (synchronized) {
1388     // Allocate monitor and lock method
1389     lock_method();
1390   } else {
1391     // no synchronization necessary
1392 #ifdef ASSERT
1393       { Label L;
1394         __ movl(rax, access_flags);
1395         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1396         __ jcc(Assembler::zero, L);
1397         __ stop("method needs synchronization");
1398         __ bind(L);
1399       }
1400 #endif
1401   }
1402 
1403   // start execution
1404 #ifdef ASSERT
1405   { Label L;
1406      const Address monitor_block_top (rbp,
1407                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1408     __ movptr(rax, monitor_block_top);
1409     __ cmpptr(rax, rsp);
1410     __ jcc(Assembler::equal, L);
1411     __ stop("broken stack frame setup in interpreter");
1412     __ bind(L);
1413   }
1414 #endif
1415 
1416   // jvmti support
1417   __ notify_method_entry();
1418 
1419   __ dispatch_next(vtos);
1420 
1421   // invocation counter overflow
1422   if (inc_counter) {
1423     if (ProfileInterpreter) {
1424       // We have decided to profile this method in the interpreter
1425       __ bind(profile_method);
1426       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1427       __ set_method_data_pointer_for_bcp();
1428       __ get_method(rbx);
1429       __ jmp(profile_method_continue);
1430     }
1431     // Handle overflow of counter and compile method
1432     __ bind(invocation_counter_overflow);
1433     generate_counter_overflow(&continue_after_compile);
1434   }
1435 
1436   return entry_point;
1437 }
1438 
1439 //------------------------------------------------------------------------------------------------------------------------
1440 // Entry points
1441 //
1442 // Here we generate the various kind of entries into the interpreter.
1443 // The two main entry type are generic bytecode methods and native call method.
1444 // These both come in synchronized and non-synchronized versions but the
1445 // frame layout they create is very similar. The other method entry
1446 // types are really just special purpose entries that are really entry
1447 // and interpretation all in one. These are for trivial methods like
1448 // accessor, empty, or special math methods.
1449 //
1450 // When control flow reaches any of the entry types for the interpreter
1451 // the following holds ->
1452 //
1453 // Arguments:
1454 //
1455 // rbx,: methodOop
1456 // rcx: receiver
1457 //
1458 //
1459 // Stack layout immediately at entry
1460 //
1461 // [ return address     ] <--- rsp
1462 // [ parameter n        ]
1463 //   ...
1464 // [ parameter 1        ]
1465 // [ expression stack   ] (caller's java expression stack)
1466 
1467 // Assuming that we don't go to one of the trivial specialized
1468 // entries the stack will look like below when we are ready to execute
1469 // the first bytecode (or call the native routine). The register usage
1470 // will be as the template based interpreter expects (see interpreter_x86.hpp).
1471 //
1472 // local variables follow incoming parameters immediately; i.e.
1473 // the return address is moved to the end of the locals).
1474 //
1475 // [ monitor entry      ] <--- rsp
1476 //   ...
1477 // [ monitor entry      ]
1478 // [ expr. stack bottom ]
1479 // [ saved rsi          ]
1480 // [ current rdi        ]
1481 // [ methodOop          ]
1482 // [ saved rbp,          ] <--- rbp,
1483 // [ return address     ]
1484 // [ local variable m   ]
1485 //   ...
1486 // [ local variable 1   ]
1487 // [ parameter n        ]
1488 //   ...
1489 // [ parameter 1        ] <--- rdi
1490 
1491 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
1492   // determine code generation flags
1493   bool synchronized = false;
1494   address entry_point = NULL;
1495 
1496   switch (kind) {
1497     case Interpreter::zerolocals             :                                                                             break;
1498     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
1499     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
1500     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
1501     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
1502     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
1503     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
1504     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
1505 
1506     case Interpreter::java_lang_math_sin     : // fall thru
1507     case Interpreter::java_lang_math_cos     : // fall thru
1508     case Interpreter::java_lang_math_tan     : // fall thru
1509     case Interpreter::java_lang_math_abs     : // fall thru
1510     case Interpreter::java_lang_math_log     : // fall thru
1511     case Interpreter::java_lang_math_log10   : // fall thru
1512     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
1513     case Interpreter::java_lang_ref_reference_get
1514                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
1515     default                                  : ShouldNotReachHere();                                                       break;
1516   }
1517 
1518   if (entry_point) return entry_point;
1519 
1520   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
1521 
1522 }
1523 
1524 // These should never be compiled since the interpreter will prefer
1525 // the compiled version to the intrinsic version.
1526 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1527   switch (method_kind(m)) {
1528     case Interpreter::java_lang_math_sin     : // fall thru
1529     case Interpreter::java_lang_math_cos     : // fall thru
1530     case Interpreter::java_lang_math_tan     : // fall thru
1531     case Interpreter::java_lang_math_abs     : // fall thru
1532     case Interpreter::java_lang_math_log     : // fall thru
1533     case Interpreter::java_lang_math_log10   : // fall thru
1534     case Interpreter::java_lang_math_sqrt    :
1535       return false;
1536     default:
1537       return true;
1538   }
1539 }
1540 
1541 // How much stack a method activation needs in words.
1542 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
1543 
1544   const int stub_code = 4;  // see generate_call_stub
1545   // Save space for one monitor to get into the interpreted method in case
1546   // the method is synchronized
1547   int monitor_size    = method->is_synchronized() ?
1548                                 1*frame::interpreter_frame_monitor_size() : 0;
1549 
1550   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
1551   // be sure to change this if you add/subtract anything to/from the overhead area
1552   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
1553 
1554   const int extra_stack = methodOopDesc::extra_stack_entries();
1555   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
1556                            Interpreter::stackElementWords;
1557   return overhead_size + method_stack + stub_code;
1558 }
1559 
1560 // asm based interpreter deoptimization helpers
1561 
1562 int AbstractInterpreter::layout_activation(methodOop method,
1563                                            int tempcount,
1564                                            int popframe_extra_args,
1565                                            int moncount,
1566                                            int caller_actual_parameters,
1567                                            int callee_param_count,
1568                                            int callee_locals,
1569                                            frame* caller,
1570                                            frame* interpreter_frame,
1571                                            bool is_top_frame) {
1572   // Note: This calculation must exactly parallel the frame setup
1573   // in AbstractInterpreterGenerator::generate_method_entry.
1574   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
1575   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
1576   // as determined by a previous call to this method.
1577   // It is also guaranteed to be walkable even though it is in a skeletal state
1578   // NOTE: return size is in words not bytes
1579 
1580   // fixed size of an interpreter frame:
1581   int max_locals = method->max_locals() * Interpreter::stackElementWords;
1582   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
1583                      Interpreter::stackElementWords;
1584 
1585   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
1586 
1587   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
1588   // Since the callee parameters already account for the callee's params we only need to account for
1589   // the extra locals.
1590 
1591 
1592   int size = overhead +
1593          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
1594          (moncount*frame::interpreter_frame_monitor_size()) +
1595          tempcount*Interpreter::stackElementWords + popframe_extra_args;
1596 
1597   if (interpreter_frame != NULL) {
1598 #ifdef ASSERT
1599     if (!EnableInvokeDynamic)
1600       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
1601       // Probably, since deoptimization doesn't work yet.
1602       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
1603     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
1604 #endif
1605 
1606     interpreter_frame->interpreter_frame_set_method(method);
1607     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
1608     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
1609     // and sender_sp is fp+8
1610     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
1611 
1612 #ifdef ASSERT
1613     if (caller->is_interpreted_frame()) {
1614       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
1615     }
1616 #endif
1617 
1618     interpreter_frame->interpreter_frame_set_locals(locals);
1619     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
1620     BasicObjectLock* monbot = montop - moncount;
1621     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
1622 
1623     // Set last_sp
1624     intptr_t*  rsp = (intptr_t*) monbot  -
1625                      tempcount*Interpreter::stackElementWords -
1626                      popframe_extra_args;
1627     interpreter_frame->interpreter_frame_set_last_sp(rsp);
1628 
1629     // All frames but the initial (oldest) interpreter frame we fill in have a
1630     // value for sender_sp that allows walking the stack but isn't
1631     // truly correct. Correct the value here.
1632 
1633     if (extra_locals != 0 &&
1634         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
1635       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
1636     }
1637     *interpreter_frame->interpreter_frame_cache_addr() =
1638       method->constants()->cache();
1639   }
1640   return size;
1641 }
1642 
1643 
1644 //------------------------------------------------------------------------------------------------------------------------
1645 // Exceptions
1646 
1647 void TemplateInterpreterGenerator::generate_throw_exception() {
1648   // Entry point in previous activation (i.e., if the caller was interpreted)
1649   Interpreter::_rethrow_exception_entry = __ pc();
1650   const Register thread = rcx;
1651 
1652   // Restore sp to interpreter_frame_last_sp even though we are going
1653   // to empty the expression stack for the exception processing.
1654   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1655   // rax,: exception
1656   // rdx: return address/pc that threw exception
1657   __ restore_bcp();                              // rsi points to call/send
1658   __ restore_locals();
1659 
1660   // Entry point for exceptions thrown within interpreter code
1661   Interpreter::_throw_exception_entry = __ pc();
1662   // expression stack is undefined here
1663   // rax,: exception
1664   // rsi: exception bcp
1665   __ verify_oop(rax);
1666 
1667   // expression stack must be empty before entering the VM in case of an exception
1668   __ empty_expression_stack();
1669   __ empty_FPU_stack();
1670   // find exception handler address and preserve exception oop
1671   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
1672   // rax,: exception handler entry point
1673   // rdx: preserved exception oop
1674   // rsi: bcp for exception handler
1675   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
1676   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
1677 
1678   // If the exception is not handled in the current frame the frame is removed and
1679   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
1680   //
1681   // Note: At this point the bci is still the bxi for the instruction which caused
1682   //       the exception and the expression stack is empty. Thus, for any VM calls
1683   //       at this point, GC will find a legal oop map (with empty expression stack).
1684 
1685   // In current activation
1686   // tos: exception
1687   // rsi: exception bcp
1688 
1689   //
1690   // JVMTI PopFrame support
1691   //
1692 
1693    Interpreter::_remove_activation_preserving_args_entry = __ pc();
1694   __ empty_expression_stack();
1695   __ empty_FPU_stack();
1696   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
1697   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1698   // popframe handling cycles.
1699   __ get_thread(thread);
1700   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
1701   __ orl(rdx, JavaThread::popframe_processing_bit);
1702   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
1703 
1704   {
1705     // Check to see whether we are returning to a deoptimized frame.
1706     // (The PopFrame call ensures that the caller of the popped frame is
1707     // either interpreted or compiled and deoptimizes it if compiled.)
1708     // In this case, we can't call dispatch_next() after the frame is
1709     // popped, but instead must save the incoming arguments and restore
1710     // them after deoptimization has occurred.
1711     //
1712     // Note that we don't compare the return PC against the
1713     // deoptimization blob's unpack entry because of the presence of
1714     // adapter frames in C2.
1715     Label caller_not_deoptimized;
1716     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
1717     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
1718     __ testl(rax, rax);
1719     __ jcc(Assembler::notZero, caller_not_deoptimized);
1720 
1721     // Compute size of arguments for saving when returning to deoptimized caller
1722     __ get_method(rax);
1723     __ verify_oop(rax);
1724     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::size_of_parameters_offset())));
1725     __ shlptr(rax, Interpreter::logStackElementSize);
1726     __ restore_locals();
1727     __ subptr(rdi, rax);
1728     __ addptr(rdi, wordSize);
1729     // Save these arguments
1730     __ get_thread(thread);
1731     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
1732 
1733     __ remove_activation(vtos, rdx,
1734                          /* throw_monitor_exception */ false,
1735                          /* install_monitor_exception */ false,
1736                          /* notify_jvmdi */ false);
1737 
1738     // Inform deoptimization that it is responsible for restoring these arguments
1739     __ get_thread(thread);
1740     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
1741 
1742     // Continue in deoptimization handler
1743     __ jmp(rdx);
1744 
1745     __ bind(caller_not_deoptimized);
1746   }
1747 
1748   __ remove_activation(vtos, rdx,
1749                        /* throw_monitor_exception */ false,
1750                        /* install_monitor_exception */ false,
1751                        /* notify_jvmdi */ false);
1752 
1753   // Finish with popframe handling
1754   // A previous I2C followed by a deoptimization might have moved the
1755   // outgoing arguments further up the stack. PopFrame expects the
1756   // mutations to those outgoing arguments to be preserved and other
1757   // constraints basically require this frame to look exactly as
1758   // though it had previously invoked an interpreted activation with
1759   // no space between the top of the expression stack (current
1760   // last_sp) and the top of stack. Rather than force deopt to
1761   // maintain this kind of invariant all the time we call a small
1762   // fixup routine to move the mutated arguments onto the top of our
1763   // expression stack if necessary.
1764   __ mov(rax, rsp);
1765   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1766   __ get_thread(thread);
1767   // PC must point into interpreter here
1768   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1769   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
1770   __ get_thread(thread);
1771   __ reset_last_Java_frame(thread, true, true);
1772   // Restore the last_sp and null it out
1773   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1774   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1775 
1776   __ restore_bcp();
1777   __ restore_locals();
1778   // The method data pointer was incremented already during
1779   // call profiling. We have to restore the mdp for the current bcp.
1780   if (ProfileInterpreter) {
1781     __ set_method_data_pointer_for_bcp();
1782   }
1783 
1784   // Clear the popframe condition flag
1785   __ get_thread(thread);
1786   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
1787 
1788   __ dispatch_next(vtos);
1789   // end of PopFrame support
1790 
1791   Interpreter::_remove_activation_entry = __ pc();
1792 
1793   // preserve exception over this code sequence
1794   __ pop_ptr(rax);
1795   __ get_thread(thread);
1796   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
1797   // remove the activation (without doing throws on illegalMonitorExceptions)
1798   __ remove_activation(vtos, rdx, false, true, false);
1799   // restore exception
1800   __ get_thread(thread);
1801   __ movptr(rax, Address(thread, JavaThread::vm_result_offset()));
1802   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
1803   __ verify_oop(rax);
1804 
1805   // Inbetween activations - previous activation type unknown yet
1806   // compute continuation point - the continuation point expects
1807   // the following registers set up:
1808   //
1809   // rax: exception
1810   // rdx: return address/pc that threw exception
1811   // rsp: expression stack of caller
1812   // rbp: rbp, of caller
1813   __ push(rax);                                  // save exception
1814   __ push(rdx);                                  // save return address
1815   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
1816   __ mov(rbx, rax);                              // save exception handler
1817   __ pop(rdx);                                   // restore return address
1818   __ pop(rax);                                   // restore exception
1819   // Note that an "issuing PC" is actually the next PC after the call
1820   __ jmp(rbx);                                   // jump to exception handler of caller
1821 }
1822 
1823 
1824 //
1825 // JVMTI ForceEarlyReturn support
1826 //
1827 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1828   address entry = __ pc();
1829   const Register thread = rcx;
1830 
1831   __ restore_bcp();
1832   __ restore_locals();
1833   __ empty_expression_stack();
1834   __ empty_FPU_stack();
1835   __ load_earlyret_value(state);
1836 
1837   __ get_thread(thread);
1838   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
1839   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
1840 
1841   // Clear the earlyret state
1842   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1843 
1844   __ remove_activation(state, rsi,
1845                        false, /* throw_monitor_exception */
1846                        false, /* install_monitor_exception */
1847                        true); /* notify_jvmdi */
1848   __ jmp(rsi);
1849   return entry;
1850 } // end of ForceEarlyReturn support
1851 
1852 
1853 //------------------------------------------------------------------------------------------------------------------------
1854 // Helper for vtos entry point generation
1855 
1856 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1857   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1858   Label L;
1859   fep = __ pc(); __ push(ftos); __ jmp(L);
1860   dep = __ pc(); __ push(dtos); __ jmp(L);
1861   lep = __ pc(); __ push(ltos); __ jmp(L);
1862   aep = __ pc(); __ push(atos); __ jmp(L);
1863   bep = cep = sep =             // fall through
1864   iep = __ pc(); __ push(itos); // fall through
1865   vep = __ pc(); __ bind(L);    // fall through
1866   generate_and_dispatch(t);
1867 }
1868 
1869 //------------------------------------------------------------------------------------------------------------------------
1870 // Generation of individual instructions
1871 
1872 // helpers for generate_and_dispatch
1873 
1874 
1875 
1876 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1877  : TemplateInterpreterGenerator(code) {
1878    generate_all(); // down here so it can be "virtual"
1879 }
1880 
1881 //------------------------------------------------------------------------------------------------------------------------
1882 
1883 // Non-product code
1884 #ifndef PRODUCT
1885 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1886   address entry = __ pc();
1887 
1888   // prepare expression stack
1889   __ pop(rcx);          // pop return address so expression stack is 'pure'
1890   __ push(state);       // save tosca
1891 
1892   // pass tosca registers as arguments & call tracer
1893   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
1894   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
1895   __ pop(state);        // restore tosca
1896 
1897   // return
1898   __ jmp(rcx);
1899 
1900   return entry;
1901 }
1902 
1903 
1904 void TemplateInterpreterGenerator::count_bytecode() {
1905   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
1906 }
1907 
1908 
1909 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1910   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
1911 }
1912 
1913 
1914 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1915   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
1916   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
1917   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1918   ExternalAddress table((address) BytecodePairHistogram::_counters);
1919   Address index(noreg, rbx, Address::times_4);
1920   __ incrementl(ArrayAddress(table, index));
1921 }
1922 
1923 
1924 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1925   // Call a little run-time stub to avoid blow-up for each bytecode.
1926   // The run-time runtime saves the right registers, depending on
1927   // the tosca in-state for the given template.
1928   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1929          "entry must have been generated");
1930   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
1931 }
1932 
1933 
1934 void TemplateInterpreterGenerator::stop_interpreter_at() {
1935   Label L;
1936   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
1937            StopInterpreterAt);
1938   __ jcc(Assembler::notEqual, L);
1939   __ int3();
1940   __ bind(L);
1941 }
1942 #endif // !PRODUCT
1943 #endif // CC_INTERP