1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 
  40 #define __ _masm->
  41 
  42 // Platform-dependent initialization
  43 
  44 void TemplateTable::pd_initialize() {
  45   // No amd64 specific initialization
  46 }
  47 
  48 // Address computation: local variables
  49 
  50 static inline Address iaddress(int n) {
  51   return Address(r14, Interpreter::local_offset_in_bytes(n));
  52 }
  53 
  54 static inline Address laddress(int n) {
  55   return iaddress(n + 1);
  56 }
  57 
  58 static inline Address faddress(int n) {
  59   return iaddress(n);
  60 }
  61 
  62 static inline Address daddress(int n) {
  63   return laddress(n);
  64 }
  65 
  66 static inline Address aaddress(int n) {
  67   return iaddress(n);
  68 }
  69 
  70 static inline Address iaddress(Register r) {
  71   return Address(r14, r, Address::times_8);
  72 }
  73 
  74 static inline Address laddress(Register r) {
  75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  76 }
  77 
  78 static inline Address faddress(Register r) {
  79   return iaddress(r);
  80 }
  81 
  82 static inline Address daddress(Register r) {
  83   return laddress(r);
  84 }
  85 
  86 static inline Address aaddress(Register r) {
  87   return iaddress(r);
  88 }
  89 
  90 static inline Address at_rsp() {
  91   return Address(rsp, 0);
  92 }
  93 
  94 // At top of Java expression stack which may be different than esp().  It
  95 // isn't for category 1 objects.
  96 static inline Address at_tos   () {
  97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  98 }
  99 
 100 static inline Address at_tos_p1() {
 101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 102 }
 103 
 104 static inline Address at_tos_p2() {
 105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 106 }
 107 
 108 static inline Address at_tos_p3() {
 109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 110 }
 111 
 112 // Condition conversion
 113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 114   switch (cc) {
 115   case TemplateTable::equal        : return Assembler::notEqual;
 116   case TemplateTable::not_equal    : return Assembler::equal;
 117   case TemplateTable::less         : return Assembler::greaterEqual;
 118   case TemplateTable::less_equal   : return Assembler::greater;
 119   case TemplateTable::greater      : return Assembler::lessEqual;
 120   case TemplateTable::greater_equal: return Assembler::less;
 121   }
 122   ShouldNotReachHere();
 123   return Assembler::zero;
 124 }
 125 
 126 
 127 // Miscelaneous helper routines
 128 // Store an oop (or NULL) at the address described by obj.
 129 // If val == noreg this means store a NULL
 130 
 131 static void do_oop_store(InterpreterMacroAssembler* _masm,
 132                          Address obj,
 133                          Register val,
 134                          BarrierSet::Name barrier,
 135                          bool precise) {
 136   assert(val == noreg || val == rax, "parameter is just for looks");
 137   switch (barrier) {
 138 #ifndef SERIALGC
 139     case BarrierSet::G1SATBCT:
 140     case BarrierSet::G1SATBCTLogging:
 141       {
 142         // flatten object address if needed
 143         if (obj.index() == noreg && obj.disp() == 0) {
 144           if (obj.base() != rdx) {
 145             __ movq(rdx, obj.base());
 146           }
 147         } else {
 148           __ leaq(rdx, obj);
 149         }
 150         __ g1_write_barrier_pre(rdx /* obj */,
 151                                 rbx /* pre_val */,
 152                                 r15_thread /* thread */,
 153                                 r8  /* tmp */,
 154                                 val != noreg /* tosca_live */,
 155                                 false /* expand_call */);
 156         if (val == noreg) {
 157           __ store_heap_oop_null(Address(rdx, 0));
 158         } else {
 159           __ store_heap_oop(Address(rdx, 0), val);
 160           __ g1_write_barrier_post(rdx /* store_adr */,
 161                                    val /* new_val */,
 162                                    r15_thread /* thread */,
 163                                    r8 /* tmp */,
 164                                    rbx /* tmp2 */);
 165         }
 166 
 167       }
 168       break;
 169 #endif // SERIALGC
 170     case BarrierSet::CardTableModRef:
 171     case BarrierSet::CardTableExtension:
 172       {
 173         if (val == noreg) {
 174           __ store_heap_oop_null(obj);
 175         } else {
 176           __ store_heap_oop(obj, val);
 177           // flatten object address if needed
 178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 179             __ store_check(obj.base());
 180           } else {
 181             __ leaq(rdx, obj);
 182             __ store_check(rdx);
 183           }
 184         }
 185       }
 186       break;
 187     case BarrierSet::ModRef:
 188     case BarrierSet::Other:
 189       if (val == noreg) {
 190         __ store_heap_oop_null(obj);
 191       } else {
 192         __ store_heap_oop(obj, val);
 193       }
 194       break;
 195     default      :
 196       ShouldNotReachHere();
 197 
 198   }
 199 }
 200 
 201 Address TemplateTable::at_bcp(int offset) {
 202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 203   return Address(r13, offset);
 204 }
 205 
 206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 208                                    int byte_no) {
 209   if (!RewriteBytecodes)  return;
 210   Label L_patch_done;
 211 
 212   switch (bc) {
 213   case Bytecodes::_fast_aputfield:
 214   case Bytecodes::_fast_bputfield:
 215   case Bytecodes::_fast_cputfield:
 216   case Bytecodes::_fast_dputfield:
 217   case Bytecodes::_fast_fputfield:
 218   case Bytecodes::_fast_iputfield:
 219   case Bytecodes::_fast_lputfield:
 220   case Bytecodes::_fast_sputfield:
 221     {
 222       // We skip bytecode quickening for putfield instructions when
 223       // the put_code written to the constant pool cache is zero.
 224       // This is required so that every execution of this instruction
 225       // calls out to InterpreterRuntime::resolve_get_put to do
 226       // additional, required work.
 227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 229       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 230       __ movl(bc_reg, bc);
 231       __ cmpl(temp_reg, (int) 0);
 232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 233     }
 234     break;
 235   default:
 236     assert(byte_no == -1, "sanity");
 237     // the pair bytecodes have already done the load.
 238     if (load_bc_into_bc_reg) {
 239       __ movl(bc_reg, bc);
 240     }
 241   }
 242 
 243   if (JvmtiExport::can_post_breakpoint()) {
 244     Label L_fast_patch;
 245     // if a breakpoint is present we can't rewrite the stream directly
 246     __ movzbl(temp_reg, at_bcp(0));
 247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 248     __ jcc(Assembler::notEqual, L_fast_patch);
 249     __ get_method(temp_reg);
 250     // Let breakpoint table handling rewrite to quicker bytecode
 251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
 252 #ifndef ASSERT
 253     __ jmpb(L_patch_done);
 254 #else
 255     __ jmp(L_patch_done);
 256 #endif
 257     __ bind(L_fast_patch);
 258   }
 259 
 260 #ifdef ASSERT
 261   Label L_okay;
 262   __ load_unsigned_byte(temp_reg, at_bcp(0));
 263   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 264   __ jcc(Assembler::equal, L_okay);
 265   __ cmpl(temp_reg, bc_reg);
 266   __ jcc(Assembler::equal, L_okay);
 267   __ stop("patching the wrong bytecode");
 268   __ bind(L_okay);
 269 #endif
 270 
 271   // patch bytecode
 272   __ movb(at_bcp(0), bc_reg);
 273   __ bind(L_patch_done);
 274 }
 275 
 276 
 277 // Individual instructions
 278 
 279 void TemplateTable::nop() {
 280   transition(vtos, vtos);
 281   // nothing to do
 282 }
 283 
 284 void TemplateTable::shouldnotreachhere() {
 285   transition(vtos, vtos);
 286   __ stop("shouldnotreachhere bytecode");
 287 }
 288 
 289 void TemplateTable::aconst_null() {
 290   transition(vtos, atos);
 291   __ xorl(rax, rax);
 292 }
 293 
 294 void TemplateTable::iconst(int value) {
 295   transition(vtos, itos);
 296   if (value == 0) {
 297     __ xorl(rax, rax);
 298   } else {
 299     __ movl(rax, value);
 300   }
 301 }
 302 
 303 void TemplateTable::lconst(int value) {
 304   transition(vtos, ltos);
 305   if (value == 0) {
 306     __ xorl(rax, rax);
 307   } else {
 308     __ movl(rax, value);
 309   }
 310 }
 311 
 312 void TemplateTable::fconst(int value) {
 313   transition(vtos, ftos);
 314   static float one = 1.0f, two = 2.0f;
 315   switch (value) {
 316   case 0:
 317     __ xorps(xmm0, xmm0);
 318     break;
 319   case 1:
 320     __ movflt(xmm0, ExternalAddress((address) &one));
 321     break;
 322   case 2:
 323     __ movflt(xmm0, ExternalAddress((address) &two));
 324     break;
 325   default:
 326     ShouldNotReachHere();
 327     break;
 328   }
 329 }
 330 
 331 void TemplateTable::dconst(int value) {
 332   transition(vtos, dtos);
 333   static double one = 1.0;
 334   switch (value) {
 335   case 0:
 336     __ xorpd(xmm0, xmm0);
 337     break;
 338   case 1:
 339     __ movdbl(xmm0, ExternalAddress((address) &one));
 340     break;
 341   default:
 342     ShouldNotReachHere();
 343     break;
 344   }
 345 }
 346 
 347 void TemplateTable::bipush() {
 348   transition(vtos, itos);
 349   __ load_signed_byte(rax, at_bcp(1));
 350 }
 351 
 352 void TemplateTable::sipush() {
 353   transition(vtos, itos);
 354   __ load_unsigned_short(rax, at_bcp(1));
 355   __ bswapl(rax);
 356   __ sarl(rax, 16);
 357 }
 358 
 359 void TemplateTable::ldc(bool wide) {
 360   transition(vtos, vtos);
 361   Label call_ldc, notFloat, notClass, Done;
 362 
 363   if (wide) {
 364     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 365   } else {
 366     __ load_unsigned_byte(rbx, at_bcp(1));
 367   }
 368 
 369   __ get_cpool_and_tags(rcx, rax);
 370   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 371   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 372 
 373   // get type
 374   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 375 
 376   // unresolved string - get the resolved string
 377   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 378   __ jccb(Assembler::equal, call_ldc);
 379 
 380   // unresolved class - get the resolved class
 381   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 382   __ jccb(Assembler::equal, call_ldc);
 383 
 384   // unresolved class in error state - call into runtime to throw the error
 385   // from the first resolution attempt
 386   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 387   __ jccb(Assembler::equal, call_ldc);
 388 
 389   // resolved class - need to call vm to get java mirror of the class
 390   __ cmpl(rdx, JVM_CONSTANT_Class);
 391   __ jcc(Assembler::notEqual, notClass);
 392 
 393   __ bind(call_ldc);
 394   __ movl(c_rarg1, wide);
 395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 396   __ push_ptr(rax);
 397   __ verify_oop(rax);
 398   __ jmp(Done);
 399 
 400   __ bind(notClass);
 401   __ cmpl(rdx, JVM_CONSTANT_Float);
 402   __ jccb(Assembler::notEqual, notFloat);
 403   // ftos
 404   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 405   __ push_f();
 406   __ jmp(Done);
 407 
 408   __ bind(notFloat);
 409 #ifdef ASSERT
 410   {
 411     Label L;
 412     __ cmpl(rdx, JVM_CONSTANT_Integer);
 413     __ jcc(Assembler::equal, L);
 414     __ cmpl(rdx, JVM_CONSTANT_String);
 415     __ jcc(Assembler::equal, L);
 416     __ cmpl(rdx, JVM_CONSTANT_Object);
 417     __ jcc(Assembler::equal, L);
 418     __ stop("unexpected tag type in ldc");
 419     __ bind(L);
 420   }
 421 #endif
 422   // atos and itos
 423   Label isOop;
 424   __ cmpl(rdx, JVM_CONSTANT_Integer);
 425   __ jcc(Assembler::notEqual, isOop);
 426   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 427   __ push_i(rax);
 428   __ jmp(Done);
 429 
 430   __ bind(isOop);
 431   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
 432   __ push_ptr(rax);
 433 
 434   if (VerifyOops) {
 435     __ verify_oop(rax);
 436   }
 437 
 438   __ bind(Done);
 439 }
 440 
 441 // Fast path for caching oop constants.
 442 // %%% We should use this to handle Class and String constants also.
 443 // %%% It will simplify the ldc/primitive path considerably.
 444 void TemplateTable::fast_aldc(bool wide) {
 445   transition(vtos, atos);
 446 
 447   if (!EnableInvokeDynamic) {
 448     // We should not encounter this bytecode if !EnableInvokeDynamic.
 449     // The verifier will stop it.  However, if we get past the verifier,
 450     // this will stop the thread in a reasonable way, without crashing the JVM.
 451     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 452                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 453     // the call_VM checks for exception, so we should never return here.
 454     __ should_not_reach_here();
 455     return;
 456   }
 457 
 458   const Register cache = rcx;
 459   const Register index = rdx;
 460 
 461   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
 462   if (VerifyOops) {
 463     __ verify_oop(rax);
 464   }
 465 
 466   Label L_done, L_throw_exception;
 467   const Register con_klass_temp = rcx;  // same as cache
 468   const Register array_klass_temp = rdx;  // same as index
 469   __ load_klass(con_klass_temp, rax);
 470   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
 471   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
 472   __ jcc(Assembler::notEqual, L_done);
 473   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
 474   __ jcc(Assembler::notEqual, L_throw_exception);
 475   __ xorptr(rax, rax);
 476   __ jmp(L_done);
 477 
 478   // Load the exception from the system-array which wraps it:
 479   __ bind(L_throw_exception);
 480   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 481   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 482 
 483   __ bind(L_done);
 484 }
 485 
 486 void TemplateTable::ldc2_w() {
 487   transition(vtos, vtos);
 488   Label Long, Done;
 489   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 490 
 491   __ get_cpool_and_tags(rcx, rax);
 492   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 493   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 494 
 495   // get type
 496   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 497           JVM_CONSTANT_Double);
 498   __ jccb(Assembler::notEqual, Long);
 499   // dtos
 500   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 501   __ push_d();
 502   __ jmpb(Done);
 503 
 504   __ bind(Long);
 505   // ltos
 506   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 507   __ push_l();
 508 
 509   __ bind(Done);
 510 }
 511 
 512 void TemplateTable::locals_index(Register reg, int offset) {
 513   __ load_unsigned_byte(reg, at_bcp(offset));
 514   __ negptr(reg);
 515 }
 516 
 517 void TemplateTable::iload() {
 518   transition(vtos, itos);
 519   if (RewriteFrequentPairs) {
 520     Label rewrite, done;
 521     const Register bc = c_rarg3;
 522     assert(rbx != bc, "register damaged");
 523 
 524     // get next byte
 525     __ load_unsigned_byte(rbx,
 526                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 527     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 528     // last two iloads in a pair.  Comparing against fast_iload means that
 529     // the next bytecode is neither an iload or a caload, and therefore
 530     // an iload pair.
 531     __ cmpl(rbx, Bytecodes::_iload);
 532     __ jcc(Assembler::equal, done);
 533 
 534     __ cmpl(rbx, Bytecodes::_fast_iload);
 535     __ movl(bc, Bytecodes::_fast_iload2);
 536     __ jccb(Assembler::equal, rewrite);
 537 
 538     // if _caload, rewrite to fast_icaload
 539     __ cmpl(rbx, Bytecodes::_caload);
 540     __ movl(bc, Bytecodes::_fast_icaload);
 541     __ jccb(Assembler::equal, rewrite);
 542 
 543     // rewrite so iload doesn't check again.
 544     __ movl(bc, Bytecodes::_fast_iload);
 545 
 546     // rewrite
 547     // bc: fast bytecode
 548     __ bind(rewrite);
 549     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 550     __ bind(done);
 551   }
 552 
 553   // Get the local value into tos
 554   locals_index(rbx);
 555   __ movl(rax, iaddress(rbx));
 556 }
 557 
 558 void TemplateTable::fast_iload2() {
 559   transition(vtos, itos);
 560   locals_index(rbx);
 561   __ movl(rax, iaddress(rbx));
 562   __ push(itos);
 563   locals_index(rbx, 3);
 564   __ movl(rax, iaddress(rbx));
 565 }
 566 
 567 void TemplateTable::fast_iload() {
 568   transition(vtos, itos);
 569   locals_index(rbx);
 570   __ movl(rax, iaddress(rbx));
 571 }
 572 
 573 void TemplateTable::lload() {
 574   transition(vtos, ltos);
 575   locals_index(rbx);
 576   __ movq(rax, laddress(rbx));
 577 }
 578 
 579 void TemplateTable::fload() {
 580   transition(vtos, ftos);
 581   locals_index(rbx);
 582   __ movflt(xmm0, faddress(rbx));
 583 }
 584 
 585 void TemplateTable::dload() {
 586   transition(vtos, dtos);
 587   locals_index(rbx);
 588   __ movdbl(xmm0, daddress(rbx));
 589 }
 590 
 591 void TemplateTable::aload() {
 592   transition(vtos, atos);
 593   locals_index(rbx);
 594   __ movptr(rax, aaddress(rbx));
 595 }
 596 
 597 void TemplateTable::locals_index_wide(Register reg) {
 598   __ movl(reg, at_bcp(2));
 599   __ bswapl(reg);
 600   __ shrl(reg, 16);
 601   __ negptr(reg);
 602 }
 603 
 604 void TemplateTable::wide_iload() {
 605   transition(vtos, itos);
 606   locals_index_wide(rbx);
 607   __ movl(rax, iaddress(rbx));
 608 }
 609 
 610 void TemplateTable::wide_lload() {
 611   transition(vtos, ltos);
 612   locals_index_wide(rbx);
 613   __ movq(rax, laddress(rbx));
 614 }
 615 
 616 void TemplateTable::wide_fload() {
 617   transition(vtos, ftos);
 618   locals_index_wide(rbx);
 619   __ movflt(xmm0, faddress(rbx));
 620 }
 621 
 622 void TemplateTable::wide_dload() {
 623   transition(vtos, dtos);
 624   locals_index_wide(rbx);
 625   __ movdbl(xmm0, daddress(rbx));
 626 }
 627 
 628 void TemplateTable::wide_aload() {
 629   transition(vtos, atos);
 630   locals_index_wide(rbx);
 631   __ movptr(rax, aaddress(rbx));
 632 }
 633 
 634 void TemplateTable::index_check(Register array, Register index) {
 635   // destroys rbx
 636   // check array
 637   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 638   // sign extend index for use by indexed load
 639   __ movl2ptr(index, index);
 640   // check index
 641   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 642   if (index != rbx) {
 643     // ??? convention: move aberrant index into ebx for exception message
 644     assert(rbx != array, "different registers");
 645     __ movl(rbx, index);
 646   }
 647   __ jump_cc(Assembler::aboveEqual,
 648              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 649 }
 650 
 651 void TemplateTable::iaload() {
 652   transition(itos, itos);
 653   __ pop_ptr(rdx);
 654   // eax: index
 655   // rdx: array
 656   index_check(rdx, rax); // kills rbx
 657   __ movl(rax, Address(rdx, rax,
 658                        Address::times_4,
 659                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 660 }
 661 
 662 void TemplateTable::laload() {
 663   transition(itos, ltos);
 664   __ pop_ptr(rdx);
 665   // eax: index
 666   // rdx: array
 667   index_check(rdx, rax); // kills rbx
 668   __ movq(rax, Address(rdx, rbx,
 669                        Address::times_8,
 670                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 671 }
 672 
 673 void TemplateTable::faload() {
 674   transition(itos, ftos);
 675   __ pop_ptr(rdx);
 676   // eax: index
 677   // rdx: array
 678   index_check(rdx, rax); // kills rbx
 679   __ movflt(xmm0, Address(rdx, rax,
 680                          Address::times_4,
 681                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 682 }
 683 
 684 void TemplateTable::daload() {
 685   transition(itos, dtos);
 686   __ pop_ptr(rdx);
 687   // eax: index
 688   // rdx: array
 689   index_check(rdx, rax); // kills rbx
 690   __ movdbl(xmm0, Address(rdx, rax,
 691                           Address::times_8,
 692                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 693 }
 694 
 695 void TemplateTable::aaload() {
 696   transition(itos, atos);
 697   __ pop_ptr(rdx);
 698   // eax: index
 699   // rdx: array
 700   index_check(rdx, rax); // kills rbx
 701   __ load_heap_oop(rax, Address(rdx, rax,
 702                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 703                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 704 }
 705 
 706 void TemplateTable::baload() {
 707   transition(itos, itos);
 708   __ pop_ptr(rdx);
 709   // eax: index
 710   // rdx: array
 711   index_check(rdx, rax); // kills rbx
 712   __ load_signed_byte(rax,
 713                       Address(rdx, rax,
 714                               Address::times_1,
 715                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 716 }
 717 
 718 void TemplateTable::caload() {
 719   transition(itos, itos);
 720   __ pop_ptr(rdx);
 721   // eax: index
 722   // rdx: array
 723   index_check(rdx, rax); // kills rbx
 724   __ load_unsigned_short(rax,
 725                          Address(rdx, rax,
 726                                  Address::times_2,
 727                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 728 }
 729 
 730 // iload followed by caload frequent pair
 731 void TemplateTable::fast_icaload() {
 732   transition(vtos, itos);
 733   // load index out of locals
 734   locals_index(rbx);
 735   __ movl(rax, iaddress(rbx));
 736 
 737   // eax: index
 738   // rdx: array
 739   __ pop_ptr(rdx);
 740   index_check(rdx, rax); // kills rbx
 741   __ load_unsigned_short(rax,
 742                          Address(rdx, rax,
 743                                  Address::times_2,
 744                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 745 }
 746 
 747 void TemplateTable::saload() {
 748   transition(itos, itos);
 749   __ pop_ptr(rdx);
 750   // eax: index
 751   // rdx: array
 752   index_check(rdx, rax); // kills rbx
 753   __ load_signed_short(rax,
 754                        Address(rdx, rax,
 755                                Address::times_2,
 756                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 757 }
 758 
 759 void TemplateTable::iload(int n) {
 760   transition(vtos, itos);
 761   __ movl(rax, iaddress(n));
 762 }
 763 
 764 void TemplateTable::lload(int n) {
 765   transition(vtos, ltos);
 766   __ movq(rax, laddress(n));
 767 }
 768 
 769 void TemplateTable::fload(int n) {
 770   transition(vtos, ftos);
 771   __ movflt(xmm0, faddress(n));
 772 }
 773 
 774 void TemplateTable::dload(int n) {
 775   transition(vtos, dtos);
 776   __ movdbl(xmm0, daddress(n));
 777 }
 778 
 779 void TemplateTable::aload(int n) {
 780   transition(vtos, atos);
 781   __ movptr(rax, aaddress(n));
 782 }
 783 
 784 void TemplateTable::aload_0() {
 785   transition(vtos, atos);
 786   // According to bytecode histograms, the pairs:
 787   //
 788   // _aload_0, _fast_igetfield
 789   // _aload_0, _fast_agetfield
 790   // _aload_0, _fast_fgetfield
 791   //
 792   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 793   // _aload_0 bytecode checks if the next bytecode is either
 794   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 795   // rewrites the current bytecode into a pair bytecode; otherwise it
 796   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 797   // the pair check anymore.
 798   //
 799   // Note: If the next bytecode is _getfield, the rewrite must be
 800   //       delayed, otherwise we may miss an opportunity for a pair.
 801   //
 802   // Also rewrite frequent pairs
 803   //   aload_0, aload_1
 804   //   aload_0, iload_1
 805   // These bytecodes with a small amount of code are most profitable
 806   // to rewrite
 807   if (RewriteFrequentPairs) {
 808     Label rewrite, done;
 809     const Register bc = c_rarg3;
 810     assert(rbx != bc, "register damaged");
 811     // get next byte
 812     __ load_unsigned_byte(rbx,
 813                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 814 
 815     // do actual aload_0
 816     aload(0);
 817 
 818     // if _getfield then wait with rewrite
 819     __ cmpl(rbx, Bytecodes::_getfield);
 820     __ jcc(Assembler::equal, done);
 821 
 822     // if _igetfield then reqrite to _fast_iaccess_0
 823     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 824            Bytecodes::_aload_0,
 825            "fix bytecode definition");
 826     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 827     __ movl(bc, Bytecodes::_fast_iaccess_0);
 828     __ jccb(Assembler::equal, rewrite);
 829 
 830     // if _agetfield then reqrite to _fast_aaccess_0
 831     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 832            Bytecodes::_aload_0,
 833            "fix bytecode definition");
 834     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 835     __ movl(bc, Bytecodes::_fast_aaccess_0);
 836     __ jccb(Assembler::equal, rewrite);
 837 
 838     // if _fgetfield then reqrite to _fast_faccess_0
 839     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 840            Bytecodes::_aload_0,
 841            "fix bytecode definition");
 842     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 843     __ movl(bc, Bytecodes::_fast_faccess_0);
 844     __ jccb(Assembler::equal, rewrite);
 845 
 846     // else rewrite to _fast_aload0
 847     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 848            Bytecodes::_aload_0,
 849            "fix bytecode definition");
 850     __ movl(bc, Bytecodes::_fast_aload_0);
 851 
 852     // rewrite
 853     // bc: fast bytecode
 854     __ bind(rewrite);
 855     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 856 
 857     __ bind(done);
 858   } else {
 859     aload(0);
 860   }
 861 }
 862 
 863 void TemplateTable::istore() {
 864   transition(itos, vtos);
 865   locals_index(rbx);
 866   __ movl(iaddress(rbx), rax);
 867 }
 868 
 869 void TemplateTable::lstore() {
 870   transition(ltos, vtos);
 871   locals_index(rbx);
 872   __ movq(laddress(rbx), rax);
 873 }
 874 
 875 void TemplateTable::fstore() {
 876   transition(ftos, vtos);
 877   locals_index(rbx);
 878   __ movflt(faddress(rbx), xmm0);
 879 }
 880 
 881 void TemplateTable::dstore() {
 882   transition(dtos, vtos);
 883   locals_index(rbx);
 884   __ movdbl(daddress(rbx), xmm0);
 885 }
 886 
 887 void TemplateTable::astore() {
 888   transition(vtos, vtos);
 889   __ pop_ptr(rax);
 890   locals_index(rbx);
 891   __ movptr(aaddress(rbx), rax);
 892 }
 893 
 894 void TemplateTable::wide_istore() {
 895   transition(vtos, vtos);
 896   __ pop_i();
 897   locals_index_wide(rbx);
 898   __ movl(iaddress(rbx), rax);
 899 }
 900 
 901 void TemplateTable::wide_lstore() {
 902   transition(vtos, vtos);
 903   __ pop_l();
 904   locals_index_wide(rbx);
 905   __ movq(laddress(rbx), rax);
 906 }
 907 
 908 void TemplateTable::wide_fstore() {
 909   transition(vtos, vtos);
 910   __ pop_f();
 911   locals_index_wide(rbx);
 912   __ movflt(faddress(rbx), xmm0);
 913 }
 914 
 915 void TemplateTable::wide_dstore() {
 916   transition(vtos, vtos);
 917   __ pop_d();
 918   locals_index_wide(rbx);
 919   __ movdbl(daddress(rbx), xmm0);
 920 }
 921 
 922 void TemplateTable::wide_astore() {
 923   transition(vtos, vtos);
 924   __ pop_ptr(rax);
 925   locals_index_wide(rbx);
 926   __ movptr(aaddress(rbx), rax);
 927 }
 928 
 929 void TemplateTable::iastore() {
 930   transition(itos, vtos);
 931   __ pop_i(rbx);
 932   __ pop_ptr(rdx);
 933   // eax: value
 934   // ebx: index
 935   // rdx: array
 936   index_check(rdx, rbx); // prefer index in ebx
 937   __ movl(Address(rdx, rbx,
 938                   Address::times_4,
 939                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 940           rax);
 941 }
 942 
 943 void TemplateTable::lastore() {
 944   transition(ltos, vtos);
 945   __ pop_i(rbx);
 946   __ pop_ptr(rdx);
 947   // rax: value
 948   // ebx: index
 949   // rdx: array
 950   index_check(rdx, rbx); // prefer index in ebx
 951   __ movq(Address(rdx, rbx,
 952                   Address::times_8,
 953                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 954           rax);
 955 }
 956 
 957 void TemplateTable::fastore() {
 958   transition(ftos, vtos);
 959   __ pop_i(rbx);
 960   __ pop_ptr(rdx);
 961   // xmm0: value
 962   // ebx:  index
 963   // rdx:  array
 964   index_check(rdx, rbx); // prefer index in ebx
 965   __ movflt(Address(rdx, rbx,
 966                    Address::times_4,
 967                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 968            xmm0);
 969 }
 970 
 971 void TemplateTable::dastore() {
 972   transition(dtos, vtos);
 973   __ pop_i(rbx);
 974   __ pop_ptr(rdx);
 975   // xmm0: value
 976   // ebx:  index
 977   // rdx:  array
 978   index_check(rdx, rbx); // prefer index in ebx
 979   __ movdbl(Address(rdx, rbx,
 980                    Address::times_8,
 981                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 982            xmm0);
 983 }
 984 
 985 void TemplateTable::aastore() {
 986   Label is_null, ok_is_subtype, done;
 987   transition(vtos, vtos);
 988   // stack: ..., array, index, value
 989   __ movptr(rax, at_tos());    // value
 990   __ movl(rcx, at_tos_p1()); // index
 991   __ movptr(rdx, at_tos_p2()); // array
 992 
 993   Address element_address(rdx, rcx,
 994                           UseCompressedOops? Address::times_4 : Address::times_8,
 995                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 996 
 997   index_check(rdx, rcx);     // kills rbx
 998   // do array store check - check for NULL value first
 999   __ testptr(rax, rax);
1000   __ jcc(Assembler::zero, is_null);
1001 
1002   // Move subklass into rbx
1003   __ load_klass(rbx, rax);
1004   // Move superklass into rax
1005   __ load_klass(rax, rdx);
1006   __ movptr(rax, Address(rax,
1007                          objArrayKlass::element_klass_offset()));
1008   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1009   __ lea(rdx, element_address);
1010 
1011   // Generate subtype check.  Blows rcx, rdi
1012   // Superklass in rax.  Subklass in rbx.
1013   __ gen_subtype_check(rbx, ok_is_subtype);
1014 
1015   // Come here on failure
1016   // object is at TOS
1017   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1018 
1019   // Come here on success
1020   __ bind(ok_is_subtype);
1021 
1022   // Get the value we will store
1023   __ movptr(rax, at_tos());
1024   // Now store using the appropriate barrier
1025   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
1026   __ jmp(done);
1027 
1028   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1029   __ bind(is_null);
1030   __ profile_null_seen(rbx);
1031 
1032   // Store a NULL
1033   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1034 
1035   // Pop stack arguments
1036   __ bind(done);
1037   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1038 }
1039 
1040 void TemplateTable::bastore() {
1041   transition(itos, vtos);
1042   __ pop_i(rbx);
1043   __ pop_ptr(rdx);
1044   // eax: value
1045   // ebx: index
1046   // rdx: array
1047   index_check(rdx, rbx); // prefer index in ebx
1048   __ movb(Address(rdx, rbx,
1049                   Address::times_1,
1050                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1051           rax);
1052 }
1053 
1054 void TemplateTable::castore() {
1055   transition(itos, vtos);
1056   __ pop_i(rbx);
1057   __ pop_ptr(rdx);
1058   // eax: value
1059   // ebx: index
1060   // rdx: array
1061   index_check(rdx, rbx);  // prefer index in ebx
1062   __ movw(Address(rdx, rbx,
1063                   Address::times_2,
1064                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1065           rax);
1066 }
1067 
1068 void TemplateTable::sastore() {
1069   castore();
1070 }
1071 
1072 void TemplateTable::istore(int n) {
1073   transition(itos, vtos);
1074   __ movl(iaddress(n), rax);
1075 }
1076 
1077 void TemplateTable::lstore(int n) {
1078   transition(ltos, vtos);
1079   __ movq(laddress(n), rax);
1080 }
1081 
1082 void TemplateTable::fstore(int n) {
1083   transition(ftos, vtos);
1084   __ movflt(faddress(n), xmm0);
1085 }
1086 
1087 void TemplateTable::dstore(int n) {
1088   transition(dtos, vtos);
1089   __ movdbl(daddress(n), xmm0);
1090 }
1091 
1092 void TemplateTable::astore(int n) {
1093   transition(vtos, vtos);
1094   __ pop_ptr(rax);
1095   __ movptr(aaddress(n), rax);
1096 }
1097 
1098 void TemplateTable::pop() {
1099   transition(vtos, vtos);
1100   __ addptr(rsp, Interpreter::stackElementSize);
1101 }
1102 
1103 void TemplateTable::pop2() {
1104   transition(vtos, vtos);
1105   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1106 }
1107 
1108 void TemplateTable::dup() {
1109   transition(vtos, vtos);
1110   __ load_ptr(0, rax);
1111   __ push_ptr(rax);
1112   // stack: ..., a, a
1113 }
1114 
1115 void TemplateTable::dup_x1() {
1116   transition(vtos, vtos);
1117   // stack: ..., a, b
1118   __ load_ptr( 0, rax);  // load b
1119   __ load_ptr( 1, rcx);  // load a
1120   __ store_ptr(1, rax);  // store b
1121   __ store_ptr(0, rcx);  // store a
1122   __ push_ptr(rax);      // push b
1123   // stack: ..., b, a, b
1124 }
1125 
1126 void TemplateTable::dup_x2() {
1127   transition(vtos, vtos);
1128   // stack: ..., a, b, c
1129   __ load_ptr( 0, rax);  // load c
1130   __ load_ptr( 2, rcx);  // load a
1131   __ store_ptr(2, rax);  // store c in a
1132   __ push_ptr(rax);      // push c
1133   // stack: ..., c, b, c, c
1134   __ load_ptr( 2, rax);  // load b
1135   __ store_ptr(2, rcx);  // store a in b
1136   // stack: ..., c, a, c, c
1137   __ store_ptr(1, rax);  // store b in c
1138   // stack: ..., c, a, b, c
1139 }
1140 
1141 void TemplateTable::dup2() {
1142   transition(vtos, vtos);
1143   // stack: ..., a, b
1144   __ load_ptr(1, rax);  // load a
1145   __ push_ptr(rax);     // push a
1146   __ load_ptr(1, rax);  // load b
1147   __ push_ptr(rax);     // push b
1148   // stack: ..., a, b, a, b
1149 }
1150 
1151 void TemplateTable::dup2_x1() {
1152   transition(vtos, vtos);
1153   // stack: ..., a, b, c
1154   __ load_ptr( 0, rcx);  // load c
1155   __ load_ptr( 1, rax);  // load b
1156   __ push_ptr(rax);      // push b
1157   __ push_ptr(rcx);      // push c
1158   // stack: ..., a, b, c, b, c
1159   __ store_ptr(3, rcx);  // store c in b
1160   // stack: ..., a, c, c, b, c
1161   __ load_ptr( 4, rcx);  // load a
1162   __ store_ptr(2, rcx);  // store a in 2nd c
1163   // stack: ..., a, c, a, b, c
1164   __ store_ptr(4, rax);  // store b in a
1165   // stack: ..., b, c, a, b, c
1166 }
1167 
1168 void TemplateTable::dup2_x2() {
1169   transition(vtos, vtos);
1170   // stack: ..., a, b, c, d
1171   __ load_ptr( 0, rcx);  // load d
1172   __ load_ptr( 1, rax);  // load c
1173   __ push_ptr(rax);      // push c
1174   __ push_ptr(rcx);      // push d
1175   // stack: ..., a, b, c, d, c, d
1176   __ load_ptr( 4, rax);  // load b
1177   __ store_ptr(2, rax);  // store b in d
1178   __ store_ptr(4, rcx);  // store d in b
1179   // stack: ..., a, d, c, b, c, d
1180   __ load_ptr( 5, rcx);  // load a
1181   __ load_ptr( 3, rax);  // load c
1182   __ store_ptr(3, rcx);  // store a in c
1183   __ store_ptr(5, rax);  // store c in a
1184   // stack: ..., c, d, a, b, c, d
1185 }
1186 
1187 void TemplateTable::swap() {
1188   transition(vtos, vtos);
1189   // stack: ..., a, b
1190   __ load_ptr( 1, rcx);  // load a
1191   __ load_ptr( 0, rax);  // load b
1192   __ store_ptr(0, rcx);  // store a in b
1193   __ store_ptr(1, rax);  // store b in a
1194   // stack: ..., b, a
1195 }
1196 
1197 void TemplateTable::iop2(Operation op) {
1198   transition(itos, itos);
1199   switch (op) {
1200   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1201   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1202   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1203   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1204   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1205   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1206   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1207   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1208   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1209   default   : ShouldNotReachHere();
1210   }
1211 }
1212 
1213 void TemplateTable::lop2(Operation op) {
1214   transition(ltos, ltos);
1215   switch (op) {
1216   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1217   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1218   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1219   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1220   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1221   default   : ShouldNotReachHere();
1222   }
1223 }
1224 
1225 void TemplateTable::idiv() {
1226   transition(itos, itos);
1227   __ movl(rcx, rax);
1228   __ pop_i(rax);
1229   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1230   //       they are not equal, one could do a normal division (no correction
1231   //       needed), which may speed up this implementation for the common case.
1232   //       (see also JVM spec., p.243 & p.271)
1233   __ corrected_idivl(rcx);
1234 }
1235 
1236 void TemplateTable::irem() {
1237   transition(itos, itos);
1238   __ movl(rcx, rax);
1239   __ pop_i(rax);
1240   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1241   //       they are not equal, one could do a normal division (no correction
1242   //       needed), which may speed up this implementation for the common case.
1243   //       (see also JVM spec., p.243 & p.271)
1244   __ corrected_idivl(rcx);
1245   __ movl(rax, rdx);
1246 }
1247 
1248 void TemplateTable::lmul() {
1249   transition(ltos, ltos);
1250   __ pop_l(rdx);
1251   __ imulq(rax, rdx);
1252 }
1253 
1254 void TemplateTable::ldiv() {
1255   transition(ltos, ltos);
1256   __ mov(rcx, rax);
1257   __ pop_l(rax);
1258   // generate explicit div0 check
1259   __ testq(rcx, rcx);
1260   __ jump_cc(Assembler::zero,
1261              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1262   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1263   //       they are not equal, one could do a normal division (no correction
1264   //       needed), which may speed up this implementation for the common case.
1265   //       (see also JVM spec., p.243 & p.271)
1266   __ corrected_idivq(rcx); // kills rbx
1267 }
1268 
1269 void TemplateTable::lrem() {
1270   transition(ltos, ltos);
1271   __ mov(rcx, rax);
1272   __ pop_l(rax);
1273   __ testq(rcx, rcx);
1274   __ jump_cc(Assembler::zero,
1275              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1276   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1277   //       they are not equal, one could do a normal division (no correction
1278   //       needed), which may speed up this implementation for the common case.
1279   //       (see also JVM spec., p.243 & p.271)
1280   __ corrected_idivq(rcx); // kills rbx
1281   __ mov(rax, rdx);
1282 }
1283 
1284 void TemplateTable::lshl() {
1285   transition(itos, ltos);
1286   __ movl(rcx, rax);                             // get shift count
1287   __ pop_l(rax);                                 // get shift value
1288   __ shlq(rax);
1289 }
1290 
1291 void TemplateTable::lshr() {
1292   transition(itos, ltos);
1293   __ movl(rcx, rax);                             // get shift count
1294   __ pop_l(rax);                                 // get shift value
1295   __ sarq(rax);
1296 }
1297 
1298 void TemplateTable::lushr() {
1299   transition(itos, ltos);
1300   __ movl(rcx, rax);                             // get shift count
1301   __ pop_l(rax);                                 // get shift value
1302   __ shrq(rax);
1303 }
1304 
1305 void TemplateTable::fop2(Operation op) {
1306   transition(ftos, ftos);
1307   switch (op) {
1308   case add:
1309     __ addss(xmm0, at_rsp());
1310     __ addptr(rsp, Interpreter::stackElementSize);
1311     break;
1312   case sub:
1313     __ movflt(xmm1, xmm0);
1314     __ pop_f(xmm0);
1315     __ subss(xmm0, xmm1);
1316     break;
1317   case mul:
1318     __ mulss(xmm0, at_rsp());
1319     __ addptr(rsp, Interpreter::stackElementSize);
1320     break;
1321   case div:
1322     __ movflt(xmm1, xmm0);
1323     __ pop_f(xmm0);
1324     __ divss(xmm0, xmm1);
1325     break;
1326   case rem:
1327     __ movflt(xmm1, xmm0);
1328     __ pop_f(xmm0);
1329     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1330     break;
1331   default:
1332     ShouldNotReachHere();
1333     break;
1334   }
1335 }
1336 
1337 void TemplateTable::dop2(Operation op) {
1338   transition(dtos, dtos);
1339   switch (op) {
1340   case add:
1341     __ addsd(xmm0, at_rsp());
1342     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1343     break;
1344   case sub:
1345     __ movdbl(xmm1, xmm0);
1346     __ pop_d(xmm0);
1347     __ subsd(xmm0, xmm1);
1348     break;
1349   case mul:
1350     __ mulsd(xmm0, at_rsp());
1351     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1352     break;
1353   case div:
1354     __ movdbl(xmm1, xmm0);
1355     __ pop_d(xmm0);
1356     __ divsd(xmm0, xmm1);
1357     break;
1358   case rem:
1359     __ movdbl(xmm1, xmm0);
1360     __ pop_d(xmm0);
1361     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1362     break;
1363   default:
1364     ShouldNotReachHere();
1365     break;
1366   }
1367 }
1368 
1369 void TemplateTable::ineg() {
1370   transition(itos, itos);
1371   __ negl(rax);
1372 }
1373 
1374 void TemplateTable::lneg() {
1375   transition(ltos, ltos);
1376   __ negq(rax);
1377 }
1378 
1379 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1380 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1381   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1382   // of 128-bits operands for SSE instructions.
1383   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1384   // Store the value to a 128-bits operand.
1385   operand[0] = lo;
1386   operand[1] = hi;
1387   return operand;
1388 }
1389 
1390 // Buffer for 128-bits masks used by SSE instructions.
1391 static jlong float_signflip_pool[2*2];
1392 static jlong double_signflip_pool[2*2];
1393 
1394 void TemplateTable::fneg() {
1395   transition(ftos, ftos);
1396   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1397   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1398 }
1399 
1400 void TemplateTable::dneg() {
1401   transition(dtos, dtos);
1402   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1403   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1404 }
1405 
1406 void TemplateTable::iinc() {
1407   transition(vtos, vtos);
1408   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1409   locals_index(rbx);
1410   __ addl(iaddress(rbx), rdx);
1411 }
1412 
1413 void TemplateTable::wide_iinc() {
1414   transition(vtos, vtos);
1415   __ movl(rdx, at_bcp(4)); // get constant
1416   locals_index_wide(rbx);
1417   __ bswapl(rdx); // swap bytes & sign-extend constant
1418   __ sarl(rdx, 16);
1419   __ addl(iaddress(rbx), rdx);
1420   // Note: should probably use only one movl to get both
1421   //       the index and the constant -> fix this
1422 }
1423 
1424 void TemplateTable::convert() {
1425   // Checking
1426 #ifdef ASSERT
1427   {
1428     TosState tos_in  = ilgl;
1429     TosState tos_out = ilgl;
1430     switch (bytecode()) {
1431     case Bytecodes::_i2l: // fall through
1432     case Bytecodes::_i2f: // fall through
1433     case Bytecodes::_i2d: // fall through
1434     case Bytecodes::_i2b: // fall through
1435     case Bytecodes::_i2c: // fall through
1436     case Bytecodes::_i2s: tos_in = itos; break;
1437     case Bytecodes::_l2i: // fall through
1438     case Bytecodes::_l2f: // fall through
1439     case Bytecodes::_l2d: tos_in = ltos; break;
1440     case Bytecodes::_f2i: // fall through
1441     case Bytecodes::_f2l: // fall through
1442     case Bytecodes::_f2d: tos_in = ftos; break;
1443     case Bytecodes::_d2i: // fall through
1444     case Bytecodes::_d2l: // fall through
1445     case Bytecodes::_d2f: tos_in = dtos; break;
1446     default             : ShouldNotReachHere();
1447     }
1448     switch (bytecode()) {
1449     case Bytecodes::_l2i: // fall through
1450     case Bytecodes::_f2i: // fall through
1451     case Bytecodes::_d2i: // fall through
1452     case Bytecodes::_i2b: // fall through
1453     case Bytecodes::_i2c: // fall through
1454     case Bytecodes::_i2s: tos_out = itos; break;
1455     case Bytecodes::_i2l: // fall through
1456     case Bytecodes::_f2l: // fall through
1457     case Bytecodes::_d2l: tos_out = ltos; break;
1458     case Bytecodes::_i2f: // fall through
1459     case Bytecodes::_l2f: // fall through
1460     case Bytecodes::_d2f: tos_out = ftos; break;
1461     case Bytecodes::_i2d: // fall through
1462     case Bytecodes::_l2d: // fall through
1463     case Bytecodes::_f2d: tos_out = dtos; break;
1464     default             : ShouldNotReachHere();
1465     }
1466     transition(tos_in, tos_out);
1467   }
1468 #endif // ASSERT
1469 
1470   static const int64_t is_nan = 0x8000000000000000L;
1471 
1472   // Conversion
1473   switch (bytecode()) {
1474   case Bytecodes::_i2l:
1475     __ movslq(rax, rax);
1476     break;
1477   case Bytecodes::_i2f:
1478     __ cvtsi2ssl(xmm0, rax);
1479     break;
1480   case Bytecodes::_i2d:
1481     __ cvtsi2sdl(xmm0, rax);
1482     break;
1483   case Bytecodes::_i2b:
1484     __ movsbl(rax, rax);
1485     break;
1486   case Bytecodes::_i2c:
1487     __ movzwl(rax, rax);
1488     break;
1489   case Bytecodes::_i2s:
1490     __ movswl(rax, rax);
1491     break;
1492   case Bytecodes::_l2i:
1493     __ movl(rax, rax);
1494     break;
1495   case Bytecodes::_l2f:
1496     __ cvtsi2ssq(xmm0, rax);
1497     break;
1498   case Bytecodes::_l2d:
1499     __ cvtsi2sdq(xmm0, rax);
1500     break;
1501   case Bytecodes::_f2i:
1502   {
1503     Label L;
1504     __ cvttss2sil(rax, xmm0);
1505     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1506     __ jcc(Assembler::notEqual, L);
1507     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1508     __ bind(L);
1509   }
1510     break;
1511   case Bytecodes::_f2l:
1512   {
1513     Label L;
1514     __ cvttss2siq(rax, xmm0);
1515     // NaN or overflow/underflow?
1516     __ cmp64(rax, ExternalAddress((address) &is_nan));
1517     __ jcc(Assembler::notEqual, L);
1518     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1519     __ bind(L);
1520   }
1521     break;
1522   case Bytecodes::_f2d:
1523     __ cvtss2sd(xmm0, xmm0);
1524     break;
1525   case Bytecodes::_d2i:
1526   {
1527     Label L;
1528     __ cvttsd2sil(rax, xmm0);
1529     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1530     __ jcc(Assembler::notEqual, L);
1531     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1532     __ bind(L);
1533   }
1534     break;
1535   case Bytecodes::_d2l:
1536   {
1537     Label L;
1538     __ cvttsd2siq(rax, xmm0);
1539     // NaN or overflow/underflow?
1540     __ cmp64(rax, ExternalAddress((address) &is_nan));
1541     __ jcc(Assembler::notEqual, L);
1542     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1543     __ bind(L);
1544   }
1545     break;
1546   case Bytecodes::_d2f:
1547     __ cvtsd2ss(xmm0, xmm0);
1548     break;
1549   default:
1550     ShouldNotReachHere();
1551   }
1552 }
1553 
1554 void TemplateTable::lcmp() {
1555   transition(ltos, itos);
1556   Label done;
1557   __ pop_l(rdx);
1558   __ cmpq(rdx, rax);
1559   __ movl(rax, -1);
1560   __ jccb(Assembler::less, done);
1561   __ setb(Assembler::notEqual, rax);
1562   __ movzbl(rax, rax);
1563   __ bind(done);
1564 }
1565 
1566 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1567   Label done;
1568   if (is_float) {
1569     // XXX get rid of pop here, use ... reg, mem32
1570     __ pop_f(xmm1);
1571     __ ucomiss(xmm1, xmm0);
1572   } else {
1573     // XXX get rid of pop here, use ... reg, mem64
1574     __ pop_d(xmm1);
1575     __ ucomisd(xmm1, xmm0);
1576   }
1577   if (unordered_result < 0) {
1578     __ movl(rax, -1);
1579     __ jccb(Assembler::parity, done);
1580     __ jccb(Assembler::below, done);
1581     __ setb(Assembler::notEqual, rdx);
1582     __ movzbl(rax, rdx);
1583   } else {
1584     __ movl(rax, 1);
1585     __ jccb(Assembler::parity, done);
1586     __ jccb(Assembler::above, done);
1587     __ movl(rax, 0);
1588     __ jccb(Assembler::equal, done);
1589     __ decrementl(rax);
1590   }
1591   __ bind(done);
1592 }
1593 
1594 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1595   __ get_method(rcx); // rcx holds method
1596   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1597                                      // holds bumped taken count
1598 
1599   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
1600                              InvocationCounter::counter_offset();
1601   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
1602                               InvocationCounter::counter_offset();
1603   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1604 
1605   // Load up edx with the branch displacement
1606   __ movl(rdx, at_bcp(1));
1607   __ bswapl(rdx);
1608 
1609   if (!is_wide) {
1610     __ sarl(rdx, 16);
1611   }
1612   __ movl2ptr(rdx, rdx);
1613 
1614   // Handle all the JSR stuff here, then exit.
1615   // It's much shorter and cleaner than intermingling with the non-JSR
1616   // normal-branch stuff occurring below.
1617   if (is_jsr) {
1618     // Pre-load the next target bytecode into rbx
1619     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1620 
1621     // compute return address as bci in rax
1622     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1623                         in_bytes(constMethodOopDesc::codes_offset())));
1624     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1625     // Adjust the bcp in r13 by the displacement in rdx
1626     __ addptr(r13, rdx);
1627     // jsr returns atos that is not an oop
1628     __ push_i(rax);
1629     __ dispatch_only(vtos);
1630     return;
1631   }
1632 
1633   // Normal (non-jsr) branch handling
1634 
1635   // Adjust the bcp in r13 by the displacement in rdx
1636   __ addptr(r13, rdx);
1637 
1638   assert(UseLoopCounter || !UseOnStackReplacement,
1639          "on-stack-replacement requires loop counters");
1640   Label backedge_counter_overflow;
1641   Label profile_method;
1642   Label dispatch;
1643   if (UseLoopCounter) {
1644     // increment backedge counter for backward branches
1645     // rax: MDO
1646     // ebx: MDO bumped taken-count
1647     // rcx: method
1648     // rdx: target offset
1649     // r13: target bcp
1650     // r14: locals pointer
1651     __ testl(rdx, rdx);             // check if forward or backward branch
1652     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1653     if (TieredCompilation) {
1654       Label no_mdo;
1655       int increment = InvocationCounter::count_increment;
1656       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1657       if (ProfileInterpreter) {
1658         // Are we profiling?
1659         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1660         __ testptr(rbx, rbx);
1661         __ jccb(Assembler::zero, no_mdo);
1662         // Increment the MDO backedge counter
1663         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1664                                            in_bytes(InvocationCounter::counter_offset()));
1665         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1666                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1667         __ jmp(dispatch);
1668       }
1669       __ bind(no_mdo);
1670       // Increment backedge counter in methodOop
1671       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1672                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1673     } else {
1674       // increment counter
1675       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1676       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1677       __ movl(Address(rcx, be_offset), rax);        // store counter
1678 
1679       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1680       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1681       __ addl(rax, Address(rcx, be_offset));        // add both counters
1682 
1683       if (ProfileInterpreter) {
1684         // Test to see if we should create a method data oop
1685         __ cmp32(rax,
1686                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1687         __ jcc(Assembler::less, dispatch);
1688 
1689         // if no method data exists, go to profile method
1690         __ test_method_data_pointer(rax, profile_method);
1691 
1692         if (UseOnStackReplacement) {
1693           // check for overflow against ebx which is the MDO taken count
1694           __ cmp32(rbx,
1695                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1696           __ jcc(Assembler::below, dispatch);
1697 
1698           // When ProfileInterpreter is on, the backedge_count comes
1699           // from the methodDataOop, which value does not get reset on
1700           // the call to frequency_counter_overflow().  To avoid
1701           // excessive calls to the overflow routine while the method is
1702           // being compiled, add a second test to make sure the overflow
1703           // function is called only once every overflow_frequency.
1704           const int overflow_frequency = 1024;
1705           __ andl(rbx, overflow_frequency - 1);
1706           __ jcc(Assembler::zero, backedge_counter_overflow);
1707 
1708         }
1709       } else {
1710         if (UseOnStackReplacement) {
1711           // check for overflow against eax, which is the sum of the
1712           // counters
1713           __ cmp32(rax,
1714                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1715           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1716 
1717         }
1718       }
1719     }
1720     __ bind(dispatch);
1721   }
1722 
1723   // Pre-load the next target bytecode into rbx
1724   __ load_unsigned_byte(rbx, Address(r13, 0));
1725 
1726   // continue with the bytecode @ target
1727   // eax: return bci for jsr's, unused otherwise
1728   // ebx: target bytecode
1729   // r13: target bcp
1730   __ dispatch_only(vtos);
1731 
1732   if (UseLoopCounter) {
1733     if (ProfileInterpreter) {
1734       // Out-of-line code to allocate method data oop.
1735       __ bind(profile_method);
1736       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1737       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1738       __ set_method_data_pointer_for_bcp();
1739       __ jmp(dispatch);
1740     }
1741 
1742     if (UseOnStackReplacement) {
1743       // invocation counter overflow
1744       __ bind(backedge_counter_overflow);
1745       __ negptr(rdx);
1746       __ addptr(rdx, r13); // branch bcp
1747       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1748       __ call_VM(noreg,
1749                  CAST_FROM_FN_PTR(address,
1750                                   InterpreterRuntime::frequency_counter_overflow),
1751                  rdx);
1752       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1753 
1754       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1755       // ebx: target bytecode
1756       // rdx: scratch
1757       // r14: locals pointer
1758       // r13: bcp
1759       __ testptr(rax, rax);                        // test result
1760       __ jcc(Assembler::zero, dispatch);         // no osr if null
1761       // nmethod may have been invalidated (VM may block upon call_VM return)
1762       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1763       __ cmpl(rcx, InvalidOSREntryBci);
1764       __ jcc(Assembler::equal, dispatch);
1765 
1766       // We have the address of an on stack replacement routine in eax
1767       // We need to prepare to execute the OSR method. First we must
1768       // migrate the locals and monitors off of the stack.
1769 
1770       __ mov(r13, rax);                             // save the nmethod
1771 
1772       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1773 
1774       // eax is OSR buffer, move it to expected parameter location
1775       __ mov(j_rarg0, rax);
1776 
1777       // We use j_rarg definitions here so that registers don't conflict as parameter
1778       // registers change across platforms as we are in the midst of a calling
1779       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1780 
1781       const Register retaddr = j_rarg2;
1782       const Register sender_sp = j_rarg1;
1783 
1784       // pop the interpreter frame
1785       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1786       __ leave();                                // remove frame anchor
1787       __ pop(retaddr);                           // get return address
1788       __ mov(rsp, sender_sp);                   // set sp to sender sp
1789       // Ensure compiled code always sees stack at proper alignment
1790       __ andptr(rsp, -(StackAlignmentInBytes));
1791 
1792       // unlike x86 we need no specialized return from compiled code
1793       // to the interpreter or the call stub.
1794 
1795       // push the return address
1796       __ push(retaddr);
1797 
1798       // and begin the OSR nmethod
1799       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1800     }
1801   }
1802 }
1803 
1804 
1805 void TemplateTable::if_0cmp(Condition cc) {
1806   transition(itos, vtos);
1807   // assume branch is more often taken than not (loops use backward branches)
1808   Label not_taken;
1809   __ testl(rax, rax);
1810   __ jcc(j_not(cc), not_taken);
1811   branch(false, false);
1812   __ bind(not_taken);
1813   __ profile_not_taken_branch(rax);
1814 }
1815 
1816 void TemplateTable::if_icmp(Condition cc) {
1817   transition(itos, vtos);
1818   // assume branch is more often taken than not (loops use backward branches)
1819   Label not_taken;
1820   __ pop_i(rdx);
1821   __ cmpl(rdx, rax);
1822   __ jcc(j_not(cc), not_taken);
1823   branch(false, false);
1824   __ bind(not_taken);
1825   __ profile_not_taken_branch(rax);
1826 }
1827 
1828 void TemplateTable::if_nullcmp(Condition cc) {
1829   transition(atos, vtos);
1830   // assume branch is more often taken than not (loops use backward branches)
1831   Label not_taken;
1832   __ testptr(rax, rax);
1833   __ jcc(j_not(cc), not_taken);
1834   branch(false, false);
1835   __ bind(not_taken);
1836   __ profile_not_taken_branch(rax);
1837 }
1838 
1839 void TemplateTable::if_acmp(Condition cc) {
1840   transition(atos, vtos);
1841   // assume branch is more often taken than not (loops use backward branches)
1842   Label not_taken;
1843   __ pop_ptr(rdx);
1844   __ cmpptr(rdx, rax);
1845   __ jcc(j_not(cc), not_taken);
1846   branch(false, false);
1847   __ bind(not_taken);
1848   __ profile_not_taken_branch(rax);
1849 }
1850 
1851 void TemplateTable::ret() {
1852   transition(vtos, vtos);
1853   locals_index(rbx);
1854   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1855   __ profile_ret(rbx, rcx);
1856   __ get_method(rax);
1857   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1858   __ lea(r13, Address(r13, rbx, Address::times_1,
1859                       constMethodOopDesc::codes_offset()));
1860   __ dispatch_next(vtos);
1861 }
1862 
1863 void TemplateTable::wide_ret() {
1864   transition(vtos, vtos);
1865   locals_index_wide(rbx);
1866   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1867   __ profile_ret(rbx, rcx);
1868   __ get_method(rax);
1869   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1870   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1871   __ dispatch_next(vtos);
1872 }
1873 
1874 void TemplateTable::tableswitch() {
1875   Label default_case, continue_execution;
1876   transition(itos, vtos);
1877   // align r13
1878   __ lea(rbx, at_bcp(BytesPerInt));
1879   __ andptr(rbx, -BytesPerInt);
1880   // load lo & hi
1881   __ movl(rcx, Address(rbx, BytesPerInt));
1882   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1883   __ bswapl(rcx);
1884   __ bswapl(rdx);
1885   // check against lo & hi
1886   __ cmpl(rax, rcx);
1887   __ jcc(Assembler::less, default_case);
1888   __ cmpl(rax, rdx);
1889   __ jcc(Assembler::greater, default_case);
1890   // lookup dispatch offset
1891   __ subl(rax, rcx);
1892   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1893   __ profile_switch_case(rax, rbx, rcx);
1894   // continue execution
1895   __ bind(continue_execution);
1896   __ bswapl(rdx);
1897   __ movl2ptr(rdx, rdx);
1898   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1899   __ addptr(r13, rdx);
1900   __ dispatch_only(vtos);
1901   // handle default
1902   __ bind(default_case);
1903   __ profile_switch_default(rax);
1904   __ movl(rdx, Address(rbx, 0));
1905   __ jmp(continue_execution);
1906 }
1907 
1908 void TemplateTable::lookupswitch() {
1909   transition(itos, itos);
1910   __ stop("lookupswitch bytecode should have been rewritten");
1911 }
1912 
1913 void TemplateTable::fast_linearswitch() {
1914   transition(itos, vtos);
1915   Label loop_entry, loop, found, continue_execution;
1916   // bswap rax so we can avoid bswapping the table entries
1917   __ bswapl(rax);
1918   // align r13
1919   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1920                                     // this instruction (change offsets
1921                                     // below)
1922   __ andptr(rbx, -BytesPerInt);
1923   // set counter
1924   __ movl(rcx, Address(rbx, BytesPerInt));
1925   __ bswapl(rcx);
1926   __ jmpb(loop_entry);
1927   // table search
1928   __ bind(loop);
1929   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1930   __ jcc(Assembler::equal, found);
1931   __ bind(loop_entry);
1932   __ decrementl(rcx);
1933   __ jcc(Assembler::greaterEqual, loop);
1934   // default case
1935   __ profile_switch_default(rax);
1936   __ movl(rdx, Address(rbx, 0));
1937   __ jmp(continue_execution);
1938   // entry found -> get offset
1939   __ bind(found);
1940   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1941   __ profile_switch_case(rcx, rax, rbx);
1942   // continue execution
1943   __ bind(continue_execution);
1944   __ bswapl(rdx);
1945   __ movl2ptr(rdx, rdx);
1946   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1947   __ addptr(r13, rdx);
1948   __ dispatch_only(vtos);
1949 }
1950 
1951 void TemplateTable::fast_binaryswitch() {
1952   transition(itos, vtos);
1953   // Implementation using the following core algorithm:
1954   //
1955   // int binary_search(int key, LookupswitchPair* array, int n) {
1956   //   // Binary search according to "Methodik des Programmierens" by
1957   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1958   //   int i = 0;
1959   //   int j = n;
1960   //   while (i+1 < j) {
1961   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1962   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1963   //     // where a stands for the array and assuming that the (inexisting)
1964   //     // element a[n] is infinitely big.
1965   //     int h = (i + j) >> 1;
1966   //     // i < h < j
1967   //     if (key < array[h].fast_match()) {
1968   //       j = h;
1969   //     } else {
1970   //       i = h;
1971   //     }
1972   //   }
1973   //   // R: a[i] <= key < a[i+1] or Q
1974   //   // (i.e., if key is within array, i is the correct index)
1975   //   return i;
1976   // }
1977 
1978   // Register allocation
1979   const Register key   = rax; // already set (tosca)
1980   const Register array = rbx;
1981   const Register i     = rcx;
1982   const Register j     = rdx;
1983   const Register h     = rdi;
1984   const Register temp  = rsi;
1985 
1986   // Find array start
1987   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1988                                           // get rid of this
1989                                           // instruction (change
1990                                           // offsets below)
1991   __ andptr(array, -BytesPerInt);
1992 
1993   // Initialize i & j
1994   __ xorl(i, i);                            // i = 0;
1995   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1996 
1997   // Convert j into native byteordering
1998   __ bswapl(j);
1999 
2000   // And start
2001   Label entry;
2002   __ jmp(entry);
2003 
2004   // binary search loop
2005   {
2006     Label loop;
2007     __ bind(loop);
2008     // int h = (i + j) >> 1;
2009     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2010     __ sarl(h, 1);                               // h = (i + j) >> 1;
2011     // if (key < array[h].fast_match()) {
2012     //   j = h;
2013     // } else {
2014     //   i = h;
2015     // }
2016     // Convert array[h].match to native byte-ordering before compare
2017     __ movl(temp, Address(array, h, Address::times_8));
2018     __ bswapl(temp);
2019     __ cmpl(key, temp);
2020     // j = h if (key <  array[h].fast_match())
2021     __ cmovl(Assembler::less, j, h);
2022     // i = h if (key >= array[h].fast_match())
2023     __ cmovl(Assembler::greaterEqual, i, h);
2024     // while (i+1 < j)
2025     __ bind(entry);
2026     __ leal(h, Address(i, 1)); // i+1
2027     __ cmpl(h, j);             // i+1 < j
2028     __ jcc(Assembler::less, loop);
2029   }
2030 
2031   // end of binary search, result index is i (must check again!)
2032   Label default_case;
2033   // Convert array[i].match to native byte-ordering before compare
2034   __ movl(temp, Address(array, i, Address::times_8));
2035   __ bswapl(temp);
2036   __ cmpl(key, temp);
2037   __ jcc(Assembler::notEqual, default_case);
2038 
2039   // entry found -> j = offset
2040   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2041   __ profile_switch_case(i, key, array);
2042   __ bswapl(j);
2043   __ movl2ptr(j, j);
2044   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2045   __ addptr(r13, j);
2046   __ dispatch_only(vtos);
2047 
2048   // default case -> j = default offset
2049   __ bind(default_case);
2050   __ profile_switch_default(i);
2051   __ movl(j, Address(array, -2 * BytesPerInt));
2052   __ bswapl(j);
2053   __ movl2ptr(j, j);
2054   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2055   __ addptr(r13, j);
2056   __ dispatch_only(vtos);
2057 }
2058 
2059 
2060 void TemplateTable::_return(TosState state) {
2061   transition(state, state);
2062   assert(_desc->calls_vm(),
2063          "inconsistent calls_vm information"); // call in remove_activation
2064 
2065   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2066     assert(state == vtos, "only valid state");
2067     __ movptr(c_rarg1, aaddress(0));
2068     __ load_klass(rdi, c_rarg1);
2069     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2070     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2071     Label skip_register_finalizer;
2072     __ jcc(Assembler::zero, skip_register_finalizer);
2073 
2074     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2075 
2076     __ bind(skip_register_finalizer);
2077   }
2078 
2079   __ remove_activation(state, r13);
2080   __ jmp(r13);
2081 }
2082 
2083 // ----------------------------------------------------------------------------
2084 // Volatile variables demand their effects be made known to all CPU's
2085 // in order.  Store buffers on most chips allow reads & writes to
2086 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2087 // without some kind of memory barrier (i.e., it's not sufficient that
2088 // the interpreter does not reorder volatile references, the hardware
2089 // also must not reorder them).
2090 //
2091 // According to the new Java Memory Model (JMM):
2092 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2093 //     writes act as aquire & release, so:
2094 // (2) A read cannot let unrelated NON-volatile memory refs that
2095 //     happen after the read float up to before the read.  It's OK for
2096 //     non-volatile memory refs that happen before the volatile read to
2097 //     float down below it.
2098 // (3) Similar a volatile write cannot let unrelated NON-volatile
2099 //     memory refs that happen BEFORE the write float down to after the
2100 //     write.  It's OK for non-volatile memory refs that happen after the
2101 //     volatile write to float up before it.
2102 //
2103 // We only put in barriers around volatile refs (they are expensive),
2104 // not _between_ memory refs (that would require us to track the
2105 // flavor of the previous memory refs).  Requirements (2) and (3)
2106 // require some barriers before volatile stores and after volatile
2107 // loads.  These nearly cover requirement (1) but miss the
2108 // volatile-store-volatile-load case.  This final case is placed after
2109 // volatile-stores although it could just as well go before
2110 // volatile-loads.
2111 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2112                                      order_constraint) {
2113   // Helper function to insert a is-volatile test and memory barrier
2114   if (os::is_MP()) { // Not needed on single CPU
2115     __ membar(order_constraint);
2116   }
2117 }
2118 
2119 void TemplateTable::resolve_cache_and_index(int byte_no,
2120                                             Register result,
2121                                             Register Rcache,
2122                                             Register index,
2123                                             size_t index_size) {
2124   const Register temp = rbx;
2125   assert_different_registers(result, Rcache, index, temp);
2126 
2127   Label resolved;
2128   if (byte_no == f1_oop) {
2129     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2130     // This kind of CP cache entry does not need to match the flags byte, because
2131     // there is a 1-1 relation between bytecode type and CP entry type.
2132     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
2133     __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2134     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2135     __ testptr(result, result);
2136     __ jcc(Assembler::notEqual, resolved);
2137   } else {
2138     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2139     assert(result == noreg, "");  //else change code for setting result
2140     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2141     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2142     __ jcc(Assembler::equal, resolved);
2143   }
2144 
2145   // resolve first time through
2146   address entry;
2147   switch (bytecode()) {
2148   case Bytecodes::_getstatic:
2149   case Bytecodes::_putstatic:
2150   case Bytecodes::_getfield:
2151   case Bytecodes::_putfield:
2152     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2153     break;
2154   case Bytecodes::_invokevirtual:
2155   case Bytecodes::_invokespecial:
2156   case Bytecodes::_invokestatic:
2157   case Bytecodes::_invokeinterface:
2158     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2159     break;
2160   case Bytecodes::_invokedynamic:
2161     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2162     break;
2163   case Bytecodes::_fast_aldc:
2164     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2165     break;
2166   case Bytecodes::_fast_aldc_w:
2167     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2168     break;
2169   default:
2170     ShouldNotReachHere();
2171     break;
2172   }
2173   __ movl(temp, (int) bytecode());
2174   __ call_VM(noreg, entry, temp);
2175 
2176   // Update registers with resolved info
2177   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2178   if (result != noreg)
2179     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2180   __ bind(resolved);
2181 }
2182 
2183 // The Rcache and index registers must be set before call
2184 void TemplateTable::load_field_cp_cache_entry(Register obj,
2185                                               Register cache,
2186                                               Register index,
2187                                               Register off,
2188                                               Register flags,
2189                                               bool is_static = false) {
2190   assert_different_registers(cache, index, flags, off);
2191 
2192   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2193   // Field offset
2194   __ movptr(off, Address(cache, index, Address::times_8,
2195                          in_bytes(cp_base_offset +
2196                                   ConstantPoolCacheEntry::f2_offset())));
2197   // Flags
2198   __ movl(flags, Address(cache, index, Address::times_8,
2199                          in_bytes(cp_base_offset +
2200                                   ConstantPoolCacheEntry::flags_offset())));
2201 
2202   // klass overwrite register
2203   if (is_static) {
2204     __ movptr(obj, Address(cache, index, Address::times_8,
2205                            in_bytes(cp_base_offset +
2206                                     ConstantPoolCacheEntry::f1_offset())));
2207   }
2208 }
2209 
2210 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2211                                                Register method,
2212                                                Register itable_index,
2213                                                Register flags,
2214                                                bool is_invokevirtual,
2215                                                bool is_invokevfinal, /*unused*/
2216                                                bool is_invokedynamic) {
2217   // setup registers
2218   const Register cache = rcx;
2219   const Register index = rdx;
2220   assert_different_registers(method, flags);
2221   assert_different_registers(method, cache, index);
2222   assert_different_registers(itable_index, flags);
2223   assert_different_registers(itable_index, cache, index);
2224   // determine constant pool cache field offsets
2225   const int method_offset = in_bytes(
2226     constantPoolCacheOopDesc::base_offset() +
2227       (is_invokevirtual
2228        ? ConstantPoolCacheEntry::f2_offset()
2229        : ConstantPoolCacheEntry::f1_offset()));
2230   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2231                                     ConstantPoolCacheEntry::flags_offset());
2232   // access constant pool cache fields
2233   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2234                                     ConstantPoolCacheEntry::f2_offset());
2235 
2236   if (byte_no == f1_oop) {
2237     // Resolved f1_oop goes directly into 'method' register.
2238     assert(is_invokedynamic, "");
2239     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
2240   } else {
2241     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2242     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2243   }
2244   if (itable_index != noreg) {
2245     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2246   }
2247   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2248 }
2249 
2250 
2251 // The registers cache and index expected to be set before call.
2252 // Correct values of the cache and index registers are preserved.
2253 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2254                                             bool is_static, bool has_tos) {
2255   // do the JVMTI work here to avoid disturbing the register state below
2256   // We use c_rarg registers here because we want to use the register used in
2257   // the call to the VM
2258   if (JvmtiExport::can_post_field_access()) {
2259     // Check to see if a field access watch has been set before we
2260     // take the time to call into the VM.
2261     Label L1;
2262     assert_different_registers(cache, index, rax);
2263     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2264     __ testl(rax, rax);
2265     __ jcc(Assembler::zero, L1);
2266 
2267     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2268 
2269     // cache entry pointer
2270     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
2271     __ shll(c_rarg3, LogBytesPerWord);
2272     __ addptr(c_rarg2, c_rarg3);
2273     if (is_static) {
2274       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2275     } else {
2276       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2277       __ verify_oop(c_rarg1);
2278     }
2279     // c_rarg1: object pointer or NULL
2280     // c_rarg2: cache entry pointer
2281     // c_rarg3: jvalue object on the stack
2282     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2283                                        InterpreterRuntime::post_field_access),
2284                c_rarg1, c_rarg2, c_rarg3);
2285     __ get_cache_and_index_at_bcp(cache, index, 1);
2286     __ bind(L1);
2287   }
2288 }
2289 
2290 void TemplateTable::pop_and_check_object(Register r) {
2291   __ pop_ptr(r);
2292   __ null_check(r);  // for field access must check obj.
2293   __ verify_oop(r);
2294 }
2295 
2296 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2297   transition(vtos, vtos);
2298 
2299   const Register cache = rcx;
2300   const Register index = rdx;
2301   const Register obj   = c_rarg3;
2302   const Register off   = rbx;
2303   const Register flags = rax;
2304   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2305 
2306   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2307   jvmti_post_field_access(cache, index, is_static, false);
2308   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2309 
2310   if (!is_static) {
2311     // obj is on the stack
2312     pop_and_check_object(obj);
2313   }
2314 
2315   const Address field(obj, off, Address::times_1);
2316 
2317   Label Done, notByte, notInt, notShort, notChar,
2318               notLong, notFloat, notObj, notDouble;
2319 
2320   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2321   assert(btos == 0, "change code, btos != 0");
2322 
2323   __ andl(flags, 0x0F);
2324   __ jcc(Assembler::notZero, notByte);
2325   // btos
2326   __ load_signed_byte(rax, field);
2327   __ push(btos);
2328   // Rewrite bytecode to be faster
2329   if (!is_static) {
2330     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2331   }
2332   __ jmp(Done);
2333 
2334   __ bind(notByte);
2335   __ cmpl(flags, atos);
2336   __ jcc(Assembler::notEqual, notObj);
2337   // atos
2338   __ load_heap_oop(rax, field);
2339   __ push(atos);
2340   if (!is_static) {
2341     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2342   }
2343   __ jmp(Done);
2344 
2345   __ bind(notObj);
2346   __ cmpl(flags, itos);
2347   __ jcc(Assembler::notEqual, notInt);
2348   // itos
2349   __ movl(rax, field);
2350   __ push(itos);
2351   // Rewrite bytecode to be faster
2352   if (!is_static) {
2353     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2354   }
2355   __ jmp(Done);
2356 
2357   __ bind(notInt);
2358   __ cmpl(flags, ctos);
2359   __ jcc(Assembler::notEqual, notChar);
2360   // ctos
2361   __ load_unsigned_short(rax, field);
2362   __ push(ctos);
2363   // Rewrite bytecode to be faster
2364   if (!is_static) {
2365     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2366   }
2367   __ jmp(Done);
2368 
2369   __ bind(notChar);
2370   __ cmpl(flags, stos);
2371   __ jcc(Assembler::notEqual, notShort);
2372   // stos
2373   __ load_signed_short(rax, field);
2374   __ push(stos);
2375   // Rewrite bytecode to be faster
2376   if (!is_static) {
2377     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2378   }
2379   __ jmp(Done);
2380 
2381   __ bind(notShort);
2382   __ cmpl(flags, ltos);
2383   __ jcc(Assembler::notEqual, notLong);
2384   // ltos
2385   __ movq(rax, field);
2386   __ push(ltos);
2387   // Rewrite bytecode to be faster
2388   if (!is_static) {
2389     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2390   }
2391   __ jmp(Done);
2392 
2393   __ bind(notLong);
2394   __ cmpl(flags, ftos);
2395   __ jcc(Assembler::notEqual, notFloat);
2396   // ftos
2397   __ movflt(xmm0, field);
2398   __ push(ftos);
2399   // Rewrite bytecode to be faster
2400   if (!is_static) {
2401     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2402   }
2403   __ jmp(Done);
2404 
2405   __ bind(notFloat);
2406 #ifdef ASSERT
2407   __ cmpl(flags, dtos);
2408   __ jcc(Assembler::notEqual, notDouble);
2409 #endif
2410   // dtos
2411   __ movdbl(xmm0, field);
2412   __ push(dtos);
2413   // Rewrite bytecode to be faster
2414   if (!is_static) {
2415     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2416   }
2417 #ifdef ASSERT
2418   __ jmp(Done);
2419 
2420   __ bind(notDouble);
2421   __ stop("Bad state");
2422 #endif
2423 
2424   __ bind(Done);
2425   // [jk] not needed currently
2426   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2427   //                                              Assembler::LoadStore));
2428 }
2429 
2430 
2431 void TemplateTable::getfield(int byte_no) {
2432   getfield_or_static(byte_no, false);
2433 }
2434 
2435 void TemplateTable::getstatic(int byte_no) {
2436   getfield_or_static(byte_no, true);
2437 }
2438 
2439 // The registers cache and index expected to be set before call.
2440 // The function may destroy various registers, just not the cache and index registers.
2441 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2442   transition(vtos, vtos);
2443 
2444   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2445 
2446   if (JvmtiExport::can_post_field_modification()) {
2447     // Check to see if a field modification watch has been set before
2448     // we take the time to call into the VM.
2449     Label L1;
2450     assert_different_registers(cache, index, rax);
2451     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2452     __ testl(rax, rax);
2453     __ jcc(Assembler::zero, L1);
2454 
2455     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2456 
2457     if (is_static) {
2458       // Life is simple.  Null out the object pointer.
2459       __ xorl(c_rarg1, c_rarg1);
2460     } else {
2461       // Life is harder. The stack holds the value on top, followed by
2462       // the object.  We don't know the size of the value, though; it
2463       // could be one or two words depending on its type. As a result,
2464       // we must find the type to determine where the object is.
2465       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2466                            Address::times_8,
2467                            in_bytes(cp_base_offset +
2468                                      ConstantPoolCacheEntry::flags_offset())));
2469       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
2470       // Make sure we don't need to mask rcx for tosBits after the
2471       // above shift
2472       ConstantPoolCacheEntry::verify_tosBits();
2473       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2474       __ cmpl(c_rarg3, ltos);
2475       __ cmovptr(Assembler::equal,
2476                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2477       __ cmpl(c_rarg3, dtos);
2478       __ cmovptr(Assembler::equal,
2479                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2480     }
2481     // cache entry pointer
2482     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2483     __ shll(rscratch1, LogBytesPerWord);
2484     __ addptr(c_rarg2, rscratch1);
2485     // object (tos)
2486     __ mov(c_rarg3, rsp);
2487     // c_rarg1: object pointer set up above (NULL if static)
2488     // c_rarg2: cache entry pointer
2489     // c_rarg3: jvalue object on the stack
2490     __ call_VM(noreg,
2491                CAST_FROM_FN_PTR(address,
2492                                 InterpreterRuntime::post_field_modification),
2493                c_rarg1, c_rarg2, c_rarg3);
2494     __ get_cache_and_index_at_bcp(cache, index, 1);
2495     __ bind(L1);
2496   }
2497 }
2498 
2499 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2500   transition(vtos, vtos);
2501 
2502   const Register cache = rcx;
2503   const Register index = rdx;
2504   const Register obj   = rcx;
2505   const Register off   = rbx;
2506   const Register flags = rax;
2507   const Register bc    = c_rarg3;
2508 
2509   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2510   jvmti_post_field_mod(cache, index, is_static);
2511   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2512 
2513   // [jk] not needed currently
2514   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2515   //                                              Assembler::StoreStore));
2516 
2517   Label notVolatile, Done;
2518   __ movl(rdx, flags);
2519   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2520   __ andl(rdx, 0x1);
2521 
2522   // field address
2523   const Address field(obj, off, Address::times_1);
2524 
2525   Label notByte, notInt, notShort, notChar,
2526         notLong, notFloat, notObj, notDouble;
2527 
2528   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2529 
2530   assert(btos == 0, "change code, btos != 0");
2531   __ andl(flags, 0x0f);
2532   __ jcc(Assembler::notZero, notByte);
2533 
2534   // btos
2535   {
2536     __ pop(btos);
2537     if (!is_static) pop_and_check_object(obj);
2538     __ movb(field, rax);
2539     if (!is_static) {
2540       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2541     }
2542     __ jmp(Done);
2543   }
2544 
2545   __ bind(notByte);
2546   __ cmpl(flags, atos);
2547   __ jcc(Assembler::notEqual, notObj);
2548 
2549   // atos
2550   {
2551     __ pop(atos);
2552     if (!is_static) pop_and_check_object(obj);
2553     // Store into the field
2554     do_oop_store(_masm, field, rax, _bs->kind(), false);
2555     if (!is_static) {
2556       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2557     }
2558     __ jmp(Done);
2559   }
2560 
2561   __ bind(notObj);
2562   __ cmpl(flags, itos);
2563   __ jcc(Assembler::notEqual, notInt);
2564 
2565   // itos
2566   {
2567     __ pop(itos);
2568     if (!is_static) pop_and_check_object(obj);
2569     __ movl(field, rax);
2570     if (!is_static) {
2571       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2572     }
2573     __ jmp(Done);
2574   }
2575 
2576   __ bind(notInt);
2577   __ cmpl(flags, ctos);
2578   __ jcc(Assembler::notEqual, notChar);
2579 
2580   // ctos
2581   {
2582     __ pop(ctos);
2583     if (!is_static) pop_and_check_object(obj);
2584     __ movw(field, rax);
2585     if (!is_static) {
2586       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
2587     }
2588     __ jmp(Done);
2589   }
2590 
2591   __ bind(notChar);
2592   __ cmpl(flags, stos);
2593   __ jcc(Assembler::notEqual, notShort);
2594 
2595   // stos
2596   {
2597     __ pop(stos);
2598     if (!is_static) pop_and_check_object(obj);
2599     __ movw(field, rax);
2600     if (!is_static) {
2601       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
2602     }
2603     __ jmp(Done);
2604   }
2605 
2606   __ bind(notShort);
2607   __ cmpl(flags, ltos);
2608   __ jcc(Assembler::notEqual, notLong);
2609 
2610   // ltos
2611   {
2612     __ pop(ltos);
2613     if (!is_static) pop_and_check_object(obj);
2614     __ movq(field, rax);
2615     if (!is_static) {
2616       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
2617     }
2618     __ jmp(Done);
2619   }
2620 
2621   __ bind(notLong);
2622   __ cmpl(flags, ftos);
2623   __ jcc(Assembler::notEqual, notFloat);
2624 
2625   // ftos
2626   {
2627     __ pop(ftos);
2628     if (!is_static) pop_and_check_object(obj);
2629     __ movflt(field, xmm0);
2630     if (!is_static) {
2631       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
2632     }
2633     __ jmp(Done);
2634   }
2635 
2636   __ bind(notFloat);
2637 #ifdef ASSERT
2638   __ cmpl(flags, dtos);
2639   __ jcc(Assembler::notEqual, notDouble);
2640 #endif
2641 
2642   // dtos
2643   {
2644     __ pop(dtos);
2645     if (!is_static) pop_and_check_object(obj);
2646     __ movdbl(field, xmm0);
2647     if (!is_static) {
2648       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
2649     }
2650   }
2651 
2652 #ifdef ASSERT
2653   __ jmp(Done);
2654 
2655   __ bind(notDouble);
2656   __ stop("Bad state");
2657 #endif
2658 
2659   __ bind(Done);
2660 
2661   // Check for volatile store
2662   __ testl(rdx, rdx);
2663   __ jcc(Assembler::zero, notVolatile);
2664   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2665                                                Assembler::StoreStore));
2666   __ bind(notVolatile);
2667 }
2668 
2669 void TemplateTable::putfield(int byte_no) {
2670   putfield_or_static(byte_no, false);
2671 }
2672 
2673 void TemplateTable::putstatic(int byte_no) {
2674   putfield_or_static(byte_no, true);
2675 }
2676 
2677 void TemplateTable::jvmti_post_fast_field_mod() {
2678   if (JvmtiExport::can_post_field_modification()) {
2679     // Check to see if a field modification watch has been set before
2680     // we take the time to call into the VM.
2681     Label L2;
2682     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2683     __ testl(c_rarg3, c_rarg3);
2684     __ jcc(Assembler::zero, L2);
2685     __ pop_ptr(rbx);                  // copy the object pointer from tos
2686     __ verify_oop(rbx);
2687     __ push_ptr(rbx);                 // put the object pointer back on tos
2688     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2689     __ mov(c_rarg3, rsp);
2690     const Address field(c_rarg3, 0);
2691 
2692     switch (bytecode()) {          // load values into the jvalue object
2693     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
2694     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
2695     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
2696     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
2697     case Bytecodes::_fast_sputfield: // fall through
2698     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
2699     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
2700     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
2701     default:
2702       ShouldNotReachHere();
2703     }
2704 
2705     // Save rax because call_VM() will clobber it, then use it for
2706     // JVMTI purposes
2707     __ push(rax);
2708     // access constant pool cache entry
2709     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2710     __ verify_oop(rbx);
2711     // rbx: object pointer copied above
2712     // c_rarg2: cache entry pointer
2713     // c_rarg3: jvalue object on the stack
2714     __ call_VM(noreg,
2715                CAST_FROM_FN_PTR(address,
2716                                 InterpreterRuntime::post_field_modification),
2717                rbx, c_rarg2, c_rarg3);
2718     __ pop(rax);     // restore lower value
2719     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2720     __ bind(L2);
2721   }
2722 }
2723 
2724 void TemplateTable::fast_storefield(TosState state) {
2725   transition(state, vtos);
2726 
2727   ByteSize base = constantPoolCacheOopDesc::base_offset();
2728 
2729   jvmti_post_fast_field_mod();
2730 
2731   // access constant pool cache
2732   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2733 
2734   // test for volatile with rdx
2735   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2736                        in_bytes(base +
2737                                 ConstantPoolCacheEntry::flags_offset())));
2738 
2739   // replace index with field offset from cache entry
2740   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2741                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2742 
2743   // [jk] not needed currently
2744   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2745   //                                              Assembler::StoreStore));
2746 
2747   Label notVolatile;
2748   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2749   __ andl(rdx, 0x1);
2750 
2751   // Get object from stack
2752   pop_and_check_object(rcx);
2753 
2754   // field address
2755   const Address field(rcx, rbx, Address::times_1);
2756 
2757   // access field
2758   switch (bytecode()) {
2759   case Bytecodes::_fast_aputfield:
2760     do_oop_store(_masm, field, rax, _bs->kind(), false);
2761     break;
2762   case Bytecodes::_fast_lputfield:
2763     __ movq(field, rax);
2764     break;
2765   case Bytecodes::_fast_iputfield:
2766     __ movl(field, rax);
2767     break;
2768   case Bytecodes::_fast_bputfield:
2769     __ movb(field, rax);
2770     break;
2771   case Bytecodes::_fast_sputfield:
2772     // fall through
2773   case Bytecodes::_fast_cputfield:
2774     __ movw(field, rax);
2775     break;
2776   case Bytecodes::_fast_fputfield:
2777     __ movflt(field, xmm0);
2778     break;
2779   case Bytecodes::_fast_dputfield:
2780     __ movdbl(field, xmm0);
2781     break;
2782   default:
2783     ShouldNotReachHere();
2784   }
2785 
2786   // Check for volatile store
2787   __ testl(rdx, rdx);
2788   __ jcc(Assembler::zero, notVolatile);
2789   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2790                                                Assembler::StoreStore));
2791   __ bind(notVolatile);
2792 }
2793 
2794 
2795 void TemplateTable::fast_accessfield(TosState state) {
2796   transition(atos, state);
2797 
2798   // Do the JVMTI work here to avoid disturbing the register state below
2799   if (JvmtiExport::can_post_field_access()) {
2800     // Check to see if a field access watch has been set before we
2801     // take the time to call into the VM.
2802     Label L1;
2803     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2804     __ testl(rcx, rcx);
2805     __ jcc(Assembler::zero, L1);
2806     // access constant pool cache entry
2807     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2808     __ verify_oop(rax);
2809     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2810     __ mov(c_rarg1, rax);
2811     // c_rarg1: object pointer copied above
2812     // c_rarg2: cache entry pointer
2813     __ call_VM(noreg,
2814                CAST_FROM_FN_PTR(address,
2815                                 InterpreterRuntime::post_field_access),
2816                c_rarg1, c_rarg2);
2817     __ pop_ptr(rax); // restore object pointer
2818     __ bind(L1);
2819   }
2820 
2821   // access constant pool cache
2822   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2823   // replace index with field offset from cache entry
2824   // [jk] not needed currently
2825   // if (os::is_MP()) {
2826   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2827   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2828   //                                 ConstantPoolCacheEntry::flags_offset())));
2829   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2830   //   __ andl(rdx, 0x1);
2831   // }
2832   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2833                          in_bytes(constantPoolCacheOopDesc::base_offset() +
2834                                   ConstantPoolCacheEntry::f2_offset())));
2835 
2836   // rax: object
2837   __ verify_oop(rax);
2838   __ null_check(rax);
2839   Address field(rax, rbx, Address::times_1);
2840 
2841   // access field
2842   switch (bytecode()) {
2843   case Bytecodes::_fast_agetfield:
2844     __ load_heap_oop(rax, field);
2845     __ verify_oop(rax);
2846     break;
2847   case Bytecodes::_fast_lgetfield:
2848     __ movq(rax, field);
2849     break;
2850   case Bytecodes::_fast_igetfield:
2851     __ movl(rax, field);
2852     break;
2853   case Bytecodes::_fast_bgetfield:
2854     __ movsbl(rax, field);
2855     break;
2856   case Bytecodes::_fast_sgetfield:
2857     __ load_signed_short(rax, field);
2858     break;
2859   case Bytecodes::_fast_cgetfield:
2860     __ load_unsigned_short(rax, field);
2861     break;
2862   case Bytecodes::_fast_fgetfield:
2863     __ movflt(xmm0, field);
2864     break;
2865   case Bytecodes::_fast_dgetfield:
2866     __ movdbl(xmm0, field);
2867     break;
2868   default:
2869     ShouldNotReachHere();
2870   }
2871   // [jk] not needed currently
2872   // if (os::is_MP()) {
2873   //   Label notVolatile;
2874   //   __ testl(rdx, rdx);
2875   //   __ jcc(Assembler::zero, notVolatile);
2876   //   __ membar(Assembler::LoadLoad);
2877   //   __ bind(notVolatile);
2878   //};
2879 }
2880 
2881 void TemplateTable::fast_xaccess(TosState state) {
2882   transition(vtos, state);
2883 
2884   // get receiver
2885   __ movptr(rax, aaddress(0));
2886   // access constant pool cache
2887   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2888   __ movptr(rbx,
2889             Address(rcx, rdx, Address::times_8,
2890                     in_bytes(constantPoolCacheOopDesc::base_offset() +
2891                              ConstantPoolCacheEntry::f2_offset())));
2892   // make sure exception is reported in correct bcp range (getfield is
2893   // next instruction)
2894   __ increment(r13);
2895   __ null_check(rax);
2896   switch (state) {
2897   case itos:
2898     __ movl(rax, Address(rax, rbx, Address::times_1));
2899     break;
2900   case atos:
2901     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2902     __ verify_oop(rax);
2903     break;
2904   case ftos:
2905     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2906     break;
2907   default:
2908     ShouldNotReachHere();
2909   }
2910 
2911   // [jk] not needed currently
2912   // if (os::is_MP()) {
2913   //   Label notVolatile;
2914   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2915   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2916   //                                 ConstantPoolCacheEntry::flags_offset())));
2917   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2918   //   __ testl(rdx, 0x1);
2919   //   __ jcc(Assembler::zero, notVolatile);
2920   //   __ membar(Assembler::LoadLoad);
2921   //   __ bind(notVolatile);
2922   // }
2923 
2924   __ decrement(r13);
2925 }
2926 
2927 
2928 
2929 //-----------------------------------------------------------------------------
2930 // Calls
2931 
2932 void TemplateTable::count_calls(Register method, Register temp) {
2933   // implemented elsewhere
2934   ShouldNotReachHere();
2935 }
2936 
2937 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2938   // determine flags
2939   Bytecodes::Code code = bytecode();
2940   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2941   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2942   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2943   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2944   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2945   const bool receiver_null_check = is_invokespecial;
2946   const bool save_flags = is_invokeinterface || is_invokevirtual;
2947   // setup registers & access constant pool cache
2948   const Register recv   = rcx;
2949   const Register flags  = rdx;
2950   assert_different_registers(method, index, recv, flags);
2951 
2952   // save 'interpreter return address'
2953   __ save_bcp();
2954 
2955   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2956 
2957   // load receiver if needed (note: no return address pushed yet)
2958   if (load_receiver) {
2959     assert(!is_invokedynamic, "");
2960     __ movl(recv, flags);
2961     __ andl(recv, 0xFF);
2962     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
2963     __ movptr(recv, recv_addr);
2964     __ verify_oop(recv);
2965   }
2966 
2967   // do null check if needed
2968   if (receiver_null_check) {
2969     __ null_check(recv);
2970   }
2971 
2972   if (save_flags) {
2973     __ movl(r13, flags);
2974   }
2975 
2976   // compute return type
2977   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2978   // Make sure we don't need to mask flags for tosBits after the above shift
2979   ConstantPoolCacheEntry::verify_tosBits();
2980   // load return address
2981   {
2982     address table_addr;
2983     if (is_invokeinterface || is_invokedynamic)
2984       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2985     else
2986       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2987     ExternalAddress table(table_addr);
2988     __ lea(rscratch1, table);
2989     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
2990   }
2991 
2992   // push return address
2993   __ push(flags);
2994 
2995   // Restore flag field from the constant pool cache, and restore esi
2996   // for later null checks.  r13 is the bytecode pointer
2997   if (save_flags) {
2998     __ movl(flags, r13);
2999     __ restore_bcp();
3000   }
3001 }
3002 
3003 
3004 void TemplateTable::invokevirtual_helper(Register index,
3005                                          Register recv,
3006                                          Register flags) {
3007   // Uses temporary registers rax, rdx
3008   assert_different_registers(index, recv, rax, rdx);
3009 
3010   // Test for an invoke of a final method
3011   Label notFinal;
3012   __ movl(rax, flags);
3013   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
3014   __ jcc(Assembler::zero, notFinal);
3015 
3016   const Register method = index;  // method must be rbx
3017   assert(method == rbx,
3018          "methodOop must be rbx for interpreter calling convention");
3019 
3020   // do the call - the index is actually the method to call
3021   __ verify_oop(method);
3022 
3023   // It's final, need a null check here!
3024   __ null_check(recv);
3025 
3026   // profile this call
3027   __ profile_final_call(rax);
3028 
3029   __ jump_from_interpreted(method, rax);
3030 
3031   __ bind(notFinal);
3032 
3033   // get receiver klass
3034   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3035   __ load_klass(rax, recv);
3036 
3037   __ verify_oop(rax);
3038 
3039   // profile this call
3040   __ profile_virtual_call(rax, r14, rdx);
3041 
3042   // get target methodOop & entry point
3043   const int base = instanceKlass::vtable_start_offset() * wordSize;
3044   assert(vtableEntry::size() * wordSize == 8,
3045          "adjust the scaling in the code below");
3046   __ movptr(method, Address(rax, index,
3047                                  Address::times_8,
3048                                  base + vtableEntry::method_offset_in_bytes()));
3049   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
3050   __ jump_from_interpreted(method, rdx);
3051 }
3052 
3053 
3054 void TemplateTable::invokevirtual(int byte_no) {
3055   transition(vtos, vtos);
3056   assert(byte_no == f2_byte, "use this argument");
3057   prepare_invoke(rbx, noreg, byte_no);
3058 
3059   // rbx: index
3060   // rcx: receiver
3061   // rdx: flags
3062 
3063   invokevirtual_helper(rbx, rcx, rdx);
3064 }
3065 
3066 
3067 void TemplateTable::invokespecial(int byte_no) {
3068   transition(vtos, vtos);
3069   assert(byte_no == f1_byte, "use this argument");
3070   prepare_invoke(rbx, noreg, byte_no);
3071   // do the call
3072   __ verify_oop(rbx);
3073   __ profile_call(rax);
3074   __ jump_from_interpreted(rbx, rax);
3075 }
3076 
3077 
3078 void TemplateTable::invokestatic(int byte_no) {
3079   transition(vtos, vtos);
3080   assert(byte_no == f1_byte, "use this argument");
3081   prepare_invoke(rbx, noreg, byte_no);
3082   // do the call
3083   __ verify_oop(rbx);
3084   __ profile_call(rax);
3085   __ jump_from_interpreted(rbx, rax);
3086 }
3087 
3088 void TemplateTable::fast_invokevfinal(int byte_no) {
3089   transition(vtos, vtos);
3090   assert(byte_no == f2_byte, "use this argument");
3091   __ stop("fast_invokevfinal not used on amd64");
3092 }
3093 
3094 void TemplateTable::invokeinterface(int byte_no) {
3095   transition(vtos, vtos);
3096   assert(byte_no == f1_byte, "use this argument");
3097   prepare_invoke(rax, rbx, byte_no);
3098 
3099   // rax: Interface
3100   // rbx: index
3101   // rcx: receiver
3102   // rdx: flags
3103 
3104   // Special case of invokeinterface called for virtual method of
3105   // java.lang.Object.  See cpCacheOop.cpp for details.
3106   // This code isn't produced by javac, but could be produced by
3107   // another compliant java compiler.
3108   Label notMethod;
3109   __ movl(r14, rdx);
3110   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
3111   __ jcc(Assembler::zero, notMethod);
3112 
3113   invokevirtual_helper(rbx, rcx, rdx);
3114   __ bind(notMethod);
3115 
3116   // Get receiver klass into rdx - also a null check
3117   __ restore_locals(); // restore r14
3118   __ load_klass(rdx, rcx);
3119   __ verify_oop(rdx);
3120 
3121   // profile this call
3122   __ profile_virtual_call(rdx, r13, r14);
3123 
3124   Label no_such_interface, no_such_method;
3125 
3126   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3127                              rdx, rax, rbx,
3128                              // outputs: method, scan temp. reg
3129                              rbx, r13,
3130                              no_such_interface);
3131 
3132   // rbx,: methodOop to call
3133   // rcx: receiver
3134   // Check for abstract method error
3135   // Note: This should be done more efficiently via a throw_abstract_method_error
3136   //       interpreter entry point and a conditional jump to it in case of a null
3137   //       method.
3138   __ testptr(rbx, rbx);
3139   __ jcc(Assembler::zero, no_such_method);
3140 
3141   // do the call
3142   // rcx: receiver
3143   // rbx,: methodOop
3144   __ jump_from_interpreted(rbx, rdx);
3145   __ should_not_reach_here();
3146 
3147   // exception handling code follows...
3148   // note: must restore interpreter registers to canonical
3149   //       state for exception handling to work correctly!
3150 
3151   __ bind(no_such_method);
3152   // throw exception
3153   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3154   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3155   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3156   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3157   // the call_VM checks for exception, so we should never return here.
3158   __ should_not_reach_here();
3159 
3160   __ bind(no_such_interface);
3161   // throw exception
3162   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3163   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3164   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3165   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3166                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3167   // the call_VM checks for exception, so we should never return here.
3168   __ should_not_reach_here();
3169   return;
3170 }
3171 
3172 void TemplateTable::invokedynamic(int byte_no) {
3173   transition(vtos, vtos);
3174   assert(byte_no == f1_oop, "use this argument");
3175 
3176   if (!EnableInvokeDynamic) {
3177     // We should not encounter this bytecode if !EnableInvokeDynamic.
3178     // The verifier will stop it.  However, if we get past the verifier,
3179     // this will stop the thread in a reasonable way, without crashing the JVM.
3180     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3181                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3182     // the call_VM checks for exception, so we should never return here.
3183     __ should_not_reach_here();
3184     return;
3185   }
3186 
3187   prepare_invoke(rax, rbx, byte_no);
3188 
3189   // rax: CallSite object (f1)
3190   // rbx: unused (f2)
3191   // rcx: receiver address
3192   // rdx: flags (unused)
3193 
3194   Register rax_callsite      = rax;
3195   Register rcx_method_handle = rcx;
3196 
3197   // %%% should make a type profile for any invokedynamic that takes a ref argument
3198   // profile this call
3199   __ profile_call(r13);
3200 
3201   __ verify_oop(rax_callsite);
3202   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
3203   __ null_check(rcx_method_handle);
3204   __ verify_oop(rcx_method_handle);
3205   __ prepare_to_jump_from_interpreted();
3206   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
3207 }
3208 
3209 
3210 //-----------------------------------------------------------------------------
3211 // Allocation
3212 
3213 void TemplateTable::_new() {
3214   transition(vtos, atos);
3215   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3216   Label slow_case;
3217   Label done;
3218   Label initialize_header;
3219   Label initialize_object; // including clearing the fields
3220   Label allocate_shared;
3221 
3222   __ get_cpool_and_tags(rsi, rax);
3223   // Make sure the class we're about to instantiate has been resolved.
3224   // This is done before loading instanceKlass to be consistent with the order
3225   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3226   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3227   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3228           JVM_CONSTANT_Class);
3229   __ jcc(Assembler::notEqual, slow_case);
3230 
3231   // get instanceKlass
3232   __ movptr(rsi, Address(rsi, rdx,
3233             Address::times_8, sizeof(constantPoolOopDesc)));
3234 
3235   // make sure klass is initialized & doesn't have finalizer
3236   // make sure klass is fully initialized
3237   __ cmpl(Address(rsi,
3238                   instanceKlass::init_state_offset()),
3239           instanceKlass::fully_initialized);
3240   __ jcc(Assembler::notEqual, slow_case);
3241 
3242   // get instance_size in instanceKlass (scaled to a count of bytes)
3243   __ movl(rdx,
3244           Address(rsi,
3245                   Klass::layout_helper_offset()));
3246   // test to see if it has a finalizer or is malformed in some way
3247   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3248   __ jcc(Assembler::notZero, slow_case);
3249 
3250   // Allocate the instance
3251   // 1) Try to allocate in the TLAB
3252   // 2) if fail and the object is large allocate in the shared Eden
3253   // 3) if the above fails (or is not applicable), go to a slow case
3254   // (creates a new TLAB, etc.)
3255 
3256   const bool allow_shared_alloc =
3257     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3258 
3259   if (UseTLAB) {
3260     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3261     __ lea(rbx, Address(rax, rdx, Address::times_1));
3262     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3263     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3264     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3265     if (ZeroTLAB) {
3266       // the fields have been already cleared
3267       __ jmp(initialize_header);
3268     } else {
3269       // initialize both the header and fields
3270       __ jmp(initialize_object);
3271     }
3272   }
3273 
3274   // Allocation in the shared Eden, if allowed.
3275   //
3276   // rdx: instance size in bytes
3277   if (allow_shared_alloc) {
3278     __ bind(allocate_shared);
3279 
3280     ExternalAddress top((address)Universe::heap()->top_addr());
3281     ExternalAddress end((address)Universe::heap()->end_addr());
3282 
3283     const Register RtopAddr = rscratch1;
3284     const Register RendAddr = rscratch2;
3285 
3286     __ lea(RtopAddr, top);
3287     __ lea(RendAddr, end);
3288     __ movptr(rax, Address(RtopAddr, 0));
3289 
3290     // For retries rax gets set by cmpxchgq
3291     Label retry;
3292     __ bind(retry);
3293     __ lea(rbx, Address(rax, rdx, Address::times_1));
3294     __ cmpptr(rbx, Address(RendAddr, 0));
3295     __ jcc(Assembler::above, slow_case);
3296 
3297     // Compare rax with the top addr, and if still equal, store the new
3298     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3299     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3300     //
3301     // rax: object begin
3302     // rbx: object end
3303     // rdx: instance size in bytes
3304     if (os::is_MP()) {
3305       __ lock();
3306     }
3307     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3308 
3309     // if someone beat us on the allocation, try again, otherwise continue
3310     __ jcc(Assembler::notEqual, retry);
3311 
3312     __ incr_allocated_bytes(r15_thread, rdx, 0);
3313   }
3314 
3315   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3316     // The object is initialized before the header.  If the object size is
3317     // zero, go directly to the header initialization.
3318     __ bind(initialize_object);
3319     __ decrementl(rdx, sizeof(oopDesc));
3320     __ jcc(Assembler::zero, initialize_header);
3321 
3322     // Initialize object fields
3323     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3324     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3325     {
3326       Label loop;
3327       __ bind(loop);
3328       __ movq(Address(rax, rdx, Address::times_8,
3329                       sizeof(oopDesc) - oopSize),
3330               rcx);
3331       __ decrementl(rdx);
3332       __ jcc(Assembler::notZero, loop);
3333     }
3334 
3335     // initialize object header only.
3336     __ bind(initialize_header);
3337     if (UseBiasedLocking) {
3338       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
3339       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3340     } else {
3341       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3342                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3343     }
3344     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3345     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3346     __ store_klass(rax, rsi);      // store klass last
3347 
3348     {
3349       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3350       // Trigger dtrace event for fastpath
3351       __ push(atos); // save the return value
3352       __ call_VM_leaf(
3353            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3354       __ pop(atos); // restore the return value
3355 
3356     }
3357     __ jmp(done);
3358   }
3359 
3360 
3361   // slow case
3362   __ bind(slow_case);
3363   __ get_constant_pool(c_rarg1);
3364   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3365   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3366   __ verify_oop(rax);
3367 
3368   // continue
3369   __ bind(done);
3370 }
3371 
3372 void TemplateTable::newarray() {
3373   transition(itos, atos);
3374   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3375   __ movl(c_rarg2, rax);
3376   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3377           c_rarg1, c_rarg2);
3378 }
3379 
3380 void TemplateTable::anewarray() {
3381   transition(itos, atos);
3382   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3383   __ get_constant_pool(c_rarg1);
3384   __ movl(c_rarg3, rax);
3385   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3386           c_rarg1, c_rarg2, c_rarg3);
3387 }
3388 
3389 void TemplateTable::arraylength() {
3390   transition(atos, itos);
3391   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3392   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3393 }
3394 
3395 void TemplateTable::checkcast() {
3396   transition(atos, atos);
3397   Label done, is_null, ok_is_subtype, quicked, resolved;
3398   __ testptr(rax, rax); // object is in rax
3399   __ jcc(Assembler::zero, is_null);
3400 
3401   // Get cpool & tags index
3402   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3403   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3404   // See if bytecode has already been quicked
3405   __ cmpb(Address(rdx, rbx,
3406                   Address::times_1,
3407                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3408           JVM_CONSTANT_Class);
3409   __ jcc(Assembler::equal, quicked);
3410   __ push(atos); // save receiver for result, and for GC
3411   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3412   __ pop_ptr(rdx); // restore receiver
3413   __ jmpb(resolved);
3414 
3415   // Get superklass in rax and subklass in rbx
3416   __ bind(quicked);
3417   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3418   __ movptr(rax, Address(rcx, rbx,
3419                        Address::times_8, sizeof(constantPoolOopDesc)));
3420 
3421   __ bind(resolved);
3422   __ load_klass(rbx, rdx);
3423 
3424   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3425   // Superklass in rax.  Subklass in rbx.
3426   __ gen_subtype_check(rbx, ok_is_subtype);
3427 
3428   // Come here on failure
3429   __ push_ptr(rdx);
3430   // object is at TOS
3431   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3432 
3433   // Come here on success
3434   __ bind(ok_is_subtype);
3435   __ mov(rax, rdx); // Restore object in rdx
3436 
3437   // Collect counts on whether this check-cast sees NULLs a lot or not.
3438   if (ProfileInterpreter) {
3439     __ jmp(done);
3440     __ bind(is_null);
3441     __ profile_null_seen(rcx);
3442   } else {
3443     __ bind(is_null);   // same as 'done'
3444   }
3445   __ bind(done);
3446 }
3447 
3448 void TemplateTable::instanceof() {
3449   transition(atos, itos);
3450   Label done, is_null, ok_is_subtype, quicked, resolved;
3451   __ testptr(rax, rax);
3452   __ jcc(Assembler::zero, is_null);
3453 
3454   // Get cpool & tags index
3455   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3456   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3457   // See if bytecode has already been quicked
3458   __ cmpb(Address(rdx, rbx,
3459                   Address::times_1,
3460                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3461           JVM_CONSTANT_Class);
3462   __ jcc(Assembler::equal, quicked);
3463 
3464   __ push(atos); // save receiver for result, and for GC
3465   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3466   __ pop_ptr(rdx); // restore receiver
3467   __ verify_oop(rdx);
3468   __ load_klass(rdx, rdx);
3469   __ jmpb(resolved);
3470 
3471   // Get superklass in rax and subklass in rdx
3472   __ bind(quicked);
3473   __ load_klass(rdx, rax);
3474   __ movptr(rax, Address(rcx, rbx,
3475                          Address::times_8, sizeof(constantPoolOopDesc)));
3476 
3477   __ bind(resolved);
3478 
3479   // Generate subtype check.  Blows rcx, rdi
3480   // Superklass in rax.  Subklass in rdx.
3481   __ gen_subtype_check(rdx, ok_is_subtype);
3482 
3483   // Come here on failure
3484   __ xorl(rax, rax);
3485   __ jmpb(done);
3486   // Come here on success
3487   __ bind(ok_is_subtype);
3488   __ movl(rax, 1);
3489 
3490   // Collect counts on whether this test sees NULLs a lot or not.
3491   if (ProfileInterpreter) {
3492     __ jmp(done);
3493     __ bind(is_null);
3494     __ profile_null_seen(rcx);
3495   } else {
3496     __ bind(is_null);   // same as 'done'
3497   }
3498   __ bind(done);
3499   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3500   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3501 }
3502 
3503 //-----------------------------------------------------------------------------
3504 // Breakpoints
3505 void TemplateTable::_breakpoint() {
3506   // Note: We get here even if we are single stepping..
3507   // jbug inists on setting breakpoints at every bytecode
3508   // even if we are in single step mode.
3509 
3510   transition(vtos, vtos);
3511 
3512   // get the unpatched byte code
3513   __ get_method(c_rarg1);
3514   __ call_VM(noreg,
3515              CAST_FROM_FN_PTR(address,
3516                               InterpreterRuntime::get_original_bytecode_at),
3517              c_rarg1, r13);
3518   __ mov(rbx, rax);
3519 
3520   // post the breakpoint event
3521   __ get_method(c_rarg1);
3522   __ call_VM(noreg,
3523              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3524              c_rarg1, r13);
3525 
3526   // complete the execution of original bytecode
3527   __ dispatch_only_normal(vtos);
3528 }
3529 
3530 //-----------------------------------------------------------------------------
3531 // Exceptions
3532 
3533 void TemplateTable::athrow() {
3534   transition(atos, vtos);
3535   __ null_check(rax);
3536   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3537 }
3538 
3539 //-----------------------------------------------------------------------------
3540 // Synchronization
3541 //
3542 // Note: monitorenter & exit are symmetric routines; which is reflected
3543 //       in the assembly code structure as well
3544 //
3545 // Stack layout:
3546 //
3547 // [expressions  ] <--- rsp               = expression stack top
3548 // ..
3549 // [expressions  ]
3550 // [monitor entry] <--- monitor block top = expression stack bot
3551 // ..
3552 // [monitor entry]
3553 // [frame data   ] <--- monitor block bot
3554 // ...
3555 // [saved rbp    ] <--- rbp
3556 void TemplateTable::monitorenter() {
3557   transition(atos, vtos);
3558 
3559   // check for NULL object
3560   __ null_check(rax);
3561 
3562   const Address monitor_block_top(
3563         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3564   const Address monitor_block_bot(
3565         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3566   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3567 
3568   Label allocated;
3569 
3570   // initialize entry pointer
3571   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3572 
3573   // find a free slot in the monitor block (result in c_rarg1)
3574   {
3575     Label entry, loop, exit;
3576     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3577                                      // starting with top-most entry
3578     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3579                                      // of monitor block
3580     __ jmpb(entry);
3581 
3582     __ bind(loop);
3583     // check if current entry is used
3584     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3585     // if not used then remember entry in c_rarg1
3586     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3587     // check if current entry is for same object
3588     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3589     // if same object then stop searching
3590     __ jccb(Assembler::equal, exit);
3591     // otherwise advance to next entry
3592     __ addptr(c_rarg3, entry_size);
3593     __ bind(entry);
3594     // check if bottom reached
3595     __ cmpptr(c_rarg3, c_rarg2);
3596     // if not at bottom then check this entry
3597     __ jcc(Assembler::notEqual, loop);
3598     __ bind(exit);
3599   }
3600 
3601   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3602   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3603 
3604   // allocate one if there's no free slot
3605   {
3606     Label entry, loop;
3607     // 1. compute new pointers             // rsp: old expression stack top
3608     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3609     __ subptr(rsp, entry_size);            // move expression stack top
3610     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3611     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3612     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3613     __ jmp(entry);
3614     // 2. move expression stack contents
3615     __ bind(loop);
3616     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3617                                                       // word from old location
3618     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3619     __ addptr(c_rarg3, wordSize);                     // advance to next word
3620     __ bind(entry);
3621     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3622     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3623                                             // copy next word
3624   }
3625 
3626   // call run-time routine
3627   // c_rarg1: points to monitor entry
3628   __ bind(allocated);
3629 
3630   // Increment bcp to point to the next bytecode, so exception
3631   // handling for async. exceptions work correctly.
3632   // The object has already been poped from the stack, so the
3633   // expression stack looks correct.
3634   __ increment(r13);
3635 
3636   // store object
3637   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3638   __ lock_object(c_rarg1);
3639 
3640   // check to make sure this monitor doesn't cause stack overflow after locking
3641   __ save_bcp();  // in case of exception
3642   __ generate_stack_overflow_check(0);
3643 
3644   // The bcp has already been incremented. Just need to dispatch to
3645   // next instruction.
3646   __ dispatch_next(vtos);
3647 }
3648 
3649 
3650 void TemplateTable::monitorexit() {
3651   transition(atos, vtos);
3652 
3653   // check for NULL object
3654   __ null_check(rax);
3655 
3656   const Address monitor_block_top(
3657         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3658   const Address monitor_block_bot(
3659         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3660   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3661 
3662   Label found;
3663 
3664   // find matching slot
3665   {
3666     Label entry, loop;
3667     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3668                                      // starting with top-most entry
3669     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3670                                      // of monitor block
3671     __ jmpb(entry);
3672 
3673     __ bind(loop);
3674     // check if current entry is for same object
3675     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3676     // if same object then stop searching
3677     __ jcc(Assembler::equal, found);
3678     // otherwise advance to next entry
3679     __ addptr(c_rarg1, entry_size);
3680     __ bind(entry);
3681     // check if bottom reached
3682     __ cmpptr(c_rarg1, c_rarg2);
3683     // if not at bottom then check this entry
3684     __ jcc(Assembler::notEqual, loop);
3685   }
3686 
3687   // error handling. Unlocking was not block-structured
3688   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3689                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3690   __ should_not_reach_here();
3691 
3692   // call run-time routine
3693   // rsi: points to monitor entry
3694   __ bind(found);
3695   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3696   __ unlock_object(c_rarg1);
3697   __ pop_ptr(rax); // discard object
3698 }
3699 
3700 
3701 // Wide instructions
3702 void TemplateTable::wide() {
3703   transition(vtos, vtos);
3704   __ load_unsigned_byte(rbx, at_bcp(1));
3705   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3706   __ jmp(Address(rscratch1, rbx, Address::times_8));
3707   // Note: the r13 increment step is part of the individual wide
3708   // bytecode implementations
3709 }
3710 
3711 
3712 // Multi arrays
3713 void TemplateTable::multianewarray() {
3714   transition(vtos, atos);
3715   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3716   // last dim is on top of stack; we want address of first one:
3717   // first_addr = last_addr + (ndims - 1) * wordSize
3718   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3719   call_VM(rax,
3720           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3721           c_rarg1);
3722   __ load_unsigned_byte(rbx, at_bcp(3));
3723   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3724 }
3725 #endif // !CC_INTERP