1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 class LibraryIntrinsic : public InlineCallGenerator {
  43   // Extend the set of intrinsics known to the runtime:
  44  public:
  45  private:
  46   bool             _is_virtual;
  47   vmIntrinsics::ID _intrinsic_id;
  48 
  49  public:
  50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  51     : InlineCallGenerator(m),
  52       _is_virtual(is_virtual),
  53       _intrinsic_id(id)
  54   {
  55   }
  56   virtual bool is_intrinsic() const { return true; }
  57   virtual bool is_virtual()   const { return _is_virtual; }
  58   virtual JVMState* generate(JVMState* jvms);
  59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  60 };
  61 
  62 
  63 // Local helper class for LibraryIntrinsic:
  64 class LibraryCallKit : public GraphKit {
  65  private:
  66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  67 
  68  public:
  69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  70     : GraphKit(caller),
  71       _intrinsic(intrinsic)
  72   {
  73   }
  74 
  75   ciMethod*         caller()    const    { return jvms()->method(); }
  76   int               bci()       const    { return jvms()->bci(); }
  77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  79   ciMethod*         callee()    const    { return _intrinsic->method(); }
  80   ciSignature*      signature() const    { return callee()->signature(); }
  81   int               arg_size()  const    { return callee()->arg_size(); }
  82 
  83   bool try_to_inline();
  84 
  85   // Helper functions to inline natives
  86   void push_result(RegionNode* region, PhiNode* value);
  87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  88   Node* generate_slow_guard(Node* test, RegionNode* region);
  89   Node* generate_fair_guard(Node* test, RegionNode* region);
  90   Node* generate_negative_guard(Node* index, RegionNode* region,
  91                                 // resulting CastII of index:
  92                                 Node* *pos_index = NULL);
  93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  94                                    // resulting CastII of index:
  95                                    Node* *pos_index = NULL);
  96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  97                              Node* array_length,
  98                              RegionNode* region);
  99   Node* generate_current_thread(Node* &tls_output);
 100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 102   Node* load_mirror_from_klass(Node* klass);
 103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 104                                       int nargs,
 105                                       RegionNode* region, int null_path,
 106                                       int offset);
 107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
 108                                RegionNode* region, int null_path) {
 109     int offset = java_lang_Class::klass_offset_in_bytes();
 110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 111                                          region, null_path,
 112                                          offset);
 113   }
 114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 115                                      int nargs,
 116                                      RegionNode* region, int null_path) {
 117     int offset = java_lang_Class::array_klass_offset_in_bytes();
 118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 119                                          region, null_path,
 120                                          offset);
 121   }
 122   Node* generate_access_flags_guard(Node* kls,
 123                                     int modifier_mask, int modifier_bits,
 124                                     RegionNode* region);
 125   Node* generate_interface_guard(Node* kls, RegionNode* region);
 126   Node* generate_array_guard(Node* kls, RegionNode* region) {
 127     return generate_array_guard_common(kls, region, false, false);
 128   }
 129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 130     return generate_array_guard_common(kls, region, false, true);
 131   }
 132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 133     return generate_array_guard_common(kls, region, true, false);
 134   }
 135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 136     return generate_array_guard_common(kls, region, true, true);
 137   }
 138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 139                                     bool obj_array, bool not_array);
 140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 142                                      bool is_virtual = false, bool is_static = false);
 143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 144     return generate_method_call(method_id, false, true);
 145   }
 146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 147     return generate_method_call(method_id, true, false);
 148   }
 149 
 150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
 151   bool inline_string_compareTo();
 152   bool inline_string_indexOf();
 153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 154   bool inline_string_equals();
 155   Node* pop_math_arg();
 156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 157   bool inline_math_native(vmIntrinsics::ID id);
 158   bool inline_trig(vmIntrinsics::ID id);
 159   bool inline_trans(vmIntrinsics::ID id);
 160   bool inline_abs(vmIntrinsics::ID id);
 161   bool inline_sqrt(vmIntrinsics::ID id);
 162   bool inline_pow(vmIntrinsics::ID id);
 163   bool inline_exp(vmIntrinsics::ID id);
 164   bool inline_min_max(vmIntrinsics::ID id);
 165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 167   int classify_unsafe_addr(Node* &base, Node* &offset);
 168   Node* make_unsafe_address(Node* base, Node* offset);
 169   // Helper for inline_unsafe_access.
 170   // Generates the guards that check whether the result of
 171   // Unsafe.getObject should be recorded in an SATB log buffer.
 172   void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
 173   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 174   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 175   bool inline_unsafe_allocate();
 176   bool inline_unsafe_copyMemory();
 177   bool inline_native_currentThread();
 178   bool inline_native_time_funcs(bool isNano);
 179   bool inline_native_isInterrupted();
 180   bool inline_native_Class_query(vmIntrinsics::ID id);
 181   bool inline_native_subtype_check();
 182 
 183   bool inline_native_newArray();
 184   bool inline_native_getLength();
 185   bool inline_array_copyOf(bool is_copyOfRange);
 186   bool inline_array_equals();
 187   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 188   bool inline_native_clone(bool is_virtual);
 189   bool inline_native_Reflection_getCallerClass();
 190   bool inline_native_AtomicLong_get();
 191   bool inline_native_AtomicLong_attemptUpdate();
 192   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 193   // Helper function for inlining native object hash method
 194   bool inline_native_hashcode(bool is_virtual, bool is_static);
 195   bool inline_native_getClass();
 196 
 197   // Helper functions for inlining arraycopy
 198   bool inline_arraycopy();
 199   void generate_arraycopy(const TypePtr* adr_type,
 200                           BasicType basic_elem_type,
 201                           Node* src,  Node* src_offset,
 202                           Node* dest, Node* dest_offset,
 203                           Node* copy_length,
 204                           bool disjoint_bases = false,
 205                           bool length_never_negative = false,
 206                           RegionNode* slow_region = NULL);
 207   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 208                                                 RegionNode* slow_region);
 209   void generate_clear_array(const TypePtr* adr_type,
 210                             Node* dest,
 211                             BasicType basic_elem_type,
 212                             Node* slice_off,
 213                             Node* slice_len,
 214                             Node* slice_end);
 215   bool generate_block_arraycopy(const TypePtr* adr_type,
 216                                 BasicType basic_elem_type,
 217                                 AllocateNode* alloc,
 218                                 Node* src,  Node* src_offset,
 219                                 Node* dest, Node* dest_offset,
 220                                 Node* dest_size, bool dest_uninitialized);
 221   void generate_slow_arraycopy(const TypePtr* adr_type,
 222                                Node* src,  Node* src_offset,
 223                                Node* dest, Node* dest_offset,
 224                                Node* copy_length, bool dest_uninitialized);
 225   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 226                                      Node* dest_elem_klass,
 227                                      Node* src,  Node* src_offset,
 228                                      Node* dest, Node* dest_offset,
 229                                      Node* copy_length, bool dest_uninitialized);
 230   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 231                                    Node* src,  Node* src_offset,
 232                                    Node* dest, Node* dest_offset,
 233                                    Node* copy_length, bool dest_uninitialized);
 234   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 235                                     BasicType basic_elem_type,
 236                                     bool disjoint_bases,
 237                                     Node* src,  Node* src_offset,
 238                                     Node* dest, Node* dest_offset,
 239                                     Node* copy_length, bool dest_uninitialized);
 240   bool inline_unsafe_CAS(BasicType type);
 241   bool inline_unsafe_ordered_store(BasicType type);
 242   bool inline_fp_conversions(vmIntrinsics::ID id);
 243   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 244   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 245   bool inline_bitCount(vmIntrinsics::ID id);
 246   bool inline_reverseBytes(vmIntrinsics::ID id);
 247 
 248   bool inline_reference_get();
 249 };
 250 
 251 
 252 //---------------------------make_vm_intrinsic----------------------------
 253 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 254   vmIntrinsics::ID id = m->intrinsic_id();
 255   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 256 
 257   if (DisableIntrinsic[0] != '\0'
 258       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 259     // disabled by a user request on the command line:
 260     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 261     return NULL;
 262   }
 263 
 264   if (!m->is_loaded()) {
 265     // do not attempt to inline unloaded methods
 266     return NULL;
 267   }
 268 
 269   // Only a few intrinsics implement a virtual dispatch.
 270   // They are expensive calls which are also frequently overridden.
 271   if (is_virtual) {
 272     switch (id) {
 273     case vmIntrinsics::_hashCode:
 274     case vmIntrinsics::_clone:
 275       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 276       break;
 277     default:
 278       return NULL;
 279     }
 280   }
 281 
 282   // -XX:-InlineNatives disables nearly all intrinsics:
 283   if (!InlineNatives) {
 284     switch (id) {
 285     case vmIntrinsics::_indexOf:
 286     case vmIntrinsics::_compareTo:
 287     case vmIntrinsics::_equals:
 288     case vmIntrinsics::_equalsC:
 289       break;  // InlineNatives does not control String.compareTo
 290     default:
 291       return NULL;
 292     }
 293   }
 294 
 295   switch (id) {
 296   case vmIntrinsics::_compareTo:
 297     if (!SpecialStringCompareTo)  return NULL;
 298     break;
 299   case vmIntrinsics::_indexOf:
 300     if (!SpecialStringIndexOf)  return NULL;
 301     break;
 302   case vmIntrinsics::_equals:
 303     if (!SpecialStringEquals)  return NULL;
 304     break;
 305   case vmIntrinsics::_equalsC:
 306     if (!SpecialArraysEquals)  return NULL;
 307     break;
 308   case vmIntrinsics::_arraycopy:
 309     if (!InlineArrayCopy)  return NULL;
 310     break;
 311   case vmIntrinsics::_copyMemory:
 312     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 313     if (!InlineArrayCopy)  return NULL;
 314     break;
 315   case vmIntrinsics::_hashCode:
 316     if (!InlineObjectHash)  return NULL;
 317     break;
 318   case vmIntrinsics::_clone:
 319   case vmIntrinsics::_copyOf:
 320   case vmIntrinsics::_copyOfRange:
 321     if (!InlineObjectCopy)  return NULL;
 322     // These also use the arraycopy intrinsic mechanism:
 323     if (!InlineArrayCopy)  return NULL;
 324     break;
 325   case vmIntrinsics::_checkIndex:
 326     // We do not intrinsify this.  The optimizer does fine with it.
 327     return NULL;
 328 
 329   case vmIntrinsics::_get_AtomicLong:
 330   case vmIntrinsics::_attemptUpdate:
 331     if (!InlineAtomicLong)  return NULL;
 332     break;
 333 
 334   case vmIntrinsics::_getCallerClass:
 335     if (!UseNewReflection)  return NULL;
 336     if (!InlineReflectionGetCallerClass)  return NULL;
 337     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 338     break;
 339 
 340   case vmIntrinsics::_bitCount_i:
 341   case vmIntrinsics::_bitCount_l:
 342     if (!UsePopCountInstruction)  return NULL;
 343     break;
 344 
 345   case vmIntrinsics::_Reference_get:
 346     // It is only when G1 is enabled that we absolutely
 347     // need to use the intrinsic version of Reference.get()
 348     // so that the value in the referent field, if necessary,
 349     // can be registered by the pre-barrier code.
 350     if (!UseG1GC) return NULL;
 351     break;
 352 
 353  default:
 354     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 355     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 356     break;
 357   }
 358 
 359   // -XX:-InlineClassNatives disables natives from the Class class.
 360   // The flag applies to all reflective calls, notably Array.newArray
 361   // (visible to Java programmers as Array.newInstance).
 362   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 363       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 364     if (!InlineClassNatives)  return NULL;
 365   }
 366 
 367   // -XX:-InlineThreadNatives disables natives from the Thread class.
 368   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 369     if (!InlineThreadNatives)  return NULL;
 370   }
 371 
 372   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 373   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 374       m->holder()->name() == ciSymbol::java_lang_Float() ||
 375       m->holder()->name() == ciSymbol::java_lang_Double()) {
 376     if (!InlineMathNatives)  return NULL;
 377   }
 378 
 379   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 380   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 381     if (!InlineUnsafeOps)  return NULL;
 382   }
 383 
 384   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 385 }
 386 
 387 //----------------------register_library_intrinsics-----------------------
 388 // Initialize this file's data structures, for each Compile instance.
 389 void Compile::register_library_intrinsics() {
 390   // Nothing to do here.
 391 }
 392 
 393 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 394   LibraryCallKit kit(jvms, this);
 395   Compile* C = kit.C;
 396   int nodes = C->unique();
 397 #ifndef PRODUCT
 398   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 399     char buf[1000];
 400     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 401     tty->print_cr("Intrinsic %s", str);
 402   }
 403 #endif
 404 
 405   if (kit.try_to_inline()) {
 406     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 407       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 408     }
 409     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 410     if (C->log()) {
 411       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 412                      vmIntrinsics::name_at(intrinsic_id()),
 413                      (is_virtual() ? " virtual='1'" : ""),
 414                      C->unique() - nodes);
 415     }
 416     return kit.transfer_exceptions_into_jvms();
 417   }
 418 
 419   if (PrintIntrinsics) {
 420     if (jvms->has_method()) {
 421       // Not a root compile.
 422       tty->print("Did not inline intrinsic %s%s at bci:%d in",
 423                  vmIntrinsics::name_at(intrinsic_id()),
 424                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 425       kit.caller()->print_short_name(tty);
 426       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 427     } else {
 428       // Root compile
 429       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 430                vmIntrinsics::name_at(intrinsic_id()),
 431                (is_virtual() ? " (virtual)" : ""), kit.bci());
 432     }
 433   }
 434   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 435   return NULL;
 436 }
 437 
 438 bool LibraryCallKit::try_to_inline() {
 439   // Handle symbolic names for otherwise undistinguished boolean switches:
 440   const bool is_store       = true;
 441   const bool is_native_ptr  = true;
 442   const bool is_static      = true;
 443 
 444   if (!jvms()->has_method()) {
 445     // Root JVMState has a null method.
 446     assert(map()->memory()->Opcode() == Op_Parm, "");
 447     // Insert the memory aliasing node
 448     set_all_memory(reset_memory());
 449   }
 450   assert(merged_memory(), "");
 451 
 452   switch (intrinsic_id()) {
 453   case vmIntrinsics::_hashCode:
 454     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 455   case vmIntrinsics::_identityHashCode:
 456     return inline_native_hashcode(/*!virtual*/ false, is_static);
 457   case vmIntrinsics::_getClass:
 458     return inline_native_getClass();
 459 
 460   case vmIntrinsics::_dsin:
 461   case vmIntrinsics::_dcos:
 462   case vmIntrinsics::_dtan:
 463   case vmIntrinsics::_dabs:
 464   case vmIntrinsics::_datan2:
 465   case vmIntrinsics::_dsqrt:
 466   case vmIntrinsics::_dexp:
 467   case vmIntrinsics::_dlog:
 468   case vmIntrinsics::_dlog10:
 469   case vmIntrinsics::_dpow:
 470     return inline_math_native(intrinsic_id());
 471 
 472   case vmIntrinsics::_min:
 473   case vmIntrinsics::_max:
 474     return inline_min_max(intrinsic_id());
 475 
 476   case vmIntrinsics::_arraycopy:
 477     return inline_arraycopy();
 478 
 479   case vmIntrinsics::_compareTo:
 480     return inline_string_compareTo();
 481   case vmIntrinsics::_indexOf:
 482     return inline_string_indexOf();
 483   case vmIntrinsics::_equals:
 484     return inline_string_equals();
 485 
 486   case vmIntrinsics::_getObject:
 487     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 488   case vmIntrinsics::_getBoolean:
 489     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 490   case vmIntrinsics::_getByte:
 491     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 492   case vmIntrinsics::_getShort:
 493     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 494   case vmIntrinsics::_getChar:
 495     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 496   case vmIntrinsics::_getInt:
 497     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 498   case vmIntrinsics::_getLong:
 499     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 500   case vmIntrinsics::_getFloat:
 501     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 502   case vmIntrinsics::_getDouble:
 503     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 504 
 505   case vmIntrinsics::_putObject:
 506     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 507   case vmIntrinsics::_putBoolean:
 508     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 509   case vmIntrinsics::_putByte:
 510     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 511   case vmIntrinsics::_putShort:
 512     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 513   case vmIntrinsics::_putChar:
 514     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 515   case vmIntrinsics::_putInt:
 516     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 517   case vmIntrinsics::_putLong:
 518     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 519   case vmIntrinsics::_putFloat:
 520     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 521   case vmIntrinsics::_putDouble:
 522     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 523 
 524   case vmIntrinsics::_getByte_raw:
 525     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 526   case vmIntrinsics::_getShort_raw:
 527     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 528   case vmIntrinsics::_getChar_raw:
 529     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 530   case vmIntrinsics::_getInt_raw:
 531     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 532   case vmIntrinsics::_getLong_raw:
 533     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 534   case vmIntrinsics::_getFloat_raw:
 535     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 536   case vmIntrinsics::_getDouble_raw:
 537     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 538   case vmIntrinsics::_getAddress_raw:
 539     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 540 
 541   case vmIntrinsics::_putByte_raw:
 542     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 543   case vmIntrinsics::_putShort_raw:
 544     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 545   case vmIntrinsics::_putChar_raw:
 546     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 547   case vmIntrinsics::_putInt_raw:
 548     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 549   case vmIntrinsics::_putLong_raw:
 550     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 551   case vmIntrinsics::_putFloat_raw:
 552     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 553   case vmIntrinsics::_putDouble_raw:
 554     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 555   case vmIntrinsics::_putAddress_raw:
 556     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 557 
 558   case vmIntrinsics::_getObjectVolatile:
 559     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 560   case vmIntrinsics::_getBooleanVolatile:
 561     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 562   case vmIntrinsics::_getByteVolatile:
 563     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 564   case vmIntrinsics::_getShortVolatile:
 565     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 566   case vmIntrinsics::_getCharVolatile:
 567     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 568   case vmIntrinsics::_getIntVolatile:
 569     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 570   case vmIntrinsics::_getLongVolatile:
 571     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 572   case vmIntrinsics::_getFloatVolatile:
 573     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 574   case vmIntrinsics::_getDoubleVolatile:
 575     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 576 
 577   case vmIntrinsics::_putObjectVolatile:
 578     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 579   case vmIntrinsics::_putBooleanVolatile:
 580     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 581   case vmIntrinsics::_putByteVolatile:
 582     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 583   case vmIntrinsics::_putShortVolatile:
 584     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 585   case vmIntrinsics::_putCharVolatile:
 586     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 587   case vmIntrinsics::_putIntVolatile:
 588     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 589   case vmIntrinsics::_putLongVolatile:
 590     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 591   case vmIntrinsics::_putFloatVolatile:
 592     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 593   case vmIntrinsics::_putDoubleVolatile:
 594     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 595 
 596   case vmIntrinsics::_prefetchRead:
 597     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 598   case vmIntrinsics::_prefetchWrite:
 599     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 600   case vmIntrinsics::_prefetchReadStatic:
 601     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 602   case vmIntrinsics::_prefetchWriteStatic:
 603     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 604 
 605   case vmIntrinsics::_compareAndSwapObject:
 606     return inline_unsafe_CAS(T_OBJECT);
 607   case vmIntrinsics::_compareAndSwapInt:
 608     return inline_unsafe_CAS(T_INT);
 609   case vmIntrinsics::_compareAndSwapLong:
 610     return inline_unsafe_CAS(T_LONG);
 611 
 612   case vmIntrinsics::_putOrderedObject:
 613     return inline_unsafe_ordered_store(T_OBJECT);
 614   case vmIntrinsics::_putOrderedInt:
 615     return inline_unsafe_ordered_store(T_INT);
 616   case vmIntrinsics::_putOrderedLong:
 617     return inline_unsafe_ordered_store(T_LONG);
 618 
 619   case vmIntrinsics::_currentThread:
 620     return inline_native_currentThread();
 621   case vmIntrinsics::_isInterrupted:
 622     return inline_native_isInterrupted();
 623 
 624   case vmIntrinsics::_currentTimeMillis:
 625     return inline_native_time_funcs(false);
 626   case vmIntrinsics::_nanoTime:
 627     return inline_native_time_funcs(true);
 628   case vmIntrinsics::_allocateInstance:
 629     return inline_unsafe_allocate();
 630   case vmIntrinsics::_copyMemory:
 631     return inline_unsafe_copyMemory();
 632   case vmIntrinsics::_newArray:
 633     return inline_native_newArray();
 634   case vmIntrinsics::_getLength:
 635     return inline_native_getLength();
 636   case vmIntrinsics::_copyOf:
 637     return inline_array_copyOf(false);
 638   case vmIntrinsics::_copyOfRange:
 639     return inline_array_copyOf(true);
 640   case vmIntrinsics::_equalsC:
 641     return inline_array_equals();
 642   case vmIntrinsics::_clone:
 643     return inline_native_clone(intrinsic()->is_virtual());
 644 
 645   case vmIntrinsics::_isAssignableFrom:
 646     return inline_native_subtype_check();
 647 
 648   case vmIntrinsics::_isInstance:
 649   case vmIntrinsics::_getModifiers:
 650   case vmIntrinsics::_isInterface:
 651   case vmIntrinsics::_isArray:
 652   case vmIntrinsics::_isPrimitive:
 653   case vmIntrinsics::_getSuperclass:
 654   case vmIntrinsics::_getComponentType:
 655   case vmIntrinsics::_getClassAccessFlags:
 656     return inline_native_Class_query(intrinsic_id());
 657 
 658   case vmIntrinsics::_floatToRawIntBits:
 659   case vmIntrinsics::_floatToIntBits:
 660   case vmIntrinsics::_intBitsToFloat:
 661   case vmIntrinsics::_doubleToRawLongBits:
 662   case vmIntrinsics::_doubleToLongBits:
 663   case vmIntrinsics::_longBitsToDouble:
 664     return inline_fp_conversions(intrinsic_id());
 665 
 666   case vmIntrinsics::_numberOfLeadingZeros_i:
 667   case vmIntrinsics::_numberOfLeadingZeros_l:
 668     return inline_numberOfLeadingZeros(intrinsic_id());
 669 
 670   case vmIntrinsics::_numberOfTrailingZeros_i:
 671   case vmIntrinsics::_numberOfTrailingZeros_l:
 672     return inline_numberOfTrailingZeros(intrinsic_id());
 673 
 674   case vmIntrinsics::_bitCount_i:
 675   case vmIntrinsics::_bitCount_l:
 676     return inline_bitCount(intrinsic_id());
 677 
 678   case vmIntrinsics::_reverseBytes_i:
 679   case vmIntrinsics::_reverseBytes_l:
 680   case vmIntrinsics::_reverseBytes_s:
 681   case vmIntrinsics::_reverseBytes_c:
 682     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 683 
 684   case vmIntrinsics::_get_AtomicLong:
 685     return inline_native_AtomicLong_get();
 686   case vmIntrinsics::_attemptUpdate:
 687     return inline_native_AtomicLong_attemptUpdate();
 688 
 689   case vmIntrinsics::_getCallerClass:
 690     return inline_native_Reflection_getCallerClass();
 691 
 692   case vmIntrinsics::_Reference_get:
 693     return inline_reference_get();
 694 
 695   default:
 696     // If you get here, it may be that someone has added a new intrinsic
 697     // to the list in vmSymbols.hpp without implementing it here.
 698 #ifndef PRODUCT
 699     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 700       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 701                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 702     }
 703 #endif
 704     return false;
 705   }
 706 }
 707 
 708 //------------------------------push_result------------------------------
 709 // Helper function for finishing intrinsics.
 710 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 711   record_for_igvn(region);
 712   set_control(_gvn.transform(region));
 713   BasicType value_type = value->type()->basic_type();
 714   push_node(value_type, _gvn.transform(value));
 715 }
 716 
 717 //------------------------------generate_guard---------------------------
 718 // Helper function for generating guarded fast-slow graph structures.
 719 // The given 'test', if true, guards a slow path.  If the test fails
 720 // then a fast path can be taken.  (We generally hope it fails.)
 721 // In all cases, GraphKit::control() is updated to the fast path.
 722 // The returned value represents the control for the slow path.
 723 // The return value is never 'top'; it is either a valid control
 724 // or NULL if it is obvious that the slow path can never be taken.
 725 // Also, if region and the slow control are not NULL, the slow edge
 726 // is appended to the region.
 727 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 728   if (stopped()) {
 729     // Already short circuited.
 730     return NULL;
 731   }
 732 
 733   // Build an if node and its projections.
 734   // If test is true we take the slow path, which we assume is uncommon.
 735   if (_gvn.type(test) == TypeInt::ZERO) {
 736     // The slow branch is never taken.  No need to build this guard.
 737     return NULL;
 738   }
 739 
 740   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 741 
 742   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 743   if (if_slow == top()) {
 744     // The slow branch is never taken.  No need to build this guard.
 745     return NULL;
 746   }
 747 
 748   if (region != NULL)
 749     region->add_req(if_slow);
 750 
 751   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 752   set_control(if_fast);
 753 
 754   return if_slow;
 755 }
 756 
 757 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 758   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 759 }
 760 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 761   return generate_guard(test, region, PROB_FAIR);
 762 }
 763 
 764 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 765                                                      Node* *pos_index) {
 766   if (stopped())
 767     return NULL;                // already stopped
 768   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 769     return NULL;                // index is already adequately typed
 770   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 771   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 772   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 773   if (is_neg != NULL && pos_index != NULL) {
 774     // Emulate effect of Parse::adjust_map_after_if.
 775     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 776     ccast->set_req(0, control());
 777     (*pos_index) = _gvn.transform(ccast);
 778   }
 779   return is_neg;
 780 }
 781 
 782 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 783                                                         Node* *pos_index) {
 784   if (stopped())
 785     return NULL;                // already stopped
 786   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 787     return NULL;                // index is already adequately typed
 788   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 789   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 790   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 791   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 792   if (is_notp != NULL && pos_index != NULL) {
 793     // Emulate effect of Parse::adjust_map_after_if.
 794     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 795     ccast->set_req(0, control());
 796     (*pos_index) = _gvn.transform(ccast);
 797   }
 798   return is_notp;
 799 }
 800 
 801 // Make sure that 'position' is a valid limit index, in [0..length].
 802 // There are two equivalent plans for checking this:
 803 //   A. (offset + copyLength)  unsigned<=  arrayLength
 804 //   B. offset  <=  (arrayLength - copyLength)
 805 // We require that all of the values above, except for the sum and
 806 // difference, are already known to be non-negative.
 807 // Plan A is robust in the face of overflow, if offset and copyLength
 808 // are both hugely positive.
 809 //
 810 // Plan B is less direct and intuitive, but it does not overflow at
 811 // all, since the difference of two non-negatives is always
 812 // representable.  Whenever Java methods must perform the equivalent
 813 // check they generally use Plan B instead of Plan A.
 814 // For the moment we use Plan A.
 815 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 816                                                   Node* subseq_length,
 817                                                   Node* array_length,
 818                                                   RegionNode* region) {
 819   if (stopped())
 820     return NULL;                // already stopped
 821   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 822   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 823     return NULL;                // common case of whole-array copy
 824   Node* last = subseq_length;
 825   if (!zero_offset)             // last += offset
 826     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 827   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 828   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 829   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 830   return is_over;
 831 }
 832 
 833 
 834 //--------------------------generate_current_thread--------------------
 835 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 836   ciKlass*    thread_klass = env()->Thread_klass();
 837   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 838   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 839   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 840   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 841   tls_output = thread;
 842   return threadObj;
 843 }
 844 
 845 
 846 //------------------------------make_string_method_node------------------------
 847 // Helper method for String intrinsic finctions.
 848 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
 849   const int value_offset  = java_lang_String::value_offset_in_bytes();
 850   const int count_offset  = java_lang_String::count_offset_in_bytes();
 851   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 852 
 853   Node* no_ctrl = NULL;
 854 
 855   ciInstanceKlass* klass = env()->String_klass();
 856   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 857 
 858   const TypeAryPtr* value_type =
 859         TypeAryPtr::make(TypePtr::NotNull,
 860                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
 861                          ciTypeArrayKlass::make(T_CHAR), true, 0);
 862 
 863   // Get start addr of string and substring
 864   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
 865   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 866   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
 867   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 868   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 869 
 870   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
 871   Node* str2_value   = make_load(no_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 872   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
 873   Node* str2_offset  = make_load(no_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 874   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 875 
 876   Node* result = NULL;
 877   switch (opcode) {
 878   case Op_StrIndexOf:
 879     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 880                                        str1_start, cnt1, str2_start, cnt2);
 881     break;
 882   case Op_StrComp:
 883     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 884                                     str1_start, cnt1, str2_start, cnt2);
 885     break;
 886   case Op_StrEquals:
 887     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 888                                       str1_start, str2_start, cnt1);
 889     break;
 890   default:
 891     ShouldNotReachHere();
 892     return NULL;
 893   }
 894 
 895   // All these intrinsics have checks.
 896   C->set_has_split_ifs(true); // Has chance for split-if optimization
 897 
 898   return _gvn.transform(result);
 899 }
 900 
 901 //------------------------------inline_string_compareTo------------------------
 902 bool LibraryCallKit::inline_string_compareTo() {
 903 
 904   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 905 
 906   const int value_offset = java_lang_String::value_offset_in_bytes();
 907   const int count_offset = java_lang_String::count_offset_in_bytes();
 908   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 909 
 910   _sp += 2;
 911   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 912   Node *receiver = pop();
 913 
 914   // Null check on self without removing any arguments.  The argument
 915   // null check technically happens in the wrong place, which can lead to
 916   // invalid stack traces when string compare is inlined into a method
 917   // which handles NullPointerExceptions.
 918   _sp += 2;
 919   receiver = do_null_check(receiver, T_OBJECT);
 920   argument = do_null_check(argument, T_OBJECT);
 921   _sp -= 2;
 922   if (stopped()) {
 923     return true;
 924   }
 925 
 926   ciInstanceKlass* klass = env()->String_klass();
 927   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 928   Node* no_ctrl = NULL;
 929 
 930   // Get counts for string and argument
 931   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 932   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 933 
 934   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 935   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 936 
 937   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
 938   push(compare);
 939   return true;
 940 }
 941 
 942 //------------------------------inline_string_equals------------------------
 943 bool LibraryCallKit::inline_string_equals() {
 944 
 945   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 946 
 947   const int value_offset = java_lang_String::value_offset_in_bytes();
 948   const int count_offset = java_lang_String::count_offset_in_bytes();
 949   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 950 
 951   int nargs = 2;
 952   _sp += nargs;
 953   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 954   Node* receiver = pop();
 955 
 956   // Null check on self without removing any arguments.  The argument
 957   // null check technically happens in the wrong place, which can lead to
 958   // invalid stack traces when string compare is inlined into a method
 959   // which handles NullPointerExceptions.
 960   _sp += nargs;
 961   receiver = do_null_check(receiver, T_OBJECT);
 962   //should not do null check for argument for String.equals(), because spec
 963   //allows to specify NULL as argument.
 964   _sp -= nargs;
 965 
 966   if (stopped()) {
 967     return true;
 968   }
 969 
 970   // paths (plus control) merge
 971   RegionNode* region = new (C, 5) RegionNode(5);
 972   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
 973 
 974   // does source == target string?
 975   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
 976   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 977 
 978   Node* if_eq = generate_slow_guard(bol, NULL);
 979   if (if_eq != NULL) {
 980     // receiver == argument
 981     phi->init_req(2, intcon(1));
 982     region->init_req(2, if_eq);
 983   }
 984 
 985   // get String klass for instanceOf
 986   ciInstanceKlass* klass = env()->String_klass();
 987 
 988   if (!stopped()) {
 989     _sp += nargs;          // gen_instanceof might do an uncommon trap
 990     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 991     _sp -= nargs;
 992     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 993     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
 994 
 995     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
 996     //instanceOf == true, fallthrough
 997 
 998     if (inst_false != NULL) {
 999       phi->init_req(3, intcon(0));
1000       region->init_req(3, inst_false);
1001     }
1002   }
1003 
1004   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1005 
1006   Node* no_ctrl = NULL;
1007   Node* receiver_cnt;
1008   Node* argument_cnt;
1009 
1010   if (!stopped()) {
1011     // Properly cast the argument to String
1012     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
1013     // This path is taken only when argument's type is String:NotNull.
1014     argument = cast_not_null(argument, false);
1015 
1016     // Get counts for string and argument
1017     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
1018     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1019 
1020     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
1021     argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1022 
1023     // Check for receiver count != argument count
1024     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
1025     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
1026     Node* if_ne = generate_slow_guard(bol, NULL);
1027     if (if_ne != NULL) {
1028       phi->init_req(4, intcon(0));
1029       region->init_req(4, if_ne);
1030     }
1031   }
1032 
1033   // Check for count == 0 is done by mach node StrEquals.
1034 
1035   if (!stopped()) {
1036     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
1037     phi->init_req(1, equals);
1038     region->init_req(1, control());
1039   }
1040 
1041   // post merge
1042   set_control(_gvn.transform(region));
1043   record_for_igvn(region);
1044 
1045   push(_gvn.transform(phi));
1046 
1047   return true;
1048 }
1049 
1050 //------------------------------inline_array_equals----------------------------
1051 bool LibraryCallKit::inline_array_equals() {
1052 
1053   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1054 
1055   _sp += 2;
1056   Node *argument2 = pop();
1057   Node *argument1 = pop();
1058 
1059   Node* equals =
1060     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1061                                         argument1, argument2) );
1062   push(equals);
1063   return true;
1064 }
1065 
1066 // Java version of String.indexOf(constant string)
1067 // class StringDecl {
1068 //   StringDecl(char[] ca) {
1069 //     offset = 0;
1070 //     count = ca.length;
1071 //     value = ca;
1072 //   }
1073 //   int offset;
1074 //   int count;
1075 //   char[] value;
1076 // }
1077 //
1078 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1079 //                             int targetOffset, int cache_i, int md2) {
1080 //   int cache = cache_i;
1081 //   int sourceOffset = string_object.offset;
1082 //   int sourceCount = string_object.count;
1083 //   int targetCount = target_object.length;
1084 //
1085 //   int targetCountLess1 = targetCount - 1;
1086 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1087 //
1088 //   char[] source = string_object.value;
1089 //   char[] target = target_object;
1090 //   int lastChar = target[targetCountLess1];
1091 //
1092 //  outer_loop:
1093 //   for (int i = sourceOffset; i < sourceEnd; ) {
1094 //     int src = source[i + targetCountLess1];
1095 //     if (src == lastChar) {
1096 //       // With random strings and a 4-character alphabet,
1097 //       // reverse matching at this point sets up 0.8% fewer
1098 //       // frames, but (paradoxically) makes 0.3% more probes.
1099 //       // Since those probes are nearer the lastChar probe,
1100 //       // there is may be a net D$ win with reverse matching.
1101 //       // But, reversing loop inhibits unroll of inner loop
1102 //       // for unknown reason.  So, does running outer loop from
1103 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1104 //       for (int j = 0; j < targetCountLess1; j++) {
1105 //         if (target[targetOffset + j] != source[i+j]) {
1106 //           if ((cache & (1 << source[i+j])) == 0) {
1107 //             if (md2 < j+1) {
1108 //               i += j+1;
1109 //               continue outer_loop;
1110 //             }
1111 //           }
1112 //           i += md2;
1113 //           continue outer_loop;
1114 //         }
1115 //       }
1116 //       return i - sourceOffset;
1117 //     }
1118 //     if ((cache & (1 << src)) == 0) {
1119 //       i += targetCountLess1;
1120 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1121 //     i++;
1122 //   }
1123 //   return -1;
1124 // }
1125 
1126 //------------------------------string_indexOf------------------------
1127 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1128                                      jint cache_i, jint md2_i) {
1129 
1130   Node* no_ctrl  = NULL;
1131   float likely   = PROB_LIKELY(0.9);
1132   float unlikely = PROB_UNLIKELY(0.9);
1133 
1134   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
1135 
1136   const int value_offset  = java_lang_String::value_offset_in_bytes();
1137   const int count_offset  = java_lang_String::count_offset_in_bytes();
1138   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1139 
1140   ciInstanceKlass* klass = env()->String_klass();
1141   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1142   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1143 
1144   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1145   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1146   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1147   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1148   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1149   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1150 
1151   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1152   jint target_length = target_array->length();
1153   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1154   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1155 
1156   IdealKit kit(this, false, true);
1157 #define __ kit.
1158   Node* zero             = __ ConI(0);
1159   Node* one              = __ ConI(1);
1160   Node* cache            = __ ConI(cache_i);
1161   Node* md2              = __ ConI(md2_i);
1162   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1163   Node* targetCount      = __ ConI(target_length);
1164   Node* targetCountLess1 = __ ConI(target_length - 1);
1165   Node* targetOffset     = __ ConI(targetOffset_i);
1166   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1167 
1168   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1169   Node* outer_loop = __ make_label(2 /* goto */);
1170   Node* return_    = __ make_label(1);
1171 
1172   __ set(rtn,__ ConI(-1));
1173   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1174        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1175        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1176        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1177        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1178          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1179               Node* tpj = __ AddI(targetOffset, __ value(j));
1180               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1181               Node* ipj  = __ AddI(__ value(i), __ value(j));
1182               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1183               __ if_then(targ, BoolTest::ne, src2); {
1184                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1185                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1186                     __ increment(i, __ AddI(__ value(j), one));
1187                     __ goto_(outer_loop);
1188                   } __ end_if(); __ dead(j);
1189                 }__ end_if(); __ dead(j);
1190                 __ increment(i, md2);
1191                 __ goto_(outer_loop);
1192               }__ end_if();
1193               __ increment(j, one);
1194          }__ end_loop(); __ dead(j);
1195          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1196          __ goto_(return_);
1197        }__ end_if();
1198        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1199          __ increment(i, targetCountLess1);
1200        }__ end_if();
1201        __ increment(i, one);
1202        __ bind(outer_loop);
1203   }__ end_loop(); __ dead(i);
1204   __ bind(return_);
1205 
1206   // Final sync IdealKit and GraphKit.
1207   final_sync(kit);
1208   Node* result = __ value(rtn);
1209 #undef __
1210   C->set_has_loops(true);
1211   return result;
1212 }
1213 
1214 //------------------------------inline_string_indexOf------------------------
1215 bool LibraryCallKit::inline_string_indexOf() {
1216 
1217   const int value_offset  = java_lang_String::value_offset_in_bytes();
1218   const int count_offset  = java_lang_String::count_offset_in_bytes();
1219   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1220 
1221   _sp += 2;
1222   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1223   Node *receiver = pop();
1224 
1225   Node* result;
1226   // Disable the use of pcmpestri until it can be guaranteed that
1227   // the load doesn't cross into the uncommited space.
1228   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1229       UseSSE42Intrinsics) {
1230     // Generate SSE4.2 version of indexOf
1231     // We currently only have match rules that use SSE4.2
1232 
1233     // Null check on self without removing any arguments.  The argument
1234     // null check technically happens in the wrong place, which can lead to
1235     // invalid stack traces when string compare is inlined into a method
1236     // which handles NullPointerExceptions.
1237     _sp += 2;
1238     receiver = do_null_check(receiver, T_OBJECT);
1239     argument = do_null_check(argument, T_OBJECT);
1240     _sp -= 2;
1241 
1242     if (stopped()) {
1243       return true;
1244     }
1245 
1246     ciInstanceKlass* str_klass = env()->String_klass();
1247     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1248 
1249     // Make the merge point
1250     RegionNode* result_rgn = new (C, 4) RegionNode(4);
1251     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
1252     Node* no_ctrl  = NULL;
1253 
1254     // Get counts for string and substr
1255     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1256     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1257 
1258     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1259     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1260 
1261     // Check for substr count > string count
1262     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1263     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1264     Node* if_gt = generate_slow_guard(bol, NULL);
1265     if (if_gt != NULL) {
1266       result_phi->init_req(2, intcon(-1));
1267       result_rgn->init_req(2, if_gt);
1268     }
1269 
1270     if (!stopped()) {
1271       // Check for substr count == 0
1272       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
1273       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
1274       Node* if_zero = generate_slow_guard(bol, NULL);
1275       if (if_zero != NULL) {
1276         result_phi->init_req(3, intcon(0));
1277         result_rgn->init_req(3, if_zero);
1278       }
1279     }
1280 
1281     if (!stopped()) {
1282       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1283       result_phi->init_req(1, result);
1284       result_rgn->init_req(1, control());
1285     }
1286     set_control(_gvn.transform(result_rgn));
1287     record_for_igvn(result_rgn);
1288     result = _gvn.transform(result_phi);
1289 
1290   } else { // Use LibraryCallKit::string_indexOf
1291     // don't intrinsify if argument isn't a constant string.
1292     if (!argument->is_Con()) {
1293      return false;
1294     }
1295     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1296     if (str_type == NULL) {
1297       return false;
1298     }
1299     ciInstanceKlass* klass = env()->String_klass();
1300     ciObject* str_const = str_type->const_oop();
1301     if (str_const == NULL || str_const->klass() != klass) {
1302       return false;
1303     }
1304     ciInstance* str = str_const->as_instance();
1305     assert(str != NULL, "must be instance");
1306 
1307     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1308     int       o = str->field_value_by_offset(offset_offset).as_int();
1309     int       c = str->field_value_by_offset(count_offset).as_int();
1310     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1311 
1312     // constant strings have no offset and count == length which
1313     // simplifies the resulting code somewhat so lets optimize for that.
1314     if (o != 0 || c != pat->length()) {
1315      return false;
1316     }
1317 
1318     // Null check on self without removing any arguments.  The argument
1319     // null check technically happens in the wrong place, which can lead to
1320     // invalid stack traces when string compare is inlined into a method
1321     // which handles NullPointerExceptions.
1322     _sp += 2;
1323     receiver = do_null_check(receiver, T_OBJECT);
1324     // No null check on the argument is needed since it's a constant String oop.
1325     _sp -= 2;
1326     if (stopped()) {
1327       return true;
1328     }
1329 
1330     // The null string as a pattern always returns 0 (match at beginning of string)
1331     if (c == 0) {
1332       push(intcon(0));
1333       return true;
1334     }
1335 
1336     // Generate default indexOf
1337     jchar lastChar = pat->char_at(o + (c - 1));
1338     int cache = 0;
1339     int i;
1340     for (i = 0; i < c - 1; i++) {
1341       assert(i < pat->length(), "out of range");
1342       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1343     }
1344 
1345     int md2 = c;
1346     for (i = 0; i < c - 1; i++) {
1347       assert(i < pat->length(), "out of range");
1348       if (pat->char_at(o + i) == lastChar) {
1349         md2 = (c - 1) - i;
1350       }
1351     }
1352 
1353     result = string_indexOf(receiver, pat, o, cache, md2);
1354   }
1355 
1356   push(result);
1357   return true;
1358 }
1359 
1360 //--------------------------pop_math_arg--------------------------------
1361 // Pop a double argument to a math function from the stack
1362 // rounding it if necessary.
1363 Node * LibraryCallKit::pop_math_arg() {
1364   Node *arg = pop_pair();
1365   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1366     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1367   return arg;
1368 }
1369 
1370 //------------------------------inline_trig----------------------------------
1371 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1372 // argument reduction which will turn into a fast/slow diamond.
1373 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1374   _sp += arg_size();            // restore stack pointer
1375   Node* arg = pop_math_arg();
1376   Node* trig = NULL;
1377 
1378   switch (id) {
1379   case vmIntrinsics::_dsin:
1380     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1381     break;
1382   case vmIntrinsics::_dcos:
1383     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1384     break;
1385   case vmIntrinsics::_dtan:
1386     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1387     break;
1388   default:
1389     assert(false, "bad intrinsic was passed in");
1390     return false;
1391   }
1392 
1393   // Rounding required?  Check for argument reduction!
1394   if( Matcher::strict_fp_requires_explicit_rounding ) {
1395 
1396     static const double     pi_4 =  0.7853981633974483;
1397     static const double neg_pi_4 = -0.7853981633974483;
1398     // pi/2 in 80-bit extended precision
1399     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1400     // -pi/2 in 80-bit extended precision
1401     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1402     // Cutoff value for using this argument reduction technique
1403     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1404     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1405 
1406     // Pseudocode for sin:
1407     // if (x <= Math.PI / 4.0) {
1408     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1409     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1410     // } else {
1411     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1412     // }
1413     // return StrictMath.sin(x);
1414 
1415     // Pseudocode for cos:
1416     // if (x <= Math.PI / 4.0) {
1417     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1418     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1419     // } else {
1420     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1421     // }
1422     // return StrictMath.cos(x);
1423 
1424     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1425     // requires a special machine instruction to load it.  Instead we'll try
1426     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1427     // probably do the math inside the SIN encoding.
1428 
1429     // Make the merge point
1430     RegionNode *r = new (C, 3) RegionNode(3);
1431     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1432 
1433     // Flatten arg so we need only 1 test
1434     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1435     // Node for PI/4 constant
1436     Node *pi4 = makecon(TypeD::make(pi_4));
1437     // Check PI/4 : abs(arg)
1438     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1439     // Check: If PI/4 < abs(arg) then go slow
1440     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1441     // Branch either way
1442     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1443     set_control(opt_iff(r,iff));
1444 
1445     // Set fast path result
1446     phi->init_req(2,trig);
1447 
1448     // Slow path - non-blocking leaf call
1449     Node* call = NULL;
1450     switch (id) {
1451     case vmIntrinsics::_dsin:
1452       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1453                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1454                                "Sin", NULL, arg, top());
1455       break;
1456     case vmIntrinsics::_dcos:
1457       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1458                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1459                                "Cos", NULL, arg, top());
1460       break;
1461     case vmIntrinsics::_dtan:
1462       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1463                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1464                                "Tan", NULL, arg, top());
1465       break;
1466     }
1467     assert(control()->in(0) == call, "");
1468     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1469     r->init_req(1,control());
1470     phi->init_req(1,slow_result);
1471 
1472     // Post-merge
1473     set_control(_gvn.transform(r));
1474     record_for_igvn(r);
1475     trig = _gvn.transform(phi);
1476 
1477     C->set_has_split_ifs(true); // Has chance for split-if optimization
1478   }
1479   // Push result back on JVM stack
1480   push_pair(trig);
1481   return true;
1482 }
1483 
1484 //------------------------------inline_sqrt-------------------------------------
1485 // Inline square root instruction, if possible.
1486 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1487   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1488   _sp += arg_size();        // restore stack pointer
1489   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1490   return true;
1491 }
1492 
1493 //------------------------------inline_abs-------------------------------------
1494 // Inline absolute value instruction, if possible.
1495 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1496   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1497   _sp += arg_size();        // restore stack pointer
1498   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1499   return true;
1500 }
1501 
1502 //------------------------------inline_exp-------------------------------------
1503 // Inline exp instructions, if possible.  The Intel hardware only misses
1504 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1505 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1506   assert(id == vmIntrinsics::_dexp, "Not exp");
1507 
1508   // If this inlining ever returned NaN in the past, we do not intrinsify it
1509   // every again.  NaN results requires StrictMath.exp handling.
1510   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1511 
1512   // Do not intrinsify on older platforms which lack cmove.
1513   if (ConditionalMoveLimit == 0)  return false;
1514 
1515   _sp += arg_size();        // restore stack pointer
1516   Node *x = pop_math_arg();
1517   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1518 
1519   //-------------------
1520   //result=(result.isNaN())? StrictMath::exp():result;
1521   // Check: If isNaN() by checking result!=result? then go to Strict Math
1522   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1523   // Build the boolean node
1524   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1525 
1526   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1527     // End the current control-flow path
1528     push_pair(x);
1529     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1530     // to handle.  Recompile without intrinsifying Math.exp
1531     uncommon_trap(Deoptimization::Reason_intrinsic,
1532                   Deoptimization::Action_make_not_entrant);
1533   }
1534 
1535   C->set_has_split_ifs(true); // Has chance for split-if optimization
1536 
1537   push_pair(result);
1538 
1539   return true;
1540 }
1541 
1542 //------------------------------inline_pow-------------------------------------
1543 // Inline power instructions, if possible.
1544 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1545   assert(id == vmIntrinsics::_dpow, "Not pow");
1546 
1547   // If this inlining ever returned NaN in the past, we do not intrinsify it
1548   // every again.  NaN results requires StrictMath.pow handling.
1549   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1550 
1551   // Do not intrinsify on older platforms which lack cmove.
1552   if (ConditionalMoveLimit == 0)  return false;
1553 
1554   // Pseudocode for pow
1555   // if (x <= 0.0) {
1556   //   if ((double)((int)y)==y) { // if y is int
1557   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1558   //   } else {
1559   //     result = NaN;
1560   //   }
1561   // } else {
1562   //   result = DPow(x,y);
1563   // }
1564   // if (result != result)?  {
1565   //   uncommon_trap();
1566   // }
1567   // return result;
1568 
1569   _sp += arg_size();        // restore stack pointer
1570   Node* y = pop_math_arg();
1571   Node* x = pop_math_arg();
1572 
1573   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1574 
1575   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1576   // inside of something) then skip the fancy tests and just check for
1577   // NaN result.
1578   Node *result = NULL;
1579   if( jvms()->depth() >= 1 ) {
1580     result = fast_result;
1581   } else {
1582 
1583     // Set the merge point for If node with condition of (x <= 0.0)
1584     // There are four possible paths to region node and phi node
1585     RegionNode *r = new (C, 4) RegionNode(4);
1586     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1587 
1588     // Build the first if node: if (x <= 0.0)
1589     // Node for 0 constant
1590     Node *zeronode = makecon(TypeD::ZERO);
1591     // Check x:0
1592     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1593     // Check: If (x<=0) then go complex path
1594     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1595     // Branch either way
1596     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1597     Node *opt_test = _gvn.transform(if1);
1598     //assert( opt_test->is_If(), "Expect an IfNode");
1599     IfNode *opt_if1 = (IfNode*)opt_test;
1600     // Fast path taken; set region slot 3
1601     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1602     r->init_req(3,fast_taken); // Capture fast-control
1603 
1604     // Fast path not-taken, i.e. slow path
1605     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1606 
1607     // Set fast path result
1608     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1609     phi->init_req(3, fast_result);
1610 
1611     // Complex path
1612     // Build the second if node (if y is int)
1613     // Node for (int)y
1614     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1615     // Node for (double)((int) y)
1616     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1617     // Check (double)((int) y) : y
1618     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1619     // Check if (y isn't int) then go to slow path
1620 
1621     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1622     // Branch either way
1623     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1624     Node *slow_path = opt_iff(r,if2); // Set region path 2
1625 
1626     // Calculate DPow(abs(x), y)*(1 & (int)y)
1627     // Node for constant 1
1628     Node *conone = intcon(1);
1629     // 1& (int)y
1630     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1631     // zero node
1632     Node *conzero = intcon(0);
1633     // Check (1&(int)y)==0?
1634     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1635     // Check if (1&(int)y)!=0?, if so the result is negative
1636     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1637     // abs(x)
1638     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1639     // abs(x)^y
1640     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1641     // -abs(x)^y
1642     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1643     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1644     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1645     // Set complex path fast result
1646     phi->init_req(2, signresult);
1647 
1648     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1649     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1650     r->init_req(1,slow_path);
1651     phi->init_req(1,slow_result);
1652 
1653     // Post merge
1654     set_control(_gvn.transform(r));
1655     record_for_igvn(r);
1656     result=_gvn.transform(phi);
1657   }
1658 
1659   //-------------------
1660   //result=(result.isNaN())? uncommon_trap():result;
1661   // Check: If isNaN() by checking result!=result? then go to Strict Math
1662   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1663   // Build the boolean node
1664   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1665 
1666   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1667     // End the current control-flow path
1668     push_pair(x);
1669     push_pair(y);
1670     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1671     // to handle.  Recompile without intrinsifying Math.pow.
1672     uncommon_trap(Deoptimization::Reason_intrinsic,
1673                   Deoptimization::Action_make_not_entrant);
1674   }
1675 
1676   C->set_has_split_ifs(true); // Has chance for split-if optimization
1677 
1678   push_pair(result);
1679 
1680   return true;
1681 }
1682 
1683 //------------------------------inline_trans-------------------------------------
1684 // Inline transcendental instructions, if possible.  The Intel hardware gets
1685 // these right, no funny corner cases missed.
1686 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1687   _sp += arg_size();        // restore stack pointer
1688   Node* arg = pop_math_arg();
1689   Node* trans = NULL;
1690 
1691   switch (id) {
1692   case vmIntrinsics::_dlog:
1693     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1694     break;
1695   case vmIntrinsics::_dlog10:
1696     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1697     break;
1698   default:
1699     assert(false, "bad intrinsic was passed in");
1700     return false;
1701   }
1702 
1703   // Push result back on JVM stack
1704   push_pair(trans);
1705   return true;
1706 }
1707 
1708 //------------------------------runtime_math-----------------------------
1709 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1710   Node* a = NULL;
1711   Node* b = NULL;
1712 
1713   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1714          "must be (DD)D or (D)D type");
1715 
1716   // Inputs
1717   _sp += arg_size();        // restore stack pointer
1718   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1719     b = pop_math_arg();
1720   }
1721   a = pop_math_arg();
1722 
1723   const TypePtr* no_memory_effects = NULL;
1724   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1725                                  no_memory_effects,
1726                                  a, top(), b, b ? top() : NULL);
1727   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1728 #ifdef ASSERT
1729   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1730   assert(value_top == top(), "second value must be top");
1731 #endif
1732 
1733   push_pair(value);
1734   return true;
1735 }
1736 
1737 //------------------------------inline_math_native-----------------------------
1738 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1739   switch (id) {
1740     // These intrinsics are not properly supported on all hardware
1741   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1742     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1743   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1744     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1745   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1746     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1747 
1748   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1749     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1750   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1751     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1752 
1753     // These intrinsics are supported on all hardware
1754   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1755   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1756 
1757     // These intrinsics don't work on X86.  The ad implementation doesn't
1758     // handle NaN's properly.  Instead of returning infinity, the ad
1759     // implementation returns a NaN on overflow. See bug: 6304089
1760     // Once the ad implementations are fixed, change the code below
1761     // to match the intrinsics above
1762 
1763   case vmIntrinsics::_dexp:  return
1764     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1765   case vmIntrinsics::_dpow:  return
1766     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1767 
1768    // These intrinsics are not yet correctly implemented
1769   case vmIntrinsics::_datan2:
1770     return false;
1771 
1772   default:
1773     ShouldNotReachHere();
1774     return false;
1775   }
1776 }
1777 
1778 static bool is_simple_name(Node* n) {
1779   return (n->req() == 1         // constant
1780           || (n->is_Type() && n->as_Type()->type()->singleton())
1781           || n->is_Proj()       // parameter or return value
1782           || n->is_Phi()        // local of some sort
1783           );
1784 }
1785 
1786 //----------------------------inline_min_max-----------------------------------
1787 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1788   push(generate_min_max(id, argument(0), argument(1)));
1789 
1790   return true;
1791 }
1792 
1793 Node*
1794 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1795   // These are the candidate return value:
1796   Node* xvalue = x0;
1797   Node* yvalue = y0;
1798 
1799   if (xvalue == yvalue) {
1800     return xvalue;
1801   }
1802 
1803   bool want_max = (id == vmIntrinsics::_max);
1804 
1805   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1806   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1807   if (txvalue == NULL || tyvalue == NULL)  return top();
1808   // This is not really necessary, but it is consistent with a
1809   // hypothetical MaxINode::Value method:
1810   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1811 
1812   // %%% This folding logic should (ideally) be in a different place.
1813   // Some should be inside IfNode, and there to be a more reliable
1814   // transformation of ?: style patterns into cmoves.  We also want
1815   // more powerful optimizations around cmove and min/max.
1816 
1817   // Try to find a dominating comparison of these guys.
1818   // It can simplify the index computation for Arrays.copyOf
1819   // and similar uses of System.arraycopy.
1820   // First, compute the normalized version of CmpI(x, y).
1821   int   cmp_op = Op_CmpI;
1822   Node* xkey = xvalue;
1823   Node* ykey = yvalue;
1824   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1825   if (ideal_cmpxy->is_Cmp()) {
1826     // E.g., if we have CmpI(length - offset, count),
1827     // it might idealize to CmpI(length, count + offset)
1828     cmp_op = ideal_cmpxy->Opcode();
1829     xkey = ideal_cmpxy->in(1);
1830     ykey = ideal_cmpxy->in(2);
1831   }
1832 
1833   // Start by locating any relevant comparisons.
1834   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1835   Node* cmpxy = NULL;
1836   Node* cmpyx = NULL;
1837   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1838     Node* cmp = start_from->fast_out(k);
1839     if (cmp->outcnt() > 0 &&            // must have prior uses
1840         cmp->in(0) == NULL &&           // must be context-independent
1841         cmp->Opcode() == cmp_op) {      // right kind of compare
1842       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1843       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1844     }
1845   }
1846 
1847   const int NCMPS = 2;
1848   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1849   int cmpn;
1850   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1851     if (cmps[cmpn] != NULL)  break;     // find a result
1852   }
1853   if (cmpn < NCMPS) {
1854     // Look for a dominating test that tells us the min and max.
1855     int depth = 0;                // Limit search depth for speed
1856     Node* dom = control();
1857     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1858       if (++depth >= 100)  break;
1859       Node* ifproj = dom;
1860       if (!ifproj->is_Proj())  continue;
1861       Node* iff = ifproj->in(0);
1862       if (!iff->is_If())  continue;
1863       Node* bol = iff->in(1);
1864       if (!bol->is_Bool())  continue;
1865       Node* cmp = bol->in(1);
1866       if (cmp == NULL)  continue;
1867       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1868         if (cmps[cmpn] == cmp)  break;
1869       if (cmpn == NCMPS)  continue;
1870       BoolTest::mask btest = bol->as_Bool()->_test._test;
1871       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1872       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1873       // At this point, we know that 'x btest y' is true.
1874       switch (btest) {
1875       case BoolTest::eq:
1876         // They are proven equal, so we can collapse the min/max.
1877         // Either value is the answer.  Choose the simpler.
1878         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1879           return yvalue;
1880         return xvalue;
1881       case BoolTest::lt:          // x < y
1882       case BoolTest::le:          // x <= y
1883         return (want_max ? yvalue : xvalue);
1884       case BoolTest::gt:          // x > y
1885       case BoolTest::ge:          // x >= y
1886         return (want_max ? xvalue : yvalue);
1887       }
1888     }
1889   }
1890 
1891   // We failed to find a dominating test.
1892   // Let's pick a test that might GVN with prior tests.
1893   Node*          best_bol   = NULL;
1894   BoolTest::mask best_btest = BoolTest::illegal;
1895   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1896     Node* cmp = cmps[cmpn];
1897     if (cmp == NULL)  continue;
1898     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1899       Node* bol = cmp->fast_out(j);
1900       if (!bol->is_Bool())  continue;
1901       BoolTest::mask btest = bol->as_Bool()->_test._test;
1902       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1903       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1904       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1905         best_bol   = bol->as_Bool();
1906         best_btest = btest;
1907       }
1908     }
1909   }
1910 
1911   Node* answer_if_true  = NULL;
1912   Node* answer_if_false = NULL;
1913   switch (best_btest) {
1914   default:
1915     if (cmpxy == NULL)
1916       cmpxy = ideal_cmpxy;
1917     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1918     // and fall through:
1919   case BoolTest::lt:          // x < y
1920   case BoolTest::le:          // x <= y
1921     answer_if_true  = (want_max ? yvalue : xvalue);
1922     answer_if_false = (want_max ? xvalue : yvalue);
1923     break;
1924   case BoolTest::gt:          // x > y
1925   case BoolTest::ge:          // x >= y
1926     answer_if_true  = (want_max ? xvalue : yvalue);
1927     answer_if_false = (want_max ? yvalue : xvalue);
1928     break;
1929   }
1930 
1931   jint hi, lo;
1932   if (want_max) {
1933     // We can sharpen the minimum.
1934     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1935     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1936   } else {
1937     // We can sharpen the maximum.
1938     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1939     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1940   }
1941 
1942   // Use a flow-free graph structure, to avoid creating excess control edges
1943   // which could hinder other optimizations.
1944   // Since Math.min/max is often used with arraycopy, we want
1945   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1946   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1947                                answer_if_false, answer_if_true,
1948                                TypeInt::make(lo, hi, widen));
1949 
1950   return _gvn.transform(cmov);
1951 
1952   /*
1953   // This is not as desirable as it may seem, since Min and Max
1954   // nodes do not have a full set of optimizations.
1955   // And they would interfere, anyway, with 'if' optimizations
1956   // and with CMoveI canonical forms.
1957   switch (id) {
1958   case vmIntrinsics::_min:
1959     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1960   case vmIntrinsics::_max:
1961     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1962   default:
1963     ShouldNotReachHere();
1964   }
1965   */
1966 }
1967 
1968 inline int
1969 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1970   const TypePtr* base_type = TypePtr::NULL_PTR;
1971   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1972   if (base_type == NULL) {
1973     // Unknown type.
1974     return Type::AnyPtr;
1975   } else if (base_type == TypePtr::NULL_PTR) {
1976     // Since this is a NULL+long form, we have to switch to a rawptr.
1977     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1978     offset = MakeConX(0);
1979     return Type::RawPtr;
1980   } else if (base_type->base() == Type::RawPtr) {
1981     return Type::RawPtr;
1982   } else if (base_type->isa_oopptr()) {
1983     // Base is never null => always a heap address.
1984     if (base_type->ptr() == TypePtr::NotNull) {
1985       return Type::OopPtr;
1986     }
1987     // Offset is small => always a heap address.
1988     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1989     if (offset_type != NULL &&
1990         base_type->offset() == 0 &&     // (should always be?)
1991         offset_type->_lo >= 0 &&
1992         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1993       return Type::OopPtr;
1994     }
1995     // Otherwise, it might either be oop+off or NULL+addr.
1996     return Type::AnyPtr;
1997   } else {
1998     // No information:
1999     return Type::AnyPtr;
2000   }
2001 }
2002 
2003 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2004   int kind = classify_unsafe_addr(base, offset);
2005   if (kind == Type::RawPtr) {
2006     return basic_plus_adr(top(), base, offset);
2007   } else {
2008     return basic_plus_adr(base, offset);
2009   }
2010 }
2011 
2012 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
2013 // inline int Integer.numberOfLeadingZeros(int)
2014 // inline int Long.numberOfLeadingZeros(long)
2015 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
2016   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
2017   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
2018   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
2019   _sp += arg_size();  // restore stack pointer
2020   switch (id) {
2021   case vmIntrinsics::_numberOfLeadingZeros_i:
2022     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
2023     break;
2024   case vmIntrinsics::_numberOfLeadingZeros_l:
2025     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
2026     break;
2027   default:
2028     ShouldNotReachHere();
2029   }
2030   return true;
2031 }
2032 
2033 //-------------------inline_numberOfTrailingZeros_int/long----------------------
2034 // inline int Integer.numberOfTrailingZeros(int)
2035 // inline int Long.numberOfTrailingZeros(long)
2036 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
2037   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
2038   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
2039   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
2040   _sp += arg_size();  // restore stack pointer
2041   switch (id) {
2042   case vmIntrinsics::_numberOfTrailingZeros_i:
2043     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
2044     break;
2045   case vmIntrinsics::_numberOfTrailingZeros_l:
2046     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
2047     break;
2048   default:
2049     ShouldNotReachHere();
2050   }
2051   return true;
2052 }
2053 
2054 //----------------------------inline_bitCount_int/long-----------------------
2055 // inline int Integer.bitCount(int)
2056 // inline int Long.bitCount(long)
2057 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2058   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2059   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2060   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2061   _sp += arg_size();  // restore stack pointer
2062   switch (id) {
2063   case vmIntrinsics::_bitCount_i:
2064     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2065     break;
2066   case vmIntrinsics::_bitCount_l:
2067     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2068     break;
2069   default:
2070     ShouldNotReachHere();
2071   }
2072   return true;
2073 }
2074 
2075 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2076 // inline Integer.reverseBytes(int)
2077 // inline Long.reverseBytes(long)
2078 // inline Character.reverseBytes(char)
2079 // inline Short.reverseBytes(short)
2080 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2081   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2082          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2083          "not reverse Bytes");
2084   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2085   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2086   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2087   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2088   _sp += arg_size();        // restore stack pointer
2089   switch (id) {
2090   case vmIntrinsics::_reverseBytes_i:
2091     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2092     break;
2093   case vmIntrinsics::_reverseBytes_l:
2094     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2095     break;
2096   case vmIntrinsics::_reverseBytes_c:
2097     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2098     break;
2099   case vmIntrinsics::_reverseBytes_s:
2100     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2101     break;
2102   default:
2103     ;
2104   }
2105   return true;
2106 }
2107 
2108 //----------------------------inline_unsafe_access----------------------------
2109 
2110 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2111 
2112 // Helper that guards and inserts a G1 pre-barrier.
2113 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
2114   assert(UseG1GC, "should not call this otherwise");
2115 
2116   // We could be accessing the referent field of a reference object. If so, when G1
2117   // is enabled, we need to log the value in the referent field in an SATB buffer.
2118   // This routine performs some compile time filters and generates suitable
2119   // runtime filters that guard the pre-barrier code.
2120 
2121   // Some compile time checks.
2122 
2123   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2124   const TypeX* otype = offset->find_intptr_t_type();
2125   if (otype != NULL && otype->is_con() &&
2126       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2127     // Constant offset but not the reference_offset so just return
2128     return;
2129   }
2130 
2131   // We only need to generate the runtime guards for instances.
2132   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2133   if (btype != NULL) {
2134     if (btype->isa_aryptr()) {
2135       // Array type so nothing to do
2136       return;
2137     }
2138 
2139     const TypeInstPtr* itype = btype->isa_instptr();
2140     if (itype != NULL) {
2141       // Can the klass of base_oop be statically determined
2142       // to be _not_ a sub-class of Reference?
2143       ciKlass* klass = itype->klass();
2144       if (klass->is_subtype_of(env()->Reference_klass()) &&
2145           !env()->Reference_klass()->is_subtype_of(klass)) {
2146         return;
2147       }
2148     }
2149   }
2150 
2151   // The compile time filters did not reject base_oop/offset so
2152   // we need to generate the following runtime filters
2153   //
2154   // if (offset == java_lang_ref_Reference::_reference_offset) {
2155   //   if (base != null) {
2156   //     if (klass(base)->reference_type() != REF_NONE)) {
2157   //       pre_barrier(_, pre_val, ...);
2158   //     }
2159   //   }
2160   // }
2161 
2162   float likely  = PROB_LIKELY(0.999);
2163   float unlikely  = PROB_UNLIKELY(0.999);
2164 
2165   IdealKit ideal(this);
2166 #define __ ideal.
2167 
2168   const int reference_type_offset = instanceKlass::reference_type_offset_in_bytes() +
2169                                         sizeof(oopDesc);
2170 
2171   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2172 
2173   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2174     __ if_then(base_oop, BoolTest::ne, null(), likely); {
2175 
2176       // Update graphKit memory and control from IdealKit.
2177       sync_kit(ideal);
2178 
2179       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2180       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2181 
2182       // Update IdealKit memory and control from graphKit.
2183       __ sync_kit(this);
2184 
2185       Node* one = __ ConI(1);
2186 
2187       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2188 
2189         // Update graphKit from IdeakKit.
2190         sync_kit(ideal);
2191 
2192         // Use the pre-barrier to record the value in the referent field
2193         pre_barrier(false /* do_load */,
2194                     __ ctrl(),
2195                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2196                     pre_val /* pre_val */,
2197                     T_OBJECT);
2198 
2199         // Update IdealKit from graphKit.
2200         __ sync_kit(this);
2201 
2202       } __ end_if(); // _ref_type != ref_none
2203     } __ end_if(); // base  != NULL
2204   } __ end_if(); // offset == referent_offset
2205 
2206   // Final sync IdealKit and GraphKit.
2207   final_sync(ideal);
2208 #undef __
2209 }
2210 
2211 
2212 // Interpret Unsafe.fieldOffset cookies correctly:
2213 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2214 
2215 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2216   if (callee()->is_static())  return false;  // caller must have the capability!
2217 
2218 #ifndef PRODUCT
2219   {
2220     ResourceMark rm;
2221     // Check the signatures.
2222     ciSignature* sig = signature();
2223 #ifdef ASSERT
2224     if (!is_store) {
2225       // Object getObject(Object base, int/long offset), etc.
2226       BasicType rtype = sig->return_type()->basic_type();
2227       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2228           rtype = T_ADDRESS;  // it is really a C void*
2229       assert(rtype == type, "getter must return the expected value");
2230       if (!is_native_ptr) {
2231         assert(sig->count() == 2, "oop getter has 2 arguments");
2232         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2233         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2234       } else {
2235         assert(sig->count() == 1, "native getter has 1 argument");
2236         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2237       }
2238     } else {
2239       // void putObject(Object base, int/long offset, Object x), etc.
2240       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2241       if (!is_native_ptr) {
2242         assert(sig->count() == 3, "oop putter has 3 arguments");
2243         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2244         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2245       } else {
2246         assert(sig->count() == 2, "native putter has 2 arguments");
2247         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2248       }
2249       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2250       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2251         vtype = T_ADDRESS;  // it is really a C void*
2252       assert(vtype == type, "putter must accept the expected value");
2253     }
2254 #endif // ASSERT
2255  }
2256 #endif //PRODUCT
2257 
2258   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2259 
2260   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2261 
2262   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2263   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2264 
2265   debug_only(int saved_sp = _sp);
2266   _sp += nargs;
2267 
2268   Node* val;
2269   debug_only(val = (Node*)(uintptr_t)-1);
2270 
2271 
2272   if (is_store) {
2273     // Get the value being stored.  (Pop it first; it was pushed last.)
2274     switch (type) {
2275     case T_DOUBLE:
2276     case T_LONG:
2277     case T_ADDRESS:
2278       val = pop_pair();
2279       break;
2280     default:
2281       val = pop();
2282     }
2283   }
2284 
2285   // Build address expression.  See the code in inline_unsafe_prefetch.
2286   Node *adr;
2287   Node *heap_base_oop = top();
2288   Node* offset = top();
2289 
2290   if (!is_native_ptr) {
2291     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2292     offset = pop_pair();
2293     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2294     Node* base   = pop();
2295     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2296     // to be plain byte offsets, which are also the same as those accepted
2297     // by oopDesc::field_base.
2298     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2299            "fieldOffset must be byte-scaled");
2300     // 32-bit machines ignore the high half!
2301     offset = ConvL2X(offset);
2302     adr = make_unsafe_address(base, offset);
2303     heap_base_oop = base;
2304   } else {
2305     Node* ptr = pop_pair();
2306     // Adjust Java long to machine word:
2307     ptr = ConvL2X(ptr);
2308     adr = make_unsafe_address(NULL, ptr);
2309   }
2310 
2311   // Pop receiver last:  it was pushed first.
2312   Node *receiver = pop();
2313 
2314   assert(saved_sp == _sp, "must have correct argument count");
2315 
2316   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2317 
2318   // First guess at the value type.
2319   const Type *value_type = Type::get_const_basic_type(type);
2320 
2321   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2322   // there was not enough information to nail it down.
2323   Compile::AliasType* alias_type = C->alias_type(adr_type);
2324   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2325 
2326   // We will need memory barriers unless we can determine a unique
2327   // alias category for this reference.  (Note:  If for some reason
2328   // the barriers get omitted and the unsafe reference begins to "pollute"
2329   // the alias analysis of the rest of the graph, either Compile::can_alias
2330   // or Compile::must_alias will throw a diagnostic assert.)
2331   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2332 
2333   // If we are reading the value of the referent field of a Reference
2334   // object (either by using Unsafe directly or through reflection)
2335   // then, if G1 is enabled, we need to record the referent in an
2336   // SATB log buffer using the pre-barrier mechanism.
2337   bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
2338                            offset != top() && heap_base_oop != top();
2339 
2340   if (!is_store && type == T_OBJECT) {
2341     // Attempt to infer a sharper value type from the offset and base type.
2342     ciKlass* sharpened_klass = NULL;
2343 
2344     // See if it is an instance field, with an object type.
2345     if (alias_type->field() != NULL) {
2346       assert(!is_native_ptr, "native pointer op cannot use a java address");
2347       if (alias_type->field()->type()->is_klass()) {
2348         sharpened_klass = alias_type->field()->type()->as_klass();
2349       }
2350     }
2351 
2352     // See if it is a narrow oop array.
2353     if (adr_type->isa_aryptr()) {
2354       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2355         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2356         if (elem_type != NULL) {
2357           sharpened_klass = elem_type->klass();
2358         }
2359       }
2360     }
2361 
2362     if (sharpened_klass != NULL) {
2363       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2364 
2365       // Sharpen the value type.
2366       value_type = tjp;
2367 
2368 #ifndef PRODUCT
2369       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2370         tty->print("  from base type:  ");   adr_type->dump();
2371         tty->print("  sharpened value: "); value_type->dump();
2372       }
2373 #endif
2374     }
2375   }
2376 
2377   // Null check on self without removing any arguments.  The argument
2378   // null check technically happens in the wrong place, which can lead to
2379   // invalid stack traces when the primitive is inlined into a method
2380   // which handles NullPointerExceptions.
2381   _sp += nargs;
2382   do_null_check(receiver, T_OBJECT);
2383   _sp -= nargs;
2384   if (stopped()) {
2385     return true;
2386   }
2387   // Heap pointers get a null-check from the interpreter,
2388   // as a courtesy.  However, this is not guaranteed by Unsafe,
2389   // and it is not possible to fully distinguish unintended nulls
2390   // from intended ones in this API.
2391 
2392   if (is_volatile) {
2393     // We need to emit leading and trailing CPU membars (see below) in
2394     // addition to memory membars when is_volatile. This is a little
2395     // too strong, but avoids the need to insert per-alias-type
2396     // volatile membars (for stores; compare Parse::do_put_xxx), which
2397     // we cannot do effectively here because we probably only have a
2398     // rough approximation of type.
2399     need_mem_bar = true;
2400     // For Stores, place a memory ordering barrier now.
2401     if (is_store)
2402       insert_mem_bar(Op_MemBarRelease);
2403   }
2404 
2405   // Memory barrier to prevent normal and 'unsafe' accesses from
2406   // bypassing each other.  Happens after null checks, so the
2407   // exception paths do not take memory state from the memory barrier,
2408   // so there's no problems making a strong assert about mixing users
2409   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2410   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2411   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2412 
2413   if (!is_store) {
2414     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2415     // load value and push onto stack
2416     switch (type) {
2417     case T_BOOLEAN:
2418     case T_CHAR:
2419     case T_BYTE:
2420     case T_SHORT:
2421     case T_INT:
2422     case T_FLOAT:
2423       push(p);
2424       break;
2425     case T_OBJECT:
2426       if (need_read_barrier) {
2427         insert_g1_pre_barrier(heap_base_oop, offset, p);
2428       }
2429       push(p);
2430       break;
2431     case T_ADDRESS:
2432       // Cast to an int type.
2433       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2434       p = ConvX2L(p);
2435       push_pair(p);
2436       break;
2437     case T_DOUBLE:
2438     case T_LONG:
2439       push_pair( p );
2440       break;
2441     default: ShouldNotReachHere();
2442     }
2443   } else {
2444     // place effect of store into memory
2445     switch (type) {
2446     case T_DOUBLE:
2447       val = dstore_rounding(val);
2448       break;
2449     case T_ADDRESS:
2450       // Repackage the long as a pointer.
2451       val = ConvL2X(val);
2452       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2453       break;
2454     }
2455 
2456     if (type != T_OBJECT ) {
2457       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2458     } else {
2459       // Possibly an oop being stored to Java heap or native memory
2460       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2461         // oop to Java heap.
2462         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2463       } else {
2464         // We can't tell at compile time if we are storing in the Java heap or outside
2465         // of it. So we need to emit code to conditionally do the proper type of
2466         // store.
2467 
2468         IdealKit ideal(this);
2469 #define __ ideal.
2470         // QQQ who knows what probability is here??
2471         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2472           // Sync IdealKit and graphKit.
2473           sync_kit(ideal);
2474           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2475           // Update IdealKit memory.
2476           __ sync_kit(this);
2477         } __ else_(); {
2478           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2479         } __ end_if();
2480         // Final sync IdealKit and GraphKit.
2481         final_sync(ideal);
2482 #undef __
2483       }
2484     }
2485   }
2486 
2487   if (is_volatile) {
2488     if (!is_store)
2489       insert_mem_bar(Op_MemBarAcquire);
2490     else
2491       insert_mem_bar(Op_MemBarVolatile);
2492   }
2493 
2494   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2495 
2496   return true;
2497 }
2498 
2499 //----------------------------inline_unsafe_prefetch----------------------------
2500 
2501 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2502 #ifndef PRODUCT
2503   {
2504     ResourceMark rm;
2505     // Check the signatures.
2506     ciSignature* sig = signature();
2507 #ifdef ASSERT
2508     // Object getObject(Object base, int/long offset), etc.
2509     BasicType rtype = sig->return_type()->basic_type();
2510     if (!is_native_ptr) {
2511       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2512       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2513       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2514     } else {
2515       assert(sig->count() == 1, "native prefetch has 1 argument");
2516       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2517     }
2518 #endif // ASSERT
2519   }
2520 #endif // !PRODUCT
2521 
2522   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2523 
2524   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2525   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2526 
2527   debug_only(int saved_sp = _sp);
2528   _sp += nargs;
2529 
2530   // Build address expression.  See the code in inline_unsafe_access.
2531   Node *adr;
2532   if (!is_native_ptr) {
2533     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2534     Node* offset = pop_pair();
2535     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2536     Node* base   = pop();
2537     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2538     // to be plain byte offsets, which are also the same as those accepted
2539     // by oopDesc::field_base.
2540     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2541            "fieldOffset must be byte-scaled");
2542     // 32-bit machines ignore the high half!
2543     offset = ConvL2X(offset);
2544     adr = make_unsafe_address(base, offset);
2545   } else {
2546     Node* ptr = pop_pair();
2547     // Adjust Java long to machine word:
2548     ptr = ConvL2X(ptr);
2549     adr = make_unsafe_address(NULL, ptr);
2550   }
2551 
2552   if (is_static) {
2553     assert(saved_sp == _sp, "must have correct argument count");
2554   } else {
2555     // Pop receiver last:  it was pushed first.
2556     Node *receiver = pop();
2557     assert(saved_sp == _sp, "must have correct argument count");
2558 
2559     // Null check on self without removing any arguments.  The argument
2560     // null check technically happens in the wrong place, which can lead to
2561     // invalid stack traces when the primitive is inlined into a method
2562     // which handles NullPointerExceptions.
2563     _sp += nargs;
2564     do_null_check(receiver, T_OBJECT);
2565     _sp -= nargs;
2566     if (stopped()) {
2567       return true;
2568     }
2569   }
2570 
2571   // Generate the read or write prefetch
2572   Node *prefetch;
2573   if (is_store) {
2574     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2575   } else {
2576     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2577   }
2578   prefetch->init_req(0, control());
2579   set_i_o(_gvn.transform(prefetch));
2580 
2581   return true;
2582 }
2583 
2584 //----------------------------inline_unsafe_CAS----------------------------
2585 
2586 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2587   // This basic scheme here is the same as inline_unsafe_access, but
2588   // differs in enough details that combining them would make the code
2589   // overly confusing.  (This is a true fact! I originally combined
2590   // them, but even I was confused by it!) As much code/comments as
2591   // possible are retained from inline_unsafe_access though to make
2592   // the correspondences clearer. - dl
2593 
2594   if (callee()->is_static())  return false;  // caller must have the capability!
2595 
2596 #ifndef PRODUCT
2597   {
2598     ResourceMark rm;
2599     // Check the signatures.
2600     ciSignature* sig = signature();
2601 #ifdef ASSERT
2602     BasicType rtype = sig->return_type()->basic_type();
2603     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2604     assert(sig->count() == 4, "CAS has 4 arguments");
2605     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2606     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2607 #endif // ASSERT
2608   }
2609 #endif //PRODUCT
2610 
2611   // number of stack slots per value argument (1 or 2)
2612   int type_words = type2size[type];
2613 
2614   // Cannot inline wide CAS on machines that don't support it natively
2615   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2616     return false;
2617 
2618   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2619 
2620   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2621   int nargs = 1 + 1 + 2  + type_words + type_words;
2622 
2623   // pop arguments: newval, oldval, offset, base, and receiver
2624   debug_only(int saved_sp = _sp);
2625   _sp += nargs;
2626   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2627   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2628   Node *offset   = pop_pair();
2629   Node *base     = pop();
2630   Node *receiver = pop();
2631   assert(saved_sp == _sp, "must have correct argument count");
2632 
2633   //  Null check receiver.
2634   _sp += nargs;
2635   do_null_check(receiver, T_OBJECT);
2636   _sp -= nargs;
2637   if (stopped()) {
2638     return true;
2639   }
2640 
2641   // Build field offset expression.
2642   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2643   // to be plain byte offsets, which are also the same as those accepted
2644   // by oopDesc::field_base.
2645   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2646   // 32-bit machines ignore the high half of long offsets
2647   offset = ConvL2X(offset);
2648   Node* adr = make_unsafe_address(base, offset);
2649   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2650 
2651   // (Unlike inline_unsafe_access, there seems no point in trying
2652   // to refine types. Just use the coarse types here.
2653   const Type *value_type = Type::get_const_basic_type(type);
2654   Compile::AliasType* alias_type = C->alias_type(adr_type);
2655   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2656   int alias_idx = C->get_alias_index(adr_type);
2657 
2658   // Memory-model-wise, a CAS acts like a little synchronized block,
2659   // so needs barriers on each side.  These don't translate into
2660   // actual barriers on most machines, but we still need rest of
2661   // compiler to respect ordering.
2662 
2663   insert_mem_bar(Op_MemBarRelease);
2664   insert_mem_bar(Op_MemBarCPUOrder);
2665 
2666   // 4984716: MemBars must be inserted before this
2667   //          memory node in order to avoid a false
2668   //          dependency which will confuse the scheduler.
2669   Node *mem = memory(alias_idx);
2670 
2671   // For now, we handle only those cases that actually exist: ints,
2672   // longs, and Object. Adding others should be straightforward.
2673   Node* cas;
2674   switch(type) {
2675   case T_INT:
2676     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2677     break;
2678   case T_LONG:
2679     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2680     break;
2681   case T_OBJECT:
2682      // reference stores need a store barrier.
2683     // (They don't if CAS fails, but it isn't worth checking.)
2684     pre_barrier(true /* do_load*/,
2685                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2686                 NULL /* pre_val*/,
2687                 T_OBJECT);
2688 #ifdef _LP64
2689     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2690       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2691       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2692       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2693                                                           newval_enc, oldval_enc));
2694     } else
2695 #endif
2696     {
2697       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2698     }
2699     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2700     break;
2701   default:
2702     ShouldNotReachHere();
2703     break;
2704   }
2705 
2706   // SCMemProjNodes represent the memory state of CAS. Their main
2707   // role is to prevent CAS nodes from being optimized away when their
2708   // results aren't used.
2709   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2710   set_memory(proj, alias_idx);
2711 
2712   // Add the trailing membar surrounding the access
2713   insert_mem_bar(Op_MemBarCPUOrder);
2714   insert_mem_bar(Op_MemBarAcquire);
2715 
2716   push(cas);
2717   return true;
2718 }
2719 
2720 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2721   // This is another variant of inline_unsafe_access, differing in
2722   // that it always issues store-store ("release") barrier and ensures
2723   // store-atomicity (which only matters for "long").
2724 
2725   if (callee()->is_static())  return false;  // caller must have the capability!
2726 
2727 #ifndef PRODUCT
2728   {
2729     ResourceMark rm;
2730     // Check the signatures.
2731     ciSignature* sig = signature();
2732 #ifdef ASSERT
2733     BasicType rtype = sig->return_type()->basic_type();
2734     assert(rtype == T_VOID, "must return void");
2735     assert(sig->count() == 3, "has 3 arguments");
2736     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2737     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2738 #endif // ASSERT
2739   }
2740 #endif //PRODUCT
2741 
2742   // number of stack slots per value argument (1 or 2)
2743   int type_words = type2size[type];
2744 
2745   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2746 
2747   // Argument words:  "this" plus oop plus offset plus value;
2748   int nargs = 1 + 1 + 2 + type_words;
2749 
2750   // pop arguments: val, offset, base, and receiver
2751   debug_only(int saved_sp = _sp);
2752   _sp += nargs;
2753   Node* val      = (type_words == 1) ? pop() : pop_pair();
2754   Node *offset   = pop_pair();
2755   Node *base     = pop();
2756   Node *receiver = pop();
2757   assert(saved_sp == _sp, "must have correct argument count");
2758 
2759   //  Null check receiver.
2760   _sp += nargs;
2761   do_null_check(receiver, T_OBJECT);
2762   _sp -= nargs;
2763   if (stopped()) {
2764     return true;
2765   }
2766 
2767   // Build field offset expression.
2768   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2769   // 32-bit machines ignore the high half of long offsets
2770   offset = ConvL2X(offset);
2771   Node* adr = make_unsafe_address(base, offset);
2772   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2773   const Type *value_type = Type::get_const_basic_type(type);
2774   Compile::AliasType* alias_type = C->alias_type(adr_type);
2775 
2776   insert_mem_bar(Op_MemBarRelease);
2777   insert_mem_bar(Op_MemBarCPUOrder);
2778   // Ensure that the store is atomic for longs:
2779   bool require_atomic_access = true;
2780   Node* store;
2781   if (type == T_OBJECT) // reference stores need a store barrier.
2782     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2783   else {
2784     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2785   }
2786   insert_mem_bar(Op_MemBarCPUOrder);
2787   return true;
2788 }
2789 
2790 bool LibraryCallKit::inline_unsafe_allocate() {
2791   if (callee()->is_static())  return false;  // caller must have the capability!
2792   int nargs = 1 + 1;
2793   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2794   null_check_receiver(callee());  // check then ignore argument(0)
2795   _sp += nargs;  // set original stack for use by uncommon_trap
2796   Node* cls = do_null_check(argument(1), T_OBJECT);
2797   _sp -= nargs;
2798   if (stopped())  return true;
2799 
2800   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2801   _sp += nargs;  // set original stack for use by uncommon_trap
2802   kls = do_null_check(kls, T_OBJECT);
2803   _sp -= nargs;
2804   if (stopped())  return true;  // argument was like int.class
2805 
2806   // Note:  The argument might still be an illegal value like
2807   // Serializable.class or Object[].class.   The runtime will handle it.
2808   // But we must make an explicit check for initialization.
2809   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2810   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2811   Node* bits = intcon(instanceKlass::fully_initialized);
2812   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2813   // The 'test' is non-zero if we need to take a slow path.
2814 
2815   Node* obj = new_instance(kls, test);
2816   push(obj);
2817 
2818   return true;
2819 }
2820 
2821 //------------------------inline_native_time_funcs--------------
2822 // inline code for System.currentTimeMillis() and System.nanoTime()
2823 // these have the same type and signature
2824 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2825   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2826                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2827   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2828   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2829   const TypePtr* no_memory_effects = NULL;
2830   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2831   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2832 #ifdef ASSERT
2833   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2834   assert(value_top == top(), "second value must be top");
2835 #endif
2836   push_pair(value);
2837   return true;
2838 }
2839 
2840 //------------------------inline_native_currentThread------------------
2841 bool LibraryCallKit::inline_native_currentThread() {
2842   Node* junk = NULL;
2843   push(generate_current_thread(junk));
2844   return true;
2845 }
2846 
2847 //------------------------inline_native_isInterrupted------------------
2848 bool LibraryCallKit::inline_native_isInterrupted() {
2849   const int nargs = 1+1;  // receiver + boolean
2850   assert(nargs == arg_size(), "sanity");
2851   // Add a fast path to t.isInterrupted(clear_int):
2852   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2853   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2854   // So, in the common case that the interrupt bit is false,
2855   // we avoid making a call into the VM.  Even if the interrupt bit
2856   // is true, if the clear_int argument is false, we avoid the VM call.
2857   // However, if the receiver is not currentThread, we must call the VM,
2858   // because there must be some locking done around the operation.
2859 
2860   // We only go to the fast case code if we pass two guards.
2861   // Paths which do not pass are accumulated in the slow_region.
2862   RegionNode* slow_region = new (C, 1) RegionNode(1);
2863   record_for_igvn(slow_region);
2864   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2865   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2866   enum { no_int_result_path   = 1,
2867          no_clear_result_path = 2,
2868          slow_result_path     = 3
2869   };
2870 
2871   // (a) Receiving thread must be the current thread.
2872   Node* rec_thr = argument(0);
2873   Node* tls_ptr = NULL;
2874   Node* cur_thr = generate_current_thread(tls_ptr);
2875   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2876   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2877 
2878   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2879   if (!known_current_thread)
2880     generate_slow_guard(bol_thr, slow_region);
2881 
2882   // (b) Interrupt bit on TLS must be false.
2883   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2884   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2885   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2886   // Set the control input on the field _interrupted read to prevent it floating up.
2887   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2888   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2889   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2890 
2891   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2892 
2893   // First fast path:  if (!TLS._interrupted) return false;
2894   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2895   result_rgn->init_req(no_int_result_path, false_bit);
2896   result_val->init_req(no_int_result_path, intcon(0));
2897 
2898   // drop through to next case
2899   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2900 
2901   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2902   Node* clr_arg = argument(1);
2903   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2904   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2905   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2906 
2907   // Second fast path:  ... else if (!clear_int) return true;
2908   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2909   result_rgn->init_req(no_clear_result_path, false_arg);
2910   result_val->init_req(no_clear_result_path, intcon(1));
2911 
2912   // drop through to next case
2913   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2914 
2915   // (d) Otherwise, go to the slow path.
2916   slow_region->add_req(control());
2917   set_control( _gvn.transform(slow_region) );
2918 
2919   if (stopped()) {
2920     // There is no slow path.
2921     result_rgn->init_req(slow_result_path, top());
2922     result_val->init_req(slow_result_path, top());
2923   } else {
2924     // non-virtual because it is a private non-static
2925     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2926 
2927     Node* slow_val = set_results_for_java_call(slow_call);
2928     // this->control() comes from set_results_for_java_call
2929 
2930     // If we know that the result of the slow call will be true, tell the optimizer!
2931     if (known_current_thread)  slow_val = intcon(1);
2932 
2933     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2934     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2935     // These two phis are pre-filled with copies of of the fast IO and Memory
2936     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2937     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2938 
2939     result_rgn->init_req(slow_result_path, control());
2940     io_phi    ->init_req(slow_result_path, i_o());
2941     mem_phi   ->init_req(slow_result_path, reset_memory());
2942     result_val->init_req(slow_result_path, slow_val);
2943 
2944     set_all_memory( _gvn.transform(mem_phi) );
2945     set_i_o(        _gvn.transform(io_phi) );
2946   }
2947 
2948   push_result(result_rgn, result_val);
2949   C->set_has_split_ifs(true); // Has chance for split-if optimization
2950 
2951   return true;
2952 }
2953 
2954 //---------------------------load_mirror_from_klass----------------------------
2955 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2956 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2957   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2958   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2959 }
2960 
2961 //-----------------------load_klass_from_mirror_common-------------------------
2962 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2963 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2964 // and branch to the given path on the region.
2965 // If never_see_null, take an uncommon trap on null, so we can optimistically
2966 // compile for the non-null case.
2967 // If the region is NULL, force never_see_null = true.
2968 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2969                                                     bool never_see_null,
2970                                                     int nargs,
2971                                                     RegionNode* region,
2972                                                     int null_path,
2973                                                     int offset) {
2974   if (region == NULL)  never_see_null = true;
2975   Node* p = basic_plus_adr(mirror, offset);
2976   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2977   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2978   _sp += nargs; // any deopt will start just before call to enclosing method
2979   Node* null_ctl = top();
2980   kls = null_check_oop(kls, &null_ctl, never_see_null);
2981   if (region != NULL) {
2982     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2983     region->init_req(null_path, null_ctl);
2984   } else {
2985     assert(null_ctl == top(), "no loose ends");
2986   }
2987   _sp -= nargs;
2988   return kls;
2989 }
2990 
2991 //--------------------(inline_native_Class_query helpers)---------------------
2992 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2993 // Fall through if (mods & mask) == bits, take the guard otherwise.
2994 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2995   // Branch around if the given klass has the given modifier bit set.
2996   // Like generate_guard, adds a new path onto the region.
2997   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2998   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2999   Node* mask = intcon(modifier_mask);
3000   Node* bits = intcon(modifier_bits);
3001   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
3002   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
3003   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
3004   return generate_fair_guard(bol, region);
3005 }
3006 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3007   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3008 }
3009 
3010 //-------------------------inline_native_Class_query-------------------
3011 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3012   int nargs = 1+0;  // just the Class mirror, in most cases
3013   const Type* return_type = TypeInt::BOOL;
3014   Node* prim_return_value = top();  // what happens if it's a primitive class?
3015   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3016   bool expect_prim = false;     // most of these guys expect to work on refs
3017 
3018   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3019 
3020   switch (id) {
3021   case vmIntrinsics::_isInstance:
3022     nargs = 1+1;  // the Class mirror, plus the object getting queried about
3023     // nothing is an instance of a primitive type
3024     prim_return_value = intcon(0);
3025     break;
3026   case vmIntrinsics::_getModifiers:
3027     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3028     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3029     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3030     break;
3031   case vmIntrinsics::_isInterface:
3032     prim_return_value = intcon(0);
3033     break;
3034   case vmIntrinsics::_isArray:
3035     prim_return_value = intcon(0);
3036     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3037     break;
3038   case vmIntrinsics::_isPrimitive:
3039     prim_return_value = intcon(1);
3040     expect_prim = true;  // obviously
3041     break;
3042   case vmIntrinsics::_getSuperclass:
3043     prim_return_value = null();
3044     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3045     break;
3046   case vmIntrinsics::_getComponentType:
3047     prim_return_value = null();
3048     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3049     break;
3050   case vmIntrinsics::_getClassAccessFlags:
3051     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3052     return_type = TypeInt::INT;  // not bool!  6297094
3053     break;
3054   default:
3055     ShouldNotReachHere();
3056   }
3057 
3058   Node* mirror =                      argument(0);
3059   Node* obj    = (nargs <= 1)? top(): argument(1);
3060 
3061   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3062   if (mirror_con == NULL)  return false;  // cannot happen?
3063 
3064 #ifndef PRODUCT
3065   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3066     ciType* k = mirror_con->java_mirror_type();
3067     if (k) {
3068       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3069       k->print_name();
3070       tty->cr();
3071     }
3072   }
3073 #endif
3074 
3075   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3076   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3077   record_for_igvn(region);
3078   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
3079 
3080   // The mirror will never be null of Reflection.getClassAccessFlags, however
3081   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3082   // if it is. See bug 4774291.
3083 
3084   // For Reflection.getClassAccessFlags(), the null check occurs in
3085   // the wrong place; see inline_unsafe_access(), above, for a similar
3086   // situation.
3087   _sp += nargs;  // set original stack for use by uncommon_trap
3088   mirror = do_null_check(mirror, T_OBJECT);
3089   _sp -= nargs;
3090   // If mirror or obj is dead, only null-path is taken.
3091   if (stopped())  return true;
3092 
3093   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3094 
3095   // Now load the mirror's klass metaobject, and null-check it.
3096   // Side-effects region with the control path if the klass is null.
3097   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
3098                                      region, _prim_path);
3099   // If kls is null, we have a primitive mirror.
3100   phi->init_req(_prim_path, prim_return_value);
3101   if (stopped()) { push_result(region, phi); return true; }
3102 
3103   Node* p;  // handy temp
3104   Node* null_ctl;
3105 
3106   // Now that we have the non-null klass, we can perform the real query.
3107   // For constant classes, the query will constant-fold in LoadNode::Value.
3108   Node* query_value = top();
3109   switch (id) {
3110   case vmIntrinsics::_isInstance:
3111     // nothing is an instance of a primitive type
3112     _sp += nargs;          // gen_instanceof might do an uncommon trap
3113     query_value = gen_instanceof(obj, kls);
3114     _sp -= nargs;
3115     break;
3116 
3117   case vmIntrinsics::_getModifiers:
3118     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
3119     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3120     break;
3121 
3122   case vmIntrinsics::_isInterface:
3123     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3124     if (generate_interface_guard(kls, region) != NULL)
3125       // A guard was added.  If the guard is taken, it was an interface.
3126       phi->add_req(intcon(1));
3127     // If we fall through, it's a plain class.
3128     query_value = intcon(0);
3129     break;
3130 
3131   case vmIntrinsics::_isArray:
3132     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3133     if (generate_array_guard(kls, region) != NULL)
3134       // A guard was added.  If the guard is taken, it was an array.
3135       phi->add_req(intcon(1));
3136     // If we fall through, it's a plain class.
3137     query_value = intcon(0);
3138     break;
3139 
3140   case vmIntrinsics::_isPrimitive:
3141     query_value = intcon(0); // "normal" path produces false
3142     break;
3143 
3144   case vmIntrinsics::_getSuperclass:
3145     // The rules here are somewhat unfortunate, but we can still do better
3146     // with random logic than with a JNI call.
3147     // Interfaces store null or Object as _super, but must report null.
3148     // Arrays store an intermediate super as _super, but must report Object.
3149     // Other types can report the actual _super.
3150     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3151     if (generate_interface_guard(kls, region) != NULL)
3152       // A guard was added.  If the guard is taken, it was an interface.
3153       phi->add_req(null());
3154     if (generate_array_guard(kls, region) != NULL)
3155       // A guard was added.  If the guard is taken, it was an array.
3156       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3157     // If we fall through, it's a plain class.  Get its _super.
3158     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
3159     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3160     null_ctl = top();
3161     kls = null_check_oop(kls, &null_ctl);
3162     if (null_ctl != top()) {
3163       // If the guard is taken, Object.superClass is null (both klass and mirror).
3164       region->add_req(null_ctl);
3165       phi   ->add_req(null());
3166     }
3167     if (!stopped()) {
3168       query_value = load_mirror_from_klass(kls);
3169     }
3170     break;
3171 
3172   case vmIntrinsics::_getComponentType:
3173     if (generate_array_guard(kls, region) != NULL) {
3174       // Be sure to pin the oop load to the guard edge just created:
3175       Node* is_array_ctrl = region->in(region->req()-1);
3176       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
3177       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3178       phi->add_req(cmo);
3179     }
3180     query_value = null();  // non-array case is null
3181     break;
3182 
3183   case vmIntrinsics::_getClassAccessFlags:
3184     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
3185     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3186     break;
3187 
3188   default:
3189     ShouldNotReachHere();
3190   }
3191 
3192   // Fall-through is the normal case of a query to a real class.
3193   phi->init_req(1, query_value);
3194   region->init_req(1, control());
3195 
3196   push_result(region, phi);
3197   C->set_has_split_ifs(true); // Has chance for split-if optimization
3198 
3199   return true;
3200 }
3201 
3202 //--------------------------inline_native_subtype_check------------------------
3203 // This intrinsic takes the JNI calls out of the heart of
3204 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3205 bool LibraryCallKit::inline_native_subtype_check() {
3206   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3207 
3208   // Pull both arguments off the stack.
3209   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3210   args[0] = argument(0);
3211   args[1] = argument(1);
3212   Node* klasses[2];             // corresponding Klasses: superk, subk
3213   klasses[0] = klasses[1] = top();
3214 
3215   enum {
3216     // A full decision tree on {superc is prim, subc is prim}:
3217     _prim_0_path = 1,           // {P,N} => false
3218                                 // {P,P} & superc!=subc => false
3219     _prim_same_path,            // {P,P} & superc==subc => true
3220     _prim_1_path,               // {N,P} => false
3221     _ref_subtype_path,          // {N,N} & subtype check wins => true
3222     _both_ref_path,             // {N,N} & subtype check loses => false
3223     PATH_LIMIT
3224   };
3225 
3226   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3227   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3228   record_for_igvn(region);
3229 
3230   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3231   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3232   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3233 
3234   // First null-check both mirrors and load each mirror's klass metaobject.
3235   int which_arg;
3236   for (which_arg = 0; which_arg <= 1; which_arg++) {
3237     Node* arg = args[which_arg];
3238     _sp += nargs;  // set original stack for use by uncommon_trap
3239     arg = do_null_check(arg, T_OBJECT);
3240     _sp -= nargs;
3241     if (stopped())  break;
3242     args[which_arg] = _gvn.transform(arg);
3243 
3244     Node* p = basic_plus_adr(arg, class_klass_offset);
3245     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3246     klasses[which_arg] = _gvn.transform(kls);
3247   }
3248 
3249   // Having loaded both klasses, test each for null.
3250   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3251   for (which_arg = 0; which_arg <= 1; which_arg++) {
3252     Node* kls = klasses[which_arg];
3253     Node* null_ctl = top();
3254     _sp += nargs;  // set original stack for use by uncommon_trap
3255     kls = null_check_oop(kls, &null_ctl, never_see_null);
3256     _sp -= nargs;
3257     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3258     region->init_req(prim_path, null_ctl);
3259     if (stopped())  break;
3260     klasses[which_arg] = kls;
3261   }
3262 
3263   if (!stopped()) {
3264     // now we have two reference types, in klasses[0..1]
3265     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3266     Node* superk = klasses[0];  // the receiver
3267     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3268     // now we have a successful reference subtype check
3269     region->set_req(_ref_subtype_path, control());
3270   }
3271 
3272   // If both operands are primitive (both klasses null), then
3273   // we must return true when they are identical primitives.
3274   // It is convenient to test this after the first null klass check.
3275   set_control(region->in(_prim_0_path)); // go back to first null check
3276   if (!stopped()) {
3277     // Since superc is primitive, make a guard for the superc==subc case.
3278     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3279     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3280     generate_guard(bol_eq, region, PROB_FAIR);
3281     if (region->req() == PATH_LIMIT+1) {
3282       // A guard was added.  If the added guard is taken, superc==subc.
3283       region->swap_edges(PATH_LIMIT, _prim_same_path);
3284       region->del_req(PATH_LIMIT);
3285     }
3286     region->set_req(_prim_0_path, control()); // Not equal after all.
3287   }
3288 
3289   // these are the only paths that produce 'true':
3290   phi->set_req(_prim_same_path,   intcon(1));
3291   phi->set_req(_ref_subtype_path, intcon(1));
3292 
3293   // pull together the cases:
3294   assert(region->req() == PATH_LIMIT, "sane region");
3295   for (uint i = 1; i < region->req(); i++) {
3296     Node* ctl = region->in(i);
3297     if (ctl == NULL || ctl == top()) {
3298       region->set_req(i, top());
3299       phi   ->set_req(i, top());
3300     } else if (phi->in(i) == NULL) {
3301       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3302     }
3303   }
3304 
3305   set_control(_gvn.transform(region));
3306   push(_gvn.transform(phi));
3307 
3308   return true;
3309 }
3310 
3311 //---------------------generate_array_guard_common------------------------
3312 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3313                                                   bool obj_array, bool not_array) {
3314   // If obj_array/non_array==false/false:
3315   // Branch around if the given klass is in fact an array (either obj or prim).
3316   // If obj_array/non_array==false/true:
3317   // Branch around if the given klass is not an array klass of any kind.
3318   // If obj_array/non_array==true/true:
3319   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3320   // If obj_array/non_array==true/false:
3321   // Branch around if the kls is an oop array (Object[] or subtype)
3322   //
3323   // Like generate_guard, adds a new path onto the region.
3324   jint  layout_con = 0;
3325   Node* layout_val = get_layout_helper(kls, layout_con);
3326   if (layout_val == NULL) {
3327     bool query = (obj_array
3328                   ? Klass::layout_helper_is_objArray(layout_con)
3329                   : Klass::layout_helper_is_javaArray(layout_con));
3330     if (query == not_array) {
3331       return NULL;                       // never a branch
3332     } else {                             // always a branch
3333       Node* always_branch = control();
3334       if (region != NULL)
3335         region->add_req(always_branch);
3336       set_control(top());
3337       return always_branch;
3338     }
3339   }
3340   // Now test the correct condition.
3341   jint  nval = (obj_array
3342                 ? ((jint)Klass::_lh_array_tag_type_value
3343                    <<    Klass::_lh_array_tag_shift)
3344                 : Klass::_lh_neutral_value);
3345   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3346   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3347   // invert the test if we are looking for a non-array
3348   if (not_array)  btest = BoolTest(btest).negate();
3349   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3350   return generate_fair_guard(bol, region);
3351 }
3352 
3353 
3354 //-----------------------inline_native_newArray--------------------------
3355 bool LibraryCallKit::inline_native_newArray() {
3356   int nargs = 2;
3357   Node* mirror    = argument(0);
3358   Node* count_val = argument(1);
3359 
3360   _sp += nargs;  // set original stack for use by uncommon_trap
3361   mirror = do_null_check(mirror, T_OBJECT);
3362   _sp -= nargs;
3363   // If mirror or obj is dead, only null-path is taken.
3364   if (stopped())  return true;
3365 
3366   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3367   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3368   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3369                                                       TypeInstPtr::NOTNULL);
3370   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3371   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3372                                                       TypePtr::BOTTOM);
3373 
3374   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3375   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3376                                                   nargs,
3377                                                   result_reg, _slow_path);
3378   Node* normal_ctl   = control();
3379   Node* no_array_ctl = result_reg->in(_slow_path);
3380 
3381   // Generate code for the slow case.  We make a call to newArray().
3382   set_control(no_array_ctl);
3383   if (!stopped()) {
3384     // Either the input type is void.class, or else the
3385     // array klass has not yet been cached.  Either the
3386     // ensuing call will throw an exception, or else it
3387     // will cache the array klass for next time.
3388     PreserveJVMState pjvms(this);
3389     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3390     Node* slow_result = set_results_for_java_call(slow_call);
3391     // this->control() comes from set_results_for_java_call
3392     result_reg->set_req(_slow_path, control());
3393     result_val->set_req(_slow_path, slow_result);
3394     result_io ->set_req(_slow_path, i_o());
3395     result_mem->set_req(_slow_path, reset_memory());
3396   }
3397 
3398   set_control(normal_ctl);
3399   if (!stopped()) {
3400     // Normal case:  The array type has been cached in the java.lang.Class.
3401     // The following call works fine even if the array type is polymorphic.
3402     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3403     Node* obj = new_array(klass_node, count_val, nargs);
3404     result_reg->init_req(_normal_path, control());
3405     result_val->init_req(_normal_path, obj);
3406     result_io ->init_req(_normal_path, i_o());
3407     result_mem->init_req(_normal_path, reset_memory());
3408   }
3409 
3410   // Return the combined state.
3411   set_i_o(        _gvn.transform(result_io)  );
3412   set_all_memory( _gvn.transform(result_mem) );
3413   push_result(result_reg, result_val);
3414   C->set_has_split_ifs(true); // Has chance for split-if optimization
3415 
3416   return true;
3417 }
3418 
3419 //----------------------inline_native_getLength--------------------------
3420 bool LibraryCallKit::inline_native_getLength() {
3421   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3422 
3423   int nargs = 1;
3424   Node* array = argument(0);
3425 
3426   _sp += nargs;  // set original stack for use by uncommon_trap
3427   array = do_null_check(array, T_OBJECT);
3428   _sp -= nargs;
3429 
3430   // If array is dead, only null-path is taken.
3431   if (stopped())  return true;
3432 
3433   // Deoptimize if it is a non-array.
3434   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3435 
3436   if (non_array != NULL) {
3437     PreserveJVMState pjvms(this);
3438     set_control(non_array);
3439     _sp += nargs;  // push the arguments back on the stack
3440     uncommon_trap(Deoptimization::Reason_intrinsic,
3441                   Deoptimization::Action_maybe_recompile);
3442   }
3443 
3444   // If control is dead, only non-array-path is taken.
3445   if (stopped())  return true;
3446 
3447   // The works fine even if the array type is polymorphic.
3448   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3449   push( load_array_length(array) );
3450 
3451   C->set_has_split_ifs(true); // Has chance for split-if optimization
3452 
3453   return true;
3454 }
3455 
3456 //------------------------inline_array_copyOf----------------------------
3457 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3458   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3459 
3460   // Restore the stack and pop off the arguments.
3461   int nargs = 3 + (is_copyOfRange? 1: 0);
3462   Node* original          = argument(0);
3463   Node* start             = is_copyOfRange? argument(1): intcon(0);
3464   Node* end               = is_copyOfRange? argument(2): argument(1);
3465   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3466 
3467   Node* newcopy;
3468 
3469   //set the original stack and the reexecute bit for the interpreter to reexecute
3470   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3471   { PreserveReexecuteState preexecs(this);
3472     _sp += nargs;
3473     jvms()->set_should_reexecute(true);
3474 
3475     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3476     original          = do_null_check(original, T_OBJECT);
3477 
3478     // Check if a null path was taken unconditionally.
3479     if (stopped())  return true;
3480 
3481     Node* orig_length = load_array_length(original);
3482 
3483     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3484                                               NULL, 0);
3485     klass_node = do_null_check(klass_node, T_OBJECT);
3486 
3487     RegionNode* bailout = new (C, 1) RegionNode(1);
3488     record_for_igvn(bailout);
3489 
3490     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3491     // Bail out if that is so.
3492     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3493     if (not_objArray != NULL) {
3494       // Improve the klass node's type from the new optimistic assumption:
3495       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3496       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3497       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3498       cast->init_req(0, control());
3499       klass_node = _gvn.transform(cast);
3500     }
3501 
3502     // Bail out if either start or end is negative.
3503     generate_negative_guard(start, bailout, &start);
3504     generate_negative_guard(end,   bailout, &end);
3505 
3506     Node* length = end;
3507     if (_gvn.type(start) != TypeInt::ZERO) {
3508       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3509     }
3510 
3511     // Bail out if length is negative.
3512     // ...Not needed, since the new_array will throw the right exception.
3513     //generate_negative_guard(length, bailout, &length);
3514 
3515     if (bailout->req() > 1) {
3516       PreserveJVMState pjvms(this);
3517       set_control( _gvn.transform(bailout) );
3518       uncommon_trap(Deoptimization::Reason_intrinsic,
3519                     Deoptimization::Action_maybe_recompile);
3520     }
3521 
3522     if (!stopped()) {
3523 
3524       // How many elements will we copy from the original?
3525       // The answer is MinI(orig_length - start, length).
3526       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3527       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3528 
3529       newcopy = new_array(klass_node, length, 0);
3530 
3531       // Generate a direct call to the right arraycopy function(s).
3532       // We know the copy is disjoint but we might not know if the
3533       // oop stores need checking.
3534       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3535       // This will fail a store-check if x contains any non-nulls.
3536       bool disjoint_bases = true;
3537       bool length_never_negative = true;
3538       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3539                          original, start, newcopy, intcon(0), moved,
3540                          disjoint_bases, length_never_negative);
3541     }
3542   } //original reexecute and sp are set back here
3543 
3544   if(!stopped()) {
3545     push(newcopy);
3546   }
3547 
3548   C->set_has_split_ifs(true); // Has chance for split-if optimization
3549 
3550   return true;
3551 }
3552 
3553 
3554 //----------------------generate_virtual_guard---------------------------
3555 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3556 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3557                                              RegionNode* slow_region) {
3558   ciMethod* method = callee();
3559   int vtable_index = method->vtable_index();
3560   // Get the methodOop out of the appropriate vtable entry.
3561   int entry_offset  = (instanceKlass::vtable_start_offset() +
3562                      vtable_index*vtableEntry::size()) * wordSize +
3563                      vtableEntry::method_offset_in_bytes();
3564   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3565   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3566 
3567   // Compare the target method with the expected method (e.g., Object.hashCode).
3568   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3569 
3570   Node* native_call = makecon(native_call_addr);
3571   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3572   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3573 
3574   return generate_slow_guard(test_native, slow_region);
3575 }
3576 
3577 //-----------------------generate_method_call----------------------------
3578 // Use generate_method_call to make a slow-call to the real
3579 // method if the fast path fails.  An alternative would be to
3580 // use a stub like OptoRuntime::slow_arraycopy_Java.
3581 // This only works for expanding the current library call,
3582 // not another intrinsic.  (E.g., don't use this for making an
3583 // arraycopy call inside of the copyOf intrinsic.)
3584 CallJavaNode*
3585 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3586   // When compiling the intrinsic method itself, do not use this technique.
3587   guarantee(callee() != C->method(), "cannot make slow-call to self");
3588 
3589   ciMethod* method = callee();
3590   // ensure the JVMS we have will be correct for this call
3591   guarantee(method_id == method->intrinsic_id(), "must match");
3592 
3593   const TypeFunc* tf = TypeFunc::make(method);
3594   int tfdc = tf->domain()->cnt();
3595   CallJavaNode* slow_call;
3596   if (is_static) {
3597     assert(!is_virtual, "");
3598     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3599                                 SharedRuntime::get_resolve_static_call_stub(),
3600                                 method, bci());
3601   } else if (is_virtual) {
3602     null_check_receiver(method);
3603     int vtable_index = methodOopDesc::invalid_vtable_index;
3604     if (UseInlineCaches) {
3605       // Suppress the vtable call
3606     } else {
3607       // hashCode and clone are not a miranda methods,
3608       // so the vtable index is fixed.
3609       // No need to use the linkResolver to get it.
3610        vtable_index = method->vtable_index();
3611     }
3612     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3613                                 SharedRuntime::get_resolve_virtual_call_stub(),
3614                                 method, vtable_index, bci());
3615   } else {  // neither virtual nor static:  opt_virtual
3616     null_check_receiver(method);
3617     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3618                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3619                                 method, bci());
3620     slow_call->set_optimized_virtual(true);
3621   }
3622   set_arguments_for_java_call(slow_call);
3623   set_edges_for_java_call(slow_call);
3624   return slow_call;
3625 }
3626 
3627 
3628 //------------------------------inline_native_hashcode--------------------
3629 // Build special case code for calls to hashCode on an object.
3630 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3631   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3632   assert(!(is_virtual && is_static), "either virtual, special, or static");
3633 
3634   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3635 
3636   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3637   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3638                                                       TypeInt::INT);
3639   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3640   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3641                                                       TypePtr::BOTTOM);
3642   Node* obj = NULL;
3643   if (!is_static) {
3644     // Check for hashing null object
3645     obj = null_check_receiver(callee());
3646     if (stopped())  return true;        // unconditionally null
3647     result_reg->init_req(_null_path, top());
3648     result_val->init_req(_null_path, top());
3649   } else {
3650     // Do a null check, and return zero if null.
3651     // System.identityHashCode(null) == 0
3652     obj = argument(0);
3653     Node* null_ctl = top();
3654     obj = null_check_oop(obj, &null_ctl);
3655     result_reg->init_req(_null_path, null_ctl);
3656     result_val->init_req(_null_path, _gvn.intcon(0));
3657   }
3658 
3659   // Unconditionally null?  Then return right away.
3660   if (stopped()) {
3661     set_control( result_reg->in(_null_path) );
3662     if (!stopped())
3663       push(      result_val ->in(_null_path) );
3664     return true;
3665   }
3666 
3667   // After null check, get the object's klass.
3668   Node* obj_klass = load_object_klass(obj);
3669 
3670   // This call may be virtual (invokevirtual) or bound (invokespecial).
3671   // For each case we generate slightly different code.
3672 
3673   // We only go to the fast case code if we pass a number of guards.  The
3674   // paths which do not pass are accumulated in the slow_region.
3675   RegionNode* slow_region = new (C, 1) RegionNode(1);
3676   record_for_igvn(slow_region);
3677 
3678   // If this is a virtual call, we generate a funny guard.  We pull out
3679   // the vtable entry corresponding to hashCode() from the target object.
3680   // If the target method which we are calling happens to be the native
3681   // Object hashCode() method, we pass the guard.  We do not need this
3682   // guard for non-virtual calls -- the caller is known to be the native
3683   // Object hashCode().
3684   if (is_virtual) {
3685     generate_virtual_guard(obj_klass, slow_region);
3686   }
3687 
3688   // Get the header out of the object, use LoadMarkNode when available
3689   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3690   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3691 
3692   // Test the header to see if it is unlocked.
3693   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3694   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3695   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3696   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3697   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3698 
3699   generate_slow_guard(test_unlocked, slow_region);
3700 
3701   // Get the hash value and check to see that it has been properly assigned.
3702   // We depend on hash_mask being at most 32 bits and avoid the use of
3703   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3704   // vm: see markOop.hpp.
3705   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3706   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3707   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3708   // This hack lets the hash bits live anywhere in the mark object now, as long
3709   // as the shift drops the relevant bits into the low 32 bits.  Note that
3710   // Java spec says that HashCode is an int so there's no point in capturing
3711   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3712   hshifted_header      = ConvX2I(hshifted_header);
3713   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3714 
3715   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3716   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3717   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3718 
3719   generate_slow_guard(test_assigned, slow_region);
3720 
3721   Node* init_mem = reset_memory();
3722   // fill in the rest of the null path:
3723   result_io ->init_req(_null_path, i_o());
3724   result_mem->init_req(_null_path, init_mem);
3725 
3726   result_val->init_req(_fast_path, hash_val);
3727   result_reg->init_req(_fast_path, control());
3728   result_io ->init_req(_fast_path, i_o());
3729   result_mem->init_req(_fast_path, init_mem);
3730 
3731   // Generate code for the slow case.  We make a call to hashCode().
3732   set_control(_gvn.transform(slow_region));
3733   if (!stopped()) {
3734     // No need for PreserveJVMState, because we're using up the present state.
3735     set_all_memory(init_mem);
3736     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3737     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3738     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3739     Node* slow_result = set_results_for_java_call(slow_call);
3740     // this->control() comes from set_results_for_java_call
3741     result_reg->init_req(_slow_path, control());
3742     result_val->init_req(_slow_path, slow_result);
3743     result_io  ->set_req(_slow_path, i_o());
3744     result_mem ->set_req(_slow_path, reset_memory());
3745   }
3746 
3747   // Return the combined state.
3748   set_i_o(        _gvn.transform(result_io)  );
3749   set_all_memory( _gvn.transform(result_mem) );
3750   push_result(result_reg, result_val);
3751 
3752   return true;
3753 }
3754 
3755 //---------------------------inline_native_getClass----------------------------
3756 // Build special case code for calls to getClass on an object.
3757 bool LibraryCallKit::inline_native_getClass() {
3758   Node* obj = null_check_receiver(callee());
3759   if (stopped())  return true;
3760   push( load_mirror_from_klass(load_object_klass(obj)) );
3761   return true;
3762 }
3763 
3764 //-----------------inline_native_Reflection_getCallerClass---------------------
3765 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3766 //
3767 // NOTE that this code must perform the same logic as
3768 // vframeStream::security_get_caller_frame in that it must skip
3769 // Method.invoke() and auxiliary frames.
3770 
3771 
3772 
3773 
3774 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3775   ciMethod*       method = callee();
3776 
3777 #ifndef PRODUCT
3778   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3779     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3780   }
3781 #endif
3782 
3783   debug_only(int saved_sp = _sp);
3784 
3785   // Argument words:  (int depth)
3786   int nargs = 1;
3787 
3788   _sp += nargs;
3789   Node* caller_depth_node = pop();
3790 
3791   assert(saved_sp == _sp, "must have correct argument count");
3792 
3793   // The depth value must be a constant in order for the runtime call
3794   // to be eliminated.
3795   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3796   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3797 #ifndef PRODUCT
3798     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3799       tty->print_cr("  Bailing out because caller depth was not a constant");
3800     }
3801 #endif
3802     return false;
3803   }
3804   // Note that the JVM state at this point does not include the
3805   // getCallerClass() frame which we are trying to inline. The
3806   // semantics of getCallerClass(), however, are that the "first"
3807   // frame is the getCallerClass() frame, so we subtract one from the
3808   // requested depth before continuing. We don't inline requests of
3809   // getCallerClass(0).
3810   int caller_depth = caller_depth_type->get_con() - 1;
3811   if (caller_depth < 0) {
3812 #ifndef PRODUCT
3813     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3814       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3815     }
3816 #endif
3817     return false;
3818   }
3819 
3820   if (!jvms()->has_method()) {
3821 #ifndef PRODUCT
3822     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3823       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3824     }
3825 #endif
3826     return false;
3827   }
3828   int _depth = jvms()->depth();  // cache call chain depth
3829 
3830   // Walk back up the JVM state to find the caller at the required
3831   // depth. NOTE that this code must perform the same logic as
3832   // vframeStream::security_get_caller_frame in that it must skip
3833   // Method.invoke() and auxiliary frames. Note also that depth is
3834   // 1-based (1 is the bottom of the inlining).
3835   int inlining_depth = _depth;
3836   JVMState* caller_jvms = NULL;
3837 
3838   if (inlining_depth > 0) {
3839     caller_jvms = jvms();
3840     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3841     do {
3842       // The following if-tests should be performed in this order
3843       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3844         // Skip a Method.invoke() or auxiliary frame
3845       } else if (caller_depth > 0) {
3846         // Skip real frame
3847         --caller_depth;
3848       } else {
3849         // We're done: reached desired caller after skipping.
3850         break;
3851       }
3852       caller_jvms = caller_jvms->caller();
3853       --inlining_depth;
3854     } while (inlining_depth > 0);
3855   }
3856 
3857   if (inlining_depth == 0) {
3858 #ifndef PRODUCT
3859     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3860       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3861       tty->print_cr("  JVM state at this point:");
3862       for (int i = _depth; i >= 1; i--) {
3863         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3864       }
3865     }
3866 #endif
3867     return false; // Reached end of inlining
3868   }
3869 
3870   // Acquire method holder as java.lang.Class
3871   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3872   ciInstance*      caller_mirror = caller_klass->java_mirror();
3873   // Push this as a constant
3874   push(makecon(TypeInstPtr::make(caller_mirror)));
3875 #ifndef PRODUCT
3876   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3877     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3878     tty->print_cr("  JVM state at this point:");
3879     for (int i = _depth; i >= 1; i--) {
3880       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3881     }
3882   }
3883 #endif
3884   return true;
3885 }
3886 
3887 // Helper routine for above
3888 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3889   ciMethod* method = jvms->method();
3890 
3891   // Is this the Method.invoke method itself?
3892   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3893     return true;
3894 
3895   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3896   ciKlass* k = method->holder();
3897   if (k->is_instance_klass()) {
3898     ciInstanceKlass* ik = k->as_instance_klass();
3899     for (; ik != NULL; ik = ik->super()) {
3900       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3901           ik == env()->find_system_klass(ik->name())) {
3902         return true;
3903       }
3904     }
3905   }
3906   else if (method->is_method_handle_adapter()) {
3907     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3908     return true;
3909   }
3910 
3911   return false;
3912 }
3913 
3914 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3915                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3916                                      // computing it since there is no lookup field by name function in the
3917                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3918                                      // Using a static variable here is safe even if we have multiple compilation
3919                                      // threads because the offset is constant.  At worst the same offset will be
3920                                      // computed and  stored multiple
3921 
3922 bool LibraryCallKit::inline_native_AtomicLong_get() {
3923   // Restore the stack and pop off the argument
3924   _sp+=1;
3925   Node *obj = pop();
3926 
3927   // get the offset of the "value" field. Since the CI interfaces
3928   // does not provide a way to look up a field by name, we scan the bytecodes
3929   // to get the field index.  We expect the first 2 instructions of the method
3930   // to be:
3931   //    0 aload_0
3932   //    1 getfield "value"
3933   ciMethod* method = callee();
3934   if (value_field_offset == -1)
3935   {
3936     ciField* value_field;
3937     ciBytecodeStream iter(method);
3938     Bytecodes::Code bc = iter.next();
3939 
3940     if ((bc != Bytecodes::_aload_0) &&
3941               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3942       return false;
3943     bc = iter.next();
3944     if (bc != Bytecodes::_getfield)
3945       return false;
3946     bool ignore;
3947     value_field = iter.get_field(ignore);
3948     value_field_offset = value_field->offset_in_bytes();
3949   }
3950 
3951   // Null check without removing any arguments.
3952   _sp++;
3953   obj = do_null_check(obj, T_OBJECT);
3954   _sp--;
3955   // Check for locking null object
3956   if (stopped()) return true;
3957 
3958   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3959   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3960   int alias_idx = C->get_alias_index(adr_type);
3961 
3962   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3963 
3964   push_pair(result);
3965 
3966   return true;
3967 }
3968 
3969 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3970   // Restore the stack and pop off the arguments
3971   _sp+=5;
3972   Node *newVal = pop_pair();
3973   Node *oldVal = pop_pair();
3974   Node *obj = pop();
3975 
3976   // we need the offset of the "value" field which was computed when
3977   // inlining the get() method.  Give up if we don't have it.
3978   if (value_field_offset == -1)
3979     return false;
3980 
3981   // Null check without removing any arguments.
3982   _sp+=5;
3983   obj = do_null_check(obj, T_OBJECT);
3984   _sp-=5;
3985   // Check for locking null object
3986   if (stopped()) return true;
3987 
3988   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3989   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3990   int alias_idx = C->get_alias_index(adr_type);
3991 
3992   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3993   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3994   set_memory(store_proj, alias_idx);
3995   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3996 
3997   Node *result;
3998   // CMove node is not used to be able fold a possible check code
3999   // after attemptUpdate() call. This code could be transformed
4000   // into CMove node by loop optimizations.
4001   {
4002     RegionNode *r = new (C, 3) RegionNode(3);
4003     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
4004 
4005     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4006     Node *iftrue = opt_iff(r, iff);
4007     r->init_req(1, iftrue);
4008     result->init_req(1, intcon(1));
4009     result->init_req(2, intcon(0));
4010 
4011     set_control(_gvn.transform(r));
4012     record_for_igvn(r);
4013 
4014     C->set_has_split_ifs(true); // Has chance for split-if optimization
4015   }
4016 
4017   push(_gvn.transform(result));
4018   return true;
4019 }
4020 
4021 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4022   // restore the arguments
4023   _sp += arg_size();
4024 
4025   switch (id) {
4026   case vmIntrinsics::_floatToRawIntBits:
4027     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
4028     break;
4029 
4030   case vmIntrinsics::_intBitsToFloat:
4031     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
4032     break;
4033 
4034   case vmIntrinsics::_doubleToRawLongBits:
4035     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
4036     break;
4037 
4038   case vmIntrinsics::_longBitsToDouble:
4039     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
4040     break;
4041 
4042   case vmIntrinsics::_doubleToLongBits: {
4043     Node* value = pop_pair();
4044 
4045     // two paths (plus control) merge in a wood
4046     RegionNode *r = new (C, 3) RegionNode(3);
4047     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
4048 
4049     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
4050     // Build the boolean node
4051     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4052 
4053     // Branch either way.
4054     // NaN case is less traveled, which makes all the difference.
4055     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4056     Node *opt_isnan = _gvn.transform(ifisnan);
4057     assert( opt_isnan->is_If(), "Expect an IfNode");
4058     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4059     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4060 
4061     set_control(iftrue);
4062 
4063     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4064     Node *slow_result = longcon(nan_bits); // return NaN
4065     phi->init_req(1, _gvn.transform( slow_result ));
4066     r->init_req(1, iftrue);
4067 
4068     // Else fall through
4069     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4070     set_control(iffalse);
4071 
4072     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
4073     r->init_req(2, iffalse);
4074 
4075     // Post merge
4076     set_control(_gvn.transform(r));
4077     record_for_igvn(r);
4078 
4079     Node* result = _gvn.transform(phi);
4080     assert(result->bottom_type()->isa_long(), "must be");
4081     push_pair(result);
4082 
4083     C->set_has_split_ifs(true); // Has chance for split-if optimization
4084 
4085     break;
4086   }
4087 
4088   case vmIntrinsics::_floatToIntBits: {
4089     Node* value = pop();
4090 
4091     // two paths (plus control) merge in a wood
4092     RegionNode *r = new (C, 3) RegionNode(3);
4093     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
4094 
4095     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
4096     // Build the boolean node
4097     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4098 
4099     // Branch either way.
4100     // NaN case is less traveled, which makes all the difference.
4101     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4102     Node *opt_isnan = _gvn.transform(ifisnan);
4103     assert( opt_isnan->is_If(), "Expect an IfNode");
4104     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4105     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4106 
4107     set_control(iftrue);
4108 
4109     static const jint nan_bits = 0x7fc00000;
4110     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4111     phi->init_req(1, _gvn.transform( slow_result ));
4112     r->init_req(1, iftrue);
4113 
4114     // Else fall through
4115     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4116     set_control(iffalse);
4117 
4118     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
4119     r->init_req(2, iffalse);
4120 
4121     // Post merge
4122     set_control(_gvn.transform(r));
4123     record_for_igvn(r);
4124 
4125     Node* result = _gvn.transform(phi);
4126     assert(result->bottom_type()->isa_int(), "must be");
4127     push(result);
4128 
4129     C->set_has_split_ifs(true); // Has chance for split-if optimization
4130 
4131     break;
4132   }
4133 
4134   default:
4135     ShouldNotReachHere();
4136   }
4137 
4138   return true;
4139 }
4140 
4141 #ifdef _LP64
4142 #define XTOP ,top() /*additional argument*/
4143 #else  //_LP64
4144 #define XTOP        /*no additional argument*/
4145 #endif //_LP64
4146 
4147 //----------------------inline_unsafe_copyMemory-------------------------
4148 bool LibraryCallKit::inline_unsafe_copyMemory() {
4149   if (callee()->is_static())  return false;  // caller must have the capability!
4150   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
4151   assert(signature()->size() == nargs-1, "copy has 5 arguments");
4152   null_check_receiver(callee());  // check then ignore argument(0)
4153   if (stopped())  return true;
4154 
4155   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4156 
4157   Node* src_ptr = argument(1);
4158   Node* src_off = ConvL2X(argument(2));
4159   assert(argument(3)->is_top(), "2nd half of long");
4160   Node* dst_ptr = argument(4);
4161   Node* dst_off = ConvL2X(argument(5));
4162   assert(argument(6)->is_top(), "2nd half of long");
4163   Node* size    = ConvL2X(argument(7));
4164   assert(argument(8)->is_top(), "2nd half of long");
4165 
4166   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4167          "fieldOffset must be byte-scaled");
4168 
4169   Node* src = make_unsafe_address(src_ptr, src_off);
4170   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4171 
4172   // Conservatively insert a memory barrier on all memory slices.
4173   // Do not let writes of the copy source or destination float below the copy.
4174   insert_mem_bar(Op_MemBarCPUOrder);
4175 
4176   // Call it.  Note that the length argument is not scaled.
4177   make_runtime_call(RC_LEAF|RC_NO_FP,
4178                     OptoRuntime::fast_arraycopy_Type(),
4179                     StubRoutines::unsafe_arraycopy(),
4180                     "unsafe_arraycopy",
4181                     TypeRawPtr::BOTTOM,
4182                     src, dst, size XTOP);
4183 
4184   // Do not let reads of the copy destination float above the copy.
4185   insert_mem_bar(Op_MemBarCPUOrder);
4186 
4187   return true;
4188 }
4189 
4190 //------------------------clone_coping-----------------------------------
4191 // Helper function for inline_native_clone.
4192 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4193   assert(obj_size != NULL, "");
4194   Node* raw_obj = alloc_obj->in(1);
4195   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4196 
4197   if (ReduceBulkZeroing) {
4198     // We will be completely responsible for initializing this object -
4199     // mark Initialize node as complete.
4200     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4201     // The object was just allocated - there should be no any stores!
4202     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4203   }
4204 
4205   // Copy the fastest available way.
4206   // TODO: generate fields copies for small objects instead.
4207   Node* src  = obj;
4208   Node* dest = alloc_obj;
4209   Node* size = _gvn.transform(obj_size);
4210 
4211   // Exclude the header but include array length to copy by 8 bytes words.
4212   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4213   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4214                             instanceOopDesc::base_offset_in_bytes();
4215   // base_off:
4216   // 8  - 32-bit VM
4217   // 12 - 64-bit VM, compressed oops
4218   // 16 - 64-bit VM, normal oops
4219   if (base_off % BytesPerLong != 0) {
4220     assert(UseCompressedOops, "");
4221     if (is_array) {
4222       // Exclude length to copy by 8 bytes words.
4223       base_off += sizeof(int);
4224     } else {
4225       // Include klass to copy by 8 bytes words.
4226       base_off = instanceOopDesc::klass_offset_in_bytes();
4227     }
4228     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4229   }
4230   src  = basic_plus_adr(src,  base_off);
4231   dest = basic_plus_adr(dest, base_off);
4232 
4233   // Compute the length also, if needed:
4234   Node* countx = size;
4235   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4236   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4237 
4238   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4239   bool disjoint_bases = true;
4240   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4241                                src, NULL, dest, NULL, countx,
4242                                /*dest_uninitialized*/true);
4243 
4244   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4245   if (card_mark) {
4246     assert(!is_array, "");
4247     // Put in store barrier for any and all oops we are sticking
4248     // into this object.  (We could avoid this if we could prove
4249     // that the object type contains no oop fields at all.)
4250     Node* no_particular_value = NULL;
4251     Node* no_particular_field = NULL;
4252     int raw_adr_idx = Compile::AliasIdxRaw;
4253     post_barrier(control(),
4254                  memory(raw_adr_type),
4255                  alloc_obj,
4256                  no_particular_field,
4257                  raw_adr_idx,
4258                  no_particular_value,
4259                  T_OBJECT,
4260                  false);
4261   }
4262 
4263   // Do not let reads from the cloned object float above the arraycopy.
4264   insert_mem_bar(Op_MemBarCPUOrder);
4265 }
4266 
4267 //------------------------inline_native_clone----------------------------
4268 // Here are the simple edge cases:
4269 //  null receiver => normal trap
4270 //  virtual and clone was overridden => slow path to out-of-line clone
4271 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4272 //
4273 // The general case has two steps, allocation and copying.
4274 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4275 //
4276 // Copying also has two cases, oop arrays and everything else.
4277 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4278 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4279 //
4280 // These steps fold up nicely if and when the cloned object's klass
4281 // can be sharply typed as an object array, a type array, or an instance.
4282 //
4283 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4284   int nargs = 1;
4285   PhiNode* result_val;
4286 
4287   //set the original stack and the reexecute bit for the interpreter to reexecute
4288   //the bytecode that invokes Object.clone if deoptimization happens
4289   { PreserveReexecuteState preexecs(this);
4290     jvms()->set_should_reexecute(true);
4291 
4292     //null_check_receiver will adjust _sp (push and pop)
4293     Node* obj = null_check_receiver(callee());
4294     if (stopped())  return true;
4295 
4296     _sp += nargs;
4297 
4298     Node* obj_klass = load_object_klass(obj);
4299     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4300     const TypeOopPtr*   toop   = ((tklass != NULL)
4301                                 ? tklass->as_instance_type()
4302                                 : TypeInstPtr::NOTNULL);
4303 
4304     // Conservatively insert a memory barrier on all memory slices.
4305     // Do not let writes into the original float below the clone.
4306     insert_mem_bar(Op_MemBarCPUOrder);
4307 
4308     // paths into result_reg:
4309     enum {
4310       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4311       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4312       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4313       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4314       PATH_LIMIT
4315     };
4316     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4317     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4318                                                         TypeInstPtr::NOTNULL);
4319     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4320     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4321                                                         TypePtr::BOTTOM);
4322     record_for_igvn(result_reg);
4323 
4324     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4325     int raw_adr_idx = Compile::AliasIdxRaw;
4326 
4327     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4328     if (array_ctl != NULL) {
4329       // It's an array.
4330       PreserveJVMState pjvms(this);
4331       set_control(array_ctl);
4332       Node* obj_length = load_array_length(obj);
4333       Node* obj_size  = NULL;
4334       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
4335 
4336       if (!use_ReduceInitialCardMarks()) {
4337         // If it is an oop array, it requires very special treatment,
4338         // because card marking is required on each card of the array.
4339         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4340         if (is_obja != NULL) {
4341           PreserveJVMState pjvms2(this);
4342           set_control(is_obja);
4343           // Generate a direct call to the right arraycopy function(s).
4344           bool disjoint_bases = true;
4345           bool length_never_negative = true;
4346           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4347                              obj, intcon(0), alloc_obj, intcon(0),
4348                              obj_length,
4349                              disjoint_bases, length_never_negative);
4350           result_reg->init_req(_objArray_path, control());
4351           result_val->init_req(_objArray_path, alloc_obj);
4352           result_i_o ->set_req(_objArray_path, i_o());
4353           result_mem ->set_req(_objArray_path, reset_memory());
4354         }
4355       }
4356       // Otherwise, there are no card marks to worry about.
4357       // (We can dispense with card marks if we know the allocation
4358       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4359       //  causes the non-eden paths to take compensating steps to
4360       //  simulate a fresh allocation, so that no further
4361       //  card marks are required in compiled code to initialize
4362       //  the object.)
4363 
4364       if (!stopped()) {
4365         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4366 
4367         // Present the results of the copy.
4368         result_reg->init_req(_array_path, control());
4369         result_val->init_req(_array_path, alloc_obj);
4370         result_i_o ->set_req(_array_path, i_o());
4371         result_mem ->set_req(_array_path, reset_memory());
4372       }
4373     }
4374 
4375     // We only go to the instance fast case code if we pass a number of guards.
4376     // The paths which do not pass are accumulated in the slow_region.
4377     RegionNode* slow_region = new (C, 1) RegionNode(1);
4378     record_for_igvn(slow_region);
4379     if (!stopped()) {
4380       // It's an instance (we did array above).  Make the slow-path tests.
4381       // If this is a virtual call, we generate a funny guard.  We grab
4382       // the vtable entry corresponding to clone() from the target object.
4383       // If the target method which we are calling happens to be the
4384       // Object clone() method, we pass the guard.  We do not need this
4385       // guard for non-virtual calls; the caller is known to be the native
4386       // Object clone().
4387       if (is_virtual) {
4388         generate_virtual_guard(obj_klass, slow_region);
4389       }
4390 
4391       // The object must be cloneable and must not have a finalizer.
4392       // Both of these conditions may be checked in a single test.
4393       // We could optimize the cloneable test further, but we don't care.
4394       generate_access_flags_guard(obj_klass,
4395                                   // Test both conditions:
4396                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4397                                   // Must be cloneable but not finalizer:
4398                                   JVM_ACC_IS_CLONEABLE,
4399                                   slow_region);
4400     }
4401 
4402     if (!stopped()) {
4403       // It's an instance, and it passed the slow-path tests.
4404       PreserveJVMState pjvms(this);
4405       Node* obj_size  = NULL;
4406       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4407 
4408       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4409 
4410       // Present the results of the slow call.
4411       result_reg->init_req(_instance_path, control());
4412       result_val->init_req(_instance_path, alloc_obj);
4413       result_i_o ->set_req(_instance_path, i_o());
4414       result_mem ->set_req(_instance_path, reset_memory());
4415     }
4416 
4417     // Generate code for the slow case.  We make a call to clone().
4418     set_control(_gvn.transform(slow_region));
4419     if (!stopped()) {
4420       PreserveJVMState pjvms(this);
4421       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4422       Node* slow_result = set_results_for_java_call(slow_call);
4423       // this->control() comes from set_results_for_java_call
4424       result_reg->init_req(_slow_path, control());
4425       result_val->init_req(_slow_path, slow_result);
4426       result_i_o ->set_req(_slow_path, i_o());
4427       result_mem ->set_req(_slow_path, reset_memory());
4428     }
4429 
4430     // Return the combined state.
4431     set_control(    _gvn.transform(result_reg) );
4432     set_i_o(        _gvn.transform(result_i_o) );
4433     set_all_memory( _gvn.transform(result_mem) );
4434   } //original reexecute and sp are set back here
4435 
4436   push(_gvn.transform(result_val));
4437 
4438   return true;
4439 }
4440 
4441 //------------------------------basictype2arraycopy----------------------------
4442 address LibraryCallKit::basictype2arraycopy(BasicType t,
4443                                             Node* src_offset,
4444                                             Node* dest_offset,
4445                                             bool disjoint_bases,
4446                                             const char* &name,
4447                                             bool dest_uninitialized) {
4448   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4449   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4450 
4451   bool aligned = false;
4452   bool disjoint = disjoint_bases;
4453 
4454   // if the offsets are the same, we can treat the memory regions as
4455   // disjoint, because either the memory regions are in different arrays,
4456   // or they are identical (which we can treat as disjoint.)  We can also
4457   // treat a copy with a destination index  less that the source index
4458   // as disjoint since a low->high copy will work correctly in this case.
4459   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4460       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4461     // both indices are constants
4462     int s_offs = src_offset_inttype->get_con();
4463     int d_offs = dest_offset_inttype->get_con();
4464     int element_size = type2aelembytes(t);
4465     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4466               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4467     if (s_offs >= d_offs)  disjoint = true;
4468   } else if (src_offset == dest_offset && src_offset != NULL) {
4469     // This can occur if the offsets are identical non-constants.
4470     disjoint = true;
4471   }
4472 
4473   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4474 }
4475 
4476 
4477 //------------------------------inline_arraycopy-----------------------
4478 bool LibraryCallKit::inline_arraycopy() {
4479   // Restore the stack and pop off the arguments.
4480   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4481   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4482 
4483   Node *src         = argument(0);
4484   Node *src_offset  = argument(1);
4485   Node *dest        = argument(2);
4486   Node *dest_offset = argument(3);
4487   Node *length      = argument(4);
4488 
4489   // Compile time checks.  If any of these checks cannot be verified at compile time,
4490   // we do not make a fast path for this call.  Instead, we let the call remain as it
4491   // is.  The checks we choose to mandate at compile time are:
4492   //
4493   // (1) src and dest are arrays.
4494   const Type* src_type = src->Value(&_gvn);
4495   const Type* dest_type = dest->Value(&_gvn);
4496   const TypeAryPtr* top_src = src_type->isa_aryptr();
4497   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4498   if (top_src  == NULL || top_src->klass()  == NULL ||
4499       top_dest == NULL || top_dest->klass() == NULL) {
4500     // Conservatively insert a memory barrier on all memory slices.
4501     // Do not let writes into the source float below the arraycopy.
4502     insert_mem_bar(Op_MemBarCPUOrder);
4503 
4504     // Call StubRoutines::generic_arraycopy stub.
4505     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4506                        src, src_offset, dest, dest_offset, length);
4507 
4508     // Do not let reads from the destination float above the arraycopy.
4509     // Since we cannot type the arrays, we don't know which slices
4510     // might be affected.  We could restrict this barrier only to those
4511     // memory slices which pertain to array elements--but don't bother.
4512     if (!InsertMemBarAfterArraycopy)
4513       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4514       insert_mem_bar(Op_MemBarCPUOrder);
4515     return true;
4516   }
4517 
4518   // (2) src and dest arrays must have elements of the same BasicType
4519   // Figure out the size and type of the elements we will be copying.
4520   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4521   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4522   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4523   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4524 
4525   if (src_elem != dest_elem || dest_elem == T_VOID) {
4526     // The component types are not the same or are not recognized.  Punt.
4527     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4528     generate_slow_arraycopy(TypePtr::BOTTOM,
4529                             src, src_offset, dest, dest_offset, length,
4530                             /*dest_uninitialized*/false);
4531     return true;
4532   }
4533 
4534   //---------------------------------------------------------------------------
4535   // We will make a fast path for this call to arraycopy.
4536 
4537   // We have the following tests left to perform:
4538   //
4539   // (3) src and dest must not be null.
4540   // (4) src_offset must not be negative.
4541   // (5) dest_offset must not be negative.
4542   // (6) length must not be negative.
4543   // (7) src_offset + length must not exceed length of src.
4544   // (8) dest_offset + length must not exceed length of dest.
4545   // (9) each element of an oop array must be assignable
4546 
4547   RegionNode* slow_region = new (C, 1) RegionNode(1);
4548   record_for_igvn(slow_region);
4549 
4550   // (3) operands must not be null
4551   // We currently perform our null checks with the do_null_check routine.
4552   // This means that the null exceptions will be reported in the caller
4553   // rather than (correctly) reported inside of the native arraycopy call.
4554   // This should be corrected, given time.  We do our null check with the
4555   // stack pointer restored.
4556   _sp += nargs;
4557   src  = do_null_check(src,  T_ARRAY);
4558   dest = do_null_check(dest, T_ARRAY);
4559   _sp -= nargs;
4560 
4561   // (4) src_offset must not be negative.
4562   generate_negative_guard(src_offset, slow_region);
4563 
4564   // (5) dest_offset must not be negative.
4565   generate_negative_guard(dest_offset, slow_region);
4566 
4567   // (6) length must not be negative (moved to generate_arraycopy()).
4568   // generate_negative_guard(length, slow_region);
4569 
4570   // (7) src_offset + length must not exceed length of src.
4571   generate_limit_guard(src_offset, length,
4572                        load_array_length(src),
4573                        slow_region);
4574 
4575   // (8) dest_offset + length must not exceed length of dest.
4576   generate_limit_guard(dest_offset, length,
4577                        load_array_length(dest),
4578                        slow_region);
4579 
4580   // (9) each element of an oop array must be assignable
4581   // The generate_arraycopy subroutine checks this.
4582 
4583   // This is where the memory effects are placed:
4584   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4585   generate_arraycopy(adr_type, dest_elem,
4586                      src, src_offset, dest, dest_offset, length,
4587                      false, false, slow_region);
4588 
4589   return true;
4590 }
4591 
4592 //-----------------------------generate_arraycopy----------------------
4593 // Generate an optimized call to arraycopy.
4594 // Caller must guard against non-arrays.
4595 // Caller must determine a common array basic-type for both arrays.
4596 // Caller must validate offsets against array bounds.
4597 // The slow_region has already collected guard failure paths
4598 // (such as out of bounds length or non-conformable array types).
4599 // The generated code has this shape, in general:
4600 //
4601 //     if (length == 0)  return   // via zero_path
4602 //     slowval = -1
4603 //     if (types unknown) {
4604 //       slowval = call generic copy loop
4605 //       if (slowval == 0)  return  // via checked_path
4606 //     } else if (indexes in bounds) {
4607 //       if ((is object array) && !(array type check)) {
4608 //         slowval = call checked copy loop
4609 //         if (slowval == 0)  return  // via checked_path
4610 //       } else {
4611 //         call bulk copy loop
4612 //         return  // via fast_path
4613 //       }
4614 //     }
4615 //     // adjust params for remaining work:
4616 //     if (slowval != -1) {
4617 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4618 //     }
4619 //   slow_region:
4620 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4621 //     return  // via slow_call_path
4622 //
4623 // This routine is used from several intrinsics:  System.arraycopy,
4624 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4625 //
4626 void
4627 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4628                                    BasicType basic_elem_type,
4629                                    Node* src,  Node* src_offset,
4630                                    Node* dest, Node* dest_offset,
4631                                    Node* copy_length,
4632                                    bool disjoint_bases,
4633                                    bool length_never_negative,
4634                                    RegionNode* slow_region) {
4635 
4636   if (slow_region == NULL) {
4637     slow_region = new(C,1) RegionNode(1);
4638     record_for_igvn(slow_region);
4639   }
4640 
4641   Node* original_dest      = dest;
4642   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4643   bool  dest_uninitialized = false;
4644 
4645   // See if this is the initialization of a newly-allocated array.
4646   // If so, we will take responsibility here for initializing it to zero.
4647   // (Note:  Because tightly_coupled_allocation performs checks on the
4648   // out-edges of the dest, we need to avoid making derived pointers
4649   // from it until we have checked its uses.)
4650   if (ReduceBulkZeroing
4651       && !ZeroTLAB              // pointless if already zeroed
4652       && basic_elem_type != T_CONFLICT // avoid corner case
4653       && !_gvn.eqv_uncast(src, dest)
4654       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4655           != NULL)
4656       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4657       && alloc->maybe_set_complete(&_gvn)) {
4658     // "You break it, you buy it."
4659     InitializeNode* init = alloc->initialization();
4660     assert(init->is_complete(), "we just did this");
4661     init->set_complete_with_arraycopy();
4662     assert(dest->is_CheckCastPP(), "sanity");
4663     assert(dest->in(0)->in(0) == init, "dest pinned");
4664     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4665     // From this point on, every exit path is responsible for
4666     // initializing any non-copied parts of the object to zero.
4667     // Also, if this flag is set we make sure that arraycopy interacts properly
4668     // with G1, eliding pre-barriers. See CR 6627983.
4669     dest_uninitialized = true;
4670   } else {
4671     // No zeroing elimination here.
4672     alloc             = NULL;
4673     //original_dest   = dest;
4674     //dest_uninitialized = false;
4675   }
4676 
4677   // Results are placed here:
4678   enum { fast_path        = 1,  // normal void-returning assembly stub
4679          checked_path     = 2,  // special assembly stub with cleanup
4680          slow_call_path   = 3,  // something went wrong; call the VM
4681          zero_path        = 4,  // bypass when length of copy is zero
4682          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4683          PATH_LIMIT       = 6
4684   };
4685   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4686   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4687   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4688   record_for_igvn(result_region);
4689   _gvn.set_type_bottom(result_i_o);
4690   _gvn.set_type_bottom(result_memory);
4691   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4692 
4693   // The slow_control path:
4694   Node* slow_control;
4695   Node* slow_i_o = i_o();
4696   Node* slow_mem = memory(adr_type);
4697   debug_only(slow_control = (Node*) badAddress);
4698 
4699   // Checked control path:
4700   Node* checked_control = top();
4701   Node* checked_mem     = NULL;
4702   Node* checked_i_o     = NULL;
4703   Node* checked_value   = NULL;
4704 
4705   if (basic_elem_type == T_CONFLICT) {
4706     assert(!dest_uninitialized, "");
4707     Node* cv = generate_generic_arraycopy(adr_type,
4708                                           src, src_offset, dest, dest_offset,
4709                                           copy_length, dest_uninitialized);
4710     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4711     checked_control = control();
4712     checked_i_o     = i_o();
4713     checked_mem     = memory(adr_type);
4714     checked_value   = cv;
4715     set_control(top());         // no fast path
4716   }
4717 
4718   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4719   if (not_pos != NULL) {
4720     PreserveJVMState pjvms(this);
4721     set_control(not_pos);
4722 
4723     // (6) length must not be negative.
4724     if (!length_never_negative) {
4725       generate_negative_guard(copy_length, slow_region);
4726     }
4727 
4728     // copy_length is 0.
4729     if (!stopped() && dest_uninitialized) {
4730       Node* dest_length = alloc->in(AllocateNode::ALength);
4731       if (_gvn.eqv_uncast(copy_length, dest_length)
4732           || _gvn.find_int_con(dest_length, 1) <= 0) {
4733         // There is no zeroing to do. No need for a secondary raw memory barrier.
4734       } else {
4735         // Clear the whole thing since there are no source elements to copy.
4736         generate_clear_array(adr_type, dest, basic_elem_type,
4737                              intcon(0), NULL,
4738                              alloc->in(AllocateNode::AllocSize));
4739         // Use a secondary InitializeNode as raw memory barrier.
4740         // Currently it is needed only on this path since other
4741         // paths have stub or runtime calls as raw memory barriers.
4742         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4743                                                        Compile::AliasIdxRaw,
4744                                                        top())->as_Initialize();
4745         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4746       }
4747     }
4748 
4749     // Present the results of the fast call.
4750     result_region->init_req(zero_path, control());
4751     result_i_o   ->init_req(zero_path, i_o());
4752     result_memory->init_req(zero_path, memory(adr_type));
4753   }
4754 
4755   if (!stopped() && dest_uninitialized) {
4756     // We have to initialize the *uncopied* part of the array to zero.
4757     // The copy destination is the slice dest[off..off+len].  The other slices
4758     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4759     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4760     Node* dest_length = alloc->in(AllocateNode::ALength);
4761     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4762                                                           copy_length) );
4763 
4764     // If there is a head section that needs zeroing, do it now.
4765     if (find_int_con(dest_offset, -1) != 0) {
4766       generate_clear_array(adr_type, dest, basic_elem_type,
4767                            intcon(0), dest_offset,
4768                            NULL);
4769     }
4770 
4771     // Next, perform a dynamic check on the tail length.
4772     // It is often zero, and we can win big if we prove this.
4773     // There are two wins:  Avoid generating the ClearArray
4774     // with its attendant messy index arithmetic, and upgrade
4775     // the copy to a more hardware-friendly word size of 64 bits.
4776     Node* tail_ctl = NULL;
4777     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4778       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4779       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4780       tail_ctl = generate_slow_guard(bol_lt, NULL);
4781       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4782     }
4783 
4784     // At this point, let's assume there is no tail.
4785     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4786       // There is no tail.  Try an upgrade to a 64-bit copy.
4787       bool didit = false;
4788       { PreserveJVMState pjvms(this);
4789         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4790                                          src, src_offset, dest, dest_offset,
4791                                          dest_size, dest_uninitialized);
4792         if (didit) {
4793           // Present the results of the block-copying fast call.
4794           result_region->init_req(bcopy_path, control());
4795           result_i_o   ->init_req(bcopy_path, i_o());
4796           result_memory->init_req(bcopy_path, memory(adr_type));
4797         }
4798       }
4799       if (didit)
4800         set_control(top());     // no regular fast path
4801     }
4802 
4803     // Clear the tail, if any.
4804     if (tail_ctl != NULL) {
4805       Node* notail_ctl = stopped() ? NULL : control();
4806       set_control(tail_ctl);
4807       if (notail_ctl == NULL) {
4808         generate_clear_array(adr_type, dest, basic_elem_type,
4809                              dest_tail, NULL,
4810                              dest_size);
4811       } else {
4812         // Make a local merge.
4813         Node* done_ctl = new(C,3) RegionNode(3);
4814         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4815         done_ctl->init_req(1, notail_ctl);
4816         done_mem->init_req(1, memory(adr_type));
4817         generate_clear_array(adr_type, dest, basic_elem_type,
4818                              dest_tail, NULL,
4819                              dest_size);
4820         done_ctl->init_req(2, control());
4821         done_mem->init_req(2, memory(adr_type));
4822         set_control( _gvn.transform(done_ctl) );
4823         set_memory(  _gvn.transform(done_mem), adr_type );
4824       }
4825     }
4826   }
4827 
4828   BasicType copy_type = basic_elem_type;
4829   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4830   if (!stopped() && copy_type == T_OBJECT) {
4831     // If src and dest have compatible element types, we can copy bits.
4832     // Types S[] and D[] are compatible if D is a supertype of S.
4833     //
4834     // If they are not, we will use checked_oop_disjoint_arraycopy,
4835     // which performs a fast optimistic per-oop check, and backs off
4836     // further to JVM_ArrayCopy on the first per-oop check that fails.
4837     // (Actually, we don't move raw bits only; the GC requires card marks.)
4838 
4839     // Get the klassOop for both src and dest
4840     Node* src_klass  = load_object_klass(src);
4841     Node* dest_klass = load_object_klass(dest);
4842 
4843     // Generate the subtype check.
4844     // This might fold up statically, or then again it might not.
4845     //
4846     // Non-static example:  Copying List<String>.elements to a new String[].
4847     // The backing store for a List<String> is always an Object[],
4848     // but its elements are always type String, if the generic types
4849     // are correct at the source level.
4850     //
4851     // Test S[] against D[], not S against D, because (probably)
4852     // the secondary supertype cache is less busy for S[] than S.
4853     // This usually only matters when D is an interface.
4854     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4855     // Plug failing path into checked_oop_disjoint_arraycopy
4856     if (not_subtype_ctrl != top()) {
4857       PreserveJVMState pjvms(this);
4858       set_control(not_subtype_ctrl);
4859       // (At this point we can assume disjoint_bases, since types differ.)
4860       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4861       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4862       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4863       Node* dest_elem_klass = _gvn.transform(n1);
4864       Node* cv = generate_checkcast_arraycopy(adr_type,
4865                                               dest_elem_klass,
4866                                               src, src_offset, dest, dest_offset,
4867                                               ConvI2X(copy_length), dest_uninitialized);
4868       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4869       checked_control = control();
4870       checked_i_o     = i_o();
4871       checked_mem     = memory(adr_type);
4872       checked_value   = cv;
4873     }
4874     // At this point we know we do not need type checks on oop stores.
4875 
4876     // Let's see if we need card marks:
4877     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4878       // If we do not need card marks, copy using the jint or jlong stub.
4879       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4880       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4881              "sizes agree");
4882     }
4883   }
4884 
4885   if (!stopped()) {
4886     // Generate the fast path, if possible.
4887     PreserveJVMState pjvms(this);
4888     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4889                                  src, src_offset, dest, dest_offset,
4890                                  ConvI2X(copy_length), dest_uninitialized);
4891 
4892     // Present the results of the fast call.
4893     result_region->init_req(fast_path, control());
4894     result_i_o   ->init_req(fast_path, i_o());
4895     result_memory->init_req(fast_path, memory(adr_type));
4896   }
4897 
4898   // Here are all the slow paths up to this point, in one bundle:
4899   slow_control = top();
4900   if (slow_region != NULL)
4901     slow_control = _gvn.transform(slow_region);
4902   debug_only(slow_region = (RegionNode*)badAddress);
4903 
4904   set_control(checked_control);
4905   if (!stopped()) {
4906     // Clean up after the checked call.
4907     // The returned value is either 0 or -1^K,
4908     // where K = number of partially transferred array elements.
4909     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4910     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4911     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4912 
4913     // If it is 0, we are done, so transfer to the end.
4914     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4915     result_region->init_req(checked_path, checks_done);
4916     result_i_o   ->init_req(checked_path, checked_i_o);
4917     result_memory->init_req(checked_path, checked_mem);
4918 
4919     // If it is not zero, merge into the slow call.
4920     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4921     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4922     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4923     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4924     record_for_igvn(slow_reg2);
4925     slow_reg2  ->init_req(1, slow_control);
4926     slow_i_o2  ->init_req(1, slow_i_o);
4927     slow_mem2  ->init_req(1, slow_mem);
4928     slow_reg2  ->init_req(2, control());
4929     slow_i_o2  ->init_req(2, checked_i_o);
4930     slow_mem2  ->init_req(2, checked_mem);
4931 
4932     slow_control = _gvn.transform(slow_reg2);
4933     slow_i_o     = _gvn.transform(slow_i_o2);
4934     slow_mem     = _gvn.transform(slow_mem2);
4935 
4936     if (alloc != NULL) {
4937       // We'll restart from the very beginning, after zeroing the whole thing.
4938       // This can cause double writes, but that's OK since dest is brand new.
4939       // So we ignore the low 31 bits of the value returned from the stub.
4940     } else {
4941       // We must continue the copy exactly where it failed, or else
4942       // another thread might see the wrong number of writes to dest.
4943       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4944       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4945       slow_offset->init_req(1, intcon(0));
4946       slow_offset->init_req(2, checked_offset);
4947       slow_offset  = _gvn.transform(slow_offset);
4948 
4949       // Adjust the arguments by the conditionally incoming offset.
4950       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4951       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4952       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4953 
4954       // Tweak the node variables to adjust the code produced below:
4955       src_offset  = src_off_plus;
4956       dest_offset = dest_off_plus;
4957       copy_length = length_minus;
4958     }
4959   }
4960 
4961   set_control(slow_control);
4962   if (!stopped()) {
4963     // Generate the slow path, if needed.
4964     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4965 
4966     set_memory(slow_mem, adr_type);
4967     set_i_o(slow_i_o);
4968 
4969     if (dest_uninitialized) {
4970       generate_clear_array(adr_type, dest, basic_elem_type,
4971                            intcon(0), NULL,
4972                            alloc->in(AllocateNode::AllocSize));
4973     }
4974 
4975     generate_slow_arraycopy(adr_type,
4976                             src, src_offset, dest, dest_offset,
4977                             copy_length, /*dest_uninitialized*/false);
4978 
4979     result_region->init_req(slow_call_path, control());
4980     result_i_o   ->init_req(slow_call_path, i_o());
4981     result_memory->init_req(slow_call_path, memory(adr_type));
4982   }
4983 
4984   // Remove unused edges.
4985   for (uint i = 1; i < result_region->req(); i++) {
4986     if (result_region->in(i) == NULL)
4987       result_region->init_req(i, top());
4988   }
4989 
4990   // Finished; return the combined state.
4991   set_control( _gvn.transform(result_region) );
4992   set_i_o(     _gvn.transform(result_i_o)    );
4993   set_memory(  _gvn.transform(result_memory), adr_type );
4994 
4995   // The memory edges above are precise in order to model effects around
4996   // array copies accurately to allow value numbering of field loads around
4997   // arraycopy.  Such field loads, both before and after, are common in Java
4998   // collections and similar classes involving header/array data structures.
4999   //
5000   // But with low number of register or when some registers are used or killed
5001   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5002   // The next memory barrier is added to avoid it. If the arraycopy can be
5003   // optimized away (which it can, sometimes) then we can manually remove
5004   // the membar also.
5005   //
5006   // Do not let reads from the cloned object float above the arraycopy.
5007   if (InsertMemBarAfterArraycopy || alloc != NULL)
5008     insert_mem_bar(Op_MemBarCPUOrder);
5009 }
5010 
5011 
5012 // Helper function which determines if an arraycopy immediately follows
5013 // an allocation, with no intervening tests or other escapes for the object.
5014 AllocateArrayNode*
5015 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5016                                            RegionNode* slow_region) {
5017   if (stopped())             return NULL;  // no fast path
5018   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5019 
5020   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5021   if (alloc == NULL)  return NULL;
5022 
5023   Node* rawmem = memory(Compile::AliasIdxRaw);
5024   // Is the allocation's memory state untouched?
5025   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5026     // Bail out if there have been raw-memory effects since the allocation.
5027     // (Example:  There might have been a call or safepoint.)
5028     return NULL;
5029   }
5030   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5031   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5032     return NULL;
5033   }
5034 
5035   // There must be no unexpected observers of this allocation.
5036   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5037     Node* obs = ptr->fast_out(i);
5038     if (obs != this->map()) {
5039       return NULL;
5040     }
5041   }
5042 
5043   // This arraycopy must unconditionally follow the allocation of the ptr.
5044   Node* alloc_ctl = ptr->in(0);
5045   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5046 
5047   Node* ctl = control();
5048   while (ctl != alloc_ctl) {
5049     // There may be guards which feed into the slow_region.
5050     // Any other control flow means that we might not get a chance
5051     // to finish initializing the allocated object.
5052     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5053       IfNode* iff = ctl->in(0)->as_If();
5054       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5055       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5056       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5057         ctl = iff->in(0);       // This test feeds the known slow_region.
5058         continue;
5059       }
5060       // One more try:  Various low-level checks bottom out in
5061       // uncommon traps.  If the debug-info of the trap omits
5062       // any reference to the allocation, as we've already
5063       // observed, then there can be no objection to the trap.
5064       bool found_trap = false;
5065       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5066         Node* obs = not_ctl->fast_out(j);
5067         if (obs->in(0) == not_ctl && obs->is_Call() &&
5068             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5069           found_trap = true; break;
5070         }
5071       }
5072       if (found_trap) {
5073         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5074         continue;
5075       }
5076     }
5077     return NULL;
5078   }
5079 
5080   // If we get this far, we have an allocation which immediately
5081   // precedes the arraycopy, and we can take over zeroing the new object.
5082   // The arraycopy will finish the initialization, and provide
5083   // a new control state to which we will anchor the destination pointer.
5084 
5085   return alloc;
5086 }
5087 
5088 // Helper for initialization of arrays, creating a ClearArray.
5089 // It writes zero bits in [start..end), within the body of an array object.
5090 // The memory effects are all chained onto the 'adr_type' alias category.
5091 //
5092 // Since the object is otherwise uninitialized, we are free
5093 // to put a little "slop" around the edges of the cleared area,
5094 // as long as it does not go back into the array's header,
5095 // or beyond the array end within the heap.
5096 //
5097 // The lower edge can be rounded down to the nearest jint and the
5098 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5099 //
5100 // Arguments:
5101 //   adr_type           memory slice where writes are generated
5102 //   dest               oop of the destination array
5103 //   basic_elem_type    element type of the destination
5104 //   slice_idx          array index of first element to store
5105 //   slice_len          number of elements to store (or NULL)
5106 //   dest_size          total size in bytes of the array object
5107 //
5108 // Exactly one of slice_len or dest_size must be non-NULL.
5109 // If dest_size is non-NULL, zeroing extends to the end of the object.
5110 // If slice_len is non-NULL, the slice_idx value must be a constant.
5111 void
5112 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5113                                      Node* dest,
5114                                      BasicType basic_elem_type,
5115                                      Node* slice_idx,
5116                                      Node* slice_len,
5117                                      Node* dest_size) {
5118   // one or the other but not both of slice_len and dest_size:
5119   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5120   if (slice_len == NULL)  slice_len = top();
5121   if (dest_size == NULL)  dest_size = top();
5122 
5123   // operate on this memory slice:
5124   Node* mem = memory(adr_type); // memory slice to operate on
5125 
5126   // scaling and rounding of indexes:
5127   int scale = exact_log2(type2aelembytes(basic_elem_type));
5128   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5129   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5130   int bump_bit  = (-1 << scale) & BytesPerInt;
5131 
5132   // determine constant starts and ends
5133   const intptr_t BIG_NEG = -128;
5134   assert(BIG_NEG + 2*abase < 0, "neg enough");
5135   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5136   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5137   if (slice_len_con == 0) {
5138     return;                     // nothing to do here
5139   }
5140   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5141   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5142   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5143     assert(end_con < 0, "not two cons");
5144     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5145                        BytesPerLong);
5146   }
5147 
5148   if (start_con >= 0 && end_con >= 0) {
5149     // Constant start and end.  Simple.
5150     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5151                                        start_con, end_con, &_gvn);
5152   } else if (start_con >= 0 && dest_size != top()) {
5153     // Constant start, pre-rounded end after the tail of the array.
5154     Node* end = dest_size;
5155     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5156                                        start_con, end, &_gvn);
5157   } else if (start_con >= 0 && slice_len != top()) {
5158     // Constant start, non-constant end.  End needs rounding up.
5159     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5160     intptr_t end_base  = abase + (slice_idx_con << scale);
5161     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5162     Node*    end       = ConvI2X(slice_len);
5163     if (scale != 0)
5164       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5165     end_base += end_round;
5166     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5167     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5168     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5169                                        start_con, end, &_gvn);
5170   } else if (start_con < 0 && dest_size != top()) {
5171     // Non-constant start, pre-rounded end after the tail of the array.
5172     // This is almost certainly a "round-to-end" operation.
5173     Node* start = slice_idx;
5174     start = ConvI2X(start);
5175     if (scale != 0)
5176       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5177     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5178     if ((bump_bit | clear_low) != 0) {
5179       int to_clear = (bump_bit | clear_low);
5180       // Align up mod 8, then store a jint zero unconditionally
5181       // just before the mod-8 boundary.
5182       if (((abase + bump_bit) & ~to_clear) - bump_bit
5183           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5184         bump_bit = 0;
5185         assert((abase & to_clear) == 0, "array base must be long-aligned");
5186       } else {
5187         // Bump 'start' up to (or past) the next jint boundary:
5188         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5189         assert((abase & clear_low) == 0, "array base must be int-aligned");
5190       }
5191       // Round bumped 'start' down to jlong boundary in body of array.
5192       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5193       if (bump_bit != 0) {
5194         // Store a zero to the immediately preceding jint:
5195         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5196         Node* p1 = basic_plus_adr(dest, x1);
5197         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5198         mem = _gvn.transform(mem);
5199       }
5200     }
5201     Node* end = dest_size; // pre-rounded
5202     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5203                                        start, end, &_gvn);
5204   } else {
5205     // Non-constant start, unrounded non-constant end.
5206     // (Nobody zeroes a random midsection of an array using this routine.)
5207     ShouldNotReachHere();       // fix caller
5208   }
5209 
5210   // Done.
5211   set_memory(mem, adr_type);
5212 }
5213 
5214 
5215 bool
5216 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5217                                          BasicType basic_elem_type,
5218                                          AllocateNode* alloc,
5219                                          Node* src,  Node* src_offset,
5220                                          Node* dest, Node* dest_offset,
5221                                          Node* dest_size, bool dest_uninitialized) {
5222   // See if there is an advantage from block transfer.
5223   int scale = exact_log2(type2aelembytes(basic_elem_type));
5224   if (scale >= LogBytesPerLong)
5225     return false;               // it is already a block transfer
5226 
5227   // Look at the alignment of the starting offsets.
5228   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5229 
5230   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5231   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5232   if (src_off_con < 0 || dest_off_con < 0)
5233     // At present, we can only understand constants.
5234     return false;
5235 
5236   intptr_t src_off  = abase + (src_off_con  << scale);
5237   intptr_t dest_off = abase + (dest_off_con << scale);
5238 
5239   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5240     // Non-aligned; too bad.
5241     // One more chance:  Pick off an initial 32-bit word.
5242     // This is a common case, since abase can be odd mod 8.
5243     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5244         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5245       Node* sptr = basic_plus_adr(src,  src_off);
5246       Node* dptr = basic_plus_adr(dest, dest_off);
5247       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5248       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5249       src_off += BytesPerInt;
5250       dest_off += BytesPerInt;
5251     } else {
5252       return false;
5253     }
5254   }
5255   assert(src_off % BytesPerLong == 0, "");
5256   assert(dest_off % BytesPerLong == 0, "");
5257 
5258   // Do this copy by giant steps.
5259   Node* sptr  = basic_plus_adr(src,  src_off);
5260   Node* dptr  = basic_plus_adr(dest, dest_off);
5261   Node* countx = dest_size;
5262   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5263   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5264 
5265   bool disjoint_bases = true;   // since alloc != NULL
5266   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5267                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5268 
5269   return true;
5270 }
5271 
5272 
5273 // Helper function; generates code for the slow case.
5274 // We make a call to a runtime method which emulates the native method,
5275 // but without the native wrapper overhead.
5276 void
5277 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5278                                         Node* src,  Node* src_offset,
5279                                         Node* dest, Node* dest_offset,
5280                                         Node* copy_length, bool dest_uninitialized) {
5281   assert(!dest_uninitialized, "Invariant");
5282   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5283                                  OptoRuntime::slow_arraycopy_Type(),
5284                                  OptoRuntime::slow_arraycopy_Java(),
5285                                  "slow_arraycopy", adr_type,
5286                                  src, src_offset, dest, dest_offset,
5287                                  copy_length);
5288 
5289   // Handle exceptions thrown by this fellow:
5290   make_slow_call_ex(call, env()->Throwable_klass(), false);
5291 }
5292 
5293 // Helper function; generates code for cases requiring runtime checks.
5294 Node*
5295 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5296                                              Node* dest_elem_klass,
5297                                              Node* src,  Node* src_offset,
5298                                              Node* dest, Node* dest_offset,
5299                                              Node* copy_length, bool dest_uninitialized) {
5300   if (stopped())  return NULL;
5301 
5302   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5303   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5304     return NULL;
5305   }
5306 
5307   // Pick out the parameters required to perform a store-check
5308   // for the target array.  This is an optimistic check.  It will
5309   // look in each non-null element's class, at the desired klass's
5310   // super_check_offset, for the desired klass.
5311   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5312   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5313   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5314   Node* check_offset = ConvI2X(_gvn.transform(n3));
5315   Node* check_value  = dest_elem_klass;
5316 
5317   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5318   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5319 
5320   // (We know the arrays are never conjoint, because their types differ.)
5321   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5322                                  OptoRuntime::checkcast_arraycopy_Type(),
5323                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5324                                  // five arguments, of which two are
5325                                  // intptr_t (jlong in LP64)
5326                                  src_start, dest_start,
5327                                  copy_length XTOP,
5328                                  check_offset XTOP,
5329                                  check_value);
5330 
5331   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5332 }
5333 
5334 
5335 // Helper function; generates code for cases requiring runtime checks.
5336 Node*
5337 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5338                                            Node* src,  Node* src_offset,
5339                                            Node* dest, Node* dest_offset,
5340                                            Node* copy_length, bool dest_uninitialized) {
5341   assert(!dest_uninitialized, "Invariant");
5342   if (stopped())  return NULL;
5343   address copyfunc_addr = StubRoutines::generic_arraycopy();
5344   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5345     return NULL;
5346   }
5347 
5348   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5349                     OptoRuntime::generic_arraycopy_Type(),
5350                     copyfunc_addr, "generic_arraycopy", adr_type,
5351                     src, src_offset, dest, dest_offset, copy_length);
5352 
5353   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5354 }
5355 
5356 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5357 void
5358 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5359                                              BasicType basic_elem_type,
5360                                              bool disjoint_bases,
5361                                              Node* src,  Node* src_offset,
5362                                              Node* dest, Node* dest_offset,
5363                                              Node* copy_length, bool dest_uninitialized) {
5364   if (stopped())  return;               // nothing to do
5365 
5366   Node* src_start  = src;
5367   Node* dest_start = dest;
5368   if (src_offset != NULL || dest_offset != NULL) {
5369     assert(src_offset != NULL && dest_offset != NULL, "");
5370     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5371     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5372   }
5373 
5374   // Figure out which arraycopy runtime method to call.
5375   const char* copyfunc_name = "arraycopy";
5376   address     copyfunc_addr =
5377       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5378                           disjoint_bases, copyfunc_name, dest_uninitialized);
5379 
5380   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5381   make_runtime_call(RC_LEAF|RC_NO_FP,
5382                     OptoRuntime::fast_arraycopy_Type(),
5383                     copyfunc_addr, copyfunc_name, adr_type,
5384                     src_start, dest_start, copy_length XTOP);
5385 }
5386 
5387 //----------------------------inline_reference_get----------------------------
5388 
5389 bool LibraryCallKit::inline_reference_get() {
5390   const int nargs = 1; // self
5391 
5392   guarantee(java_lang_ref_Reference::referent_offset > 0,
5393             "should have already been set");
5394 
5395   int referent_offset = java_lang_ref_Reference::referent_offset;
5396 
5397   // Restore the stack and pop off the argument
5398   _sp += nargs;
5399   Node *reference_obj = pop();
5400 
5401   // Null check on self without removing any arguments.
5402   _sp += nargs;
5403   reference_obj = do_null_check(reference_obj, T_OBJECT);
5404   _sp -= nargs;;
5405 
5406   if (stopped()) return true;
5407 
5408   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5409 
5410   ciInstanceKlass* klass = env()->Object_klass();
5411   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5412 
5413   Node* no_ctrl = NULL;
5414   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5415 
5416   // Use the pre-barrier to record the value in the referent field
5417   pre_barrier(false /* do_load */,
5418               control(),
5419               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5420               result /* pre_val */,
5421               T_OBJECT);
5422 
5423   push(result);
5424   return true;
5425 }
5426