1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 class LibraryIntrinsic : public InlineCallGenerator {
  43   // Extend the set of intrinsics known to the runtime:
  44  public:
  45  private:
  46   bool             _is_virtual;
  47   vmIntrinsics::ID _intrinsic_id;
  48 
  49  public:
  50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  51     : InlineCallGenerator(m),
  52       _is_virtual(is_virtual),
  53       _intrinsic_id(id)
  54   {
  55   }
  56   virtual bool is_intrinsic() const { return true; }
  57   virtual bool is_virtual()   const { return _is_virtual; }
  58   virtual JVMState* generate(JVMState* jvms);
  59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  60 };
  61 
  62 
  63 // Local helper class for LibraryIntrinsic:
  64 class LibraryCallKit : public GraphKit {
  65  private:
  66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  67 
  68  public:
  69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  70     : GraphKit(caller),
  71       _intrinsic(intrinsic)
  72   {
  73   }
  74 
  75   ciMethod*         caller()    const    { return jvms()->method(); }
  76   int               bci()       const    { return jvms()->bci(); }
  77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  79   ciMethod*         callee()    const    { return _intrinsic->method(); }
  80   ciSignature*      signature() const    { return callee()->signature(); }
  81   int               arg_size()  const    { return callee()->arg_size(); }
  82 
  83   bool try_to_inline();
  84 
  85   // Helper functions to inline natives
  86   void push_result(RegionNode* region, PhiNode* value);
  87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  88   Node* generate_slow_guard(Node* test, RegionNode* region);
  89   Node* generate_fair_guard(Node* test, RegionNode* region);
  90   Node* generate_negative_guard(Node* index, RegionNode* region,
  91                                 // resulting CastII of index:
  92                                 Node* *pos_index = NULL);
  93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  94                                    // resulting CastII of index:
  95                                    Node* *pos_index = NULL);
  96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  97                              Node* array_length,
  98                              RegionNode* region);
  99   Node* generate_current_thread(Node* &tls_output);
 100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 102   Node* load_mirror_from_klass(Node* klass);
 103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 104                                       int nargs,
 105                                       RegionNode* region, int null_path,
 106                                       int offset);
 107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
 108                                RegionNode* region, int null_path) {
 109     int offset = java_lang_Class::klass_offset_in_bytes();
 110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 111                                          region, null_path,
 112                                          offset);
 113   }
 114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 115                                      int nargs,
 116                                      RegionNode* region, int null_path) {
 117     int offset = java_lang_Class::array_klass_offset_in_bytes();
 118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 119                                          region, null_path,
 120                                          offset);
 121   }
 122   Node* generate_access_flags_guard(Node* kls,
 123                                     int modifier_mask, int modifier_bits,
 124                                     RegionNode* region);
 125   Node* generate_interface_guard(Node* kls, RegionNode* region);
 126   Node* generate_array_guard(Node* kls, RegionNode* region) {
 127     return generate_array_guard_common(kls, region, false, false);
 128   }
 129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 130     return generate_array_guard_common(kls, region, false, true);
 131   }
 132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 133     return generate_array_guard_common(kls, region, true, false);
 134   }
 135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 136     return generate_array_guard_common(kls, region, true, true);
 137   }
 138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 139                                     bool obj_array, bool not_array);
 140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 142                                      bool is_virtual = false, bool is_static = false);
 143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 144     return generate_method_call(method_id, false, true);
 145   }
 146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 147     return generate_method_call(method_id, true, false);
 148   }
 149 
 150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
 151   bool inline_string_compareTo();
 152   bool inline_string_indexOf();
 153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 154   bool inline_string_equals();
 155   Node* pop_math_arg();
 156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 157   bool inline_math_native(vmIntrinsics::ID id);
 158   bool inline_trig(vmIntrinsics::ID id);
 159   bool inline_trans(vmIntrinsics::ID id);
 160   bool inline_abs(vmIntrinsics::ID id);
 161   bool inline_sqrt(vmIntrinsics::ID id);
 162   bool inline_pow(vmIntrinsics::ID id);
 163   bool inline_exp(vmIntrinsics::ID id);
 164   bool inline_min_max(vmIntrinsics::ID id);
 165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 167   int classify_unsafe_addr(Node* &base, Node* &offset);
 168   Node* make_unsafe_address(Node* base, Node* offset);
 169   // Helper for inline_unsafe_access.
 170   // Generates the guards that check whether the result of
 171   // Unsafe.getObject should be recorded in an SATB log buffer.
 172   void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
 173   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 174   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 175   bool inline_unsafe_allocate();
 176   bool inline_unsafe_copyMemory();
 177   bool inline_native_currentThread();
 178   bool inline_native_time_funcs(bool isNano);
 179   bool inline_native_isInterrupted();
 180   bool inline_native_Class_query(vmIntrinsics::ID id);
 181   bool inline_native_subtype_check();
 182 
 183   bool inline_native_newArray();
 184   bool inline_native_getLength();
 185   bool inline_array_copyOf(bool is_copyOfRange);
 186   bool inline_array_equals();
 187   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 188   bool inline_native_clone(bool is_virtual);
 189   bool inline_native_Reflection_getCallerClass();
 190   bool inline_native_AtomicLong_get();
 191   bool inline_native_AtomicLong_attemptUpdate();
 192   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 193   // Helper function for inlining native object hash method
 194   bool inline_native_hashcode(bool is_virtual, bool is_static);
 195   bool inline_native_getClass();
 196 
 197   // Helper functions for inlining arraycopy
 198   bool inline_arraycopy();
 199   void generate_arraycopy(const TypePtr* adr_type,
 200                           BasicType basic_elem_type,
 201                           Node* src,  Node* src_offset,
 202                           Node* dest, Node* dest_offset,
 203                           Node* copy_length,
 204                           bool disjoint_bases = false,
 205                           bool length_never_negative = false,
 206                           RegionNode* slow_region = NULL);
 207   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 208                                                 RegionNode* slow_region);
 209   void generate_clear_array(const TypePtr* adr_type,
 210                             Node* dest,
 211                             BasicType basic_elem_type,
 212                             Node* slice_off,
 213                             Node* slice_len,
 214                             Node* slice_end);
 215   bool generate_block_arraycopy(const TypePtr* adr_type,
 216                                 BasicType basic_elem_type,
 217                                 AllocateNode* alloc,
 218                                 Node* src,  Node* src_offset,
 219                                 Node* dest, Node* dest_offset,
 220                                 Node* dest_size, bool dest_uninitialized);
 221   void generate_slow_arraycopy(const TypePtr* adr_type,
 222                                Node* src,  Node* src_offset,
 223                                Node* dest, Node* dest_offset,
 224                                Node* copy_length, bool dest_uninitialized);
 225   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 226                                      Node* dest_elem_klass,
 227                                      Node* src,  Node* src_offset,
 228                                      Node* dest, Node* dest_offset,
 229                                      Node* copy_length, bool dest_uninitialized);
 230   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 231                                    Node* src,  Node* src_offset,
 232                                    Node* dest, Node* dest_offset,
 233                                    Node* copy_length, bool dest_uninitialized);
 234   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 235                                     BasicType basic_elem_type,
 236                                     bool disjoint_bases,
 237                                     Node* src,  Node* src_offset,
 238                                     Node* dest, Node* dest_offset,
 239                                     Node* copy_length, bool dest_uninitialized);
 240   bool inline_unsafe_CAS(BasicType type);
 241   bool inline_unsafe_ordered_store(BasicType type);
 242   bool inline_fp_conversions(vmIntrinsics::ID id);
 243   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 244   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 245   bool inline_bitCount(vmIntrinsics::ID id);
 246   bool inline_reverseBytes(vmIntrinsics::ID id);
 247 
 248   bool inline_reference_get();
 249 };
 250 
 251 
 252 //---------------------------make_vm_intrinsic----------------------------
 253 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 254   vmIntrinsics::ID id = m->intrinsic_id();
 255   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 256 
 257   if (DisableIntrinsic[0] != '\0'
 258       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 259     // disabled by a user request on the command line:
 260     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 261     return NULL;
 262   }
 263 
 264   if (!m->is_loaded()) {
 265     // do not attempt to inline unloaded methods
 266     return NULL;
 267   }
 268 
 269   // Only a few intrinsics implement a virtual dispatch.
 270   // They are expensive calls which are also frequently overridden.
 271   if (is_virtual) {
 272     switch (id) {
 273     case vmIntrinsics::_hashCode:
 274     case vmIntrinsics::_clone:
 275       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 276       break;
 277     default:
 278       return NULL;
 279     }
 280   }
 281 
 282   // -XX:-InlineNatives disables nearly all intrinsics:
 283   if (!InlineNatives) {
 284     switch (id) {
 285     case vmIntrinsics::_indexOf:
 286     case vmIntrinsics::_compareTo:
 287     case vmIntrinsics::_equals:
 288     case vmIntrinsics::_equalsC:
 289       break;  // InlineNatives does not control String.compareTo
 290     default:
 291       return NULL;
 292     }
 293   }
 294 
 295   switch (id) {
 296   case vmIntrinsics::_compareTo:
 297     if (!SpecialStringCompareTo)  return NULL;
 298     break;
 299   case vmIntrinsics::_indexOf:
 300     if (!SpecialStringIndexOf)  return NULL;
 301     break;
 302   case vmIntrinsics::_equals:
 303     if (!SpecialStringEquals)  return NULL;
 304     break;
 305   case vmIntrinsics::_equalsC:
 306     if (!SpecialArraysEquals)  return NULL;
 307     break;
 308   case vmIntrinsics::_arraycopy:
 309     if (!InlineArrayCopy)  return NULL;
 310     break;
 311   case vmIntrinsics::_copyMemory:
 312     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 313     if (!InlineArrayCopy)  return NULL;
 314     break;
 315   case vmIntrinsics::_hashCode:
 316     if (!InlineObjectHash)  return NULL;
 317     break;
 318   case vmIntrinsics::_clone:
 319   case vmIntrinsics::_copyOf:
 320   case vmIntrinsics::_copyOfRange:
 321     if (!InlineObjectCopy)  return NULL;
 322     // These also use the arraycopy intrinsic mechanism:
 323     if (!InlineArrayCopy)  return NULL;
 324     break;
 325   case vmIntrinsics::_checkIndex:
 326     // We do not intrinsify this.  The optimizer does fine with it.
 327     return NULL;
 328 
 329   case vmIntrinsics::_get_AtomicLong:
 330   case vmIntrinsics::_attemptUpdate:
 331     if (!InlineAtomicLong)  return NULL;
 332     break;
 333 
 334   case vmIntrinsics::_getCallerClass:
 335     if (!UseNewReflection)  return NULL;
 336     if (!InlineReflectionGetCallerClass)  return NULL;
 337     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 338     break;
 339 
 340   case vmIntrinsics::_bitCount_i:
 341   case vmIntrinsics::_bitCount_l:
 342     if (!UsePopCountInstruction)  return NULL;
 343     break;
 344 
 345   case vmIntrinsics::_Reference_get:
 346     // It is only when G1 is enabled that we absolutely
 347     // need to use the intrinsic version of Reference.get()
 348     // so that the value in the referent field, if necessary,
 349     // can be registered by the pre-barrier code.
 350     if (!UseG1GC) return NULL;
 351     break;
 352 
 353  default:
 354     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 355     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 356     break;
 357   }
 358 
 359   // -XX:-InlineClassNatives disables natives from the Class class.
 360   // The flag applies to all reflective calls, notably Array.newArray
 361   // (visible to Java programmers as Array.newInstance).
 362   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 363       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 364     if (!InlineClassNatives)  return NULL;
 365   }
 366 
 367   // -XX:-InlineThreadNatives disables natives from the Thread class.
 368   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 369     if (!InlineThreadNatives)  return NULL;
 370   }
 371 
 372   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 373   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 374       m->holder()->name() == ciSymbol::java_lang_Float() ||
 375       m->holder()->name() == ciSymbol::java_lang_Double()) {
 376     if (!InlineMathNatives)  return NULL;
 377   }
 378 
 379   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 380   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 381     if (!InlineUnsafeOps)  return NULL;
 382   }
 383 
 384   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 385 }
 386 
 387 //----------------------register_library_intrinsics-----------------------
 388 // Initialize this file's data structures, for each Compile instance.
 389 void Compile::register_library_intrinsics() {
 390   // Nothing to do here.
 391 }
 392 
 393 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 394   LibraryCallKit kit(jvms, this);
 395   Compile* C = kit.C;
 396   int nodes = C->unique();
 397 #ifndef PRODUCT
 398   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 399     char buf[1000];
 400     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 401     tty->print_cr("Intrinsic %s", str);
 402   }
 403 #endif
 404 
 405   if (kit.try_to_inline()) {
 406     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 407       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 408     }
 409     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 410     if (C->log()) {
 411       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 412                      vmIntrinsics::name_at(intrinsic_id()),
 413                      (is_virtual() ? " virtual='1'" : ""),
 414                      C->unique() - nodes);
 415     }
 416     return kit.transfer_exceptions_into_jvms();
 417   }
 418 
 419   if (PrintIntrinsics) {
 420     if (jvms->has_method()) {
 421       // Not a root compile.
 422       tty->print("Did not inline intrinsic %s%s at bci:%d in",
 423                  vmIntrinsics::name_at(intrinsic_id()),
 424                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 425       kit.caller()->print_short_name(tty);
 426       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 427     } else {
 428       // Root compile
 429       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 430                vmIntrinsics::name_at(intrinsic_id()),
 431                (is_virtual() ? " (virtual)" : ""), kit.bci());
 432     }
 433   }
 434   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 435   return NULL;
 436 }
 437 
 438 bool LibraryCallKit::try_to_inline() {
 439   // Handle symbolic names for otherwise undistinguished boolean switches:
 440   const bool is_store       = true;
 441   const bool is_native_ptr  = true;
 442   const bool is_static      = true;
 443 
 444   if (!jvms()->has_method()) {
 445     // Root JVMState has a null method.
 446     assert(map()->memory()->Opcode() == Op_Parm, "");
 447     // Insert the memory aliasing node
 448     set_all_memory(reset_memory());
 449   }
 450   assert(merged_memory(), "");
 451 
 452   switch (intrinsic_id()) {
 453   case vmIntrinsics::_hashCode:
 454     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 455   case vmIntrinsics::_identityHashCode:
 456     return inline_native_hashcode(/*!virtual*/ false, is_static);
 457   case vmIntrinsics::_getClass:
 458     return inline_native_getClass();
 459 
 460   case vmIntrinsics::_dsin:
 461   case vmIntrinsics::_dcos:
 462   case vmIntrinsics::_dtan:
 463   case vmIntrinsics::_dabs:
 464   case vmIntrinsics::_datan2:
 465   case vmIntrinsics::_dsqrt:
 466   case vmIntrinsics::_dexp:
 467   case vmIntrinsics::_dlog:
 468   case vmIntrinsics::_dlog10:
 469   case vmIntrinsics::_dpow:
 470     return inline_math_native(intrinsic_id());
 471 
 472   case vmIntrinsics::_min:
 473   case vmIntrinsics::_max:
 474     return inline_min_max(intrinsic_id());
 475 
 476   case vmIntrinsics::_arraycopy:
 477     return inline_arraycopy();
 478 
 479   case vmIntrinsics::_compareTo:
 480     return inline_string_compareTo();
 481   case vmIntrinsics::_indexOf:
 482     return inline_string_indexOf();
 483   case vmIntrinsics::_equals:
 484     return inline_string_equals();
 485 
 486   case vmIntrinsics::_getObject:
 487     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 488   case vmIntrinsics::_getBoolean:
 489     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 490   case vmIntrinsics::_getByte:
 491     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 492   case vmIntrinsics::_getShort:
 493     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 494   case vmIntrinsics::_getChar:
 495     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 496   case vmIntrinsics::_getInt:
 497     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 498   case vmIntrinsics::_getLong:
 499     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 500   case vmIntrinsics::_getFloat:
 501     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 502   case vmIntrinsics::_getDouble:
 503     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 504 
 505   case vmIntrinsics::_putObject:
 506     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 507   case vmIntrinsics::_putBoolean:
 508     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 509   case vmIntrinsics::_putByte:
 510     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 511   case vmIntrinsics::_putShort:
 512     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 513   case vmIntrinsics::_putChar:
 514     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 515   case vmIntrinsics::_putInt:
 516     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 517   case vmIntrinsics::_putLong:
 518     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 519   case vmIntrinsics::_putFloat:
 520     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 521   case vmIntrinsics::_putDouble:
 522     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 523 
 524   case vmIntrinsics::_getByte_raw:
 525     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 526   case vmIntrinsics::_getShort_raw:
 527     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 528   case vmIntrinsics::_getChar_raw:
 529     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 530   case vmIntrinsics::_getInt_raw:
 531     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 532   case vmIntrinsics::_getLong_raw:
 533     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 534   case vmIntrinsics::_getFloat_raw:
 535     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 536   case vmIntrinsics::_getDouble_raw:
 537     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 538   case vmIntrinsics::_getAddress_raw:
 539     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 540 
 541   case vmIntrinsics::_putByte_raw:
 542     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 543   case vmIntrinsics::_putShort_raw:
 544     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 545   case vmIntrinsics::_putChar_raw:
 546     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 547   case vmIntrinsics::_putInt_raw:
 548     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 549   case vmIntrinsics::_putLong_raw:
 550     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 551   case vmIntrinsics::_putFloat_raw:
 552     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 553   case vmIntrinsics::_putDouble_raw:
 554     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 555   case vmIntrinsics::_putAddress_raw:
 556     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 557 
 558   case vmIntrinsics::_getObjectVolatile:
 559     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 560   case vmIntrinsics::_getBooleanVolatile:
 561     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 562   case vmIntrinsics::_getByteVolatile:
 563     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 564   case vmIntrinsics::_getShortVolatile:
 565     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 566   case vmIntrinsics::_getCharVolatile:
 567     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 568   case vmIntrinsics::_getIntVolatile:
 569     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 570   case vmIntrinsics::_getLongVolatile:
 571     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 572   case vmIntrinsics::_getFloatVolatile:
 573     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 574   case vmIntrinsics::_getDoubleVolatile:
 575     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 576 
 577   case vmIntrinsics::_putObjectVolatile:
 578     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 579   case vmIntrinsics::_putBooleanVolatile:
 580     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 581   case vmIntrinsics::_putByteVolatile:
 582     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 583   case vmIntrinsics::_putShortVolatile:
 584     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 585   case vmIntrinsics::_putCharVolatile:
 586     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 587   case vmIntrinsics::_putIntVolatile:
 588     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 589   case vmIntrinsics::_putLongVolatile:
 590     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 591   case vmIntrinsics::_putFloatVolatile:
 592     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 593   case vmIntrinsics::_putDoubleVolatile:
 594     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 595 
 596   case vmIntrinsics::_prefetchRead:
 597     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 598   case vmIntrinsics::_prefetchWrite:
 599     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 600   case vmIntrinsics::_prefetchReadStatic:
 601     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 602   case vmIntrinsics::_prefetchWriteStatic:
 603     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 604 
 605   case vmIntrinsics::_compareAndSwapObject:
 606     return inline_unsafe_CAS(T_OBJECT);
 607   case vmIntrinsics::_compareAndSwapInt:
 608     return inline_unsafe_CAS(T_INT);
 609   case vmIntrinsics::_compareAndSwapLong:
 610     return inline_unsafe_CAS(T_LONG);
 611 
 612   case vmIntrinsics::_putOrderedObject:
 613     return inline_unsafe_ordered_store(T_OBJECT);
 614   case vmIntrinsics::_putOrderedInt:
 615     return inline_unsafe_ordered_store(T_INT);
 616   case vmIntrinsics::_putOrderedLong:
 617     return inline_unsafe_ordered_store(T_LONG);
 618 
 619   case vmIntrinsics::_currentThread:
 620     return inline_native_currentThread();
 621   case vmIntrinsics::_isInterrupted:
 622     return inline_native_isInterrupted();
 623 
 624   case vmIntrinsics::_currentTimeMillis:
 625     return inline_native_time_funcs(false);
 626   case vmIntrinsics::_nanoTime:
 627     return inline_native_time_funcs(true);
 628   case vmIntrinsics::_allocateInstance:
 629     return inline_unsafe_allocate();
 630   case vmIntrinsics::_copyMemory:
 631     return inline_unsafe_copyMemory();
 632   case vmIntrinsics::_newArray:
 633     return inline_native_newArray();
 634   case vmIntrinsics::_getLength:
 635     return inline_native_getLength();
 636   case vmIntrinsics::_copyOf:
 637     return inline_array_copyOf(false);
 638   case vmIntrinsics::_copyOfRange:
 639     return inline_array_copyOf(true);
 640   case vmIntrinsics::_equalsC:
 641     return inline_array_equals();
 642   case vmIntrinsics::_clone:
 643     return inline_native_clone(intrinsic()->is_virtual());
 644 
 645   case vmIntrinsics::_isAssignableFrom:
 646     return inline_native_subtype_check();
 647 
 648   case vmIntrinsics::_isInstance:
 649   case vmIntrinsics::_getModifiers:
 650   case vmIntrinsics::_isInterface:
 651   case vmIntrinsics::_isArray:
 652   case vmIntrinsics::_isPrimitive:
 653   case vmIntrinsics::_getSuperclass:
 654   case vmIntrinsics::_getComponentType:
 655   case vmIntrinsics::_getClassAccessFlags:
 656     return inline_native_Class_query(intrinsic_id());
 657 
 658   case vmIntrinsics::_floatToRawIntBits:
 659   case vmIntrinsics::_floatToIntBits:
 660   case vmIntrinsics::_intBitsToFloat:
 661   case vmIntrinsics::_doubleToRawLongBits:
 662   case vmIntrinsics::_doubleToLongBits:
 663   case vmIntrinsics::_longBitsToDouble:
 664     return inline_fp_conversions(intrinsic_id());
 665 
 666   case vmIntrinsics::_numberOfLeadingZeros_i:
 667   case vmIntrinsics::_numberOfLeadingZeros_l:
 668     return inline_numberOfLeadingZeros(intrinsic_id());
 669 
 670   case vmIntrinsics::_numberOfTrailingZeros_i:
 671   case vmIntrinsics::_numberOfTrailingZeros_l:
 672     return inline_numberOfTrailingZeros(intrinsic_id());
 673 
 674   case vmIntrinsics::_bitCount_i:
 675   case vmIntrinsics::_bitCount_l:
 676     return inline_bitCount(intrinsic_id());
 677 
 678   case vmIntrinsics::_reverseBytes_i:
 679   case vmIntrinsics::_reverseBytes_l:
 680   case vmIntrinsics::_reverseBytes_s:
 681   case vmIntrinsics::_reverseBytes_c:
 682     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 683 
 684   case vmIntrinsics::_get_AtomicLong:
 685     return inline_native_AtomicLong_get();
 686   case vmIntrinsics::_attemptUpdate:
 687     return inline_native_AtomicLong_attemptUpdate();
 688 
 689   case vmIntrinsics::_getCallerClass:
 690     return inline_native_Reflection_getCallerClass();
 691 
 692   case vmIntrinsics::_Reference_get:
 693     return inline_reference_get();
 694 
 695   default:
 696     // If you get here, it may be that someone has added a new intrinsic
 697     // to the list in vmSymbols.hpp without implementing it here.
 698 #ifndef PRODUCT
 699     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 700       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 701                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 702     }
 703 #endif
 704     return false;
 705   }
 706 }
 707 
 708 //------------------------------push_result------------------------------
 709 // Helper function for finishing intrinsics.
 710 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 711   record_for_igvn(region);
 712   set_control(_gvn.transform(region));
 713   BasicType value_type = value->type()->basic_type();
 714   push_node(value_type, _gvn.transform(value));
 715 }
 716 
 717 //------------------------------generate_guard---------------------------
 718 // Helper function for generating guarded fast-slow graph structures.
 719 // The given 'test', if true, guards a slow path.  If the test fails
 720 // then a fast path can be taken.  (We generally hope it fails.)
 721 // In all cases, GraphKit::control() is updated to the fast path.
 722 // The returned value represents the control for the slow path.
 723 // The return value is never 'top'; it is either a valid control
 724 // or NULL if it is obvious that the slow path can never be taken.
 725 // Also, if region and the slow control are not NULL, the slow edge
 726 // is appended to the region.
 727 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 728   if (stopped()) {
 729     // Already short circuited.
 730     return NULL;
 731   }
 732 
 733   // Build an if node and its projections.
 734   // If test is true we take the slow path, which we assume is uncommon.
 735   if (_gvn.type(test) == TypeInt::ZERO) {
 736     // The slow branch is never taken.  No need to build this guard.
 737     return NULL;
 738   }
 739 
 740   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 741 
 742   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 743   if (if_slow == top()) {
 744     // The slow branch is never taken.  No need to build this guard.
 745     return NULL;
 746   }
 747 
 748   if (region != NULL)
 749     region->add_req(if_slow);
 750 
 751   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 752   set_control(if_fast);
 753 
 754   return if_slow;
 755 }
 756 
 757 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 758   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 759 }
 760 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 761   return generate_guard(test, region, PROB_FAIR);
 762 }
 763 
 764 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 765                                                      Node* *pos_index) {
 766   if (stopped())
 767     return NULL;                // already stopped
 768   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 769     return NULL;                // index is already adequately typed
 770   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 771   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 772   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 773   if (is_neg != NULL && pos_index != NULL) {
 774     // Emulate effect of Parse::adjust_map_after_if.
 775     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 776     ccast->set_req(0, control());
 777     (*pos_index) = _gvn.transform(ccast);
 778   }
 779   return is_neg;
 780 }
 781 
 782 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 783                                                         Node* *pos_index) {
 784   if (stopped())
 785     return NULL;                // already stopped
 786   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 787     return NULL;                // index is already adequately typed
 788   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 789   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 790   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 791   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 792   if (is_notp != NULL && pos_index != NULL) {
 793     // Emulate effect of Parse::adjust_map_after_if.
 794     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 795     ccast->set_req(0, control());
 796     (*pos_index) = _gvn.transform(ccast);
 797   }
 798   return is_notp;
 799 }
 800 
 801 // Make sure that 'position' is a valid limit index, in [0..length].
 802 // There are two equivalent plans for checking this:
 803 //   A. (offset + copyLength)  unsigned<=  arrayLength
 804 //   B. offset  <=  (arrayLength - copyLength)
 805 // We require that all of the values above, except for the sum and
 806 // difference, are already known to be non-negative.
 807 // Plan A is robust in the face of overflow, if offset and copyLength
 808 // are both hugely positive.
 809 //
 810 // Plan B is less direct and intuitive, but it does not overflow at
 811 // all, since the difference of two non-negatives is always
 812 // representable.  Whenever Java methods must perform the equivalent
 813 // check they generally use Plan B instead of Plan A.
 814 // For the moment we use Plan A.
 815 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 816                                                   Node* subseq_length,
 817                                                   Node* array_length,
 818                                                   RegionNode* region) {
 819   if (stopped())
 820     return NULL;                // already stopped
 821   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 822   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 823     return NULL;                // common case of whole-array copy
 824   Node* last = subseq_length;
 825   if (!zero_offset)             // last += offset
 826     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 827   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 828   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 829   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 830   return is_over;
 831 }
 832 
 833 
 834 //--------------------------generate_current_thread--------------------
 835 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 836   ciKlass*    thread_klass = env()->Thread_klass();
 837   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 838   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 839   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 840   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 841   tls_output = thread;
 842   return threadObj;
 843 }
 844 
 845 
 846 //------------------------------make_string_method_node------------------------
 847 // Helper method for String intrinsic finctions.
 848 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
 849   const int value_offset  = java_lang_String::value_offset_in_bytes();
 850   const int count_offset  = java_lang_String::count_offset_in_bytes();
 851   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 852 
 853   Node* no_ctrl = NULL;
 854 
 855   ciInstanceKlass* klass = env()->String_klass();
 856   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 857 
 858   const TypeAryPtr* value_type =
 859         TypeAryPtr::make(TypePtr::NotNull,
 860                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
 861                          ciTypeArrayKlass::make(T_CHAR), true, 0);
 862 
 863   // Get start addr of string and substring
 864   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
 865   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 866   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
 867   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 868   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 869 
 870   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
 871   Node* str2_value   = make_load(no_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 872   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
 873   Node* str2_offset  = make_load(no_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 874   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 875 
 876   Node* result = NULL;
 877   switch (opcode) {
 878   case Op_StrIndexOf:
 879     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 880                                        str1_start, cnt1, str2_start, cnt2);
 881     break;
 882   case Op_StrComp:
 883     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 884                                     str1_start, cnt1, str2_start, cnt2);
 885     break;
 886   case Op_StrEquals:
 887     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 888                                       str1_start, str2_start, cnt1);
 889     break;
 890   default:
 891     ShouldNotReachHere();
 892     return NULL;
 893   }
 894 
 895   // All these intrinsics have checks.
 896   C->set_has_split_ifs(true); // Has chance for split-if optimization
 897 
 898   return _gvn.transform(result);
 899 }
 900 
 901 //------------------------------inline_string_compareTo------------------------
 902 bool LibraryCallKit::inline_string_compareTo() {
 903 
 904   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 905 
 906   const int value_offset = java_lang_String::value_offset_in_bytes();
 907   const int count_offset = java_lang_String::count_offset_in_bytes();
 908   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 909 
 910   _sp += 2;
 911   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 912   Node *receiver = pop();
 913 
 914   // Null check on self without removing any arguments.  The argument
 915   // null check technically happens in the wrong place, which can lead to
 916   // invalid stack traces when string compare is inlined into a method
 917   // which handles NullPointerExceptions.
 918   _sp += 2;
 919   receiver = do_null_check(receiver, T_OBJECT);
 920   argument = do_null_check(argument, T_OBJECT);
 921   _sp -= 2;
 922   if (stopped()) {
 923     return true;
 924   }
 925 
 926   ciInstanceKlass* klass = env()->String_klass();
 927   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 928   Node* no_ctrl = NULL;
 929 
 930   // Get counts for string and argument
 931   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 932   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 933 
 934   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 935   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 936 
 937   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
 938   push(compare);
 939   return true;
 940 }
 941 
 942 //------------------------------inline_string_equals------------------------
 943 bool LibraryCallKit::inline_string_equals() {
 944 
 945   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 946 
 947   const int value_offset = java_lang_String::value_offset_in_bytes();
 948   const int count_offset = java_lang_String::count_offset_in_bytes();
 949   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 950 
 951   int nargs = 2;
 952   _sp += nargs;
 953   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 954   Node* receiver = pop();
 955 
 956   // Null check on self without removing any arguments.  The argument
 957   // null check technically happens in the wrong place, which can lead to
 958   // invalid stack traces when string compare is inlined into a method
 959   // which handles NullPointerExceptions.
 960   _sp += nargs;
 961   receiver = do_null_check(receiver, T_OBJECT);
 962   //should not do null check for argument for String.equals(), because spec
 963   //allows to specify NULL as argument.
 964   _sp -= nargs;
 965 
 966   if (stopped()) {
 967     return true;
 968   }
 969 
 970   // paths (plus control) merge
 971   RegionNode* region = new (C, 5) RegionNode(5);
 972   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
 973 
 974   // does source == target string?
 975   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
 976   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 977 
 978   Node* if_eq = generate_slow_guard(bol, NULL);
 979   if (if_eq != NULL) {
 980     // receiver == argument
 981     phi->init_req(2, intcon(1));
 982     region->init_req(2, if_eq);
 983   }
 984 
 985   // get String klass for instanceOf
 986   ciInstanceKlass* klass = env()->String_klass();
 987 
 988   if (!stopped()) {
 989     _sp += nargs;          // gen_instanceof might do an uncommon trap
 990     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 991     _sp -= nargs;
 992     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 993     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
 994 
 995     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
 996     //instanceOf == true, fallthrough
 997 
 998     if (inst_false != NULL) {
 999       phi->init_req(3, intcon(0));
1000       region->init_req(3, inst_false);
1001     }
1002   }
1003 
1004   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1005 
1006   Node* no_ctrl = NULL;
1007   Node* receiver_cnt;
1008   Node* argument_cnt;
1009 
1010   if (!stopped()) {
1011     // Properly cast the argument to String
1012     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
1013     // This path is taken only when argument's type is String:NotNull.
1014     argument = cast_not_null(argument, false);
1015 
1016     // Get counts for string and argument
1017     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
1018     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1019 
1020     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
1021     argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1022 
1023     // Check for receiver count != argument count
1024     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
1025     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
1026     Node* if_ne = generate_slow_guard(bol, NULL);
1027     if (if_ne != NULL) {
1028       phi->init_req(4, intcon(0));
1029       region->init_req(4, if_ne);
1030     }
1031   }
1032 
1033   // Check for count == 0 is done by mach node StrEquals.
1034 
1035   if (!stopped()) {
1036     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
1037     phi->init_req(1, equals);
1038     region->init_req(1, control());
1039   }
1040 
1041   // post merge
1042   set_control(_gvn.transform(region));
1043   record_for_igvn(region);
1044 
1045   push(_gvn.transform(phi));
1046 
1047   return true;
1048 }
1049 
1050 //------------------------------inline_array_equals----------------------------
1051 bool LibraryCallKit::inline_array_equals() {
1052 
1053   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1054 
1055   _sp += 2;
1056   Node *argument2 = pop();
1057   Node *argument1 = pop();
1058 
1059   Node* equals =
1060     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1061                                         argument1, argument2) );
1062   push(equals);
1063   return true;
1064 }
1065 
1066 // Java version of String.indexOf(constant string)
1067 // class StringDecl {
1068 //   StringDecl(char[] ca) {
1069 //     offset = 0;
1070 //     count = ca.length;
1071 //     value = ca;
1072 //   }
1073 //   int offset;
1074 //   int count;
1075 //   char[] value;
1076 // }
1077 //
1078 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1079 //                             int targetOffset, int cache_i, int md2) {
1080 //   int cache = cache_i;
1081 //   int sourceOffset = string_object.offset;
1082 //   int sourceCount = string_object.count;
1083 //   int targetCount = target_object.length;
1084 //
1085 //   int targetCountLess1 = targetCount - 1;
1086 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1087 //
1088 //   char[] source = string_object.value;
1089 //   char[] target = target_object;
1090 //   int lastChar = target[targetCountLess1];
1091 //
1092 //  outer_loop:
1093 //   for (int i = sourceOffset; i < sourceEnd; ) {
1094 //     int src = source[i + targetCountLess1];
1095 //     if (src == lastChar) {
1096 //       // With random strings and a 4-character alphabet,
1097 //       // reverse matching at this point sets up 0.8% fewer
1098 //       // frames, but (paradoxically) makes 0.3% more probes.
1099 //       // Since those probes are nearer the lastChar probe,
1100 //       // there is may be a net D$ win with reverse matching.
1101 //       // But, reversing loop inhibits unroll of inner loop
1102 //       // for unknown reason.  So, does running outer loop from
1103 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1104 //       for (int j = 0; j < targetCountLess1; j++) {
1105 //         if (target[targetOffset + j] != source[i+j]) {
1106 //           if ((cache & (1 << source[i+j])) == 0) {
1107 //             if (md2 < j+1) {
1108 //               i += j+1;
1109 //               continue outer_loop;
1110 //             }
1111 //           }
1112 //           i += md2;
1113 //           continue outer_loop;
1114 //         }
1115 //       }
1116 //       return i - sourceOffset;
1117 //     }
1118 //     if ((cache & (1 << src)) == 0) {
1119 //       i += targetCountLess1;
1120 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1121 //     i++;
1122 //   }
1123 //   return -1;
1124 // }
1125 
1126 //------------------------------string_indexOf------------------------
1127 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1128                                      jint cache_i, jint md2_i) {
1129 
1130   Node* no_ctrl  = NULL;
1131   float likely   = PROB_LIKELY(0.9);
1132   float unlikely = PROB_UNLIKELY(0.9);
1133 
1134   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
1135 
1136   const int value_offset  = java_lang_String::value_offset_in_bytes();
1137   const int count_offset  = java_lang_String::count_offset_in_bytes();
1138   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1139 
1140   ciInstanceKlass* klass = env()->String_klass();
1141   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1142   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1143 
1144   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1145   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1146   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1147   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1148   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1149   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1150 
1151   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1152   jint target_length = target_array->length();
1153   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1154   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1155 
1156   IdealKit kit(this, false, true);
1157 #define __ kit.
1158   Node* zero             = __ ConI(0);
1159   Node* one              = __ ConI(1);
1160   Node* cache            = __ ConI(cache_i);
1161   Node* md2              = __ ConI(md2_i);
1162   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1163   Node* targetCount      = __ ConI(target_length);
1164   Node* targetCountLess1 = __ ConI(target_length - 1);
1165   Node* targetOffset     = __ ConI(targetOffset_i);
1166   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1167 
1168   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1169   Node* outer_loop = __ make_label(2 /* goto */);
1170   Node* return_    = __ make_label(1);
1171 
1172   __ set(rtn,__ ConI(-1));
1173   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1174        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1175        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1176        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1177        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1178          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1179               Node* tpj = __ AddI(targetOffset, __ value(j));
1180               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1181               Node* ipj  = __ AddI(__ value(i), __ value(j));
1182               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1183               __ if_then(targ, BoolTest::ne, src2); {
1184                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1185                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1186                     __ increment(i, __ AddI(__ value(j), one));
1187                     __ goto_(outer_loop);
1188                   } __ end_if(); __ dead(j);
1189                 }__ end_if(); __ dead(j);
1190                 __ increment(i, md2);
1191                 __ goto_(outer_loop);
1192               }__ end_if();
1193               __ increment(j, one);
1194          }__ end_loop(); __ dead(j);
1195          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1196          __ goto_(return_);
1197        }__ end_if();
1198        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1199          __ increment(i, targetCountLess1);
1200        }__ end_if();
1201        __ increment(i, one);
1202        __ bind(outer_loop);
1203   }__ end_loop(); __ dead(i);
1204   __ bind(return_);
1205 
1206   // Final sync IdealKit and GraphKit.
1207   final_sync(kit);
1208   Node* result = __ value(rtn);
1209 #undef __
1210   C->set_has_loops(true);
1211   return result;
1212 }
1213 
1214 //------------------------------inline_string_indexOf------------------------
1215 bool LibraryCallKit::inline_string_indexOf() {
1216 
1217   const int value_offset  = java_lang_String::value_offset_in_bytes();
1218   const int count_offset  = java_lang_String::count_offset_in_bytes();
1219   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1220 
1221   _sp += 2;
1222   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1223   Node *receiver = pop();
1224 
1225   Node* result;
1226   // Disable the use of pcmpestri until it can be guaranteed that
1227   // the load doesn't cross into the uncommited space.
1228   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1229       UseSSE42Intrinsics) {
1230     // Generate SSE4.2 version of indexOf
1231     // We currently only have match rules that use SSE4.2
1232 
1233     // Null check on self without removing any arguments.  The argument
1234     // null check technically happens in the wrong place, which can lead to
1235     // invalid stack traces when string compare is inlined into a method
1236     // which handles NullPointerExceptions.
1237     _sp += 2;
1238     receiver = do_null_check(receiver, T_OBJECT);
1239     argument = do_null_check(argument, T_OBJECT);
1240     _sp -= 2;
1241 
1242     if (stopped()) {
1243       return true;
1244     }
1245 
1246     ciInstanceKlass* str_klass = env()->String_klass();
1247     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1248 
1249     // Make the merge point
1250     RegionNode* result_rgn = new (C, 4) RegionNode(4);
1251     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
1252     Node* no_ctrl  = NULL;
1253 
1254     // Get counts for string and substr
1255     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1256     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1257 
1258     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1259     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1260 
1261     // Check for substr count > string count
1262     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1263     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1264     Node* if_gt = generate_slow_guard(bol, NULL);
1265     if (if_gt != NULL) {
1266       result_phi->init_req(2, intcon(-1));
1267       result_rgn->init_req(2, if_gt);
1268     }
1269 
1270     if (!stopped()) {
1271       // Check for substr count == 0
1272       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
1273       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
1274       Node* if_zero = generate_slow_guard(bol, NULL);
1275       if (if_zero != NULL) {
1276         result_phi->init_req(3, intcon(0));
1277         result_rgn->init_req(3, if_zero);
1278       }
1279     }
1280 
1281     if (!stopped()) {
1282       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1283       result_phi->init_req(1, result);
1284       result_rgn->init_req(1, control());
1285     }
1286     set_control(_gvn.transform(result_rgn));
1287     record_for_igvn(result_rgn);
1288     result = _gvn.transform(result_phi);
1289 
1290   } else { // Use LibraryCallKit::string_indexOf
1291     // don't intrinsify if argument isn't a constant string.
1292     if (!argument->is_Con()) {
1293      return false;
1294     }
1295     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1296     if (str_type == NULL) {
1297       return false;
1298     }
1299     ciInstanceKlass* klass = env()->String_klass();
1300     ciObject* str_const = str_type->const_oop();
1301     if (str_const == NULL || str_const->klass() != klass) {
1302       return false;
1303     }
1304     ciInstance* str = str_const->as_instance();
1305     assert(str != NULL, "must be instance");
1306 
1307     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1308     int       o = str->field_value_by_offset(offset_offset).as_int();
1309     int       c = str->field_value_by_offset(count_offset).as_int();
1310     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1311 
1312     // constant strings have no offset and count == length which
1313     // simplifies the resulting code somewhat so lets optimize for that.
1314     if (o != 0 || c != pat->length()) {
1315      return false;
1316     }
1317 
1318     // Null check on self without removing any arguments.  The argument
1319     // null check technically happens in the wrong place, which can lead to
1320     // invalid stack traces when string compare is inlined into a method
1321     // which handles NullPointerExceptions.
1322     _sp += 2;
1323     receiver = do_null_check(receiver, T_OBJECT);
1324     // No null check on the argument is needed since it's a constant String oop.
1325     _sp -= 2;
1326     if (stopped()) {
1327       return true;
1328     }
1329 
1330     // The null string as a pattern always returns 0 (match at beginning of string)
1331     if (c == 0) {
1332       push(intcon(0));
1333       return true;
1334     }
1335 
1336     // Generate default indexOf
1337     jchar lastChar = pat->char_at(o + (c - 1));
1338     int cache = 0;
1339     int i;
1340     for (i = 0; i < c - 1; i++) {
1341       assert(i < pat->length(), "out of range");
1342       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1343     }
1344 
1345     int md2 = c;
1346     for (i = 0; i < c - 1; i++) {
1347       assert(i < pat->length(), "out of range");
1348       if (pat->char_at(o + i) == lastChar) {
1349         md2 = (c - 1) - i;
1350       }
1351     }
1352 
1353     result = string_indexOf(receiver, pat, o, cache, md2);
1354   }
1355 
1356   push(result);
1357   return true;
1358 }
1359 
1360 //--------------------------pop_math_arg--------------------------------
1361 // Pop a double argument to a math function from the stack
1362 // rounding it if necessary.
1363 Node * LibraryCallKit::pop_math_arg() {
1364   Node *arg = pop_pair();
1365   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1366     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1367   return arg;
1368 }
1369 
1370 //------------------------------inline_trig----------------------------------
1371 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1372 // argument reduction which will turn into a fast/slow diamond.
1373 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1374   _sp += arg_size();            // restore stack pointer
1375   Node* arg = pop_math_arg();
1376   Node* trig = NULL;
1377 
1378   switch (id) {
1379   case vmIntrinsics::_dsin:
1380     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1381     break;
1382   case vmIntrinsics::_dcos:
1383     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1384     break;
1385   case vmIntrinsics::_dtan:
1386     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1387     break;
1388   default:
1389     assert(false, "bad intrinsic was passed in");
1390     return false;
1391   }
1392 
1393   // Rounding required?  Check for argument reduction!
1394   if( Matcher::strict_fp_requires_explicit_rounding ) {
1395 
1396     static const double     pi_4 =  0.7853981633974483;
1397     static const double neg_pi_4 = -0.7853981633974483;
1398     // pi/2 in 80-bit extended precision
1399     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1400     // -pi/2 in 80-bit extended precision
1401     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1402     // Cutoff value for using this argument reduction technique
1403     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1404     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1405 
1406     // Pseudocode for sin:
1407     // if (x <= Math.PI / 4.0) {
1408     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1409     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1410     // } else {
1411     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1412     // }
1413     // return StrictMath.sin(x);
1414 
1415     // Pseudocode for cos:
1416     // if (x <= Math.PI / 4.0) {
1417     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1418     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1419     // } else {
1420     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1421     // }
1422     // return StrictMath.cos(x);
1423 
1424     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1425     // requires a special machine instruction to load it.  Instead we'll try
1426     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1427     // probably do the math inside the SIN encoding.
1428 
1429     // Make the merge point
1430     RegionNode *r = new (C, 3) RegionNode(3);
1431     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1432 
1433     // Flatten arg so we need only 1 test
1434     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1435     // Node for PI/4 constant
1436     Node *pi4 = makecon(TypeD::make(pi_4));
1437     // Check PI/4 : abs(arg)
1438     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1439     // Check: If PI/4 < abs(arg) then go slow
1440     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1441     // Branch either way
1442     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1443     set_control(opt_iff(r,iff));
1444 
1445     // Set fast path result
1446     phi->init_req(2,trig);
1447 
1448     // Slow path - non-blocking leaf call
1449     Node* call = NULL;
1450     switch (id) {
1451     case vmIntrinsics::_dsin:
1452       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1453                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1454                                "Sin", NULL, arg, top());
1455       break;
1456     case vmIntrinsics::_dcos:
1457       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1458                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1459                                "Cos", NULL, arg, top());
1460       break;
1461     case vmIntrinsics::_dtan:
1462       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1463                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1464                                "Tan", NULL, arg, top());
1465       break;
1466     }
1467     assert(control()->in(0) == call, "");
1468     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1469     r->init_req(1,control());
1470     phi->init_req(1,slow_result);
1471 
1472     // Post-merge
1473     set_control(_gvn.transform(r));
1474     record_for_igvn(r);
1475     trig = _gvn.transform(phi);
1476 
1477     C->set_has_split_ifs(true); // Has chance for split-if optimization
1478   }
1479   // Push result back on JVM stack
1480   push_pair(trig);
1481   return true;
1482 }
1483 
1484 //------------------------------inline_sqrt-------------------------------------
1485 // Inline square root instruction, if possible.
1486 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1487   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1488   _sp += arg_size();        // restore stack pointer
1489   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1490   return true;
1491 }
1492 
1493 //------------------------------inline_abs-------------------------------------
1494 // Inline absolute value instruction, if possible.
1495 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1496   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1497   _sp += arg_size();        // restore stack pointer
1498   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1499   return true;
1500 }
1501 
1502 //------------------------------inline_exp-------------------------------------
1503 // Inline exp instructions, if possible.  The Intel hardware only misses
1504 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1505 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1506   assert(id == vmIntrinsics::_dexp, "Not exp");
1507 
1508   // If this inlining ever returned NaN in the past, we do not intrinsify it
1509   // every again.  NaN results requires StrictMath.exp handling.
1510   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1511 
1512   // Do not intrinsify on older platforms which lack cmove.
1513   if (ConditionalMoveLimit == 0)  return false;
1514 
1515   _sp += arg_size();        // restore stack pointer
1516   Node *x = pop_math_arg();
1517   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1518 
1519   //-------------------
1520   //result=(result.isNaN())? StrictMath::exp():result;
1521   // Check: If isNaN() by checking result!=result? then go to Strict Math
1522   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1523   // Build the boolean node
1524   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1525 
1526   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1527     // End the current control-flow path
1528     push_pair(x);
1529     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1530     // to handle.  Recompile without intrinsifying Math.exp
1531     uncommon_trap(Deoptimization::Reason_intrinsic,
1532                   Deoptimization::Action_make_not_entrant);
1533   }
1534 
1535   C->set_has_split_ifs(true); // Has chance for split-if optimization
1536 
1537   push_pair(result);
1538 
1539   return true;
1540 }
1541 
1542 //------------------------------inline_pow-------------------------------------
1543 // Inline power instructions, if possible.
1544 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1545   assert(id == vmIntrinsics::_dpow, "Not pow");
1546 
1547   // If this inlining ever returned NaN in the past, we do not intrinsify it
1548   // every again.  NaN results requires StrictMath.pow handling.
1549   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1550 
1551   // Do not intrinsify on older platforms which lack cmove.
1552   if (ConditionalMoveLimit == 0)  return false;
1553 
1554   // Pseudocode for pow
1555   // if (x <= 0.0) {
1556   //   if ((double)((int)y)==y) { // if y is int
1557   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1558   //   } else {
1559   //     result = NaN;
1560   //   }
1561   // } else {
1562   //   result = DPow(x,y);
1563   // }
1564   // if (result != result)?  {
1565   //   uncommon_trap();
1566   // }
1567   // return result;
1568 
1569   _sp += arg_size();        // restore stack pointer
1570   Node* y = pop_math_arg();
1571   Node* x = pop_math_arg();
1572 
1573   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1574 
1575   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1576   // inside of something) then skip the fancy tests and just check for
1577   // NaN result.
1578   Node *result = NULL;
1579   if( jvms()->depth() >= 1 ) {
1580     result = fast_result;
1581   } else {
1582 
1583     // Set the merge point for If node with condition of (x <= 0.0)
1584     // There are four possible paths to region node and phi node
1585     RegionNode *r = new (C, 4) RegionNode(4);
1586     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1587 
1588     // Build the first if node: if (x <= 0.0)
1589     // Node for 0 constant
1590     Node *zeronode = makecon(TypeD::ZERO);
1591     // Check x:0
1592     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1593     // Check: If (x<=0) then go complex path
1594     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1595     // Branch either way
1596     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1597     Node *opt_test = _gvn.transform(if1);
1598     //assert( opt_test->is_If(), "Expect an IfNode");
1599     IfNode *opt_if1 = (IfNode*)opt_test;
1600     // Fast path taken; set region slot 3
1601     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1602     r->init_req(3,fast_taken); // Capture fast-control
1603 
1604     // Fast path not-taken, i.e. slow path
1605     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1606 
1607     // Set fast path result
1608     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1609     phi->init_req(3, fast_result);
1610 
1611     // Complex path
1612     // Build the second if node (if y is int)
1613     // Node for (int)y
1614     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1615     // Node for (double)((int) y)
1616     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1617     // Check (double)((int) y) : y
1618     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1619     // Check if (y isn't int) then go to slow path
1620 
1621     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1622     // Branch either way
1623     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1624     Node *slow_path = opt_iff(r,if2); // Set region path 2
1625 
1626     // Calculate DPow(abs(x), y)*(1 & (int)y)
1627     // Node for constant 1
1628     Node *conone = intcon(1);
1629     // 1& (int)y
1630     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1631     // zero node
1632     Node *conzero = intcon(0);
1633     // Check (1&(int)y)==0?
1634     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1635     // Check if (1&(int)y)!=0?, if so the result is negative
1636     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1637     // abs(x)
1638     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1639     // abs(x)^y
1640     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1641     // -abs(x)^y
1642     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1643     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1644     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1645     // Set complex path fast result
1646     phi->init_req(2, signresult);
1647 
1648     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1649     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1650     r->init_req(1,slow_path);
1651     phi->init_req(1,slow_result);
1652 
1653     // Post merge
1654     set_control(_gvn.transform(r));
1655     record_for_igvn(r);
1656     result=_gvn.transform(phi);
1657   }
1658 
1659   //-------------------
1660   //result=(result.isNaN())? uncommon_trap():result;
1661   // Check: If isNaN() by checking result!=result? then go to Strict Math
1662   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1663   // Build the boolean node
1664   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1665 
1666   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1667     // End the current control-flow path
1668     push_pair(x);
1669     push_pair(y);
1670     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1671     // to handle.  Recompile without intrinsifying Math.pow.
1672     uncommon_trap(Deoptimization::Reason_intrinsic,
1673                   Deoptimization::Action_make_not_entrant);
1674   }
1675 
1676   C->set_has_split_ifs(true); // Has chance for split-if optimization
1677 
1678   push_pair(result);
1679 
1680   return true;
1681 }
1682 
1683 //------------------------------inline_trans-------------------------------------
1684 // Inline transcendental instructions, if possible.  The Intel hardware gets
1685 // these right, no funny corner cases missed.
1686 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1687   _sp += arg_size();        // restore stack pointer
1688   Node* arg = pop_math_arg();
1689   Node* trans = NULL;
1690 
1691   switch (id) {
1692   case vmIntrinsics::_dlog:
1693     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1694     break;
1695   case vmIntrinsics::_dlog10:
1696     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1697     break;
1698   default:
1699     assert(false, "bad intrinsic was passed in");
1700     return false;
1701   }
1702 
1703   // Push result back on JVM stack
1704   push_pair(trans);
1705   return true;
1706 }
1707 
1708 //------------------------------runtime_math-----------------------------
1709 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1710   Node* a = NULL;
1711   Node* b = NULL;
1712 
1713   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1714          "must be (DD)D or (D)D type");
1715 
1716   // Inputs
1717   _sp += arg_size();        // restore stack pointer
1718   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1719     b = pop_math_arg();
1720   }
1721   a = pop_math_arg();
1722 
1723   const TypePtr* no_memory_effects = NULL;
1724   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1725                                  no_memory_effects,
1726                                  a, top(), b, b ? top() : NULL);
1727   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1728 #ifdef ASSERT
1729   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1730   assert(value_top == top(), "second value must be top");
1731 #endif
1732 
1733   push_pair(value);
1734   return true;
1735 }
1736 
1737 //------------------------------inline_math_native-----------------------------
1738 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1739   switch (id) {
1740     // These intrinsics are not properly supported on all hardware
1741   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1742     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1743   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1744     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1745   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1746     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1747 
1748   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1749     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1750   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1751     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1752 
1753     // These intrinsics are supported on all hardware
1754   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1755   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1756 
1757     // These intrinsics don't work on X86.  The ad implementation doesn't
1758     // handle NaN's properly.  Instead of returning infinity, the ad
1759     // implementation returns a NaN on overflow. See bug: 6304089
1760     // Once the ad implementations are fixed, change the code below
1761     // to match the intrinsics above
1762 
1763   case vmIntrinsics::_dexp:  return
1764     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1765   case vmIntrinsics::_dpow:  return
1766     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1767 
1768    // These intrinsics are not yet correctly implemented
1769   case vmIntrinsics::_datan2:
1770     return false;
1771 
1772   default:
1773     ShouldNotReachHere();
1774     return false;
1775   }
1776 }
1777 
1778 static bool is_simple_name(Node* n) {
1779   return (n->req() == 1         // constant
1780           || (n->is_Type() && n->as_Type()->type()->singleton())
1781           || n->is_Proj()       // parameter or return value
1782           || n->is_Phi()        // local of some sort
1783           );
1784 }
1785 
1786 //----------------------------inline_min_max-----------------------------------
1787 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1788   push(generate_min_max(id, argument(0), argument(1)));
1789 
1790   return true;
1791 }
1792 
1793 Node*
1794 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1795   // These are the candidate return value:
1796   Node* xvalue = x0;
1797   Node* yvalue = y0;
1798 
1799   if (xvalue == yvalue) {
1800     return xvalue;
1801   }
1802 
1803   bool want_max = (id == vmIntrinsics::_max);
1804 
1805   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1806   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1807   if (txvalue == NULL || tyvalue == NULL)  return top();
1808   // This is not really necessary, but it is consistent with a
1809   // hypothetical MaxINode::Value method:
1810   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1811 
1812   // %%% This folding logic should (ideally) be in a different place.
1813   // Some should be inside IfNode, and there to be a more reliable
1814   // transformation of ?: style patterns into cmoves.  We also want
1815   // more powerful optimizations around cmove and min/max.
1816 
1817   // Try to find a dominating comparison of these guys.
1818   // It can simplify the index computation for Arrays.copyOf
1819   // and similar uses of System.arraycopy.
1820   // First, compute the normalized version of CmpI(x, y).
1821   int   cmp_op = Op_CmpI;
1822   Node* xkey = xvalue;
1823   Node* ykey = yvalue;
1824   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1825   if (ideal_cmpxy->is_Cmp()) {
1826     // E.g., if we have CmpI(length - offset, count),
1827     // it might idealize to CmpI(length, count + offset)
1828     cmp_op = ideal_cmpxy->Opcode();
1829     xkey = ideal_cmpxy->in(1);
1830     ykey = ideal_cmpxy->in(2);
1831   }
1832 
1833   // Start by locating any relevant comparisons.
1834   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1835   Node* cmpxy = NULL;
1836   Node* cmpyx = NULL;
1837   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1838     Node* cmp = start_from->fast_out(k);
1839     if (cmp->outcnt() > 0 &&            // must have prior uses
1840         cmp->in(0) == NULL &&           // must be context-independent
1841         cmp->Opcode() == cmp_op) {      // right kind of compare
1842       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1843       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1844     }
1845   }
1846 
1847   const int NCMPS = 2;
1848   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1849   int cmpn;
1850   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1851     if (cmps[cmpn] != NULL)  break;     // find a result
1852   }
1853   if (cmpn < NCMPS) {
1854     // Look for a dominating test that tells us the min and max.
1855     int depth = 0;                // Limit search depth for speed
1856     Node* dom = control();
1857     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1858       if (++depth >= 100)  break;
1859       Node* ifproj = dom;
1860       if (!ifproj->is_Proj())  continue;
1861       Node* iff = ifproj->in(0);
1862       if (!iff->is_If())  continue;
1863       Node* bol = iff->in(1);
1864       if (!bol->is_Bool())  continue;
1865       Node* cmp = bol->in(1);
1866       if (cmp == NULL)  continue;
1867       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1868         if (cmps[cmpn] == cmp)  break;
1869       if (cmpn == NCMPS)  continue;
1870       BoolTest::mask btest = bol->as_Bool()->_test._test;
1871       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1872       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1873       // At this point, we know that 'x btest y' is true.
1874       switch (btest) {
1875       case BoolTest::eq:
1876         // They are proven equal, so we can collapse the min/max.
1877         // Either value is the answer.  Choose the simpler.
1878         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1879           return yvalue;
1880         return xvalue;
1881       case BoolTest::lt:          // x < y
1882       case BoolTest::le:          // x <= y
1883         return (want_max ? yvalue : xvalue);
1884       case BoolTest::gt:          // x > y
1885       case BoolTest::ge:          // x >= y
1886         return (want_max ? xvalue : yvalue);
1887       }
1888     }
1889   }
1890 
1891   // We failed to find a dominating test.
1892   // Let's pick a test that might GVN with prior tests.
1893   Node*          best_bol   = NULL;
1894   BoolTest::mask best_btest = BoolTest::illegal;
1895   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1896     Node* cmp = cmps[cmpn];
1897     if (cmp == NULL)  continue;
1898     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1899       Node* bol = cmp->fast_out(j);
1900       if (!bol->is_Bool())  continue;
1901       BoolTest::mask btest = bol->as_Bool()->_test._test;
1902       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1903       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1904       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1905         best_bol   = bol->as_Bool();
1906         best_btest = btest;
1907       }
1908     }
1909   }
1910 
1911   Node* answer_if_true  = NULL;
1912   Node* answer_if_false = NULL;
1913   switch (best_btest) {
1914   default:
1915     if (cmpxy == NULL)
1916       cmpxy = ideal_cmpxy;
1917     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1918     // and fall through:
1919   case BoolTest::lt:          // x < y
1920   case BoolTest::le:          // x <= y
1921     answer_if_true  = (want_max ? yvalue : xvalue);
1922     answer_if_false = (want_max ? xvalue : yvalue);
1923     break;
1924   case BoolTest::gt:          // x > y
1925   case BoolTest::ge:          // x >= y
1926     answer_if_true  = (want_max ? xvalue : yvalue);
1927     answer_if_false = (want_max ? yvalue : xvalue);
1928     break;
1929   }
1930 
1931   jint hi, lo;
1932   if (want_max) {
1933     // We can sharpen the minimum.
1934     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1935     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1936   } else {
1937     // We can sharpen the maximum.
1938     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1939     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1940   }
1941 
1942   // Use a flow-free graph structure, to avoid creating excess control edges
1943   // which could hinder other optimizations.
1944   // Since Math.min/max is often used with arraycopy, we want
1945   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1946   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1947                                answer_if_false, answer_if_true,
1948                                TypeInt::make(lo, hi, widen));
1949 
1950   return _gvn.transform(cmov);
1951 
1952   /*
1953   // This is not as desirable as it may seem, since Min and Max
1954   // nodes do not have a full set of optimizations.
1955   // And they would interfere, anyway, with 'if' optimizations
1956   // and with CMoveI canonical forms.
1957   switch (id) {
1958   case vmIntrinsics::_min:
1959     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1960   case vmIntrinsics::_max:
1961     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1962   default:
1963     ShouldNotReachHere();
1964   }
1965   */
1966 }
1967 
1968 inline int
1969 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1970   const TypePtr* base_type = TypePtr::NULL_PTR;
1971   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1972   if (base_type == NULL) {
1973     // Unknown type.
1974     return Type::AnyPtr;
1975   } else if (base_type == TypePtr::NULL_PTR) {
1976     // Since this is a NULL+long form, we have to switch to a rawptr.
1977     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1978     offset = MakeConX(0);
1979     return Type::RawPtr;
1980   } else if (base_type->base() == Type::RawPtr) {
1981     return Type::RawPtr;
1982   } else if (base_type->isa_oopptr()) {
1983     // Base is never null => always a heap address.
1984     if (base_type->ptr() == TypePtr::NotNull) {
1985       return Type::OopPtr;
1986     }
1987     // Offset is small => always a heap address.
1988     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1989     if (offset_type != NULL &&
1990         base_type->offset() == 0 &&     // (should always be?)
1991         offset_type->_lo >= 0 &&
1992         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1993       return Type::OopPtr;
1994     }
1995     // Otherwise, it might either be oop+off or NULL+addr.
1996     return Type::AnyPtr;
1997   } else {
1998     // No information:
1999     return Type::AnyPtr;
2000   }
2001 }
2002 
2003 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2004   int kind = classify_unsafe_addr(base, offset);
2005   if (kind == Type::RawPtr) {
2006     return basic_plus_adr(top(), base, offset);
2007   } else {
2008     return basic_plus_adr(base, offset);
2009   }
2010 }
2011 
2012 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
2013 // inline int Integer.numberOfLeadingZeros(int)
2014 // inline int Long.numberOfLeadingZeros(long)
2015 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
2016   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
2017   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
2018   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
2019   _sp += arg_size();  // restore stack pointer
2020   switch (id) {
2021   case vmIntrinsics::_numberOfLeadingZeros_i:
2022     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
2023     break;
2024   case vmIntrinsics::_numberOfLeadingZeros_l:
2025     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
2026     break;
2027   default:
2028     ShouldNotReachHere();
2029   }
2030   return true;
2031 }
2032 
2033 //-------------------inline_numberOfTrailingZeros_int/long----------------------
2034 // inline int Integer.numberOfTrailingZeros(int)
2035 // inline int Long.numberOfTrailingZeros(long)
2036 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
2037   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
2038   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
2039   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
2040   _sp += arg_size();  // restore stack pointer
2041   switch (id) {
2042   case vmIntrinsics::_numberOfTrailingZeros_i:
2043     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
2044     break;
2045   case vmIntrinsics::_numberOfTrailingZeros_l:
2046     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
2047     break;
2048   default:
2049     ShouldNotReachHere();
2050   }
2051   return true;
2052 }
2053 
2054 //----------------------------inline_bitCount_int/long-----------------------
2055 // inline int Integer.bitCount(int)
2056 // inline int Long.bitCount(long)
2057 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2058   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2059   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2060   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2061   _sp += arg_size();  // restore stack pointer
2062   switch (id) {
2063   case vmIntrinsics::_bitCount_i:
2064     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2065     break;
2066   case vmIntrinsics::_bitCount_l:
2067     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2068     break;
2069   default:
2070     ShouldNotReachHere();
2071   }
2072   return true;
2073 }
2074 
2075 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2076 // inline Integer.reverseBytes(int)
2077 // inline Long.reverseBytes(long)
2078 // inline Character.reverseBytes(char)
2079 // inline Short.reverseBytes(short)
2080 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2081   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2082          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2083          "not reverse Bytes");
2084   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2085   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2086   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2087   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2088   _sp += arg_size();        // restore stack pointer
2089   switch (id) {
2090   case vmIntrinsics::_reverseBytes_i:
2091     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2092     break;
2093   case vmIntrinsics::_reverseBytes_l:
2094     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2095     break;
2096   case vmIntrinsics::_reverseBytes_c:
2097     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2098     break;
2099   case vmIntrinsics::_reverseBytes_s:
2100     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2101     break;
2102   default:
2103     ;
2104   }
2105   return true;
2106 }
2107 
2108 //----------------------------inline_unsafe_access----------------------------
2109 
2110 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2111 
2112 // Helper that guards and inserts a G1 pre-barrier.
2113 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
2114   assert(UseG1GC, "should not call this otherwise");
2115 
2116   // We could be accessing the referent field of a reference object. If so, when G1
2117   // is enabled, we need to log the value in the referent field in an SATB buffer.
2118   // This routine performs some compile time filters and generates suitable
2119   // runtime filters that guard the pre-barrier code.
2120 
2121   // Some compile time checks.
2122 
2123   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2124   const TypeX* otype = offset->find_intptr_t_type();
2125   if (otype != NULL && otype->is_con() &&
2126       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2127     // Constant offset but not the reference_offset so just return
2128     return;
2129   }
2130 
2131   // We only need to generate the runtime guards for instances.
2132   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2133   if (btype != NULL) {
2134     if (btype->isa_aryptr()) {
2135       // Array type so nothing to do
2136       return;
2137     }
2138 
2139     const TypeInstPtr* itype = btype->isa_instptr();
2140     if (itype != NULL) {
2141       // Can the klass of base_oop be statically determined
2142       // to be _not_ a sub-class of Reference?
2143       ciKlass* klass = itype->klass();
2144       if (klass->is_subtype_of(env()->Reference_klass()) &&
2145           !env()->Reference_klass()->is_subtype_of(klass)) {
2146         return;
2147       }
2148     }
2149   }
2150 
2151   // The compile time filters did not reject base_oop/offset so
2152   // we need to generate the following runtime filters
2153   //
2154   // if (offset == java_lang_ref_Reference::_reference_offset) {
2155   //   if (base != null) {
2156   //     if (klass(base)->reference_type() != REF_NONE)) {
2157   //       pre_barrier(_, pre_val, ...);
2158   //     }
2159   //   }
2160   // }
2161 
2162   float likely  = PROB_LIKELY(0.999);
2163   float unlikely  = PROB_UNLIKELY(0.999);
2164 
2165   IdealKit ideal(this);
2166 #define __ ideal.
2167 
2168   const int reference_type_offset = instanceKlass::reference_type_offset_in_bytes();
2169 
2170   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2171 
2172   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2173     __ if_then(base_oop, BoolTest::ne, null(), likely); {
2174 
2175       // Update graphKit memory and control from IdealKit.
2176       sync_kit(ideal);
2177 
2178       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2179       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2180 
2181       // Update IdealKit memory and control from graphKit.
2182       __ sync_kit(this);
2183 
2184       Node* one = __ ConI(1);
2185 
2186       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2187 
2188         // Update graphKit from IdeakKit.
2189         sync_kit(ideal);
2190 
2191         // Use the pre-barrier to record the value in the referent field
2192         pre_barrier(false /* do_load */,
2193                     __ ctrl(),
2194                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2195                     pre_val /* pre_val */,
2196                     T_OBJECT);
2197 
2198         // Update IdealKit from graphKit.
2199         __ sync_kit(this);
2200 
2201       } __ end_if(); // _ref_type != ref_none
2202     } __ end_if(); // base  != NULL
2203   } __ end_if(); // offset == referent_offset
2204 
2205   // Final sync IdealKit and GraphKit.
2206   final_sync(ideal);
2207 #undef __
2208 }
2209 
2210 
2211 // Interpret Unsafe.fieldOffset cookies correctly:
2212 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2213 
2214 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2215   if (callee()->is_static())  return false;  // caller must have the capability!
2216 
2217 #ifndef PRODUCT
2218   {
2219     ResourceMark rm;
2220     // Check the signatures.
2221     ciSignature* sig = signature();
2222 #ifdef ASSERT
2223     if (!is_store) {
2224       // Object getObject(Object base, int/long offset), etc.
2225       BasicType rtype = sig->return_type()->basic_type();
2226       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2227           rtype = T_ADDRESS;  // it is really a C void*
2228       assert(rtype == type, "getter must return the expected value");
2229       if (!is_native_ptr) {
2230         assert(sig->count() == 2, "oop getter has 2 arguments");
2231         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2232         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2233       } else {
2234         assert(sig->count() == 1, "native getter has 1 argument");
2235         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2236       }
2237     } else {
2238       // void putObject(Object base, int/long offset, Object x), etc.
2239       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2240       if (!is_native_ptr) {
2241         assert(sig->count() == 3, "oop putter has 3 arguments");
2242         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2243         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2244       } else {
2245         assert(sig->count() == 2, "native putter has 2 arguments");
2246         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2247       }
2248       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2249       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2250         vtype = T_ADDRESS;  // it is really a C void*
2251       assert(vtype == type, "putter must accept the expected value");
2252     }
2253 #endif // ASSERT
2254  }
2255 #endif //PRODUCT
2256 
2257   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2258 
2259   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2260 
2261   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2262   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2263 
2264   debug_only(int saved_sp = _sp);
2265   _sp += nargs;
2266 
2267   Node* val;
2268   debug_only(val = (Node*)(uintptr_t)-1);
2269 
2270 
2271   if (is_store) {
2272     // Get the value being stored.  (Pop it first; it was pushed last.)
2273     switch (type) {
2274     case T_DOUBLE:
2275     case T_LONG:
2276     case T_ADDRESS:
2277       val = pop_pair();
2278       break;
2279     default:
2280       val = pop();
2281     }
2282   }
2283 
2284   // Build address expression.  See the code in inline_unsafe_prefetch.
2285   Node *adr;
2286   Node *heap_base_oop = top();
2287   Node* offset = top();
2288 
2289   if (!is_native_ptr) {
2290     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2291     offset = pop_pair();
2292     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2293     Node* base   = pop();
2294     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2295     // to be plain byte offsets, which are also the same as those accepted
2296     // by oopDesc::field_base.
2297     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2298            "fieldOffset must be byte-scaled");
2299     // 32-bit machines ignore the high half!
2300     offset = ConvL2X(offset);
2301     adr = make_unsafe_address(base, offset);
2302     heap_base_oop = base;
2303   } else {
2304     Node* ptr = pop_pair();
2305     // Adjust Java long to machine word:
2306     ptr = ConvL2X(ptr);
2307     adr = make_unsafe_address(NULL, ptr);
2308   }
2309 
2310   // Pop receiver last:  it was pushed first.
2311   Node *receiver = pop();
2312 
2313   assert(saved_sp == _sp, "must have correct argument count");
2314 
2315   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2316 
2317   // First guess at the value type.
2318   const Type *value_type = Type::get_const_basic_type(type);
2319 
2320   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2321   // there was not enough information to nail it down.
2322   Compile::AliasType* alias_type = C->alias_type(adr_type);
2323   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2324 
2325   // We will need memory barriers unless we can determine a unique
2326   // alias category for this reference.  (Note:  If for some reason
2327   // the barriers get omitted and the unsafe reference begins to "pollute"
2328   // the alias analysis of the rest of the graph, either Compile::can_alias
2329   // or Compile::must_alias will throw a diagnostic assert.)
2330   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2331 
2332   // If we are reading the value of the referent field of a Reference
2333   // object (either by using Unsafe directly or through reflection)
2334   // then, if G1 is enabled, we need to record the referent in an
2335   // SATB log buffer using the pre-barrier mechanism.
2336   bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
2337                            offset != top() && heap_base_oop != top();
2338 
2339   if (!is_store && type == T_OBJECT) {
2340     // Attempt to infer a sharper value type from the offset and base type.
2341     ciKlass* sharpened_klass = NULL;
2342 
2343     // See if it is an instance field, with an object type.
2344     if (alias_type->field() != NULL) {
2345       assert(!is_native_ptr, "native pointer op cannot use a java address");
2346       if (alias_type->field()->type()->is_klass()) {
2347         sharpened_klass = alias_type->field()->type()->as_klass();
2348       }
2349     }
2350 
2351     // See if it is a narrow oop array.
2352     if (adr_type->isa_aryptr()) {
2353       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2354         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2355         if (elem_type != NULL) {
2356           sharpened_klass = elem_type->klass();
2357         }
2358       }
2359     }
2360 
2361     if (sharpened_klass != NULL) {
2362       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2363 
2364       // Sharpen the value type.
2365       value_type = tjp;
2366 
2367 #ifndef PRODUCT
2368       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2369         tty->print("  from base type:  ");   adr_type->dump();
2370         tty->print("  sharpened value: "); value_type->dump();
2371       }
2372 #endif
2373     }
2374   }
2375 
2376   // Null check on self without removing any arguments.  The argument
2377   // null check technically happens in the wrong place, which can lead to
2378   // invalid stack traces when the primitive is inlined into a method
2379   // which handles NullPointerExceptions.
2380   _sp += nargs;
2381   do_null_check(receiver, T_OBJECT);
2382   _sp -= nargs;
2383   if (stopped()) {
2384     return true;
2385   }
2386   // Heap pointers get a null-check from the interpreter,
2387   // as a courtesy.  However, this is not guaranteed by Unsafe,
2388   // and it is not possible to fully distinguish unintended nulls
2389   // from intended ones in this API.
2390 
2391   if (is_volatile) {
2392     // We need to emit leading and trailing CPU membars (see below) in
2393     // addition to memory membars when is_volatile. This is a little
2394     // too strong, but avoids the need to insert per-alias-type
2395     // volatile membars (for stores; compare Parse::do_put_xxx), which
2396     // we cannot do effectively here because we probably only have a
2397     // rough approximation of type.
2398     need_mem_bar = true;
2399     // For Stores, place a memory ordering barrier now.
2400     if (is_store)
2401       insert_mem_bar(Op_MemBarRelease);
2402   }
2403 
2404   // Memory barrier to prevent normal and 'unsafe' accesses from
2405   // bypassing each other.  Happens after null checks, so the
2406   // exception paths do not take memory state from the memory barrier,
2407   // so there's no problems making a strong assert about mixing users
2408   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2409   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2410   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2411 
2412   if (!is_store) {
2413     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2414     // load value and push onto stack
2415     switch (type) {
2416     case T_BOOLEAN:
2417     case T_CHAR:
2418     case T_BYTE:
2419     case T_SHORT:
2420     case T_INT:
2421     case T_FLOAT:
2422       push(p);
2423       break;
2424     case T_OBJECT:
2425       if (need_read_barrier) {
2426         insert_g1_pre_barrier(heap_base_oop, offset, p);
2427       }
2428       push(p);
2429       break;
2430     case T_ADDRESS:
2431       // Cast to an int type.
2432       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2433       p = ConvX2L(p);
2434       push_pair(p);
2435       break;
2436     case T_DOUBLE:
2437     case T_LONG:
2438       push_pair( p );
2439       break;
2440     default: ShouldNotReachHere();
2441     }
2442   } else {
2443     // place effect of store into memory
2444     switch (type) {
2445     case T_DOUBLE:
2446       val = dstore_rounding(val);
2447       break;
2448     case T_ADDRESS:
2449       // Repackage the long as a pointer.
2450       val = ConvL2X(val);
2451       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2452       break;
2453     }
2454 
2455     if (type != T_OBJECT ) {
2456       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2457     } else {
2458       // Possibly an oop being stored to Java heap or native memory
2459       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2460         // oop to Java heap.
2461         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2462       } else {
2463         // We can't tell at compile time if we are storing in the Java heap or outside
2464         // of it. So we need to emit code to conditionally do the proper type of
2465         // store.
2466 
2467         IdealKit ideal(this);
2468 #define __ ideal.
2469         // QQQ who knows what probability is here??
2470         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2471           // Sync IdealKit and graphKit.
2472           sync_kit(ideal);
2473           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2474           // Update IdealKit memory.
2475           __ sync_kit(this);
2476         } __ else_(); {
2477           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2478         } __ end_if();
2479         // Final sync IdealKit and GraphKit.
2480         final_sync(ideal);
2481 #undef __
2482       }
2483     }
2484   }
2485 
2486   if (is_volatile) {
2487     if (!is_store)
2488       insert_mem_bar(Op_MemBarAcquire);
2489     else
2490       insert_mem_bar(Op_MemBarVolatile);
2491   }
2492 
2493   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2494 
2495   return true;
2496 }
2497 
2498 //----------------------------inline_unsafe_prefetch----------------------------
2499 
2500 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2501 #ifndef PRODUCT
2502   {
2503     ResourceMark rm;
2504     // Check the signatures.
2505     ciSignature* sig = signature();
2506 #ifdef ASSERT
2507     // Object getObject(Object base, int/long offset), etc.
2508     BasicType rtype = sig->return_type()->basic_type();
2509     if (!is_native_ptr) {
2510       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2511       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2512       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2513     } else {
2514       assert(sig->count() == 1, "native prefetch has 1 argument");
2515       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2516     }
2517 #endif // ASSERT
2518   }
2519 #endif // !PRODUCT
2520 
2521   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2522 
2523   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2524   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2525 
2526   debug_only(int saved_sp = _sp);
2527   _sp += nargs;
2528 
2529   // Build address expression.  See the code in inline_unsafe_access.
2530   Node *adr;
2531   if (!is_native_ptr) {
2532     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2533     Node* offset = pop_pair();
2534     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2535     Node* base   = pop();
2536     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2537     // to be plain byte offsets, which are also the same as those accepted
2538     // by oopDesc::field_base.
2539     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2540            "fieldOffset must be byte-scaled");
2541     // 32-bit machines ignore the high half!
2542     offset = ConvL2X(offset);
2543     adr = make_unsafe_address(base, offset);
2544   } else {
2545     Node* ptr = pop_pair();
2546     // Adjust Java long to machine word:
2547     ptr = ConvL2X(ptr);
2548     adr = make_unsafe_address(NULL, ptr);
2549   }
2550 
2551   if (is_static) {
2552     assert(saved_sp == _sp, "must have correct argument count");
2553   } else {
2554     // Pop receiver last:  it was pushed first.
2555     Node *receiver = pop();
2556     assert(saved_sp == _sp, "must have correct argument count");
2557 
2558     // Null check on self without removing any arguments.  The argument
2559     // null check technically happens in the wrong place, which can lead to
2560     // invalid stack traces when the primitive is inlined into a method
2561     // which handles NullPointerExceptions.
2562     _sp += nargs;
2563     do_null_check(receiver, T_OBJECT);
2564     _sp -= nargs;
2565     if (stopped()) {
2566       return true;
2567     }
2568   }
2569 
2570   // Generate the read or write prefetch
2571   Node *prefetch;
2572   if (is_store) {
2573     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2574   } else {
2575     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2576   }
2577   prefetch->init_req(0, control());
2578   set_i_o(_gvn.transform(prefetch));
2579 
2580   return true;
2581 }
2582 
2583 //----------------------------inline_unsafe_CAS----------------------------
2584 
2585 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2586   // This basic scheme here is the same as inline_unsafe_access, but
2587   // differs in enough details that combining them would make the code
2588   // overly confusing.  (This is a true fact! I originally combined
2589   // them, but even I was confused by it!) As much code/comments as
2590   // possible are retained from inline_unsafe_access though to make
2591   // the correspondences clearer. - dl
2592 
2593   if (callee()->is_static())  return false;  // caller must have the capability!
2594 
2595 #ifndef PRODUCT
2596   {
2597     ResourceMark rm;
2598     // Check the signatures.
2599     ciSignature* sig = signature();
2600 #ifdef ASSERT
2601     BasicType rtype = sig->return_type()->basic_type();
2602     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2603     assert(sig->count() == 4, "CAS has 4 arguments");
2604     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2605     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2606 #endif // ASSERT
2607   }
2608 #endif //PRODUCT
2609 
2610   // number of stack slots per value argument (1 or 2)
2611   int type_words = type2size[type];
2612 
2613   // Cannot inline wide CAS on machines that don't support it natively
2614   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2615     return false;
2616 
2617   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2618 
2619   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2620   int nargs = 1 + 1 + 2  + type_words + type_words;
2621 
2622   // pop arguments: newval, oldval, offset, base, and receiver
2623   debug_only(int saved_sp = _sp);
2624   _sp += nargs;
2625   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2626   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2627   Node *offset   = pop_pair();
2628   Node *base     = pop();
2629   Node *receiver = pop();
2630   assert(saved_sp == _sp, "must have correct argument count");
2631 
2632   //  Null check receiver.
2633   _sp += nargs;
2634   do_null_check(receiver, T_OBJECT);
2635   _sp -= nargs;
2636   if (stopped()) {
2637     return true;
2638   }
2639 
2640   // Build field offset expression.
2641   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2642   // to be plain byte offsets, which are also the same as those accepted
2643   // by oopDesc::field_base.
2644   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2645   // 32-bit machines ignore the high half of long offsets
2646   offset = ConvL2X(offset);
2647   Node* adr = make_unsafe_address(base, offset);
2648   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2649 
2650   // (Unlike inline_unsafe_access, there seems no point in trying
2651   // to refine types. Just use the coarse types here.
2652   const Type *value_type = Type::get_const_basic_type(type);
2653   Compile::AliasType* alias_type = C->alias_type(adr_type);
2654   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2655   int alias_idx = C->get_alias_index(adr_type);
2656 
2657   // Memory-model-wise, a CAS acts like a little synchronized block,
2658   // so needs barriers on each side.  These don't translate into
2659   // actual barriers on most machines, but we still need rest of
2660   // compiler to respect ordering.
2661 
2662   insert_mem_bar(Op_MemBarRelease);
2663   insert_mem_bar(Op_MemBarCPUOrder);
2664 
2665   // 4984716: MemBars must be inserted before this
2666   //          memory node in order to avoid a false
2667   //          dependency which will confuse the scheduler.
2668   Node *mem = memory(alias_idx);
2669 
2670   // For now, we handle only those cases that actually exist: ints,
2671   // longs, and Object. Adding others should be straightforward.
2672   Node* cas;
2673   switch(type) {
2674   case T_INT:
2675     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2676     break;
2677   case T_LONG:
2678     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2679     break;
2680   case T_OBJECT:
2681      // reference stores need a store barrier.
2682     // (They don't if CAS fails, but it isn't worth checking.)
2683     pre_barrier(true /* do_load*/,
2684                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2685                 NULL /* pre_val*/,
2686                 T_OBJECT);
2687 #ifdef _LP64
2688     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2689       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2690       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2691       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2692                                                           newval_enc, oldval_enc));
2693     } else
2694 #endif
2695     {
2696       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2697     }
2698     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2699     break;
2700   default:
2701     ShouldNotReachHere();
2702     break;
2703   }
2704 
2705   // SCMemProjNodes represent the memory state of CAS. Their main
2706   // role is to prevent CAS nodes from being optimized away when their
2707   // results aren't used.
2708   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2709   set_memory(proj, alias_idx);
2710 
2711   // Add the trailing membar surrounding the access
2712   insert_mem_bar(Op_MemBarCPUOrder);
2713   insert_mem_bar(Op_MemBarAcquire);
2714 
2715   push(cas);
2716   return true;
2717 }
2718 
2719 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2720   // This is another variant of inline_unsafe_access, differing in
2721   // that it always issues store-store ("release") barrier and ensures
2722   // store-atomicity (which only matters for "long").
2723 
2724   if (callee()->is_static())  return false;  // caller must have the capability!
2725 
2726 #ifndef PRODUCT
2727   {
2728     ResourceMark rm;
2729     // Check the signatures.
2730     ciSignature* sig = signature();
2731 #ifdef ASSERT
2732     BasicType rtype = sig->return_type()->basic_type();
2733     assert(rtype == T_VOID, "must return void");
2734     assert(sig->count() == 3, "has 3 arguments");
2735     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2736     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2737 #endif // ASSERT
2738   }
2739 #endif //PRODUCT
2740 
2741   // number of stack slots per value argument (1 or 2)
2742   int type_words = type2size[type];
2743 
2744   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2745 
2746   // Argument words:  "this" plus oop plus offset plus value;
2747   int nargs = 1 + 1 + 2 + type_words;
2748 
2749   // pop arguments: val, offset, base, and receiver
2750   debug_only(int saved_sp = _sp);
2751   _sp += nargs;
2752   Node* val      = (type_words == 1) ? pop() : pop_pair();
2753   Node *offset   = pop_pair();
2754   Node *base     = pop();
2755   Node *receiver = pop();
2756   assert(saved_sp == _sp, "must have correct argument count");
2757 
2758   //  Null check receiver.
2759   _sp += nargs;
2760   do_null_check(receiver, T_OBJECT);
2761   _sp -= nargs;
2762   if (stopped()) {
2763     return true;
2764   }
2765 
2766   // Build field offset expression.
2767   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2768   // 32-bit machines ignore the high half of long offsets
2769   offset = ConvL2X(offset);
2770   Node* adr = make_unsafe_address(base, offset);
2771   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2772   const Type *value_type = Type::get_const_basic_type(type);
2773   Compile::AliasType* alias_type = C->alias_type(adr_type);
2774 
2775   insert_mem_bar(Op_MemBarRelease);
2776   insert_mem_bar(Op_MemBarCPUOrder);
2777   // Ensure that the store is atomic for longs:
2778   bool require_atomic_access = true;
2779   Node* store;
2780   if (type == T_OBJECT) // reference stores need a store barrier.
2781     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2782   else {
2783     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2784   }
2785   insert_mem_bar(Op_MemBarCPUOrder);
2786   return true;
2787 }
2788 
2789 bool LibraryCallKit::inline_unsafe_allocate() {
2790   if (callee()->is_static())  return false;  // caller must have the capability!
2791   int nargs = 1 + 1;
2792   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2793   null_check_receiver(callee());  // check then ignore argument(0)
2794   _sp += nargs;  // set original stack for use by uncommon_trap
2795   Node* cls = do_null_check(argument(1), T_OBJECT);
2796   _sp -= nargs;
2797   if (stopped())  return true;
2798 
2799   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2800   _sp += nargs;  // set original stack for use by uncommon_trap
2801   kls = do_null_check(kls, T_OBJECT);
2802   _sp -= nargs;
2803   if (stopped())  return true;  // argument was like int.class
2804 
2805   // Note:  The argument might still be an illegal value like
2806   // Serializable.class or Object[].class.   The runtime will handle it.
2807   // But we must make an explicit check for initialization.
2808   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes());
2809   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2810   Node* bits = intcon(instanceKlass::fully_initialized);
2811   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2812   // The 'test' is non-zero if we need to take a slow path.
2813 
2814   Node* obj = new_instance(kls, test);
2815   push(obj);
2816 
2817   return true;
2818 }
2819 
2820 //------------------------inline_native_time_funcs--------------
2821 // inline code for System.currentTimeMillis() and System.nanoTime()
2822 // these have the same type and signature
2823 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2824   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2825                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2826   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2827   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2828   const TypePtr* no_memory_effects = NULL;
2829   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2830   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2831 #ifdef ASSERT
2832   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2833   assert(value_top == top(), "second value must be top");
2834 #endif
2835   push_pair(value);
2836   return true;
2837 }
2838 
2839 //------------------------inline_native_currentThread------------------
2840 bool LibraryCallKit::inline_native_currentThread() {
2841   Node* junk = NULL;
2842   push(generate_current_thread(junk));
2843   return true;
2844 }
2845 
2846 //------------------------inline_native_isInterrupted------------------
2847 bool LibraryCallKit::inline_native_isInterrupted() {
2848   const int nargs = 1+1;  // receiver + boolean
2849   assert(nargs == arg_size(), "sanity");
2850   // Add a fast path to t.isInterrupted(clear_int):
2851   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2852   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2853   // So, in the common case that the interrupt bit is false,
2854   // we avoid making a call into the VM.  Even if the interrupt bit
2855   // is true, if the clear_int argument is false, we avoid the VM call.
2856   // However, if the receiver is not currentThread, we must call the VM,
2857   // because there must be some locking done around the operation.
2858 
2859   // We only go to the fast case code if we pass two guards.
2860   // Paths which do not pass are accumulated in the slow_region.
2861   RegionNode* slow_region = new (C, 1) RegionNode(1);
2862   record_for_igvn(slow_region);
2863   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2864   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2865   enum { no_int_result_path   = 1,
2866          no_clear_result_path = 2,
2867          slow_result_path     = 3
2868   };
2869 
2870   // (a) Receiving thread must be the current thread.
2871   Node* rec_thr = argument(0);
2872   Node* tls_ptr = NULL;
2873   Node* cur_thr = generate_current_thread(tls_ptr);
2874   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2875   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2876 
2877   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2878   if (!known_current_thread)
2879     generate_slow_guard(bol_thr, slow_region);
2880 
2881   // (b) Interrupt bit on TLS must be false.
2882   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2883   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2884   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2885   // Set the control input on the field _interrupted read to prevent it floating up.
2886   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2887   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2888   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2889 
2890   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2891 
2892   // First fast path:  if (!TLS._interrupted) return false;
2893   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2894   result_rgn->init_req(no_int_result_path, false_bit);
2895   result_val->init_req(no_int_result_path, intcon(0));
2896 
2897   // drop through to next case
2898   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2899 
2900   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2901   Node* clr_arg = argument(1);
2902   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2903   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2904   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2905 
2906   // Second fast path:  ... else if (!clear_int) return true;
2907   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2908   result_rgn->init_req(no_clear_result_path, false_arg);
2909   result_val->init_req(no_clear_result_path, intcon(1));
2910 
2911   // drop through to next case
2912   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2913 
2914   // (d) Otherwise, go to the slow path.
2915   slow_region->add_req(control());
2916   set_control( _gvn.transform(slow_region) );
2917 
2918   if (stopped()) {
2919     // There is no slow path.
2920     result_rgn->init_req(slow_result_path, top());
2921     result_val->init_req(slow_result_path, top());
2922   } else {
2923     // non-virtual because it is a private non-static
2924     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2925 
2926     Node* slow_val = set_results_for_java_call(slow_call);
2927     // this->control() comes from set_results_for_java_call
2928 
2929     // If we know that the result of the slow call will be true, tell the optimizer!
2930     if (known_current_thread)  slow_val = intcon(1);
2931 
2932     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2933     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2934     // These two phis are pre-filled with copies of of the fast IO and Memory
2935     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2936     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2937 
2938     result_rgn->init_req(slow_result_path, control());
2939     io_phi    ->init_req(slow_result_path, i_o());
2940     mem_phi   ->init_req(slow_result_path, reset_memory());
2941     result_val->init_req(slow_result_path, slow_val);
2942 
2943     set_all_memory( _gvn.transform(mem_phi) );
2944     set_i_o(        _gvn.transform(io_phi) );
2945   }
2946 
2947   push_result(result_rgn, result_val);
2948   C->set_has_split_ifs(true); // Has chance for split-if optimization
2949 
2950   return true;
2951 }
2952 
2953 //---------------------------load_mirror_from_klass----------------------------
2954 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2955 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2956   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes());
2957   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2958 }
2959 
2960 //-----------------------load_klass_from_mirror_common-------------------------
2961 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2962 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2963 // and branch to the given path on the region.
2964 // If never_see_null, take an uncommon trap on null, so we can optimistically
2965 // compile for the non-null case.
2966 // If the region is NULL, force never_see_null = true.
2967 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2968                                                     bool never_see_null,
2969                                                     int nargs,
2970                                                     RegionNode* region,
2971                                                     int null_path,
2972                                                     int offset) {
2973   if (region == NULL)  never_see_null = true;
2974   Node* p = basic_plus_adr(mirror, offset);
2975   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2976   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2977   _sp += nargs; // any deopt will start just before call to enclosing method
2978   Node* null_ctl = top();
2979   kls = null_check_oop(kls, &null_ctl, never_see_null);
2980   if (region != NULL) {
2981     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2982     region->init_req(null_path, null_ctl);
2983   } else {
2984     assert(null_ctl == top(), "no loose ends");
2985   }
2986   _sp -= nargs;
2987   return kls;
2988 }
2989 
2990 //--------------------(inline_native_Class_query helpers)---------------------
2991 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2992 // Fall through if (mods & mask) == bits, take the guard otherwise.
2993 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2994   // Branch around if the given klass has the given modifier bit set.
2995   // Like generate_guard, adds a new path onto the region.
2996   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes());
2997   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2998   Node* mask = intcon(modifier_mask);
2999   Node* bits = intcon(modifier_bits);
3000   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
3001   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
3002   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
3003   return generate_fair_guard(bol, region);
3004 }
3005 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3006   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3007 }
3008 
3009 //-------------------------inline_native_Class_query-------------------
3010 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3011   int nargs = 1+0;  // just the Class mirror, in most cases
3012   const Type* return_type = TypeInt::BOOL;
3013   Node* prim_return_value = top();  // what happens if it's a primitive class?
3014   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3015   bool expect_prim = false;     // most of these guys expect to work on refs
3016 
3017   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3018 
3019   switch (id) {
3020   case vmIntrinsics::_isInstance:
3021     nargs = 1+1;  // the Class mirror, plus the object getting queried about
3022     // nothing is an instance of a primitive type
3023     prim_return_value = intcon(0);
3024     break;
3025   case vmIntrinsics::_getModifiers:
3026     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3027     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3028     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3029     break;
3030   case vmIntrinsics::_isInterface:
3031     prim_return_value = intcon(0);
3032     break;
3033   case vmIntrinsics::_isArray:
3034     prim_return_value = intcon(0);
3035     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3036     break;
3037   case vmIntrinsics::_isPrimitive:
3038     prim_return_value = intcon(1);
3039     expect_prim = true;  // obviously
3040     break;
3041   case vmIntrinsics::_getSuperclass:
3042     prim_return_value = null();
3043     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3044     break;
3045   case vmIntrinsics::_getComponentType:
3046     prim_return_value = null();
3047     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3048     break;
3049   case vmIntrinsics::_getClassAccessFlags:
3050     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3051     return_type = TypeInt::INT;  // not bool!  6297094
3052     break;
3053   default:
3054     ShouldNotReachHere();
3055   }
3056 
3057   Node* mirror =                      argument(0);
3058   Node* obj    = (nargs <= 1)? top(): argument(1);
3059 
3060   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3061   if (mirror_con == NULL)  return false;  // cannot happen?
3062 
3063 #ifndef PRODUCT
3064   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3065     ciType* k = mirror_con->java_mirror_type();
3066     if (k) {
3067       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3068       k->print_name();
3069       tty->cr();
3070     }
3071   }
3072 #endif
3073 
3074   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3075   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3076   record_for_igvn(region);
3077   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
3078 
3079   // The mirror will never be null of Reflection.getClassAccessFlags, however
3080   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3081   // if it is. See bug 4774291.
3082 
3083   // For Reflection.getClassAccessFlags(), the null check occurs in
3084   // the wrong place; see inline_unsafe_access(), above, for a similar
3085   // situation.
3086   _sp += nargs;  // set original stack for use by uncommon_trap
3087   mirror = do_null_check(mirror, T_OBJECT);
3088   _sp -= nargs;
3089   // If mirror or obj is dead, only null-path is taken.
3090   if (stopped())  return true;
3091 
3092   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3093 
3094   // Now load the mirror's klass metaobject, and null-check it.
3095   // Side-effects region with the control path if the klass is null.
3096   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
3097                                      region, _prim_path);
3098   // If kls is null, we have a primitive mirror.
3099   phi->init_req(_prim_path, prim_return_value);
3100   if (stopped()) { push_result(region, phi); return true; }
3101 
3102   Node* p;  // handy temp
3103   Node* null_ctl;
3104 
3105   // Now that we have the non-null klass, we can perform the real query.
3106   // For constant classes, the query will constant-fold in LoadNode::Value.
3107   Node* query_value = top();
3108   switch (id) {
3109   case vmIntrinsics::_isInstance:
3110     // nothing is an instance of a primitive type
3111     _sp += nargs;          // gen_instanceof might do an uncommon trap
3112     query_value = gen_instanceof(obj, kls);
3113     _sp -= nargs;
3114     break;
3115 
3116   case vmIntrinsics::_getModifiers:
3117     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes());
3118     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3119     break;
3120 
3121   case vmIntrinsics::_isInterface:
3122     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3123     if (generate_interface_guard(kls, region) != NULL)
3124       // A guard was added.  If the guard is taken, it was an interface.
3125       phi->add_req(intcon(1));
3126     // If we fall through, it's a plain class.
3127     query_value = intcon(0);
3128     break;
3129 
3130   case vmIntrinsics::_isArray:
3131     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3132     if (generate_array_guard(kls, region) != NULL)
3133       // A guard was added.  If the guard is taken, it was an array.
3134       phi->add_req(intcon(1));
3135     // If we fall through, it's a plain class.
3136     query_value = intcon(0);
3137     break;
3138 
3139   case vmIntrinsics::_isPrimitive:
3140     query_value = intcon(0); // "normal" path produces false
3141     break;
3142 
3143   case vmIntrinsics::_getSuperclass:
3144     // The rules here are somewhat unfortunate, but we can still do better
3145     // with random logic than with a JNI call.
3146     // Interfaces store null or Object as _super, but must report null.
3147     // Arrays store an intermediate super as _super, but must report Object.
3148     // Other types can report the actual _super.
3149     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3150     if (generate_interface_guard(kls, region) != NULL)
3151       // A guard was added.  If the guard is taken, it was an interface.
3152       phi->add_req(null());
3153     if (generate_array_guard(kls, region) != NULL)
3154       // A guard was added.  If the guard is taken, it was an array.
3155       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3156     // If we fall through, it's a plain class.  Get its _super.
3157     p = basic_plus_adr(kls, Klass::super_offset_in_bytes());
3158     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3159     null_ctl = top();
3160     kls = null_check_oop(kls, &null_ctl);
3161     if (null_ctl != top()) {
3162       // If the guard is taken, Object.superClass is null (both klass and mirror).
3163       region->add_req(null_ctl);
3164       phi   ->add_req(null());
3165     }
3166     if (!stopped()) {
3167       query_value = load_mirror_from_klass(kls);
3168     }
3169     break;
3170 
3171   case vmIntrinsics::_getComponentType:
3172     if (generate_array_guard(kls, region) != NULL) {
3173       // Be sure to pin the oop load to the guard edge just created:
3174       Node* is_array_ctrl = region->in(region->req()-1);
3175       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
3176       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3177       phi->add_req(cmo);
3178     }
3179     query_value = null();  // non-array case is null
3180     break;
3181 
3182   case vmIntrinsics::_getClassAccessFlags:
3183     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes());
3184     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3185     break;
3186 
3187   default:
3188     ShouldNotReachHere();
3189   }
3190 
3191   // Fall-through is the normal case of a query to a real class.
3192   phi->init_req(1, query_value);
3193   region->init_req(1, control());
3194 
3195   push_result(region, phi);
3196   C->set_has_split_ifs(true); // Has chance for split-if optimization
3197 
3198   return true;
3199 }
3200 
3201 //--------------------------inline_native_subtype_check------------------------
3202 // This intrinsic takes the JNI calls out of the heart of
3203 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3204 bool LibraryCallKit::inline_native_subtype_check() {
3205   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3206 
3207   // Pull both arguments off the stack.
3208   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3209   args[0] = argument(0);
3210   args[1] = argument(1);
3211   Node* klasses[2];             // corresponding Klasses: superk, subk
3212   klasses[0] = klasses[1] = top();
3213 
3214   enum {
3215     // A full decision tree on {superc is prim, subc is prim}:
3216     _prim_0_path = 1,           // {P,N} => false
3217                                 // {P,P} & superc!=subc => false
3218     _prim_same_path,            // {P,P} & superc==subc => true
3219     _prim_1_path,               // {N,P} => false
3220     _ref_subtype_path,          // {N,N} & subtype check wins => true
3221     _both_ref_path,             // {N,N} & subtype check loses => false
3222     PATH_LIMIT
3223   };
3224 
3225   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3226   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3227   record_for_igvn(region);
3228 
3229   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3230   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3231   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3232 
3233   // First null-check both mirrors and load each mirror's klass metaobject.
3234   int which_arg;
3235   for (which_arg = 0; which_arg <= 1; which_arg++) {
3236     Node* arg = args[which_arg];
3237     _sp += nargs;  // set original stack for use by uncommon_trap
3238     arg = do_null_check(arg, T_OBJECT);
3239     _sp -= nargs;
3240     if (stopped())  break;
3241     args[which_arg] = _gvn.transform(arg);
3242 
3243     Node* p = basic_plus_adr(arg, class_klass_offset);
3244     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3245     klasses[which_arg] = _gvn.transform(kls);
3246   }
3247 
3248   // Having loaded both klasses, test each for null.
3249   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3250   for (which_arg = 0; which_arg <= 1; which_arg++) {
3251     Node* kls = klasses[which_arg];
3252     Node* null_ctl = top();
3253     _sp += nargs;  // set original stack for use by uncommon_trap
3254     kls = null_check_oop(kls, &null_ctl, never_see_null);
3255     _sp -= nargs;
3256     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3257     region->init_req(prim_path, null_ctl);
3258     if (stopped())  break;
3259     klasses[which_arg] = kls;
3260   }
3261 
3262   if (!stopped()) {
3263     // now we have two reference types, in klasses[0..1]
3264     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3265     Node* superk = klasses[0];  // the receiver
3266     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3267     // now we have a successful reference subtype check
3268     region->set_req(_ref_subtype_path, control());
3269   }
3270 
3271   // If both operands are primitive (both klasses null), then
3272   // we must return true when they are identical primitives.
3273   // It is convenient to test this after the first null klass check.
3274   set_control(region->in(_prim_0_path)); // go back to first null check
3275   if (!stopped()) {
3276     // Since superc is primitive, make a guard for the superc==subc case.
3277     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3278     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3279     generate_guard(bol_eq, region, PROB_FAIR);
3280     if (region->req() == PATH_LIMIT+1) {
3281       // A guard was added.  If the added guard is taken, superc==subc.
3282       region->swap_edges(PATH_LIMIT, _prim_same_path);
3283       region->del_req(PATH_LIMIT);
3284     }
3285     region->set_req(_prim_0_path, control()); // Not equal after all.
3286   }
3287 
3288   // these are the only paths that produce 'true':
3289   phi->set_req(_prim_same_path,   intcon(1));
3290   phi->set_req(_ref_subtype_path, intcon(1));
3291 
3292   // pull together the cases:
3293   assert(region->req() == PATH_LIMIT, "sane region");
3294   for (uint i = 1; i < region->req(); i++) {
3295     Node* ctl = region->in(i);
3296     if (ctl == NULL || ctl == top()) {
3297       region->set_req(i, top());
3298       phi   ->set_req(i, top());
3299     } else if (phi->in(i) == NULL) {
3300       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3301     }
3302   }
3303 
3304   set_control(_gvn.transform(region));
3305   push(_gvn.transform(phi));
3306 
3307   return true;
3308 }
3309 
3310 //---------------------generate_array_guard_common------------------------
3311 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3312                                                   bool obj_array, bool not_array) {
3313   // If obj_array/non_array==false/false:
3314   // Branch around if the given klass is in fact an array (either obj or prim).
3315   // If obj_array/non_array==false/true:
3316   // Branch around if the given klass is not an array klass of any kind.
3317   // If obj_array/non_array==true/true:
3318   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3319   // If obj_array/non_array==true/false:
3320   // Branch around if the kls is an oop array (Object[] or subtype)
3321   //
3322   // Like generate_guard, adds a new path onto the region.
3323   jint  layout_con = 0;
3324   Node* layout_val = get_layout_helper(kls, layout_con);
3325   if (layout_val == NULL) {
3326     bool query = (obj_array
3327                   ? Klass::layout_helper_is_objArray(layout_con)
3328                   : Klass::layout_helper_is_javaArray(layout_con));
3329     if (query == not_array) {
3330       return NULL;                       // never a branch
3331     } else {                             // always a branch
3332       Node* always_branch = control();
3333       if (region != NULL)
3334         region->add_req(always_branch);
3335       set_control(top());
3336       return always_branch;
3337     }
3338   }
3339   // Now test the correct condition.
3340   jint  nval = (obj_array
3341                 ? ((jint)Klass::_lh_array_tag_type_value
3342                    <<    Klass::_lh_array_tag_shift)
3343                 : Klass::_lh_neutral_value);
3344   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3345   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3346   // invert the test if we are looking for a non-array
3347   if (not_array)  btest = BoolTest(btest).negate();
3348   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3349   return generate_fair_guard(bol, region);
3350 }
3351 
3352 
3353 //-----------------------inline_native_newArray--------------------------
3354 bool LibraryCallKit::inline_native_newArray() {
3355   int nargs = 2;
3356   Node* mirror    = argument(0);
3357   Node* count_val = argument(1);
3358 
3359   _sp += nargs;  // set original stack for use by uncommon_trap
3360   mirror = do_null_check(mirror, T_OBJECT);
3361   _sp -= nargs;
3362   // If mirror or obj is dead, only null-path is taken.
3363   if (stopped())  return true;
3364 
3365   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3366   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3367   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3368                                                       TypeInstPtr::NOTNULL);
3369   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3370   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3371                                                       TypePtr::BOTTOM);
3372 
3373   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3374   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3375                                                   nargs,
3376                                                   result_reg, _slow_path);
3377   Node* normal_ctl   = control();
3378   Node* no_array_ctl = result_reg->in(_slow_path);
3379 
3380   // Generate code for the slow case.  We make a call to newArray().
3381   set_control(no_array_ctl);
3382   if (!stopped()) {
3383     // Either the input type is void.class, or else the
3384     // array klass has not yet been cached.  Either the
3385     // ensuing call will throw an exception, or else it
3386     // will cache the array klass for next time.
3387     PreserveJVMState pjvms(this);
3388     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3389     Node* slow_result = set_results_for_java_call(slow_call);
3390     // this->control() comes from set_results_for_java_call
3391     result_reg->set_req(_slow_path, control());
3392     result_val->set_req(_slow_path, slow_result);
3393     result_io ->set_req(_slow_path, i_o());
3394     result_mem->set_req(_slow_path, reset_memory());
3395   }
3396 
3397   set_control(normal_ctl);
3398   if (!stopped()) {
3399     // Normal case:  The array type has been cached in the java.lang.Class.
3400     // The following call works fine even if the array type is polymorphic.
3401     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3402     Node* obj = new_array(klass_node, count_val, nargs);
3403     result_reg->init_req(_normal_path, control());
3404     result_val->init_req(_normal_path, obj);
3405     result_io ->init_req(_normal_path, i_o());
3406     result_mem->init_req(_normal_path, reset_memory());
3407   }
3408 
3409   // Return the combined state.
3410   set_i_o(        _gvn.transform(result_io)  );
3411   set_all_memory( _gvn.transform(result_mem) );
3412   push_result(result_reg, result_val);
3413   C->set_has_split_ifs(true); // Has chance for split-if optimization
3414 
3415   return true;
3416 }
3417 
3418 //----------------------inline_native_getLength--------------------------
3419 bool LibraryCallKit::inline_native_getLength() {
3420   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3421 
3422   int nargs = 1;
3423   Node* array = argument(0);
3424 
3425   _sp += nargs;  // set original stack for use by uncommon_trap
3426   array = do_null_check(array, T_OBJECT);
3427   _sp -= nargs;
3428 
3429   // If array is dead, only null-path is taken.
3430   if (stopped())  return true;
3431 
3432   // Deoptimize if it is a non-array.
3433   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3434 
3435   if (non_array != NULL) {
3436     PreserveJVMState pjvms(this);
3437     set_control(non_array);
3438     _sp += nargs;  // push the arguments back on the stack
3439     uncommon_trap(Deoptimization::Reason_intrinsic,
3440                   Deoptimization::Action_maybe_recompile);
3441   }
3442 
3443   // If control is dead, only non-array-path is taken.
3444   if (stopped())  return true;
3445 
3446   // The works fine even if the array type is polymorphic.
3447   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3448   push( load_array_length(array) );
3449 
3450   C->set_has_split_ifs(true); // Has chance for split-if optimization
3451 
3452   return true;
3453 }
3454 
3455 //------------------------inline_array_copyOf----------------------------
3456 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3457   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3458 
3459   // Restore the stack and pop off the arguments.
3460   int nargs = 3 + (is_copyOfRange? 1: 0);
3461   Node* original          = argument(0);
3462   Node* start             = is_copyOfRange? argument(1): intcon(0);
3463   Node* end               = is_copyOfRange? argument(2): argument(1);
3464   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3465 
3466   Node* newcopy;
3467 
3468   //set the original stack and the reexecute bit for the interpreter to reexecute
3469   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3470   { PreserveReexecuteState preexecs(this);
3471     _sp += nargs;
3472     jvms()->set_should_reexecute(true);
3473 
3474     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3475     original          = do_null_check(original, T_OBJECT);
3476 
3477     // Check if a null path was taken unconditionally.
3478     if (stopped())  return true;
3479 
3480     Node* orig_length = load_array_length(original);
3481 
3482     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3483                                               NULL, 0);
3484     klass_node = do_null_check(klass_node, T_OBJECT);
3485 
3486     RegionNode* bailout = new (C, 1) RegionNode(1);
3487     record_for_igvn(bailout);
3488 
3489     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3490     // Bail out if that is so.
3491     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3492     if (not_objArray != NULL) {
3493       // Improve the klass node's type from the new optimistic assumption:
3494       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3495       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3496       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3497       cast->init_req(0, control());
3498       klass_node = _gvn.transform(cast);
3499     }
3500 
3501     // Bail out if either start or end is negative.
3502     generate_negative_guard(start, bailout, &start);
3503     generate_negative_guard(end,   bailout, &end);
3504 
3505     Node* length = end;
3506     if (_gvn.type(start) != TypeInt::ZERO) {
3507       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3508     }
3509 
3510     // Bail out if length is negative.
3511     // ...Not needed, since the new_array will throw the right exception.
3512     //generate_negative_guard(length, bailout, &length);
3513 
3514     if (bailout->req() > 1) {
3515       PreserveJVMState pjvms(this);
3516       set_control( _gvn.transform(bailout) );
3517       uncommon_trap(Deoptimization::Reason_intrinsic,
3518                     Deoptimization::Action_maybe_recompile);
3519     }
3520 
3521     if (!stopped()) {
3522 
3523       // How many elements will we copy from the original?
3524       // The answer is MinI(orig_length - start, length).
3525       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3526       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3527 
3528       newcopy = new_array(klass_node, length, 0);
3529 
3530       // Generate a direct call to the right arraycopy function(s).
3531       // We know the copy is disjoint but we might not know if the
3532       // oop stores need checking.
3533       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3534       // This will fail a store-check if x contains any non-nulls.
3535       bool disjoint_bases = true;
3536       bool length_never_negative = true;
3537       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3538                          original, start, newcopy, intcon(0), moved,
3539                          disjoint_bases, length_never_negative);
3540     }
3541   } //original reexecute and sp are set back here
3542 
3543   if(!stopped()) {
3544     push(newcopy);
3545   }
3546 
3547   C->set_has_split_ifs(true); // Has chance for split-if optimization
3548 
3549   return true;
3550 }
3551 
3552 
3553 //----------------------generate_virtual_guard---------------------------
3554 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3555 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3556                                              RegionNode* slow_region) {
3557   ciMethod* method = callee();
3558   int vtable_index = method->vtable_index();
3559   // Get the methodOop out of the appropriate vtable entry.
3560   int entry_offset  = (instanceKlass::vtable_start_offset() +
3561                      vtable_index*vtableEntry::size()) * wordSize +
3562                      vtableEntry::method_offset_in_bytes();
3563   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3564   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3565 
3566   // Compare the target method with the expected method (e.g., Object.hashCode).
3567   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3568 
3569   Node* native_call = makecon(native_call_addr);
3570   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3571   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3572 
3573   return generate_slow_guard(test_native, slow_region);
3574 }
3575 
3576 //-----------------------generate_method_call----------------------------
3577 // Use generate_method_call to make a slow-call to the real
3578 // method if the fast path fails.  An alternative would be to
3579 // use a stub like OptoRuntime::slow_arraycopy_Java.
3580 // This only works for expanding the current library call,
3581 // not another intrinsic.  (E.g., don't use this for making an
3582 // arraycopy call inside of the copyOf intrinsic.)
3583 CallJavaNode*
3584 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3585   // When compiling the intrinsic method itself, do not use this technique.
3586   guarantee(callee() != C->method(), "cannot make slow-call to self");
3587 
3588   ciMethod* method = callee();
3589   // ensure the JVMS we have will be correct for this call
3590   guarantee(method_id == method->intrinsic_id(), "must match");
3591 
3592   const TypeFunc* tf = TypeFunc::make(method);
3593   int tfdc = tf->domain()->cnt();
3594   CallJavaNode* slow_call;
3595   if (is_static) {
3596     assert(!is_virtual, "");
3597     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3598                                 SharedRuntime::get_resolve_static_call_stub(),
3599                                 method, bci());
3600   } else if (is_virtual) {
3601     null_check_receiver(method);
3602     int vtable_index = methodOopDesc::invalid_vtable_index;
3603     if (UseInlineCaches) {
3604       // Suppress the vtable call
3605     } else {
3606       // hashCode and clone are not a miranda methods,
3607       // so the vtable index is fixed.
3608       // No need to use the linkResolver to get it.
3609        vtable_index = method->vtable_index();
3610     }
3611     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3612                                 SharedRuntime::get_resolve_virtual_call_stub(),
3613                                 method, vtable_index, bci());
3614   } else {  // neither virtual nor static:  opt_virtual
3615     null_check_receiver(method);
3616     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3617                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3618                                 method, bci());
3619     slow_call->set_optimized_virtual(true);
3620   }
3621   set_arguments_for_java_call(slow_call);
3622   set_edges_for_java_call(slow_call);
3623   return slow_call;
3624 }
3625 
3626 
3627 //------------------------------inline_native_hashcode--------------------
3628 // Build special case code for calls to hashCode on an object.
3629 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3630   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3631   assert(!(is_virtual && is_static), "either virtual, special, or static");
3632 
3633   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3634 
3635   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3636   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3637                                                       TypeInt::INT);
3638   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3639   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3640                                                       TypePtr::BOTTOM);
3641   Node* obj = NULL;
3642   if (!is_static) {
3643     // Check for hashing null object
3644     obj = null_check_receiver(callee());
3645     if (stopped())  return true;        // unconditionally null
3646     result_reg->init_req(_null_path, top());
3647     result_val->init_req(_null_path, top());
3648   } else {
3649     // Do a null check, and return zero if null.
3650     // System.identityHashCode(null) == 0
3651     obj = argument(0);
3652     Node* null_ctl = top();
3653     obj = null_check_oop(obj, &null_ctl);
3654     result_reg->init_req(_null_path, null_ctl);
3655     result_val->init_req(_null_path, _gvn.intcon(0));
3656   }
3657 
3658   // Unconditionally null?  Then return right away.
3659   if (stopped()) {
3660     set_control( result_reg->in(_null_path) );
3661     if (!stopped())
3662       push(      result_val ->in(_null_path) );
3663     return true;
3664   }
3665 
3666   // After null check, get the object's klass.
3667   Node* obj_klass = load_object_klass(obj);
3668 
3669   // This call may be virtual (invokevirtual) or bound (invokespecial).
3670   // For each case we generate slightly different code.
3671 
3672   // We only go to the fast case code if we pass a number of guards.  The
3673   // paths which do not pass are accumulated in the slow_region.
3674   RegionNode* slow_region = new (C, 1) RegionNode(1);
3675   record_for_igvn(slow_region);
3676 
3677   // If this is a virtual call, we generate a funny guard.  We pull out
3678   // the vtable entry corresponding to hashCode() from the target object.
3679   // If the target method which we are calling happens to be the native
3680   // Object hashCode() method, we pass the guard.  We do not need this
3681   // guard for non-virtual calls -- the caller is known to be the native
3682   // Object hashCode().
3683   if (is_virtual) {
3684     generate_virtual_guard(obj_klass, slow_region);
3685   }
3686 
3687   // Get the header out of the object, use LoadMarkNode when available
3688   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3689   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3690 
3691   // Test the header to see if it is unlocked.
3692   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3693   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3694   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3695   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3696   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3697 
3698   generate_slow_guard(test_unlocked, slow_region);
3699 
3700   // Get the hash value and check to see that it has been properly assigned.
3701   // We depend on hash_mask being at most 32 bits and avoid the use of
3702   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3703   // vm: see markOop.hpp.
3704   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3705   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3706   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3707   // This hack lets the hash bits live anywhere in the mark object now, as long
3708   // as the shift drops the relevant bits into the low 32 bits.  Note that
3709   // Java spec says that HashCode is an int so there's no point in capturing
3710   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3711   hshifted_header      = ConvX2I(hshifted_header);
3712   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3713 
3714   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3715   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3716   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3717 
3718   generate_slow_guard(test_assigned, slow_region);
3719 
3720   Node* init_mem = reset_memory();
3721   // fill in the rest of the null path:
3722   result_io ->init_req(_null_path, i_o());
3723   result_mem->init_req(_null_path, init_mem);
3724 
3725   result_val->init_req(_fast_path, hash_val);
3726   result_reg->init_req(_fast_path, control());
3727   result_io ->init_req(_fast_path, i_o());
3728   result_mem->init_req(_fast_path, init_mem);
3729 
3730   // Generate code for the slow case.  We make a call to hashCode().
3731   set_control(_gvn.transform(slow_region));
3732   if (!stopped()) {
3733     // No need for PreserveJVMState, because we're using up the present state.
3734     set_all_memory(init_mem);
3735     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3736     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3737     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3738     Node* slow_result = set_results_for_java_call(slow_call);
3739     // this->control() comes from set_results_for_java_call
3740     result_reg->init_req(_slow_path, control());
3741     result_val->init_req(_slow_path, slow_result);
3742     result_io  ->set_req(_slow_path, i_o());
3743     result_mem ->set_req(_slow_path, reset_memory());
3744   }
3745 
3746   // Return the combined state.
3747   set_i_o(        _gvn.transform(result_io)  );
3748   set_all_memory( _gvn.transform(result_mem) );
3749   push_result(result_reg, result_val);
3750 
3751   return true;
3752 }
3753 
3754 //---------------------------inline_native_getClass----------------------------
3755 // Build special case code for calls to getClass on an object.
3756 bool LibraryCallKit::inline_native_getClass() {
3757   Node* obj = null_check_receiver(callee());
3758   if (stopped())  return true;
3759   push( load_mirror_from_klass(load_object_klass(obj)) );
3760   return true;
3761 }
3762 
3763 //-----------------inline_native_Reflection_getCallerClass---------------------
3764 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3765 //
3766 // NOTE that this code must perform the same logic as
3767 // vframeStream::security_get_caller_frame in that it must skip
3768 // Method.invoke() and auxiliary frames.
3769 
3770 
3771 
3772 
3773 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3774   ciMethod*       method = callee();
3775 
3776 #ifndef PRODUCT
3777   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3778     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3779   }
3780 #endif
3781 
3782   debug_only(int saved_sp = _sp);
3783 
3784   // Argument words:  (int depth)
3785   int nargs = 1;
3786 
3787   _sp += nargs;
3788   Node* caller_depth_node = pop();
3789 
3790   assert(saved_sp == _sp, "must have correct argument count");
3791 
3792   // The depth value must be a constant in order for the runtime call
3793   // to be eliminated.
3794   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3795   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3796 #ifndef PRODUCT
3797     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3798       tty->print_cr("  Bailing out because caller depth was not a constant");
3799     }
3800 #endif
3801     return false;
3802   }
3803   // Note that the JVM state at this point does not include the
3804   // getCallerClass() frame which we are trying to inline. The
3805   // semantics of getCallerClass(), however, are that the "first"
3806   // frame is the getCallerClass() frame, so we subtract one from the
3807   // requested depth before continuing. We don't inline requests of
3808   // getCallerClass(0).
3809   int caller_depth = caller_depth_type->get_con() - 1;
3810   if (caller_depth < 0) {
3811 #ifndef PRODUCT
3812     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3813       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3814     }
3815 #endif
3816     return false;
3817   }
3818 
3819   if (!jvms()->has_method()) {
3820 #ifndef PRODUCT
3821     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3822       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3823     }
3824 #endif
3825     return false;
3826   }
3827   int _depth = jvms()->depth();  // cache call chain depth
3828 
3829   // Walk back up the JVM state to find the caller at the required
3830   // depth. NOTE that this code must perform the same logic as
3831   // vframeStream::security_get_caller_frame in that it must skip
3832   // Method.invoke() and auxiliary frames. Note also that depth is
3833   // 1-based (1 is the bottom of the inlining).
3834   int inlining_depth = _depth;
3835   JVMState* caller_jvms = NULL;
3836 
3837   if (inlining_depth > 0) {
3838     caller_jvms = jvms();
3839     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3840     do {
3841       // The following if-tests should be performed in this order
3842       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3843         // Skip a Method.invoke() or auxiliary frame
3844       } else if (caller_depth > 0) {
3845         // Skip real frame
3846         --caller_depth;
3847       } else {
3848         // We're done: reached desired caller after skipping.
3849         break;
3850       }
3851       caller_jvms = caller_jvms->caller();
3852       --inlining_depth;
3853     } while (inlining_depth > 0);
3854   }
3855 
3856   if (inlining_depth == 0) {
3857 #ifndef PRODUCT
3858     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3859       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3860       tty->print_cr("  JVM state at this point:");
3861       for (int i = _depth; i >= 1; i--) {
3862         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3863       }
3864     }
3865 #endif
3866     return false; // Reached end of inlining
3867   }
3868 
3869   // Acquire method holder as java.lang.Class
3870   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3871   ciInstance*      caller_mirror = caller_klass->java_mirror();
3872   // Push this as a constant
3873   push(makecon(TypeInstPtr::make(caller_mirror)));
3874 #ifndef PRODUCT
3875   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3876     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3877     tty->print_cr("  JVM state at this point:");
3878     for (int i = _depth; i >= 1; i--) {
3879       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3880     }
3881   }
3882 #endif
3883   return true;
3884 }
3885 
3886 // Helper routine for above
3887 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3888   ciMethod* method = jvms->method();
3889 
3890   // Is this the Method.invoke method itself?
3891   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3892     return true;
3893 
3894   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3895   ciKlass* k = method->holder();
3896   if (k->is_instance_klass()) {
3897     ciInstanceKlass* ik = k->as_instance_klass();
3898     for (; ik != NULL; ik = ik->super()) {
3899       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3900           ik == env()->find_system_klass(ik->name())) {
3901         return true;
3902       }
3903     }
3904   }
3905   else if (method->is_method_handle_adapter()) {
3906     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3907     return true;
3908   }
3909 
3910   return false;
3911 }
3912 
3913 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3914                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3915                                      // computing it since there is no lookup field by name function in the
3916                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3917                                      // Using a static variable here is safe even if we have multiple compilation
3918                                      // threads because the offset is constant.  At worst the same offset will be
3919                                      // computed and  stored multiple
3920 
3921 bool LibraryCallKit::inline_native_AtomicLong_get() {
3922   // Restore the stack and pop off the argument
3923   _sp+=1;
3924   Node *obj = pop();
3925 
3926   // get the offset of the "value" field. Since the CI interfaces
3927   // does not provide a way to look up a field by name, we scan the bytecodes
3928   // to get the field index.  We expect the first 2 instructions of the method
3929   // to be:
3930   //    0 aload_0
3931   //    1 getfield "value"
3932   ciMethod* method = callee();
3933   if (value_field_offset == -1)
3934   {
3935     ciField* value_field;
3936     ciBytecodeStream iter(method);
3937     Bytecodes::Code bc = iter.next();
3938 
3939     if ((bc != Bytecodes::_aload_0) &&
3940               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3941       return false;
3942     bc = iter.next();
3943     if (bc != Bytecodes::_getfield)
3944       return false;
3945     bool ignore;
3946     value_field = iter.get_field(ignore);
3947     value_field_offset = value_field->offset_in_bytes();
3948   }
3949 
3950   // Null check without removing any arguments.
3951   _sp++;
3952   obj = do_null_check(obj, T_OBJECT);
3953   _sp--;
3954   // Check for locking null object
3955   if (stopped()) return true;
3956 
3957   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3958   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3959   int alias_idx = C->get_alias_index(adr_type);
3960 
3961   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3962 
3963   push_pair(result);
3964 
3965   return true;
3966 }
3967 
3968 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3969   // Restore the stack and pop off the arguments
3970   _sp+=5;
3971   Node *newVal = pop_pair();
3972   Node *oldVal = pop_pair();
3973   Node *obj = pop();
3974 
3975   // we need the offset of the "value" field which was computed when
3976   // inlining the get() method.  Give up if we don't have it.
3977   if (value_field_offset == -1)
3978     return false;
3979 
3980   // Null check without removing any arguments.
3981   _sp+=5;
3982   obj = do_null_check(obj, T_OBJECT);
3983   _sp-=5;
3984   // Check for locking null object
3985   if (stopped()) return true;
3986 
3987   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3988   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3989   int alias_idx = C->get_alias_index(adr_type);
3990 
3991   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3992   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3993   set_memory(store_proj, alias_idx);
3994   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3995 
3996   Node *result;
3997   // CMove node is not used to be able fold a possible check code
3998   // after attemptUpdate() call. This code could be transformed
3999   // into CMove node by loop optimizations.
4000   {
4001     RegionNode *r = new (C, 3) RegionNode(3);
4002     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
4003 
4004     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4005     Node *iftrue = opt_iff(r, iff);
4006     r->init_req(1, iftrue);
4007     result->init_req(1, intcon(1));
4008     result->init_req(2, intcon(0));
4009 
4010     set_control(_gvn.transform(r));
4011     record_for_igvn(r);
4012 
4013     C->set_has_split_ifs(true); // Has chance for split-if optimization
4014   }
4015 
4016   push(_gvn.transform(result));
4017   return true;
4018 }
4019 
4020 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4021   // restore the arguments
4022   _sp += arg_size();
4023 
4024   switch (id) {
4025   case vmIntrinsics::_floatToRawIntBits:
4026     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
4027     break;
4028 
4029   case vmIntrinsics::_intBitsToFloat:
4030     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
4031     break;
4032 
4033   case vmIntrinsics::_doubleToRawLongBits:
4034     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
4035     break;
4036 
4037   case vmIntrinsics::_longBitsToDouble:
4038     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
4039     break;
4040 
4041   case vmIntrinsics::_doubleToLongBits: {
4042     Node* value = pop_pair();
4043 
4044     // two paths (plus control) merge in a wood
4045     RegionNode *r = new (C, 3) RegionNode(3);
4046     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
4047 
4048     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
4049     // Build the boolean node
4050     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4051 
4052     // Branch either way.
4053     // NaN case is less traveled, which makes all the difference.
4054     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4055     Node *opt_isnan = _gvn.transform(ifisnan);
4056     assert( opt_isnan->is_If(), "Expect an IfNode");
4057     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4058     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4059 
4060     set_control(iftrue);
4061 
4062     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4063     Node *slow_result = longcon(nan_bits); // return NaN
4064     phi->init_req(1, _gvn.transform( slow_result ));
4065     r->init_req(1, iftrue);
4066 
4067     // Else fall through
4068     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4069     set_control(iffalse);
4070 
4071     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
4072     r->init_req(2, iffalse);
4073 
4074     // Post merge
4075     set_control(_gvn.transform(r));
4076     record_for_igvn(r);
4077 
4078     Node* result = _gvn.transform(phi);
4079     assert(result->bottom_type()->isa_long(), "must be");
4080     push_pair(result);
4081 
4082     C->set_has_split_ifs(true); // Has chance for split-if optimization
4083 
4084     break;
4085   }
4086 
4087   case vmIntrinsics::_floatToIntBits: {
4088     Node* value = pop();
4089 
4090     // two paths (plus control) merge in a wood
4091     RegionNode *r = new (C, 3) RegionNode(3);
4092     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
4093 
4094     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
4095     // Build the boolean node
4096     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4097 
4098     // Branch either way.
4099     // NaN case is less traveled, which makes all the difference.
4100     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4101     Node *opt_isnan = _gvn.transform(ifisnan);
4102     assert( opt_isnan->is_If(), "Expect an IfNode");
4103     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4104     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4105 
4106     set_control(iftrue);
4107 
4108     static const jint nan_bits = 0x7fc00000;
4109     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4110     phi->init_req(1, _gvn.transform( slow_result ));
4111     r->init_req(1, iftrue);
4112 
4113     // Else fall through
4114     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4115     set_control(iffalse);
4116 
4117     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
4118     r->init_req(2, iffalse);
4119 
4120     // Post merge
4121     set_control(_gvn.transform(r));
4122     record_for_igvn(r);
4123 
4124     Node* result = _gvn.transform(phi);
4125     assert(result->bottom_type()->isa_int(), "must be");
4126     push(result);
4127 
4128     C->set_has_split_ifs(true); // Has chance for split-if optimization
4129 
4130     break;
4131   }
4132 
4133   default:
4134     ShouldNotReachHere();
4135   }
4136 
4137   return true;
4138 }
4139 
4140 #ifdef _LP64
4141 #define XTOP ,top() /*additional argument*/
4142 #else  //_LP64
4143 #define XTOP        /*no additional argument*/
4144 #endif //_LP64
4145 
4146 //----------------------inline_unsafe_copyMemory-------------------------
4147 bool LibraryCallKit::inline_unsafe_copyMemory() {
4148   if (callee()->is_static())  return false;  // caller must have the capability!
4149   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
4150   assert(signature()->size() == nargs-1, "copy has 5 arguments");
4151   null_check_receiver(callee());  // check then ignore argument(0)
4152   if (stopped())  return true;
4153 
4154   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4155 
4156   Node* src_ptr = argument(1);
4157   Node* src_off = ConvL2X(argument(2));
4158   assert(argument(3)->is_top(), "2nd half of long");
4159   Node* dst_ptr = argument(4);
4160   Node* dst_off = ConvL2X(argument(5));
4161   assert(argument(6)->is_top(), "2nd half of long");
4162   Node* size    = ConvL2X(argument(7));
4163   assert(argument(8)->is_top(), "2nd half of long");
4164 
4165   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4166          "fieldOffset must be byte-scaled");
4167 
4168   Node* src = make_unsafe_address(src_ptr, src_off);
4169   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4170 
4171   // Conservatively insert a memory barrier on all memory slices.
4172   // Do not let writes of the copy source or destination float below the copy.
4173   insert_mem_bar(Op_MemBarCPUOrder);
4174 
4175   // Call it.  Note that the length argument is not scaled.
4176   make_runtime_call(RC_LEAF|RC_NO_FP,
4177                     OptoRuntime::fast_arraycopy_Type(),
4178                     StubRoutines::unsafe_arraycopy(),
4179                     "unsafe_arraycopy",
4180                     TypeRawPtr::BOTTOM,
4181                     src, dst, size XTOP);
4182 
4183   // Do not let reads of the copy destination float above the copy.
4184   insert_mem_bar(Op_MemBarCPUOrder);
4185 
4186   return true;
4187 }
4188 
4189 //------------------------clone_coping-----------------------------------
4190 // Helper function for inline_native_clone.
4191 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4192   assert(obj_size != NULL, "");
4193   Node* raw_obj = alloc_obj->in(1);
4194   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4195 
4196   if (ReduceBulkZeroing) {
4197     // We will be completely responsible for initializing this object -
4198     // mark Initialize node as complete.
4199     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4200     // The object was just allocated - there should be no any stores!
4201     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4202   }
4203 
4204   // Copy the fastest available way.
4205   // TODO: generate fields copies for small objects instead.
4206   Node* src  = obj;
4207   Node* dest = alloc_obj;
4208   Node* size = _gvn.transform(obj_size);
4209 
4210   // Exclude the header but include array length to copy by 8 bytes words.
4211   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4212   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4213                             instanceOopDesc::base_offset_in_bytes();
4214   // base_off:
4215   // 8  - 32-bit VM
4216   // 12 - 64-bit VM, compressed oops
4217   // 16 - 64-bit VM, normal oops
4218   if (base_off % BytesPerLong != 0) {
4219     assert(UseCompressedOops, "");
4220     if (is_array) {
4221       // Exclude length to copy by 8 bytes words.
4222       base_off += sizeof(int);
4223     } else {
4224       // Include klass to copy by 8 bytes words.
4225       base_off = instanceOopDesc::klass_offset_in_bytes();
4226     }
4227     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4228   }
4229   src  = basic_plus_adr(src,  base_off);
4230   dest = basic_plus_adr(dest, base_off);
4231 
4232   // Compute the length also, if needed:
4233   Node* countx = size;
4234   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4235   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4236 
4237   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4238   bool disjoint_bases = true;
4239   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4240                                src, NULL, dest, NULL, countx,
4241                                /*dest_uninitialized*/true);
4242 
4243   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4244   if (card_mark) {
4245     assert(!is_array, "");
4246     // Put in store barrier for any and all oops we are sticking
4247     // into this object.  (We could avoid this if we could prove
4248     // that the object type contains no oop fields at all.)
4249     Node* no_particular_value = NULL;
4250     Node* no_particular_field = NULL;
4251     int raw_adr_idx = Compile::AliasIdxRaw;
4252     post_barrier(control(),
4253                  memory(raw_adr_type),
4254                  alloc_obj,
4255                  no_particular_field,
4256                  raw_adr_idx,
4257                  no_particular_value,
4258                  T_OBJECT,
4259                  false);
4260   }
4261 
4262   // Do not let reads from the cloned object float above the arraycopy.
4263   insert_mem_bar(Op_MemBarCPUOrder);
4264 }
4265 
4266 //------------------------inline_native_clone----------------------------
4267 // Here are the simple edge cases:
4268 //  null receiver => normal trap
4269 //  virtual and clone was overridden => slow path to out-of-line clone
4270 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4271 //
4272 // The general case has two steps, allocation and copying.
4273 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4274 //
4275 // Copying also has two cases, oop arrays and everything else.
4276 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4277 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4278 //
4279 // These steps fold up nicely if and when the cloned object's klass
4280 // can be sharply typed as an object array, a type array, or an instance.
4281 //
4282 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4283   int nargs = 1;
4284   PhiNode* result_val;
4285 
4286   //set the original stack and the reexecute bit for the interpreter to reexecute
4287   //the bytecode that invokes Object.clone if deoptimization happens
4288   { PreserveReexecuteState preexecs(this);
4289     jvms()->set_should_reexecute(true);
4290 
4291     //null_check_receiver will adjust _sp (push and pop)
4292     Node* obj = null_check_receiver(callee());
4293     if (stopped())  return true;
4294 
4295     _sp += nargs;
4296 
4297     Node* obj_klass = load_object_klass(obj);
4298     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4299     const TypeOopPtr*   toop   = ((tklass != NULL)
4300                                 ? tklass->as_instance_type()
4301                                 : TypeInstPtr::NOTNULL);
4302 
4303     // Conservatively insert a memory barrier on all memory slices.
4304     // Do not let writes into the original float below the clone.
4305     insert_mem_bar(Op_MemBarCPUOrder);
4306 
4307     // paths into result_reg:
4308     enum {
4309       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4310       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4311       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4312       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4313       PATH_LIMIT
4314     };
4315     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4316     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4317                                                         TypeInstPtr::NOTNULL);
4318     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4319     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4320                                                         TypePtr::BOTTOM);
4321     record_for_igvn(result_reg);
4322 
4323     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4324     int raw_adr_idx = Compile::AliasIdxRaw;
4325 
4326     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4327     if (array_ctl != NULL) {
4328       // It's an array.
4329       PreserveJVMState pjvms(this);
4330       set_control(array_ctl);
4331       Node* obj_length = load_array_length(obj);
4332       Node* obj_size  = NULL;
4333       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
4334 
4335       if (!use_ReduceInitialCardMarks()) {
4336         // If it is an oop array, it requires very special treatment,
4337         // because card marking is required on each card of the array.
4338         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4339         if (is_obja != NULL) {
4340           PreserveJVMState pjvms2(this);
4341           set_control(is_obja);
4342           // Generate a direct call to the right arraycopy function(s).
4343           bool disjoint_bases = true;
4344           bool length_never_negative = true;
4345           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4346                              obj, intcon(0), alloc_obj, intcon(0),
4347                              obj_length,
4348                              disjoint_bases, length_never_negative);
4349           result_reg->init_req(_objArray_path, control());
4350           result_val->init_req(_objArray_path, alloc_obj);
4351           result_i_o ->set_req(_objArray_path, i_o());
4352           result_mem ->set_req(_objArray_path, reset_memory());
4353         }
4354       }
4355       // Otherwise, there are no card marks to worry about.
4356       // (We can dispense with card marks if we know the allocation
4357       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4358       //  causes the non-eden paths to take compensating steps to
4359       //  simulate a fresh allocation, so that no further
4360       //  card marks are required in compiled code to initialize
4361       //  the object.)
4362 
4363       if (!stopped()) {
4364         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4365 
4366         // Present the results of the copy.
4367         result_reg->init_req(_array_path, control());
4368         result_val->init_req(_array_path, alloc_obj);
4369         result_i_o ->set_req(_array_path, i_o());
4370         result_mem ->set_req(_array_path, reset_memory());
4371       }
4372     }
4373 
4374     // We only go to the instance fast case code if we pass a number of guards.
4375     // The paths which do not pass are accumulated in the slow_region.
4376     RegionNode* slow_region = new (C, 1) RegionNode(1);
4377     record_for_igvn(slow_region);
4378     if (!stopped()) {
4379       // It's an instance (we did array above).  Make the slow-path tests.
4380       // If this is a virtual call, we generate a funny guard.  We grab
4381       // the vtable entry corresponding to clone() from the target object.
4382       // If the target method which we are calling happens to be the
4383       // Object clone() method, we pass the guard.  We do not need this
4384       // guard for non-virtual calls; the caller is known to be the native
4385       // Object clone().
4386       if (is_virtual) {
4387         generate_virtual_guard(obj_klass, slow_region);
4388       }
4389 
4390       // The object must be cloneable and must not have a finalizer.
4391       // Both of these conditions may be checked in a single test.
4392       // We could optimize the cloneable test further, but we don't care.
4393       generate_access_flags_guard(obj_klass,
4394                                   // Test both conditions:
4395                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4396                                   // Must be cloneable but not finalizer:
4397                                   JVM_ACC_IS_CLONEABLE,
4398                                   slow_region);
4399     }
4400 
4401     if (!stopped()) {
4402       // It's an instance, and it passed the slow-path tests.
4403       PreserveJVMState pjvms(this);
4404       Node* obj_size  = NULL;
4405       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4406 
4407       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4408 
4409       // Present the results of the slow call.
4410       result_reg->init_req(_instance_path, control());
4411       result_val->init_req(_instance_path, alloc_obj);
4412       result_i_o ->set_req(_instance_path, i_o());
4413       result_mem ->set_req(_instance_path, reset_memory());
4414     }
4415 
4416     // Generate code for the slow case.  We make a call to clone().
4417     set_control(_gvn.transform(slow_region));
4418     if (!stopped()) {
4419       PreserveJVMState pjvms(this);
4420       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4421       Node* slow_result = set_results_for_java_call(slow_call);
4422       // this->control() comes from set_results_for_java_call
4423       result_reg->init_req(_slow_path, control());
4424       result_val->init_req(_slow_path, slow_result);
4425       result_i_o ->set_req(_slow_path, i_o());
4426       result_mem ->set_req(_slow_path, reset_memory());
4427     }
4428 
4429     // Return the combined state.
4430     set_control(    _gvn.transform(result_reg) );
4431     set_i_o(        _gvn.transform(result_i_o) );
4432     set_all_memory( _gvn.transform(result_mem) );
4433   } //original reexecute and sp are set back here
4434 
4435   push(_gvn.transform(result_val));
4436 
4437   return true;
4438 }
4439 
4440 //------------------------------basictype2arraycopy----------------------------
4441 address LibraryCallKit::basictype2arraycopy(BasicType t,
4442                                             Node* src_offset,
4443                                             Node* dest_offset,
4444                                             bool disjoint_bases,
4445                                             const char* &name,
4446                                             bool dest_uninitialized) {
4447   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4448   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4449 
4450   bool aligned = false;
4451   bool disjoint = disjoint_bases;
4452 
4453   // if the offsets are the same, we can treat the memory regions as
4454   // disjoint, because either the memory regions are in different arrays,
4455   // or they are identical (which we can treat as disjoint.)  We can also
4456   // treat a copy with a destination index  less that the source index
4457   // as disjoint since a low->high copy will work correctly in this case.
4458   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4459       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4460     // both indices are constants
4461     int s_offs = src_offset_inttype->get_con();
4462     int d_offs = dest_offset_inttype->get_con();
4463     int element_size = type2aelembytes(t);
4464     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4465               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4466     if (s_offs >= d_offs)  disjoint = true;
4467   } else if (src_offset == dest_offset && src_offset != NULL) {
4468     // This can occur if the offsets are identical non-constants.
4469     disjoint = true;
4470   }
4471 
4472   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4473 }
4474 
4475 
4476 //------------------------------inline_arraycopy-----------------------
4477 bool LibraryCallKit::inline_arraycopy() {
4478   // Restore the stack and pop off the arguments.
4479   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4480   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4481 
4482   Node *src         = argument(0);
4483   Node *src_offset  = argument(1);
4484   Node *dest        = argument(2);
4485   Node *dest_offset = argument(3);
4486   Node *length      = argument(4);
4487 
4488   // Compile time checks.  If any of these checks cannot be verified at compile time,
4489   // we do not make a fast path for this call.  Instead, we let the call remain as it
4490   // is.  The checks we choose to mandate at compile time are:
4491   //
4492   // (1) src and dest are arrays.
4493   const Type* src_type = src->Value(&_gvn);
4494   const Type* dest_type = dest->Value(&_gvn);
4495   const TypeAryPtr* top_src = src_type->isa_aryptr();
4496   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4497   if (top_src  == NULL || top_src->klass()  == NULL ||
4498       top_dest == NULL || top_dest->klass() == NULL) {
4499     // Conservatively insert a memory barrier on all memory slices.
4500     // Do not let writes into the source float below the arraycopy.
4501     insert_mem_bar(Op_MemBarCPUOrder);
4502 
4503     // Call StubRoutines::generic_arraycopy stub.
4504     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4505                        src, src_offset, dest, dest_offset, length);
4506 
4507     // Do not let reads from the destination float above the arraycopy.
4508     // Since we cannot type the arrays, we don't know which slices
4509     // might be affected.  We could restrict this barrier only to those
4510     // memory slices which pertain to array elements--but don't bother.
4511     if (!InsertMemBarAfterArraycopy)
4512       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4513       insert_mem_bar(Op_MemBarCPUOrder);
4514     return true;
4515   }
4516 
4517   // (2) src and dest arrays must have elements of the same BasicType
4518   // Figure out the size and type of the elements we will be copying.
4519   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4520   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4521   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4522   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4523 
4524   if (src_elem != dest_elem || dest_elem == T_VOID) {
4525     // The component types are not the same or are not recognized.  Punt.
4526     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4527     generate_slow_arraycopy(TypePtr::BOTTOM,
4528                             src, src_offset, dest, dest_offset, length,
4529                             /*dest_uninitialized*/false);
4530     return true;
4531   }
4532 
4533   //---------------------------------------------------------------------------
4534   // We will make a fast path for this call to arraycopy.
4535 
4536   // We have the following tests left to perform:
4537   //
4538   // (3) src and dest must not be null.
4539   // (4) src_offset must not be negative.
4540   // (5) dest_offset must not be negative.
4541   // (6) length must not be negative.
4542   // (7) src_offset + length must not exceed length of src.
4543   // (8) dest_offset + length must not exceed length of dest.
4544   // (9) each element of an oop array must be assignable
4545 
4546   RegionNode* slow_region = new (C, 1) RegionNode(1);
4547   record_for_igvn(slow_region);
4548 
4549   // (3) operands must not be null
4550   // We currently perform our null checks with the do_null_check routine.
4551   // This means that the null exceptions will be reported in the caller
4552   // rather than (correctly) reported inside of the native arraycopy call.
4553   // This should be corrected, given time.  We do our null check with the
4554   // stack pointer restored.
4555   _sp += nargs;
4556   src  = do_null_check(src,  T_ARRAY);
4557   dest = do_null_check(dest, T_ARRAY);
4558   _sp -= nargs;
4559 
4560   // (4) src_offset must not be negative.
4561   generate_negative_guard(src_offset, slow_region);
4562 
4563   // (5) dest_offset must not be negative.
4564   generate_negative_guard(dest_offset, slow_region);
4565 
4566   // (6) length must not be negative (moved to generate_arraycopy()).
4567   // generate_negative_guard(length, slow_region);
4568 
4569   // (7) src_offset + length must not exceed length of src.
4570   generate_limit_guard(src_offset, length,
4571                        load_array_length(src),
4572                        slow_region);
4573 
4574   // (8) dest_offset + length must not exceed length of dest.
4575   generate_limit_guard(dest_offset, length,
4576                        load_array_length(dest),
4577                        slow_region);
4578 
4579   // (9) each element of an oop array must be assignable
4580   // The generate_arraycopy subroutine checks this.
4581 
4582   // This is where the memory effects are placed:
4583   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4584   generate_arraycopy(adr_type, dest_elem,
4585                      src, src_offset, dest, dest_offset, length,
4586                      false, false, slow_region);
4587 
4588   return true;
4589 }
4590 
4591 //-----------------------------generate_arraycopy----------------------
4592 // Generate an optimized call to arraycopy.
4593 // Caller must guard against non-arrays.
4594 // Caller must determine a common array basic-type for both arrays.
4595 // Caller must validate offsets against array bounds.
4596 // The slow_region has already collected guard failure paths
4597 // (such as out of bounds length or non-conformable array types).
4598 // The generated code has this shape, in general:
4599 //
4600 //     if (length == 0)  return   // via zero_path
4601 //     slowval = -1
4602 //     if (types unknown) {
4603 //       slowval = call generic copy loop
4604 //       if (slowval == 0)  return  // via checked_path
4605 //     } else if (indexes in bounds) {
4606 //       if ((is object array) && !(array type check)) {
4607 //         slowval = call checked copy loop
4608 //         if (slowval == 0)  return  // via checked_path
4609 //       } else {
4610 //         call bulk copy loop
4611 //         return  // via fast_path
4612 //       }
4613 //     }
4614 //     // adjust params for remaining work:
4615 //     if (slowval != -1) {
4616 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4617 //     }
4618 //   slow_region:
4619 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4620 //     return  // via slow_call_path
4621 //
4622 // This routine is used from several intrinsics:  System.arraycopy,
4623 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4624 //
4625 void
4626 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4627                                    BasicType basic_elem_type,
4628                                    Node* src,  Node* src_offset,
4629                                    Node* dest, Node* dest_offset,
4630                                    Node* copy_length,
4631                                    bool disjoint_bases,
4632                                    bool length_never_negative,
4633                                    RegionNode* slow_region) {
4634 
4635   if (slow_region == NULL) {
4636     slow_region = new(C,1) RegionNode(1);
4637     record_for_igvn(slow_region);
4638   }
4639 
4640   Node* original_dest      = dest;
4641   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4642   bool  dest_uninitialized = false;
4643 
4644   // See if this is the initialization of a newly-allocated array.
4645   // If so, we will take responsibility here for initializing it to zero.
4646   // (Note:  Because tightly_coupled_allocation performs checks on the
4647   // out-edges of the dest, we need to avoid making derived pointers
4648   // from it until we have checked its uses.)
4649   if (ReduceBulkZeroing
4650       && !ZeroTLAB              // pointless if already zeroed
4651       && basic_elem_type != T_CONFLICT // avoid corner case
4652       && !_gvn.eqv_uncast(src, dest)
4653       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4654           != NULL)
4655       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4656       && alloc->maybe_set_complete(&_gvn)) {
4657     // "You break it, you buy it."
4658     InitializeNode* init = alloc->initialization();
4659     assert(init->is_complete(), "we just did this");
4660     init->set_complete_with_arraycopy();
4661     assert(dest->is_CheckCastPP(), "sanity");
4662     assert(dest->in(0)->in(0) == init, "dest pinned");
4663     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4664     // From this point on, every exit path is responsible for
4665     // initializing any non-copied parts of the object to zero.
4666     // Also, if this flag is set we make sure that arraycopy interacts properly
4667     // with G1, eliding pre-barriers. See CR 6627983.
4668     dest_uninitialized = true;
4669   } else {
4670     // No zeroing elimination here.
4671     alloc             = NULL;
4672     //original_dest   = dest;
4673     //dest_uninitialized = false;
4674   }
4675 
4676   // Results are placed here:
4677   enum { fast_path        = 1,  // normal void-returning assembly stub
4678          checked_path     = 2,  // special assembly stub with cleanup
4679          slow_call_path   = 3,  // something went wrong; call the VM
4680          zero_path        = 4,  // bypass when length of copy is zero
4681          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4682          PATH_LIMIT       = 6
4683   };
4684   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4685   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4686   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4687   record_for_igvn(result_region);
4688   _gvn.set_type_bottom(result_i_o);
4689   _gvn.set_type_bottom(result_memory);
4690   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4691 
4692   // The slow_control path:
4693   Node* slow_control;
4694   Node* slow_i_o = i_o();
4695   Node* slow_mem = memory(adr_type);
4696   debug_only(slow_control = (Node*) badAddress);
4697 
4698   // Checked control path:
4699   Node* checked_control = top();
4700   Node* checked_mem     = NULL;
4701   Node* checked_i_o     = NULL;
4702   Node* checked_value   = NULL;
4703 
4704   if (basic_elem_type == T_CONFLICT) {
4705     assert(!dest_uninitialized, "");
4706     Node* cv = generate_generic_arraycopy(adr_type,
4707                                           src, src_offset, dest, dest_offset,
4708                                           copy_length, dest_uninitialized);
4709     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4710     checked_control = control();
4711     checked_i_o     = i_o();
4712     checked_mem     = memory(adr_type);
4713     checked_value   = cv;
4714     set_control(top());         // no fast path
4715   }
4716 
4717   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4718   if (not_pos != NULL) {
4719     PreserveJVMState pjvms(this);
4720     set_control(not_pos);
4721 
4722     // (6) length must not be negative.
4723     if (!length_never_negative) {
4724       generate_negative_guard(copy_length, slow_region);
4725     }
4726 
4727     // copy_length is 0.
4728     if (!stopped() && dest_uninitialized) {
4729       Node* dest_length = alloc->in(AllocateNode::ALength);
4730       if (_gvn.eqv_uncast(copy_length, dest_length)
4731           || _gvn.find_int_con(dest_length, 1) <= 0) {
4732         // There is no zeroing to do. No need for a secondary raw memory barrier.
4733       } else {
4734         // Clear the whole thing since there are no source elements to copy.
4735         generate_clear_array(adr_type, dest, basic_elem_type,
4736                              intcon(0), NULL,
4737                              alloc->in(AllocateNode::AllocSize));
4738         // Use a secondary InitializeNode as raw memory barrier.
4739         // Currently it is needed only on this path since other
4740         // paths have stub or runtime calls as raw memory barriers.
4741         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4742                                                        Compile::AliasIdxRaw,
4743                                                        top())->as_Initialize();
4744         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4745       }
4746     }
4747 
4748     // Present the results of the fast call.
4749     result_region->init_req(zero_path, control());
4750     result_i_o   ->init_req(zero_path, i_o());
4751     result_memory->init_req(zero_path, memory(adr_type));
4752   }
4753 
4754   if (!stopped() && dest_uninitialized) {
4755     // We have to initialize the *uncopied* part of the array to zero.
4756     // The copy destination is the slice dest[off..off+len].  The other slices
4757     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4758     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4759     Node* dest_length = alloc->in(AllocateNode::ALength);
4760     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4761                                                           copy_length) );
4762 
4763     // If there is a head section that needs zeroing, do it now.
4764     if (find_int_con(dest_offset, -1) != 0) {
4765       generate_clear_array(adr_type, dest, basic_elem_type,
4766                            intcon(0), dest_offset,
4767                            NULL);
4768     }
4769 
4770     // Next, perform a dynamic check on the tail length.
4771     // It is often zero, and we can win big if we prove this.
4772     // There are two wins:  Avoid generating the ClearArray
4773     // with its attendant messy index arithmetic, and upgrade
4774     // the copy to a more hardware-friendly word size of 64 bits.
4775     Node* tail_ctl = NULL;
4776     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4777       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4778       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4779       tail_ctl = generate_slow_guard(bol_lt, NULL);
4780       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4781     }
4782 
4783     // At this point, let's assume there is no tail.
4784     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4785       // There is no tail.  Try an upgrade to a 64-bit copy.
4786       bool didit = false;
4787       { PreserveJVMState pjvms(this);
4788         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4789                                          src, src_offset, dest, dest_offset,
4790                                          dest_size, dest_uninitialized);
4791         if (didit) {
4792           // Present the results of the block-copying fast call.
4793           result_region->init_req(bcopy_path, control());
4794           result_i_o   ->init_req(bcopy_path, i_o());
4795           result_memory->init_req(bcopy_path, memory(adr_type));
4796         }
4797       }
4798       if (didit)
4799         set_control(top());     // no regular fast path
4800     }
4801 
4802     // Clear the tail, if any.
4803     if (tail_ctl != NULL) {
4804       Node* notail_ctl = stopped() ? NULL : control();
4805       set_control(tail_ctl);
4806       if (notail_ctl == NULL) {
4807         generate_clear_array(adr_type, dest, basic_elem_type,
4808                              dest_tail, NULL,
4809                              dest_size);
4810       } else {
4811         // Make a local merge.
4812         Node* done_ctl = new(C,3) RegionNode(3);
4813         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4814         done_ctl->init_req(1, notail_ctl);
4815         done_mem->init_req(1, memory(adr_type));
4816         generate_clear_array(adr_type, dest, basic_elem_type,
4817                              dest_tail, NULL,
4818                              dest_size);
4819         done_ctl->init_req(2, control());
4820         done_mem->init_req(2, memory(adr_type));
4821         set_control( _gvn.transform(done_ctl) );
4822         set_memory(  _gvn.transform(done_mem), adr_type );
4823       }
4824     }
4825   }
4826 
4827   BasicType copy_type = basic_elem_type;
4828   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4829   if (!stopped() && copy_type == T_OBJECT) {
4830     // If src and dest have compatible element types, we can copy bits.
4831     // Types S[] and D[] are compatible if D is a supertype of S.
4832     //
4833     // If they are not, we will use checked_oop_disjoint_arraycopy,
4834     // which performs a fast optimistic per-oop check, and backs off
4835     // further to JVM_ArrayCopy on the first per-oop check that fails.
4836     // (Actually, we don't move raw bits only; the GC requires card marks.)
4837 
4838     // Get the klassOop for both src and dest
4839     Node* src_klass  = load_object_klass(src);
4840     Node* dest_klass = load_object_klass(dest);
4841 
4842     // Generate the subtype check.
4843     // This might fold up statically, or then again it might not.
4844     //
4845     // Non-static example:  Copying List<String>.elements to a new String[].
4846     // The backing store for a List<String> is always an Object[],
4847     // but its elements are always type String, if the generic types
4848     // are correct at the source level.
4849     //
4850     // Test S[] against D[], not S against D, because (probably)
4851     // the secondary supertype cache is less busy for S[] than S.
4852     // This usually only matters when D is an interface.
4853     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4854     // Plug failing path into checked_oop_disjoint_arraycopy
4855     if (not_subtype_ctrl != top()) {
4856       PreserveJVMState pjvms(this);
4857       set_control(not_subtype_ctrl);
4858       // (At this point we can assume disjoint_bases, since types differ.)
4859       int ek_offset = objArrayKlass::element_klass_offset_in_bytes();
4860       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4861       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4862       Node* dest_elem_klass = _gvn.transform(n1);
4863       Node* cv = generate_checkcast_arraycopy(adr_type,
4864                                               dest_elem_klass,
4865                                               src, src_offset, dest, dest_offset,
4866                                               ConvI2X(copy_length), dest_uninitialized);
4867       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4868       checked_control = control();
4869       checked_i_o     = i_o();
4870       checked_mem     = memory(adr_type);
4871       checked_value   = cv;
4872     }
4873     // At this point we know we do not need type checks on oop stores.
4874 
4875     // Let's see if we need card marks:
4876     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4877       // If we do not need card marks, copy using the jint or jlong stub.
4878       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4879       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4880              "sizes agree");
4881     }
4882   }
4883 
4884   if (!stopped()) {
4885     // Generate the fast path, if possible.
4886     PreserveJVMState pjvms(this);
4887     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4888                                  src, src_offset, dest, dest_offset,
4889                                  ConvI2X(copy_length), dest_uninitialized);
4890 
4891     // Present the results of the fast call.
4892     result_region->init_req(fast_path, control());
4893     result_i_o   ->init_req(fast_path, i_o());
4894     result_memory->init_req(fast_path, memory(adr_type));
4895   }
4896 
4897   // Here are all the slow paths up to this point, in one bundle:
4898   slow_control = top();
4899   if (slow_region != NULL)
4900     slow_control = _gvn.transform(slow_region);
4901   debug_only(slow_region = (RegionNode*)badAddress);
4902 
4903   set_control(checked_control);
4904   if (!stopped()) {
4905     // Clean up after the checked call.
4906     // The returned value is either 0 or -1^K,
4907     // where K = number of partially transferred array elements.
4908     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4909     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4910     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4911 
4912     // If it is 0, we are done, so transfer to the end.
4913     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4914     result_region->init_req(checked_path, checks_done);
4915     result_i_o   ->init_req(checked_path, checked_i_o);
4916     result_memory->init_req(checked_path, checked_mem);
4917 
4918     // If it is not zero, merge into the slow call.
4919     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4920     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4921     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4922     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4923     record_for_igvn(slow_reg2);
4924     slow_reg2  ->init_req(1, slow_control);
4925     slow_i_o2  ->init_req(1, slow_i_o);
4926     slow_mem2  ->init_req(1, slow_mem);
4927     slow_reg2  ->init_req(2, control());
4928     slow_i_o2  ->init_req(2, checked_i_o);
4929     slow_mem2  ->init_req(2, checked_mem);
4930 
4931     slow_control = _gvn.transform(slow_reg2);
4932     slow_i_o     = _gvn.transform(slow_i_o2);
4933     slow_mem     = _gvn.transform(slow_mem2);
4934 
4935     if (alloc != NULL) {
4936       // We'll restart from the very beginning, after zeroing the whole thing.
4937       // This can cause double writes, but that's OK since dest is brand new.
4938       // So we ignore the low 31 bits of the value returned from the stub.
4939     } else {
4940       // We must continue the copy exactly where it failed, or else
4941       // another thread might see the wrong number of writes to dest.
4942       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4943       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4944       slow_offset->init_req(1, intcon(0));
4945       slow_offset->init_req(2, checked_offset);
4946       slow_offset  = _gvn.transform(slow_offset);
4947 
4948       // Adjust the arguments by the conditionally incoming offset.
4949       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4950       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4951       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4952 
4953       // Tweak the node variables to adjust the code produced below:
4954       src_offset  = src_off_plus;
4955       dest_offset = dest_off_plus;
4956       copy_length = length_minus;
4957     }
4958   }
4959 
4960   set_control(slow_control);
4961   if (!stopped()) {
4962     // Generate the slow path, if needed.
4963     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4964 
4965     set_memory(slow_mem, adr_type);
4966     set_i_o(slow_i_o);
4967 
4968     if (dest_uninitialized) {
4969       generate_clear_array(adr_type, dest, basic_elem_type,
4970                            intcon(0), NULL,
4971                            alloc->in(AllocateNode::AllocSize));
4972     }
4973 
4974     generate_slow_arraycopy(adr_type,
4975                             src, src_offset, dest, dest_offset,
4976                             copy_length, /*dest_uninitialized*/false);
4977 
4978     result_region->init_req(slow_call_path, control());
4979     result_i_o   ->init_req(slow_call_path, i_o());
4980     result_memory->init_req(slow_call_path, memory(adr_type));
4981   }
4982 
4983   // Remove unused edges.
4984   for (uint i = 1; i < result_region->req(); i++) {
4985     if (result_region->in(i) == NULL)
4986       result_region->init_req(i, top());
4987   }
4988 
4989   // Finished; return the combined state.
4990   set_control( _gvn.transform(result_region) );
4991   set_i_o(     _gvn.transform(result_i_o)    );
4992   set_memory(  _gvn.transform(result_memory), adr_type );
4993 
4994   // The memory edges above are precise in order to model effects around
4995   // array copies accurately to allow value numbering of field loads around
4996   // arraycopy.  Such field loads, both before and after, are common in Java
4997   // collections and similar classes involving header/array data structures.
4998   //
4999   // But with low number of register or when some registers are used or killed
5000   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5001   // The next memory barrier is added to avoid it. If the arraycopy can be
5002   // optimized away (which it can, sometimes) then we can manually remove
5003   // the membar also.
5004   //
5005   // Do not let reads from the cloned object float above the arraycopy.
5006   if (InsertMemBarAfterArraycopy || alloc != NULL)
5007     insert_mem_bar(Op_MemBarCPUOrder);
5008 }
5009 
5010 
5011 // Helper function which determines if an arraycopy immediately follows
5012 // an allocation, with no intervening tests or other escapes for the object.
5013 AllocateArrayNode*
5014 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5015                                            RegionNode* slow_region) {
5016   if (stopped())             return NULL;  // no fast path
5017   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5018 
5019   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5020   if (alloc == NULL)  return NULL;
5021 
5022   Node* rawmem = memory(Compile::AliasIdxRaw);
5023   // Is the allocation's memory state untouched?
5024   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5025     // Bail out if there have been raw-memory effects since the allocation.
5026     // (Example:  There might have been a call or safepoint.)
5027     return NULL;
5028   }
5029   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5030   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5031     return NULL;
5032   }
5033 
5034   // There must be no unexpected observers of this allocation.
5035   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5036     Node* obs = ptr->fast_out(i);
5037     if (obs != this->map()) {
5038       return NULL;
5039     }
5040   }
5041 
5042   // This arraycopy must unconditionally follow the allocation of the ptr.
5043   Node* alloc_ctl = ptr->in(0);
5044   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5045 
5046   Node* ctl = control();
5047   while (ctl != alloc_ctl) {
5048     // There may be guards which feed into the slow_region.
5049     // Any other control flow means that we might not get a chance
5050     // to finish initializing the allocated object.
5051     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5052       IfNode* iff = ctl->in(0)->as_If();
5053       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5054       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5055       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5056         ctl = iff->in(0);       // This test feeds the known slow_region.
5057         continue;
5058       }
5059       // One more try:  Various low-level checks bottom out in
5060       // uncommon traps.  If the debug-info of the trap omits
5061       // any reference to the allocation, as we've already
5062       // observed, then there can be no objection to the trap.
5063       bool found_trap = false;
5064       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5065         Node* obs = not_ctl->fast_out(j);
5066         if (obs->in(0) == not_ctl && obs->is_Call() &&
5067             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5068           found_trap = true; break;
5069         }
5070       }
5071       if (found_trap) {
5072         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5073         continue;
5074       }
5075     }
5076     return NULL;
5077   }
5078 
5079   // If we get this far, we have an allocation which immediately
5080   // precedes the arraycopy, and we can take over zeroing the new object.
5081   // The arraycopy will finish the initialization, and provide
5082   // a new control state to which we will anchor the destination pointer.
5083 
5084   return alloc;
5085 }
5086 
5087 // Helper for initialization of arrays, creating a ClearArray.
5088 // It writes zero bits in [start..end), within the body of an array object.
5089 // The memory effects are all chained onto the 'adr_type' alias category.
5090 //
5091 // Since the object is otherwise uninitialized, we are free
5092 // to put a little "slop" around the edges of the cleared area,
5093 // as long as it does not go back into the array's header,
5094 // or beyond the array end within the heap.
5095 //
5096 // The lower edge can be rounded down to the nearest jint and the
5097 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5098 //
5099 // Arguments:
5100 //   adr_type           memory slice where writes are generated
5101 //   dest               oop of the destination array
5102 //   basic_elem_type    element type of the destination
5103 //   slice_idx          array index of first element to store
5104 //   slice_len          number of elements to store (or NULL)
5105 //   dest_size          total size in bytes of the array object
5106 //
5107 // Exactly one of slice_len or dest_size must be non-NULL.
5108 // If dest_size is non-NULL, zeroing extends to the end of the object.
5109 // If slice_len is non-NULL, the slice_idx value must be a constant.
5110 void
5111 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5112                                      Node* dest,
5113                                      BasicType basic_elem_type,
5114                                      Node* slice_idx,
5115                                      Node* slice_len,
5116                                      Node* dest_size) {
5117   // one or the other but not both of slice_len and dest_size:
5118   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5119   if (slice_len == NULL)  slice_len = top();
5120   if (dest_size == NULL)  dest_size = top();
5121 
5122   // operate on this memory slice:
5123   Node* mem = memory(adr_type); // memory slice to operate on
5124 
5125   // scaling and rounding of indexes:
5126   int scale = exact_log2(type2aelembytes(basic_elem_type));
5127   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5128   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5129   int bump_bit  = (-1 << scale) & BytesPerInt;
5130 
5131   // determine constant starts and ends
5132   const intptr_t BIG_NEG = -128;
5133   assert(BIG_NEG + 2*abase < 0, "neg enough");
5134   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5135   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5136   if (slice_len_con == 0) {
5137     return;                     // nothing to do here
5138   }
5139   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5140   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5141   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5142     assert(end_con < 0, "not two cons");
5143     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5144                        BytesPerLong);
5145   }
5146 
5147   if (start_con >= 0 && end_con >= 0) {
5148     // Constant start and end.  Simple.
5149     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5150                                        start_con, end_con, &_gvn);
5151   } else if (start_con >= 0 && dest_size != top()) {
5152     // Constant start, pre-rounded end after the tail of the array.
5153     Node* end = dest_size;
5154     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5155                                        start_con, end, &_gvn);
5156   } else if (start_con >= 0 && slice_len != top()) {
5157     // Constant start, non-constant end.  End needs rounding up.
5158     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5159     intptr_t end_base  = abase + (slice_idx_con << scale);
5160     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5161     Node*    end       = ConvI2X(slice_len);
5162     if (scale != 0)
5163       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5164     end_base += end_round;
5165     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5166     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5167     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5168                                        start_con, end, &_gvn);
5169   } else if (start_con < 0 && dest_size != top()) {
5170     // Non-constant start, pre-rounded end after the tail of the array.
5171     // This is almost certainly a "round-to-end" operation.
5172     Node* start = slice_idx;
5173     start = ConvI2X(start);
5174     if (scale != 0)
5175       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5176     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5177     if ((bump_bit | clear_low) != 0) {
5178       int to_clear = (bump_bit | clear_low);
5179       // Align up mod 8, then store a jint zero unconditionally
5180       // just before the mod-8 boundary.
5181       if (((abase + bump_bit) & ~to_clear) - bump_bit
5182           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5183         bump_bit = 0;
5184         assert((abase & to_clear) == 0, "array base must be long-aligned");
5185       } else {
5186         // Bump 'start' up to (or past) the next jint boundary:
5187         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5188         assert((abase & clear_low) == 0, "array base must be int-aligned");
5189       }
5190       // Round bumped 'start' down to jlong boundary in body of array.
5191       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5192       if (bump_bit != 0) {
5193         // Store a zero to the immediately preceding jint:
5194         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5195         Node* p1 = basic_plus_adr(dest, x1);
5196         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5197         mem = _gvn.transform(mem);
5198       }
5199     }
5200     Node* end = dest_size; // pre-rounded
5201     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5202                                        start, end, &_gvn);
5203   } else {
5204     // Non-constant start, unrounded non-constant end.
5205     // (Nobody zeroes a random midsection of an array using this routine.)
5206     ShouldNotReachHere();       // fix caller
5207   }
5208 
5209   // Done.
5210   set_memory(mem, adr_type);
5211 }
5212 
5213 
5214 bool
5215 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5216                                          BasicType basic_elem_type,
5217                                          AllocateNode* alloc,
5218                                          Node* src,  Node* src_offset,
5219                                          Node* dest, Node* dest_offset,
5220                                          Node* dest_size, bool dest_uninitialized) {
5221   // See if there is an advantage from block transfer.
5222   int scale = exact_log2(type2aelembytes(basic_elem_type));
5223   if (scale >= LogBytesPerLong)
5224     return false;               // it is already a block transfer
5225 
5226   // Look at the alignment of the starting offsets.
5227   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5228 
5229   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5230   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5231   if (src_off_con < 0 || dest_off_con < 0)
5232     // At present, we can only understand constants.
5233     return false;
5234 
5235   intptr_t src_off  = abase + (src_off_con  << scale);
5236   intptr_t dest_off = abase + (dest_off_con << scale);
5237 
5238   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5239     // Non-aligned; too bad.
5240     // One more chance:  Pick off an initial 32-bit word.
5241     // This is a common case, since abase can be odd mod 8.
5242     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5243         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5244       Node* sptr = basic_plus_adr(src,  src_off);
5245       Node* dptr = basic_plus_adr(dest, dest_off);
5246       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5247       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5248       src_off += BytesPerInt;
5249       dest_off += BytesPerInt;
5250     } else {
5251       return false;
5252     }
5253   }
5254   assert(src_off % BytesPerLong == 0, "");
5255   assert(dest_off % BytesPerLong == 0, "");
5256 
5257   // Do this copy by giant steps.
5258   Node* sptr  = basic_plus_adr(src,  src_off);
5259   Node* dptr  = basic_plus_adr(dest, dest_off);
5260   Node* countx = dest_size;
5261   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5262   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5263 
5264   bool disjoint_bases = true;   // since alloc != NULL
5265   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5266                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5267 
5268   return true;
5269 }
5270 
5271 
5272 // Helper function; generates code for the slow case.
5273 // We make a call to a runtime method which emulates the native method,
5274 // but without the native wrapper overhead.
5275 void
5276 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5277                                         Node* src,  Node* src_offset,
5278                                         Node* dest, Node* dest_offset,
5279                                         Node* copy_length, bool dest_uninitialized) {
5280   assert(!dest_uninitialized, "Invariant");
5281   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5282                                  OptoRuntime::slow_arraycopy_Type(),
5283                                  OptoRuntime::slow_arraycopy_Java(),
5284                                  "slow_arraycopy", adr_type,
5285                                  src, src_offset, dest, dest_offset,
5286                                  copy_length);
5287 
5288   // Handle exceptions thrown by this fellow:
5289   make_slow_call_ex(call, env()->Throwable_klass(), false);
5290 }
5291 
5292 // Helper function; generates code for cases requiring runtime checks.
5293 Node*
5294 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5295                                              Node* dest_elem_klass,
5296                                              Node* src,  Node* src_offset,
5297                                              Node* dest, Node* dest_offset,
5298                                              Node* copy_length, bool dest_uninitialized) {
5299   if (stopped())  return NULL;
5300 
5301   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5302   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5303     return NULL;
5304   }
5305 
5306   // Pick out the parameters required to perform a store-check
5307   // for the target array.  This is an optimistic check.  It will
5308   // look in each non-null element's class, at the desired klass's
5309   // super_check_offset, for the desired klass.
5310   int sco_offset = Klass::super_check_offset_offset_in_bytes();
5311   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5312   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5313   Node* check_offset = ConvI2X(_gvn.transform(n3));
5314   Node* check_value  = dest_elem_klass;
5315 
5316   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5317   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5318 
5319   // (We know the arrays are never conjoint, because their types differ.)
5320   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5321                                  OptoRuntime::checkcast_arraycopy_Type(),
5322                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5323                                  // five arguments, of which two are
5324                                  // intptr_t (jlong in LP64)
5325                                  src_start, dest_start,
5326                                  copy_length XTOP,
5327                                  check_offset XTOP,
5328                                  check_value);
5329 
5330   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5331 }
5332 
5333 
5334 // Helper function; generates code for cases requiring runtime checks.
5335 Node*
5336 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5337                                            Node* src,  Node* src_offset,
5338                                            Node* dest, Node* dest_offset,
5339                                            Node* copy_length, bool dest_uninitialized) {
5340   assert(!dest_uninitialized, "Invariant");
5341   if (stopped())  return NULL;
5342   address copyfunc_addr = StubRoutines::generic_arraycopy();
5343   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5344     return NULL;
5345   }
5346 
5347   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5348                     OptoRuntime::generic_arraycopy_Type(),
5349                     copyfunc_addr, "generic_arraycopy", adr_type,
5350                     src, src_offset, dest, dest_offset, copy_length);
5351 
5352   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5353 }
5354 
5355 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5356 void
5357 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5358                                              BasicType basic_elem_type,
5359                                              bool disjoint_bases,
5360                                              Node* src,  Node* src_offset,
5361                                              Node* dest, Node* dest_offset,
5362                                              Node* copy_length, bool dest_uninitialized) {
5363   if (stopped())  return;               // nothing to do
5364 
5365   Node* src_start  = src;
5366   Node* dest_start = dest;
5367   if (src_offset != NULL || dest_offset != NULL) {
5368     assert(src_offset != NULL && dest_offset != NULL, "");
5369     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5370     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5371   }
5372 
5373   // Figure out which arraycopy runtime method to call.
5374   const char* copyfunc_name = "arraycopy";
5375   address     copyfunc_addr =
5376       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5377                           disjoint_bases, copyfunc_name, dest_uninitialized);
5378 
5379   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5380   make_runtime_call(RC_LEAF|RC_NO_FP,
5381                     OptoRuntime::fast_arraycopy_Type(),
5382                     copyfunc_addr, copyfunc_name, adr_type,
5383                     src_start, dest_start, copy_length XTOP);
5384 }
5385 
5386 //----------------------------inline_reference_get----------------------------
5387 
5388 bool LibraryCallKit::inline_reference_get() {
5389   const int nargs = 1; // self
5390 
5391   guarantee(java_lang_ref_Reference::referent_offset > 0,
5392             "should have already been set");
5393 
5394   int referent_offset = java_lang_ref_Reference::referent_offset;
5395 
5396   // Restore the stack and pop off the argument
5397   _sp += nargs;
5398   Node *reference_obj = pop();
5399 
5400   // Null check on self without removing any arguments.
5401   _sp += nargs;
5402   reference_obj = do_null_check(reference_obj, T_OBJECT);
5403   _sp -= nargs;;
5404 
5405   if (stopped()) return true;
5406 
5407   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5408 
5409   ciInstanceKlass* klass = env()->Object_klass();
5410   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5411 
5412   Node* no_ctrl = NULL;
5413   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5414 
5415   // Use the pre-barrier to record the value in the referent field
5416   pre_barrier(false /* do_load */,
5417               control(),
5418               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5419               result /* pre_val */,
5420               T_OBJECT);
5421 
5422   push(result);
5423   return true;
5424 }
5425