1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc_implementation/shared/vmGCOperations.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "oops/instanceMirrorKlass.hpp"
  32 #include "runtime/init.hpp"
  33 #include "services/heapDumper.hpp"
  34 #ifdef TARGET_OS_FAMILY_linux
  35 # include "thread_linux.inline.hpp"
  36 #endif
  37 #ifdef TARGET_OS_FAMILY_solaris
  38 # include "thread_solaris.inline.hpp"
  39 #endif
  40 #ifdef TARGET_OS_FAMILY_windows
  41 # include "thread_windows.inline.hpp"
  42 #endif
  43 #ifdef TARGET_OS_FAMILY_bsd
  44 # include "thread_bsd.inline.hpp"
  45 #endif
  46 
  47 
  48 #ifdef ASSERT
  49 int CollectedHeap::_fire_out_of_memory_count = 0;
  50 #endif
  51 
  52 size_t CollectedHeap::_filler_array_max_size = 0;
  53 
  54 // Memory state functions.
  55 
  56 
  57 CollectedHeap::CollectedHeap() : _n_par_threads(0)
  58 
  59 {
  60   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
  61   const size_t elements_per_word = HeapWordSize / sizeof(jint);
  62   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
  63                                              max_len * elements_per_word);
  64 
  65   _barrier_set = NULL;
  66   _is_gc_active = false;
  67   _total_collections = _total_full_collections = 0;
  68   _gc_cause = _gc_lastcause = GCCause::_no_gc;
  69   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
  70   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
  71 
  72   if (UsePerfData) {
  73     EXCEPTION_MARK;
  74 
  75     // create the gc cause jvmstat counters
  76     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
  77                              80, GCCause::to_string(_gc_cause), CHECK);
  78 
  79     _perf_gc_lastcause =
  80                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
  81                              80, GCCause::to_string(_gc_lastcause), CHECK);
  82   }
  83   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
  84 }
  85 
  86 void CollectedHeap::pre_initialize() {
  87   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
  88   // otherwise remains unused.
  89 #ifdef COMPILER2
  90   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
  91                              && (DeferInitialCardMark || card_mark_must_follow_store());
  92 #else
  93   assert(_defer_initial_card_mark == false, "Who would set it?");
  94 #endif
  95 }
  96 
  97 #ifndef PRODUCT
  98 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
  99   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 100     for (size_t slot = 0; slot < size; slot += 1) {
 101       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 102              "Found badHeapWordValue in post-allocation check");
 103     }
 104   }
 105 }
 106 
 107 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 108   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 109     for (size_t slot = 0; slot < size; slot += 1) {
 110       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 111              "Found non badHeapWordValue in pre-allocation check");
 112     }
 113   }
 114 }
 115 #endif // PRODUCT
 116 
 117 #ifdef ASSERT
 118 void CollectedHeap::check_for_valid_allocation_state() {
 119   Thread *thread = Thread::current();
 120   // How to choose between a pending exception and a potential
 121   // OutOfMemoryError?  Don't allow pending exceptions.
 122   // This is a VM policy failure, so how do we exhaustively test it?
 123   assert(!thread->has_pending_exception(),
 124          "shouldn't be allocating with pending exception");
 125   if (StrictSafepointChecks) {
 126     assert(thread->allow_allocation(),
 127            "Allocation done by thread for which allocation is blocked "
 128            "by No_Allocation_Verifier!");
 129     // Allocation of an oop can always invoke a safepoint,
 130     // hence, the true argument
 131     thread->check_for_valid_safepoint_state(true);
 132   }
 133 }
 134 #endif
 135 
 136 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
 137 
 138   // Retain tlab and allocate object in shared space if
 139   // the amount free in the tlab is too large to discard.
 140   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 141     thread->tlab().record_slow_allocation(size);
 142     return NULL;
 143   }
 144 
 145   // Discard tlab and allocate a new one.
 146   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 147   size_t new_tlab_size = thread->tlab().compute_size(size);
 148 
 149   thread->tlab().clear_before_allocation();
 150 
 151   if (new_tlab_size == 0) {
 152     return NULL;
 153   }
 154 
 155   // Allocate a new TLAB...
 156   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 157   if (obj == NULL) {
 158     return NULL;
 159   }
 160   if (ZeroTLAB) {
 161     // ..and clear it.
 162     Copy::zero_to_words(obj, new_tlab_size);
 163   } else {
 164     // ...and zap just allocated object.
 165 #ifdef ASSERT
 166     // Skip mangling the space corresponding to the object header to
 167     // ensure that the returned space is not considered parsable by
 168     // any concurrent GC thread.
 169     size_t hdr_size = oopDesc::header_size();
 170     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 171 #endif // ASSERT
 172   }
 173   thread->tlab().fill(obj, obj + size, new_tlab_size);
 174   return obj;
 175 }
 176 
 177 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 178   MemRegion deferred = thread->deferred_card_mark();
 179   if (!deferred.is_empty()) {
 180     assert(_defer_initial_card_mark, "Otherwise should be empty");
 181     {
 182       // Verify that the storage points to a parsable object in heap
 183       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 184       assert(is_in(old_obj), "Not in allocated heap");
 185       assert(!can_elide_initializing_store_barrier(old_obj),
 186              "Else should have been filtered in new_store_pre_barrier()");
 187       assert(!is_in_permanent(old_obj), "Sanity: not expected");
 188       assert(old_obj->is_oop(true), "Not an oop");
 189       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
 190       assert(deferred.word_size() == (size_t)(old_obj->size()),
 191              "Mismatch: multiple objects?");
 192     }
 193     BarrierSet* bs = barrier_set();
 194     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 195     bs->write_region(deferred);
 196     // "Clear" the deferred_card_mark field
 197     thread->set_deferred_card_mark(MemRegion());
 198   }
 199   assert(thread->deferred_card_mark().is_empty(), "invariant");
 200 }
 201 
 202 // Helper for ReduceInitialCardMarks. For performance,
 203 // compiled code may elide card-marks for initializing stores
 204 // to a newly allocated object along the fast-path. We
 205 // compensate for such elided card-marks as follows:
 206 // (a) Generational, non-concurrent collectors, such as
 207 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 208 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 209 //     need the card-mark if and only if the region is
 210 //     in the old gen, and do not care if the card-mark
 211 //     succeeds or precedes the initializing stores themselves,
 212 //     so long as the card-mark is completed before the next
 213 //     scavenge. For all these cases, we can do a card mark
 214 //     at the point at which we do a slow path allocation
 215 //     in the old gen, i.e. in this call.
 216 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 217 //     in addition that the card-mark for an old gen allocated
 218 //     object strictly follow any associated initializing stores.
 219 //     In these cases, the memRegion remembered below is
 220 //     used to card-mark the entire region either just before the next
 221 //     slow-path allocation by this thread or just before the next scavenge or
 222 //     CMS-associated safepoint, whichever of these events happens first.
 223 //     (The implicit assumption is that the object has been fully
 224 //     initialized by this point, a fact that we assert when doing the
 225 //     card-mark.)
 226 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 227 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 228 //     is used to remember the pre-value of any store. Initializing
 229 //     stores will not need this barrier, so we need not worry about
 230 //     compensating for the missing pre-barrier here. Turning now
 231 //     to the post-barrier, we note that G1 needs a RS update barrier
 232 //     which simply enqueues a (sequence of) dirty cards which may
 233 //     optionally be refined by the concurrent update threads. Note
 234 //     that this barrier need only be applied to a non-young write,
 235 //     but, like in CMS, because of the presence of concurrent refinement
 236 //     (much like CMS' precleaning), must strictly follow the oop-store.
 237 //     Thus, using the same protocol for maintaining the intended
 238 //     invariants turns out, serendepitously, to be the same for both
 239 //     G1 and CMS.
 240 //
 241 // For any future collector, this code should be reexamined with
 242 // that specific collector in mind, and the documentation above suitably
 243 // extended and updated.
 244 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 245   // If a previous card-mark was deferred, flush it now.
 246   flush_deferred_store_barrier(thread);
 247   if (can_elide_initializing_store_barrier(new_obj)) {
 248     // The deferred_card_mark region should be empty
 249     // following the flush above.
 250     assert(thread->deferred_card_mark().is_empty(), "Error");
 251   } else {
 252     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 253     assert(!mr.is_empty(), "Error");
 254     if (_defer_initial_card_mark) {
 255       // Defer the card mark
 256       thread->set_deferred_card_mark(mr);
 257     } else {
 258       // Do the card mark
 259       BarrierSet* bs = barrier_set();
 260       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 261       bs->write_region(mr);
 262     }
 263   }
 264   return new_obj;
 265 }
 266 
 267 size_t CollectedHeap::filler_array_hdr_size() {
 268   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 269 }
 270 
 271 size_t CollectedHeap::filler_array_min_size() {
 272   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 273 }
 274 
 275 size_t CollectedHeap::filler_array_max_size() {
 276   return _filler_array_max_size;
 277 }
 278 
 279 #ifdef ASSERT
 280 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 281 {
 282   assert(words >= min_fill_size(), "too small to fill");
 283   assert(words % MinObjAlignment == 0, "unaligned size");
 284   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 285   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 286 }
 287 
 288 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 289 {
 290   if (ZapFillerObjects && zap) {
 291     Copy::fill_to_words(start + filler_array_hdr_size(),
 292                         words - filler_array_hdr_size(), 0XDEAFBABE);
 293   }
 294 }
 295 #endif // ASSERT
 296 
 297 void
 298 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 299 {
 300   assert(words >= filler_array_min_size(), "too small for an array");
 301   assert(words <= filler_array_max_size(), "too big for a single object");
 302 
 303   const size_t payload_size = words - filler_array_hdr_size();
 304   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 305 
 306   // Set the length first for concurrent GC.
 307   ((arrayOop)start)->set_length((int)len);
 308   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
 309   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 310 }
 311 
 312 void
 313 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 314 {
 315   assert(words <= filler_array_max_size(), "too big for a single object");
 316 
 317   if (words >= filler_array_min_size()) {
 318     fill_with_array(start, words, zap);
 319   } else if (words > 0) {
 320     assert(words == min_fill_size(), "unaligned size");
 321     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
 322                                  words);
 323   }
 324 }
 325 
 326 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 327 {
 328   DEBUG_ONLY(fill_args_check(start, words);)
 329   HandleMark hm;  // Free handles before leaving.
 330   fill_with_object_impl(start, words, zap);
 331 }
 332 
 333 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 334 {
 335   DEBUG_ONLY(fill_args_check(start, words);)
 336   HandleMark hm;  // Free handles before leaving.
 337 
 338 #ifdef _LP64
 339   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 340   // First fill with arrays, ensuring that any remaining space is big enough to
 341   // fill.  The remainder is filled with a single object.
 342   const size_t min = min_fill_size();
 343   const size_t max = filler_array_max_size();
 344   while (words > max) {
 345     const size_t cur = words - max >= min ? max : max - min;
 346     fill_with_array(start, cur, zap);
 347     start += cur;
 348     words -= cur;
 349   }
 350 #endif
 351 
 352   fill_with_object_impl(start, words, zap);
 353 }
 354 
 355 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 356   guarantee(false, "thread-local allocation buffers not supported");
 357   return NULL;
 358 }
 359 
 360 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 361   // The second disjunct in the assertion below makes a concession
 362   // for the start-up verification done while the VM is being
 363   // created. Callers be careful that you know that mutators
 364   // aren't going to interfere -- for instance, this is permissible
 365   // if we are still single-threaded and have either not yet
 366   // started allocating (nothing much to verify) or we have
 367   // started allocating but are now a full-fledged JavaThread
 368   // (and have thus made our TLAB's) available for filling.
 369   assert(SafepointSynchronize::is_at_safepoint() ||
 370          !is_init_completed(),
 371          "Should only be called at a safepoint or at start-up"
 372          " otherwise concurrent mutator activity may make heap "
 373          " unparsable again");
 374   const bool use_tlab = UseTLAB;
 375   const bool deferred = _defer_initial_card_mark;
 376   // The main thread starts allocating via a TLAB even before it
 377   // has added itself to the threads list at vm boot-up.
 378   assert(!use_tlab || Threads::first() != NULL,
 379          "Attempt to fill tlabs before main thread has been added"
 380          " to threads list is doomed to failure!");
 381   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 382      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 383 #ifdef COMPILER2
 384      // The deferred store barriers must all have been flushed to the
 385      // card-table (or other remembered set structure) before GC starts
 386      // processing the card-table (or other remembered set).
 387      if (deferred) flush_deferred_store_barrier(thread);
 388 #else
 389      assert(!deferred, "Should be false");
 390      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 391 #endif
 392   }
 393 }
 394 
 395 void CollectedHeap::accumulate_statistics_all_tlabs() {
 396   if (UseTLAB) {
 397     assert(SafepointSynchronize::is_at_safepoint() ||
 398          !is_init_completed(),
 399          "should only accumulate statistics on tlabs at safepoint");
 400 
 401     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 402   }
 403 }
 404 
 405 void CollectedHeap::resize_all_tlabs() {
 406   if (UseTLAB) {
 407     assert(SafepointSynchronize::is_at_safepoint() ||
 408          !is_init_completed(),
 409          "should only resize tlabs at safepoint");
 410 
 411     ThreadLocalAllocBuffer::resize_all_tlabs();
 412   }
 413 }
 414 
 415 void CollectedHeap::pre_full_gc_dump() {
 416   if (HeapDumpBeforeFullGC) {
 417     TraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, gclog_or_tty);
 418     // We are doing a "major" collection and a heap dump before
 419     // major collection has been requested.
 420     HeapDumper::dump_heap();
 421   }
 422   if (PrintClassHistogramBeforeFullGC) {
 423     TraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, gclog_or_tty);
 424     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 425     inspector.doit();
 426   }
 427 }
 428 
 429 void CollectedHeap::post_full_gc_dump() {
 430   if (HeapDumpAfterFullGC) {
 431     TraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, gclog_or_tty);
 432     HeapDumper::dump_heap();
 433   }
 434   if (PrintClassHistogramAfterFullGC) {
 435     TraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, gclog_or_tty);
 436     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 437     inspector.doit();
 438   }
 439 }
 440 
 441 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
 442   debug_only(check_for_valid_allocation_state());
 443   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
 444   assert(size >= 0, "int won't convert to size_t");
 445   HeapWord* obj;
 446   if (JavaObjectsInPerm) {
 447     obj = common_permanent_mem_allocate_init(size, CHECK_NULL);
 448   } else {
 449     assert(ScavengeRootsInCode > 0, "must be");
 450     obj = common_mem_allocate_init(size, CHECK_NULL);
 451   }
 452   post_allocation_setup_common(klass, obj, size);
 453   assert(Universe::is_bootstrapping() ||
 454          !((oop)obj)->blueprint()->oop_is_array(), "must not be an array");
 455   NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
 456   oop mirror = (oop)obj;
 457 
 458   java_lang_Class::set_oop_size(mirror, size);
 459 
 460   // Setup indirections
 461   if (!real_klass.is_null()) {
 462     java_lang_Class::set_klass(mirror, real_klass());
 463     real_klass->set_java_mirror(mirror);
 464   }
 465 
 466   instanceMirrorKlass* mk = instanceMirrorKlass::cast(mirror->klass());
 467   assert(size == mk->instance_size(real_klass), "should have been set");
 468 
 469   // notify jvmti and dtrace
 470   post_allocation_notify(klass, (oop)obj);
 471 
 472   return mirror;
 473 }
 474 
 475 /////////////// Unit tests ///////////////
 476 
 477 #ifndef PRODUCT
 478 void CollectedHeap::test_is_in() {
 479   CollectedHeap* heap = Universe::heap();
 480 
 481   // Test that NULL is not in the heap.
 482   assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
 483 
 484   // Test that a pointer to before the heap start is reported as outside the heap.
 485   assert(heap->_reserved.start() >= (void*)(uintptr_t)MinObjAlignment, "sanity");
 486   void* before_heap = (void*)((uintptr_t)heap->_reserved.start() - MinObjAlignment);
 487   assert(!heap->is_in(before_heap),
 488       err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
 489 
 490   // Test that a pointer to after the heap end is reported as outside the heap.
 491   assert(heap->_reserved.end() <= (void*)(uintptr_t(-1) - MinObjAlignment), "sanity");
 492   void* after_heap = (void*)((uintptr_t)heap->_reserved.end() + MinObjAlignment);
 493   assert(!heap->is_in(after_heap),
 494       err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
 495 }
 496 #endif