1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvm.h"
  37 #include "prims/jvm_misc.hpp"
  38 #include "prims/privilegedStack.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/java.hpp"
  43 #include "runtime/javaCalls.hpp"
  44 #include "runtime/mutexLocker.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "services/attachListener.hpp"
  48 #include "services/memTracker.hpp"
  49 #include "services/threadService.hpp"
  50 #include "utilities/defaultStream.hpp"
  51 #include "utilities/events.hpp"
  52 #ifdef TARGET_OS_FAMILY_linux
  53 # include "os_linux.inline.hpp"
  54 # include "thread_linux.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_FAMILY_solaris
  57 # include "os_solaris.inline.hpp"
  58 # include "thread_solaris.inline.hpp"
  59 #endif
  60 #ifdef TARGET_OS_FAMILY_windows
  61 # include "os_windows.inline.hpp"
  62 # include "thread_windows.inline.hpp"
  63 #endif
  64 #ifdef TARGET_OS_FAMILY_bsd
  65 # include "os_bsd.inline.hpp"
  66 # include "thread_bsd.inline.hpp"
  67 #endif
  68 
  69 # include <signal.h>
  70 
  71 OSThread*         os::_starting_thread    = NULL;
  72 address           os::_polling_page       = NULL;
  73 volatile int32_t* os::_mem_serialize_page = NULL;
  74 uintptr_t         os::_serialize_page_mask = 0;
  75 long              os::_rand_seed          = 1;
  76 int               os::_processor_count    = 0;
  77 size_t            os::_page_sizes[os::page_sizes_max];
  78 
  79 #ifndef PRODUCT
  80 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  81 julong os::alloc_bytes = 0;         // # of bytes allocated
  82 julong os::num_frees = 0;           // # of calls to free
  83 julong os::free_bytes = 0;          // # of bytes freed
  84 #endif
  85 
  86 void os_init_globals() {
  87   // Called from init_globals().
  88   // See Threads::create_vm() in thread.cpp, and init.cpp.
  89   os::init_globals();
  90 }
  91 
  92 // Fill in buffer with current local time as an ISO-8601 string.
  93 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  94 // Returns buffer, or NULL if it failed.
  95 // This would mostly be a call to
  96 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  97 // except that on Windows the %z behaves badly, so we do it ourselves.
  98 // Also, people wanted milliseconds on there,
  99 // and strftime doesn't do milliseconds.
 100 char* os::iso8601_time(char* buffer, size_t buffer_length) {
 101   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 102   //                                      1         2
 103   //                             12345678901234567890123456789
 104   static const char* iso8601_format =
 105     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
 106   static const size_t needed_buffer = 29;
 107 
 108   // Sanity check the arguments
 109   if (buffer == NULL) {
 110     assert(false, "NULL buffer");
 111     return NULL;
 112   }
 113   if (buffer_length < needed_buffer) {
 114     assert(false, "buffer_length too small");
 115     return NULL;
 116   }
 117   // Get the current time
 118   jlong milliseconds_since_19700101 = javaTimeMillis();
 119   const int milliseconds_per_microsecond = 1000;
 120   const time_t seconds_since_19700101 =
 121     milliseconds_since_19700101 / milliseconds_per_microsecond;
 122   const int milliseconds_after_second =
 123     milliseconds_since_19700101 % milliseconds_per_microsecond;
 124   // Convert the time value to a tm and timezone variable
 125   struct tm time_struct;
 126   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 127     assert(false, "Failed localtime_pd");
 128     return NULL;
 129   }
 130 #if defined(_ALLBSD_SOURCE)
 131   const time_t zone = (time_t) time_struct.tm_gmtoff;
 132 #else
 133   const time_t zone = timezone;
 134 #endif
 135 
 136   // If daylight savings time is in effect,
 137   // we are 1 hour East of our time zone
 138   const time_t seconds_per_minute = 60;
 139   const time_t minutes_per_hour = 60;
 140   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 141   time_t UTC_to_local = zone;
 142   if (time_struct.tm_isdst > 0) {
 143     UTC_to_local = UTC_to_local - seconds_per_hour;
 144   }
 145   // Compute the time zone offset.
 146   //    localtime_pd() sets timezone to the difference (in seconds)
 147   //    between UTC and and local time.
 148   //    ISO 8601 says we need the difference between local time and UTC,
 149   //    we change the sign of the localtime_pd() result.
 150   const time_t local_to_UTC = -(UTC_to_local);
 151   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 152   char sign_local_to_UTC = '+';
 153   time_t abs_local_to_UTC = local_to_UTC;
 154   if (local_to_UTC < 0) {
 155     sign_local_to_UTC = '-';
 156     abs_local_to_UTC = -(abs_local_to_UTC);
 157   }
 158   // Convert time zone offset seconds to hours and minutes.
 159   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 160   const time_t zone_min =
 161     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 162 
 163   // Print an ISO 8601 date and time stamp into the buffer
 164   const int year = 1900 + time_struct.tm_year;
 165   const int month = 1 + time_struct.tm_mon;
 166   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
 167                                    year,
 168                                    month,
 169                                    time_struct.tm_mday,
 170                                    time_struct.tm_hour,
 171                                    time_struct.tm_min,
 172                                    time_struct.tm_sec,
 173                                    milliseconds_after_second,
 174                                    sign_local_to_UTC,
 175                                    zone_hours,
 176                                    zone_min);
 177   if (printed == 0) {
 178     assert(false, "Failed jio_printf");
 179     return NULL;
 180   }
 181   return buffer;
 182 }
 183 
 184 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 185 #ifdef ASSERT
 186   if (!(!thread->is_Java_thread() ||
 187          Thread::current() == thread  ||
 188          Threads_lock->owned_by_self()
 189          || thread->is_Compiler_thread()
 190         )) {
 191     assert(false, "possibility of dangling Thread pointer");
 192   }
 193 #endif
 194 
 195   if (p >= MinPriority && p <= MaxPriority) {
 196     int priority = java_to_os_priority[p];
 197     return set_native_priority(thread, priority);
 198   } else {
 199     assert(false, "Should not happen");
 200     return OS_ERR;
 201   }
 202 }
 203 
 204 // The mapping from OS priority back to Java priority may be inexact because
 205 // Java priorities can map M:1 with native priorities. If you want the definite
 206 // Java priority then use JavaThread::java_priority()
 207 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 208   int p;
 209   int os_prio;
 210   OSReturn ret = get_native_priority(thread, &os_prio);
 211   if (ret != OS_OK) return ret;
 212 
 213   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 214     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 215   } else {
 216     // niceness values are in reverse order
 217     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 218   }
 219   priority = (ThreadPriority)p;
 220   return OS_OK;
 221 }
 222 
 223 
 224 // --------------------- sun.misc.Signal (optional) ---------------------
 225 
 226 
 227 // SIGBREAK is sent by the keyboard to query the VM state
 228 #ifndef SIGBREAK
 229 #define SIGBREAK SIGQUIT
 230 #endif
 231 
 232 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 233 
 234 
 235 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 236   os::set_priority(thread, NearMaxPriority);
 237   while (true) {
 238     int sig;
 239     {
 240       // FIXME : Currently we have not decieded what should be the status
 241       //         for this java thread blocked here. Once we decide about
 242       //         that we should fix this.
 243       sig = os::signal_wait();
 244     }
 245     if (sig == os::sigexitnum_pd()) {
 246        // Terminate the signal thread
 247        return;
 248     }
 249 
 250     switch (sig) {
 251       case SIGBREAK: {
 252         // Check if the signal is a trigger to start the Attach Listener - in that
 253         // case don't print stack traces.
 254         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 255           continue;
 256         }
 257         // Print stack traces
 258         // Any SIGBREAK operations added here should make sure to flush
 259         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 260         // Each module also prints an extra carriage return after its output.
 261         VM_PrintThreads op;
 262         VMThread::execute(&op);
 263         VM_PrintJNI jni_op;
 264         VMThread::execute(&jni_op);
 265         VM_FindDeadlocks op1(tty);
 266         VMThread::execute(&op1);
 267         Universe::print_heap_at_SIGBREAK();
 268         if (PrintClassHistogram) {
 269           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
 270                                    true /* need_prologue */);
 271           VMThread::execute(&op1);
 272         }
 273         if (JvmtiExport::should_post_data_dump()) {
 274           JvmtiExport::post_data_dump();
 275         }
 276         break;
 277       }
 278       default: {
 279         // Dispatch the signal to java
 280         HandleMark hm(THREAD);
 281         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 282         KlassHandle klass (THREAD, k);
 283         if (klass.not_null()) {
 284           JavaValue result(T_VOID);
 285           JavaCallArguments args;
 286           args.push_int(sig);
 287           JavaCalls::call_static(
 288             &result,
 289             klass,
 290             vmSymbols::dispatch_name(),
 291             vmSymbols::int_void_signature(),
 292             &args,
 293             THREAD
 294           );
 295         }
 296         if (HAS_PENDING_EXCEPTION) {
 297           // tty is initialized early so we don't expect it to be null, but
 298           // if it is we can't risk doing an initialization that might
 299           // trigger additional out-of-memory conditions
 300           if (tty != NULL) {
 301             char klass_name[256];
 302             char tmp_sig_name[16];
 303             const char* sig_name = "UNKNOWN";
 304             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 305               name()->as_klass_external_name(klass_name, 256);
 306             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 307               sig_name = tmp_sig_name;
 308             warning("Exception %s occurred dispatching signal %s to handler"
 309                     "- the VM may need to be forcibly terminated",
 310                     klass_name, sig_name );
 311           }
 312           CLEAR_PENDING_EXCEPTION;
 313         }
 314       }
 315     }
 316   }
 317 }
 318 
 319 
 320 void os::signal_init() {
 321   if (!ReduceSignalUsage) {
 322     // Setup JavaThread for processing signals
 323     EXCEPTION_MARK;
 324     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 325     instanceKlassHandle klass (THREAD, k);
 326     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 327 
 328     const char thread_name[] = "Signal Dispatcher";
 329     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 330 
 331     // Initialize thread_oop to put it into the system threadGroup
 332     Handle thread_group (THREAD, Universe::system_thread_group());
 333     JavaValue result(T_VOID);
 334     JavaCalls::call_special(&result, thread_oop,
 335                            klass,
 336                            vmSymbols::object_initializer_name(),
 337                            vmSymbols::threadgroup_string_void_signature(),
 338                            thread_group,
 339                            string,
 340                            CHECK);
 341 
 342     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 343     JavaCalls::call_special(&result,
 344                             thread_group,
 345                             group,
 346                             vmSymbols::add_method_name(),
 347                             vmSymbols::thread_void_signature(),
 348                             thread_oop,         // ARG 1
 349                             CHECK);
 350 
 351     os::signal_init_pd();
 352 
 353     { MutexLocker mu(Threads_lock);
 354       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 355 
 356       // At this point it may be possible that no osthread was created for the
 357       // JavaThread due to lack of memory. We would have to throw an exception
 358       // in that case. However, since this must work and we do not allow
 359       // exceptions anyway, check and abort if this fails.
 360       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 361         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 362                                       "unable to create new native thread");
 363       }
 364 
 365       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 366       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 367       java_lang_Thread::set_daemon(thread_oop());
 368 
 369       signal_thread->set_threadObj(thread_oop());
 370       Threads::add(signal_thread);
 371       Thread::start(signal_thread);
 372     }
 373     // Handle ^BREAK
 374     os::signal(SIGBREAK, os::user_handler());
 375   }
 376 }
 377 
 378 
 379 void os::terminate_signal_thread() {
 380   if (!ReduceSignalUsage)
 381     signal_notify(sigexitnum_pd());
 382 }
 383 
 384 
 385 // --------------------- loading libraries ---------------------
 386 
 387 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 388 extern struct JavaVM_ main_vm;
 389 
 390 static void* _native_java_library = NULL;
 391 
 392 void* os::native_java_library() {
 393   if (_native_java_library == NULL) {
 394     char buffer[JVM_MAXPATHLEN];
 395     char ebuf[1024];
 396 
 397     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 398     // always able to find it when the loading executable is outside the JDK.
 399     // In order to keep working with 1.2 we ignore any loading errors.
 400     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
 401     dll_load(buffer, ebuf, sizeof(ebuf));
 402 
 403     // Load java dll
 404     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
 405     _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 406     if (_native_java_library == NULL) {
 407       vm_exit_during_initialization("Unable to load native library", ebuf);
 408     }
 409 
 410 #if defined(__OpenBSD__)
 411     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 412     // ignore errors
 413     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
 414     dll_load(buffer, ebuf, sizeof(ebuf));
 415 #endif
 416   }
 417   static jboolean onLoaded = JNI_FALSE;
 418   if (onLoaded) {
 419     // We may have to wait to fire OnLoad until TLS is initialized.
 420     if (ThreadLocalStorage::is_initialized()) {
 421       // The JNI_OnLoad handling is normally done by method load in
 422       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 423       // explicitly so we have to check for JNI_OnLoad as well
 424       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 425       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 426           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 427       if (JNI_OnLoad != NULL) {
 428         JavaThread* thread = JavaThread::current();
 429         ThreadToNativeFromVM ttn(thread);
 430         HandleMark hm(thread);
 431         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 432         onLoaded = JNI_TRUE;
 433         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 434           vm_exit_during_initialization("Unsupported JNI version");
 435         }
 436       }
 437     }
 438   }
 439   return _native_java_library;
 440 }
 441 
 442 // --------------------- heap allocation utilities ---------------------
 443 
 444 char *os::strdup(const char *str, MEMFLAGS flags) {
 445   size_t size = strlen(str);
 446   char *dup_str = (char *)malloc(size + 1, flags);
 447   if (dup_str == NULL) return NULL;
 448   strcpy(dup_str, str);
 449   return dup_str;
 450 }
 451 
 452 
 453 
 454 #ifdef ASSERT
 455 #define space_before             (MallocCushion + sizeof(double))
 456 #define space_after              MallocCushion
 457 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
 458 #define size_addr_from_obj(p)    ((size_t*)p - 1)
 459 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
 460 // NB: cannot be debug variable, because these aren't set from the command line until
 461 // *after* the first few allocs already happened
 462 #define MallocCushion            16
 463 #else
 464 #define space_before             0
 465 #define space_after              0
 466 #define size_addr_from_base(p)   should not use w/o ASSERT
 467 #define size_addr_from_obj(p)    should not use w/o ASSERT
 468 #define MallocCushion            0
 469 #endif
 470 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 471 
 472 #ifdef ASSERT
 473 inline size_t get_size(void* obj) {
 474   size_t size = *size_addr_from_obj(obj);
 475   if (size < 0) {
 476     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
 477                   SIZE_FORMAT ")", obj, size));
 478   }
 479   return size;
 480 }
 481 
 482 u_char* find_cushion_backwards(u_char* start) {
 483   u_char* p = start;
 484   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
 485          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
 486   // ok, we have four consecutive marker bytes; find start
 487   u_char* q = p - 4;
 488   while (*q == badResourceValue) q--;
 489   return q + 1;
 490 }
 491 
 492 u_char* find_cushion_forwards(u_char* start) {
 493   u_char* p = start;
 494   while (p[0] != badResourceValue || p[1] != badResourceValue ||
 495          p[2] != badResourceValue || p[3] != badResourceValue) p++;
 496   // ok, we have four consecutive marker bytes; find end of cushion
 497   u_char* q = p + 4;
 498   while (*q == badResourceValue) q++;
 499   return q - MallocCushion;
 500 }
 501 
 502 void print_neighbor_blocks(void* ptr) {
 503   // find block allocated before ptr (not entirely crash-proof)
 504   if (MallocCushion < 4) {
 505     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
 506     return;
 507   }
 508   u_char* start_of_this_block = (u_char*)ptr - space_before;
 509   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
 510   // look for cushion in front of prev. block
 511   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
 512   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
 513   u_char* obj = start_of_prev_block + space_before;
 514   if (size <= 0 ) {
 515     // start is bad; mayhave been confused by OS data inbetween objects
 516     // search one more backwards
 517     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
 518     size = *size_addr_from_base(start_of_prev_block);
 519     obj = start_of_prev_block + space_before;
 520   }
 521 
 522   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
 523     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 524   } else {
 525     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 526   }
 527 
 528   // now find successor block
 529   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
 530   start_of_next_block = find_cushion_forwards(start_of_next_block);
 531   u_char* next_obj = start_of_next_block + space_before;
 532   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
 533   if (start_of_next_block[0] == badResourceValue &&
 534       start_of_next_block[1] == badResourceValue &&
 535       start_of_next_block[2] == badResourceValue &&
 536       start_of_next_block[3] == badResourceValue) {
 537     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 538   } else {
 539     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 540   }
 541 }
 542 
 543 
 544 void report_heap_error(void* memblock, void* bad, const char* where) {
 545   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 546   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
 547   print_neighbor_blocks(memblock);
 548   fatal("memory stomping error");
 549 }
 550 
 551 void verify_block(void* memblock) {
 552   size_t size = get_size(memblock);
 553   if (MallocCushion) {
 554     u_char* ptr = (u_char*)memblock - space_before;
 555     for (int i = 0; i < MallocCushion; i++) {
 556       if (ptr[i] != badResourceValue) {
 557         report_heap_error(memblock, ptr+i, "in front of");
 558       }
 559     }
 560     u_char* end = (u_char*)memblock + size + space_after;
 561     for (int j = -MallocCushion; j < 0; j++) {
 562       if (end[j] != badResourceValue) {
 563         report_heap_error(memblock, end+j, "after");
 564       }
 565     }
 566   }
 567 }
 568 #endif
 569 
 570 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
 571   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 572   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 573 
 574   if (size == 0) {
 575     // return a valid pointer if size is zero
 576     // if NULL is returned the calling functions assume out of memory.
 577     size = 1;
 578   }
 579 
 580   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 581   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
 582 
 583 #ifdef ASSERT
 584   if (ptr == NULL) return NULL;
 585   if (MallocCushion) {
 586     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
 587     u_char* end = ptr + space_before + size;
 588     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
 589     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
 590   }
 591   // put size just before data
 592   *size_addr_from_base(ptr) = size;
 593 #endif
 594   u_char* memblock = ptr + space_before;
 595   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 596     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 597     breakpoint();
 598   }
 599   debug_only(if (paranoid) verify_block(memblock));
 600   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 601 
 602   // we do not track MallocCushion memory
 603   if (MemTracker::is_on()) {
 604     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
 605   }
 606 
 607   return memblock;
 608 }
 609 
 610 
 611 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
 612 #ifndef ASSERT
 613   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 614   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 615   void* ptr = ::realloc(memblock, size);
 616   if (ptr != NULL && MemTracker::is_on()) {
 617     MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
 618      caller == 0 ? CALLER_PC : caller);
 619   }
 620   return ptr;
 621 #else
 622   if (memblock == NULL) {
 623     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
 624   }
 625   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 626     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
 627     breakpoint();
 628   }
 629   verify_block(memblock);
 630   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 631   if (size == 0) return NULL;
 632   // always move the block
 633   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
 634   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
 635   // Copy to new memory if malloc didn't fail
 636   if ( ptr != NULL ) {
 637     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
 638     if (paranoid) verify_block(ptr);
 639     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 640       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 641       breakpoint();
 642     }
 643     free(memblock);
 644   }
 645   return ptr;
 646 #endif
 647 }
 648 
 649 
 650 void  os::free(void *memblock, MEMFLAGS memflags) {
 651   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 652 #ifdef ASSERT
 653   if (memblock == NULL) return;
 654   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 655     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
 656     breakpoint();
 657   }
 658   verify_block(memblock);
 659   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 660   // Added by detlefs.
 661   if (MallocCushion) {
 662     u_char* ptr = (u_char*)memblock - space_before;
 663     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
 664       guarantee(*p == badResourceValue,
 665                 "Thing freed should be malloc result.");
 666       *p = (u_char)freeBlockPad;
 667     }
 668     size_t size = get_size(memblock);
 669     inc_stat_counter(&free_bytes, size);
 670     u_char* end = ptr + space_before + size;
 671     for (u_char* q = end; q < end + MallocCushion; q++) {
 672       guarantee(*q == badResourceValue,
 673                 "Thing freed should be malloc result.");
 674       *q = (u_char)freeBlockPad;
 675     }
 676     if (PrintMalloc && tty != NULL)
 677       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
 678   } else if (PrintMalloc && tty != NULL) {
 679     // tty->print_cr("os::free %p", memblock);
 680     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
 681   }
 682 #endif
 683   MemTracker::record_free((address)memblock, memflags);
 684 
 685   ::free((char*)memblock - space_before);
 686 }
 687 
 688 void os::init_random(long initval) {
 689   _rand_seed = initval;
 690 }
 691 
 692 
 693 long os::random() {
 694   /* standard, well-known linear congruential random generator with
 695    * next_rand = (16807*seed) mod (2**31-1)
 696    * see
 697    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 698    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 699    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 700    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 701   */
 702   const long a = 16807;
 703   const unsigned long m = 2147483647;
 704   const long q = m / a;        assert(q == 127773, "weird math");
 705   const long r = m % a;        assert(r == 2836, "weird math");
 706 
 707   // compute az=2^31p+q
 708   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 709   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 710   lo += (hi & 0x7FFF) << 16;
 711 
 712   // if q overflowed, ignore the overflow and increment q
 713   if (lo > m) {
 714     lo &= m;
 715     ++lo;
 716   }
 717   lo += hi >> 15;
 718 
 719   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 720   if (lo > m) {
 721     lo &= m;
 722     ++lo;
 723   }
 724   return (_rand_seed = lo);
 725 }
 726 
 727 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 728 // conditions in which a thread is first started are different from those in which
 729 // a suspension is resumed.  These differences make it hard for us to apply the
 730 // tougher checks when starting threads that we want to do when resuming them.
 731 // However, when start_thread is called as a result of Thread.start, on a Java
 732 // thread, the operation is synchronized on the Java Thread object.  So there
 733 // cannot be a race to start the thread and hence for the thread to exit while
 734 // we are working on it.  Non-Java threads that start Java threads either have
 735 // to do so in a context in which races are impossible, or should do appropriate
 736 // locking.
 737 
 738 void os::start_thread(Thread* thread) {
 739   // guard suspend/resume
 740   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 741   OSThread* osthread = thread->osthread();
 742   osthread->set_state(RUNNABLE);
 743   pd_start_thread(thread);
 744 }
 745 
 746 //---------------------------------------------------------------------------
 747 // Helper functions for fatal error handler
 748 
 749 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 750   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 751 
 752   int cols = 0;
 753   int cols_per_line = 0;
 754   switch (unitsize) {
 755     case 1: cols_per_line = 16; break;
 756     case 2: cols_per_line = 8;  break;
 757     case 4: cols_per_line = 4;  break;
 758     case 8: cols_per_line = 2;  break;
 759     default: return;
 760   }
 761 
 762   address p = start;
 763   st->print(PTR_FORMAT ":   ", start);
 764   while (p < end) {
 765     switch (unitsize) {
 766       case 1: st->print("%02x", *(u1*)p); break;
 767       case 2: st->print("%04x", *(u2*)p); break;
 768       case 4: st->print("%08x", *(u4*)p); break;
 769       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 770     }
 771     p += unitsize;
 772     cols++;
 773     if (cols >= cols_per_line && p < end) {
 774        cols = 0;
 775        st->cr();
 776        st->print(PTR_FORMAT ":   ", p);
 777     } else {
 778        st->print(" ");
 779     }
 780   }
 781   st->cr();
 782 }
 783 
 784 void os::print_environment_variables(outputStream* st, const char** env_list,
 785                                      char* buffer, int len) {
 786   if (env_list) {
 787     st->print_cr("Environment Variables:");
 788 
 789     for (int i = 0; env_list[i] != NULL; i++) {
 790       if (getenv(env_list[i], buffer, len)) {
 791         st->print(env_list[i]);
 792         st->print("=");
 793         st->print_cr(buffer);
 794       }
 795     }
 796   }
 797 }
 798 
 799 void os::print_cpu_info(outputStream* st) {
 800   // cpu
 801   st->print("CPU:");
 802   st->print("total %d", os::processor_count());
 803   // It's not safe to query number of active processors after crash
 804   // st->print("(active %d)", os::active_processor_count());
 805   st->print(" %s", VM_Version::cpu_features());
 806   st->cr();
 807   pd_print_cpu_info(st);
 808 }
 809 
 810 void os::print_date_and_time(outputStream *st) {
 811   time_t tloc;
 812   (void)time(&tloc);
 813   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
 814 
 815   double t = os::elapsedTime();
 816   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 817   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 818   //       before printf. We lost some precision, but who cares?
 819   st->print_cr("elapsed time: %d seconds", (int)t);
 820 }
 821 
 822 // moved from debug.cpp (used to be find()) but still called from there
 823 // The verbose parameter is only set by the debug code in one case
 824 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 825   address addr = (address)x;
 826   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 827   if (b != NULL) {
 828     if (b->is_buffer_blob()) {
 829       // the interpreter is generated into a buffer blob
 830       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 831       if (i != NULL) {
 832         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
 833         i->print_on(st);
 834         return;
 835       }
 836       if (Interpreter::contains(addr)) {
 837         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 838                      " (not bytecode specific)", addr);
 839         return;
 840       }
 841       //
 842       if (AdapterHandlerLibrary::contains(b)) {
 843         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
 844         AdapterHandlerLibrary::print_handler_on(st, b);
 845       }
 846       // the stubroutines are generated into a buffer blob
 847       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 848       if (d != NULL) {
 849         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
 850         d->print_on(st);
 851         st->cr();
 852         return;
 853       }
 854       if (StubRoutines::contains(addr)) {
 855         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
 856                      "stub routine", addr);
 857         return;
 858       }
 859       // the InlineCacheBuffer is using stubs generated into a buffer blob
 860       if (InlineCacheBuffer::contains(addr)) {
 861         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
 862         return;
 863       }
 864       VtableStub* v = VtableStubs::stub_containing(addr);
 865       if (v != NULL) {
 866         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
 867         v->print_on(st);
 868         st->cr();
 869         return;
 870       }
 871     }
 872     nmethod* nm = b->as_nmethod_or_null();
 873     if (nm != NULL) {
 874       ResourceMark rm;
 875       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 876                 addr, (int)(addr - nm->entry_point()), nm);
 877       if (verbose) {
 878         st->print(" for ");
 879         nm->method()->print_value_on(st);
 880       }
 881       st->cr();
 882       nm->print_nmethod(verbose);
 883       return;
 884     }
 885     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
 886     b->print_on(st);
 887     return;
 888   }
 889 
 890   if (Universe::heap()->is_in(addr)) {
 891     HeapWord* p = Universe::heap()->block_start(addr);
 892     bool print = false;
 893     // If we couldn't find it it just may mean that heap wasn't parseable
 894     // See if we were just given an oop directly
 895     if (p != NULL && Universe::heap()->block_is_obj(p)) {
 896       print = true;
 897     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
 898       p = (HeapWord*) addr;
 899       print = true;
 900     }
 901     if (print) {
 902       if (p == (HeapWord*) addr) {
 903         st->print_cr(INTPTR_FORMAT " is an oop", addr);
 904       } else {
 905         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
 906       }
 907       oop(p)->print_on(st);
 908       return;
 909     }
 910   } else {
 911     if (Universe::heap()->is_in_reserved(addr)) {
 912       st->print_cr(INTPTR_FORMAT " is an unallocated location "
 913                    "in the heap", addr);
 914       return;
 915     }
 916   }
 917   if (JNIHandles::is_global_handle((jobject) addr)) {
 918     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
 919     return;
 920   }
 921   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
 922     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
 923     return;
 924   }
 925 #ifndef PRODUCT
 926   // we don't keep the block list in product mode
 927   if (JNIHandleBlock::any_contains((jobject) addr)) {
 928     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
 929     return;
 930   }
 931 #endif
 932 
 933   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 934     // Check for privilege stack
 935     if (thread->privileged_stack_top() != NULL &&
 936         thread->privileged_stack_top()->contains(addr)) {
 937       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
 938                    "for thread: " INTPTR_FORMAT, addr, thread);
 939       if (verbose) thread->print_on(st);
 940       return;
 941     }
 942     // If the addr is a java thread print information about that.
 943     if (addr == (address)thread) {
 944       if (verbose) {
 945         thread->print_on(st);
 946       } else {
 947         st->print_cr(INTPTR_FORMAT " is a thread", addr);
 948       }
 949       return;
 950     }
 951     // If the addr is in the stack region for this thread then report that
 952     // and print thread info
 953     if (thread->stack_base() >= addr &&
 954         addr > (thread->stack_base() - thread->stack_size())) {
 955       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
 956                    INTPTR_FORMAT, addr, thread);
 957       if (verbose) thread->print_on(st);
 958       return;
 959     }
 960 
 961   }
 962 
 963 #ifndef PRODUCT
 964   // Check if in metaspace.
 965   if (ClassLoaderDataGraph::contains((address)addr)) {
 966     // Use addr->print() from the debugger instead (not here)
 967     st->print_cr(INTPTR_FORMAT
 968                  " is pointing into metadata", addr);
 969     return;
 970   }
 971 #endif
 972 
 973   // Try an OS specific find
 974   if (os::find(addr, st)) {
 975     return;
 976   }
 977 
 978   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
 979 }
 980 
 981 // Looks like all platforms except IA64 can use the same function to check
 982 // if C stack is walkable beyond current frame. The check for fp() is not
 983 // necessary on Sparc, but it's harmless.
 984 bool os::is_first_C_frame(frame* fr) {
 985 #ifdef IA64
 986   // In order to walk native frames on Itanium, we need to access the unwind
 987   // table, which is inside ELF. We don't want to parse ELF after fatal error,
 988   // so return true for IA64. If we need to support C stack walking on IA64,
 989   // this function needs to be moved to CPU specific files, as fp() on IA64
 990   // is register stack, which grows towards higher memory address.
 991   return true;
 992 #endif
 993 
 994   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
 995   // Check usp first, because if that's bad the other accessors may fault
 996   // on some architectures.  Ditto ufp second, etc.
 997   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
 998   // sp on amd can be 32 bit aligned.
 999   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1000 
1001   uintptr_t usp    = (uintptr_t)fr->sp();
1002   if ((usp & sp_align_mask) != 0) return true;
1003 
1004   uintptr_t ufp    = (uintptr_t)fr->fp();
1005   if ((ufp & fp_align_mask) != 0) return true;
1006 
1007   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1008   if ((old_sp & sp_align_mask) != 0) return true;
1009   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1010 
1011   uintptr_t old_fp = (uintptr_t)fr->link();
1012   if ((old_fp & fp_align_mask) != 0) return true;
1013   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1014 
1015   // stack grows downwards; if old_fp is below current fp or if the stack
1016   // frame is too large, either the stack is corrupted or fp is not saved
1017   // on stack (i.e. on x86, ebp may be used as general register). The stack
1018   // is not walkable beyond current frame.
1019   if (old_fp < ufp) return true;
1020   if (old_fp - ufp > 64 * K) return true;
1021 
1022   return false;
1023 }
1024 
1025 #ifdef ASSERT
1026 extern "C" void test_random() {
1027   const double m = 2147483647;
1028   double mean = 0.0, variance = 0.0, t;
1029   long reps = 10000;
1030   unsigned long seed = 1;
1031 
1032   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1033   os::init_random(seed);
1034   long num;
1035   for (int k = 0; k < reps; k++) {
1036     num = os::random();
1037     double u = (double)num / m;
1038     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1039 
1040     // calculate mean and variance of the random sequence
1041     mean += u;
1042     variance += (u*u);
1043   }
1044   mean /= reps;
1045   variance /= (reps - 1);
1046 
1047   assert(num == 1043618065, "bad seed");
1048   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1049   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1050   const double eps = 0.0001;
1051   t = fabsd(mean - 0.5018);
1052   assert(t < eps, "bad mean");
1053   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1054   assert(t < eps, "bad variance");
1055 }
1056 #endif
1057 
1058 
1059 // Set up the boot classpath.
1060 
1061 char* os::format_boot_path(const char* format_string,
1062                            const char* home,
1063                            int home_len,
1064                            char fileSep,
1065                            char pathSep) {
1066     assert((fileSep == '/' && pathSep == ':') ||
1067            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1068 
1069     // Scan the format string to determine the length of the actual
1070     // boot classpath, and handle platform dependencies as well.
1071     int formatted_path_len = 0;
1072     const char* p;
1073     for (p = format_string; *p != 0; ++p) {
1074         if (*p == '%') formatted_path_len += home_len - 1;
1075         ++formatted_path_len;
1076     }
1077 
1078     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1079     if (formatted_path == NULL) {
1080         return NULL;
1081     }
1082 
1083     // Create boot classpath from format, substituting separator chars and
1084     // java home directory.
1085     char* q = formatted_path;
1086     for (p = format_string; *p != 0; ++p) {
1087         switch (*p) {
1088         case '%':
1089             strcpy(q, home);
1090             q += home_len;
1091             break;
1092         case '/':
1093             *q++ = fileSep;
1094             break;
1095         case ':':
1096             *q++ = pathSep;
1097             break;
1098         default:
1099             *q++ = *p;
1100         }
1101     }
1102     *q = '\0';
1103 
1104     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1105     return formatted_path;
1106 }
1107 
1108 
1109 bool os::set_boot_path(char fileSep, char pathSep) {
1110     const char* home = Arguments::get_java_home();
1111     int home_len = (int)strlen(home);
1112 
1113     static const char* meta_index_dir_format = "%/lib/";
1114     static const char* meta_index_format = "%/lib/meta-index";
1115     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1116     if (meta_index == NULL) return false;
1117     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1118     if (meta_index_dir == NULL) return false;
1119     Arguments::set_meta_index_path(meta_index, meta_index_dir);
1120 
1121     // Any modification to the JAR-file list, for the boot classpath must be
1122     // aligned with install/install/make/common/Pack.gmk. Note: boot class
1123     // path class JARs, are stripped for StackMapTable to reduce download size.
1124     static const char classpath_format[] =
1125         "%/lib/resources.jar:"
1126         "%/lib/rt.jar:"
1127         "%/lib/sunrsasign.jar:"
1128         "%/lib/jsse.jar:"
1129         "%/lib/jce.jar:"
1130         "%/lib/charsets.jar:"
1131         "%/lib/jfr.jar:"
1132 #ifdef __APPLE__
1133         "%/lib/JObjC.jar:"
1134 #endif
1135         "%/classes";
1136     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1137     if (sysclasspath == NULL) return false;
1138     Arguments::set_sysclasspath(sysclasspath);
1139 
1140     return true;
1141 }
1142 
1143 /*
1144  * Splits a path, based on its separator, the number of
1145  * elements is returned back in n.
1146  * It is the callers responsibility to:
1147  *   a> check the value of n, and n may be 0.
1148  *   b> ignore any empty path elements
1149  *   c> free up the data.
1150  */
1151 char** os::split_path(const char* path, int* n) {
1152   *n = 0;
1153   if (path == NULL || strlen(path) == 0) {
1154     return NULL;
1155   }
1156   const char psepchar = *os::path_separator();
1157   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1158   if (inpath == NULL) {
1159     return NULL;
1160   }
1161   strncpy(inpath, path, strlen(path));
1162   int count = 1;
1163   char* p = strchr(inpath, psepchar);
1164   // Get a count of elements to allocate memory
1165   while (p != NULL) {
1166     count++;
1167     p++;
1168     p = strchr(p, psepchar);
1169   }
1170   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1171   if (opath == NULL) {
1172     return NULL;
1173   }
1174 
1175   // do the actual splitting
1176   p = inpath;
1177   for (int i = 0 ; i < count ; i++) {
1178     size_t len = strcspn(p, os::path_separator());
1179     if (len > JVM_MAXPATHLEN) {
1180       return NULL;
1181     }
1182     // allocate the string and add terminator storage
1183     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1184     if (s == NULL) {
1185       return NULL;
1186     }
1187     strncpy(s, p, len);
1188     s[len] = '\0';
1189     opath[i] = s;
1190     p += len + 1;
1191   }
1192   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1193   *n = count;
1194   return opath;
1195 }
1196 
1197 void os::set_memory_serialize_page(address page) {
1198   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1199   _mem_serialize_page = (volatile int32_t *)page;
1200   // We initialize the serialization page shift count here
1201   // We assume a cache line size of 64 bytes
1202   assert(SerializePageShiftCount == count,
1203          "thread size changed, fix SerializePageShiftCount constant");
1204   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1205 }
1206 
1207 static volatile intptr_t SerializePageLock = 0;
1208 
1209 // This method is called from signal handler when SIGSEGV occurs while the current
1210 // thread tries to store to the "read-only" memory serialize page during state
1211 // transition.
1212 void os::block_on_serialize_page_trap() {
1213   if (TraceSafepoint) {
1214     tty->print_cr("Block until the serialize page permission restored");
1215   }
1216   // When VMThread is holding the SerializePageLock during modifying the
1217   // access permission of the memory serialize page, the following call
1218   // will block until the permission of that page is restored to rw.
1219   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1220   // this case, it's OK as the signal is synchronous and we know precisely when
1221   // it can occur.
1222   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1223   Thread::muxRelease(&SerializePageLock);
1224 }
1225 
1226 // Serialize all thread state variables
1227 void os::serialize_thread_states() {
1228   // On some platforms such as Solaris & Linux, the time duration of the page
1229   // permission restoration is observed to be much longer than expected  due to
1230   // scheduler starvation problem etc. To avoid the long synchronization
1231   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1232   // the mutator thread if such case is encountered. See bug 6546278 for details.
1233   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1234   os::protect_memory((char *)os::get_memory_serialize_page(),
1235                      os::vm_page_size(), MEM_PROT_READ);
1236   os::protect_memory((char *)os::get_memory_serialize_page(),
1237                      os::vm_page_size(), MEM_PROT_RW);
1238   Thread::muxRelease(&SerializePageLock);
1239 }
1240 
1241 // Returns true if the current stack pointer is above the stack shadow
1242 // pages, false otherwise.
1243 
1244 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1245   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1246   address sp = current_stack_pointer();
1247   // Check if we have StackShadowPages above the yellow zone.  This parameter
1248   // is dependent on the depth of the maximum VM call stack possible from
1249   // the handler for stack overflow.  'instanceof' in the stack overflow
1250   // handler or a println uses at least 8k stack of VM and native code
1251   // respectively.
1252   const int framesize_in_bytes =
1253     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1254   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1255                       * vm_page_size()) + framesize_in_bytes;
1256   // The very lower end of the stack
1257   address stack_limit = thread->stack_base() - thread->stack_size();
1258   return (sp > (stack_limit + reserved_area));
1259 }
1260 
1261 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1262                                 uint min_pages)
1263 {
1264   assert(min_pages > 0, "sanity");
1265   if (UseLargePages) {
1266     const size_t max_page_size = region_max_size / min_pages;
1267 
1268     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1269       const size_t sz = _page_sizes[i];
1270       const size_t mask = sz - 1;
1271       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1272         // The largest page size with no fragmentation.
1273         return sz;
1274       }
1275 
1276       if (sz <= max_page_size) {
1277         // The largest page size that satisfies the min_pages requirement.
1278         return sz;
1279       }
1280     }
1281   }
1282 
1283   return vm_page_size();
1284 }
1285 
1286 #ifndef PRODUCT
1287 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1288 {
1289   if (TracePageSizes) {
1290     tty->print("%s: ", str);
1291     for (int i = 0; i < count; ++i) {
1292       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1293     }
1294     tty->cr();
1295   }
1296 }
1297 
1298 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1299                           const size_t region_max_size, const size_t page_size,
1300                           const char* base, const size_t size)
1301 {
1302   if (TracePageSizes) {
1303     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1304                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1305                   " size=" SIZE_FORMAT,
1306                   str, region_min_size, region_max_size,
1307                   page_size, base, size);
1308   }
1309 }
1310 #endif  // #ifndef PRODUCT
1311 
1312 // This is the working definition of a server class machine:
1313 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1314 // because the graphics memory (?) sometimes masks physical memory.
1315 // If you want to change the definition of a server class machine
1316 // on some OS or platform, e.g., >=4GB on Windohs platforms,
1317 // then you'll have to parameterize this method based on that state,
1318 // as was done for logical processors here, or replicate and
1319 // specialize this method for each platform.  (Or fix os to have
1320 // some inheritance structure and use subclassing.  Sigh.)
1321 // If you want some platform to always or never behave as a server
1322 // class machine, change the setting of AlwaysActAsServerClassMachine
1323 // and NeverActAsServerClassMachine in globals*.hpp.
1324 bool os::is_server_class_machine() {
1325   // First check for the early returns
1326   if (NeverActAsServerClassMachine) {
1327     return false;
1328   }
1329   if (AlwaysActAsServerClassMachine) {
1330     return true;
1331   }
1332   // Then actually look at the machine
1333   bool         result            = false;
1334   const unsigned int    server_processors = 2;
1335   const julong server_memory     = 2UL * G;
1336   // We seem not to get our full complement of memory.
1337   //     We allow some part (1/8?) of the memory to be "missing",
1338   //     based on the sizes of DIMMs, and maybe graphics cards.
1339   const julong missing_memory   = 256UL * M;
1340 
1341   /* Is this a server class machine? */
1342   if ((os::active_processor_count() >= (int)server_processors) &&
1343       (os::physical_memory() >= (server_memory - missing_memory))) {
1344     const unsigned int logical_processors =
1345       VM_Version::logical_processors_per_package();
1346     if (logical_processors > 1) {
1347       const unsigned int physical_packages =
1348         os::active_processor_count() / logical_processors;
1349       if (physical_packages > server_processors) {
1350         result = true;
1351       }
1352     } else {
1353       result = true;
1354     }
1355   }
1356   return result;
1357 }
1358 
1359 // Read file line by line, if line is longer than bsize,
1360 // skip rest of line.
1361 int os::get_line_chars(int fd, char* buf, const size_t bsize){
1362   size_t sz, i = 0;
1363 
1364   // read until EOF, EOL or buf is full
1365   while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
1366      ++i;
1367   }
1368 
1369   if (buf[i] == '\n') {
1370     // EOL reached so ignore EOL character and return
1371 
1372     buf[i] = 0;
1373     return (int) i;
1374   }
1375 
1376   buf[i+1] = 0;
1377 
1378   if (sz != 1) {
1379     // EOF reached. if we read chars before EOF return them and
1380     // return EOF on next call otherwise return EOF
1381 
1382     return (i == 0) ? -1 : (int) i;
1383   }
1384 
1385   // line is longer than size of buf, skip to EOL
1386   char ch;
1387   while (read(fd, &ch, 1) == 1 && ch != '\n') {
1388     // Do nothing
1389   }
1390 
1391   // return initial part of line that fits in buf.
1392   // If we reached EOF, it will be returned on next call.
1393 
1394   return (int) i;
1395 }
1396 
1397 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1398   return os::pd_create_stack_guard_pages(addr, bytes);
1399 }
1400 
1401 
1402 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1403   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1404   if (result != NULL && MemTracker::is_on()) {
1405     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1406   }
1407 
1408   return result;
1409 }
1410 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1411   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1412   if (result != NULL && MemTracker::is_on()) {
1413     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1414   }
1415   return result;
1416 }
1417 
1418 void os::split_reserved_memory(char *base, size_t size,
1419                                  size_t split, bool realloc) {
1420   pd_split_reserved_memory(base, size, split, realloc);
1421 }
1422 
1423 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1424   bool res = pd_commit_memory(addr, bytes, executable);
1425   if (res && MemTracker::is_on()) {
1426     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1427   }
1428   return res;
1429 }
1430 
1431 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1432                               bool executable) {
1433   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1434   if (res && MemTracker::is_on()) {
1435     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1436   }
1437   return res;
1438 }
1439 
1440 bool os::uncommit_memory(char* addr, size_t bytes) {
1441   bool res = pd_uncommit_memory(addr, bytes);
1442   if (res) {
1443     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
1444   }
1445   return res;
1446 }
1447 
1448 bool os::release_memory(char* addr, size_t bytes) {
1449   bool res = pd_release_memory(addr, bytes);
1450   if (res) {
1451     MemTracker::record_virtual_memory_release((address)addr, bytes);
1452   }
1453   return res;
1454 }
1455 
1456 
1457 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1458                            char *addr, size_t bytes, bool read_only,
1459                            bool allow_exec) {
1460   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1461   if (result != NULL && MemTracker::is_on()) {
1462     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1463   }
1464   return result;
1465 }
1466 
1467 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1468                              char *addr, size_t bytes, bool read_only,
1469                              bool allow_exec) {
1470   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1471                     read_only, allow_exec);
1472 }
1473 
1474 bool os::unmap_memory(char *addr, size_t bytes) {
1475   bool result = pd_unmap_memory(addr, bytes);
1476   if (result) {
1477     MemTracker::record_virtual_memory_release((address)addr, bytes);
1478   }
1479   return result;
1480 }
1481 
1482 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1483   pd_free_memory(addr, bytes, alignment_hint);
1484 }
1485 
1486 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1487   pd_realign_memory(addr, bytes, alignment_hint);
1488 }
1489