1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_sparc.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #ifdef TARGET_OS_FAMILY_linux
  40 # include "thread_linux.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_solaris
  43 # include "thread_solaris.inline.hpp"
  44 #endif
  45 
  46 #ifndef CC_INTERP
  47 #ifndef FAST_DISPATCH
  48 #define FAST_DISPATCH 1
  49 #endif
  50 #undef FAST_DISPATCH
  51 
  52 // Implementation of InterpreterMacroAssembler
  53 
  54 // This file specializes the assember with interpreter-specific macros
  55 
  56 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  57 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  58 
  59 #else // CC_INTERP
  60 #ifndef STATE
  61 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  62 #endif // STATE
  63 
  64 #endif // CC_INTERP
  65 
  66 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  67   // Note: this algorithm is also used by C1's OSR entry sequence.
  68   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  69   assert_different_registers(args_size, locals_size);
  70   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  71   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  72   // Use br/mov combination because it works on both V8 and V9 and is
  73   // faster.
  74   Label skip_move;
  75   br(Assembler::negative, true, Assembler::pt, skip_move);
  76   delayed()->mov(G0, delta);
  77   bind(skip_move);
  78   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  79   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  80 }
  81 
  82 #ifndef CC_INTERP
  83 
  84 // Dispatch code executed in the prolog of a bytecode which does not do it's
  85 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  86 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  87   assert_not_delayed();
  88 #ifdef FAST_DISPATCH
  89   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  90   // they both use I2.
  91   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  92   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  93   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
  94                                                         // add offset to correct dispatch table
  95   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  96   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
  97 #else
  98   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  99   // dispatch table to use
 100   AddressLiteral tbl(Interpreter::dispatch_table(state));
 101   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
 102   set(tbl, G3_scratch);                                 // compute addr of table
 103   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
 104 #endif
 105 }
 106 
 107 
 108 // Dispatch code executed in the epilog of a bytecode which does not do it's
 109 // own dispatch. The dispatch address in IdispatchAddress is used for the
 110 // dispatch.
 111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
 112   assert_not_delayed();
 113   verify_FPU(1, state);
 114   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 115   jmp( IdispatchAddress, 0 );
 116   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 117   else                delayed()->nop();
 118 }
 119 
 120 
 121 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
 122   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 123   assert_not_delayed();
 124   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 125   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
 126 }
 127 
 128 
 129 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 130   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 131   assert_not_delayed();
 132   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 133   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 134 }
 135 
 136 
 137 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 138   // load current bytecode
 139   assert_not_delayed();
 140   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 141   dispatch_base(state, table);
 142 }
 143 
 144 
 145 void InterpreterMacroAssembler::call_VM_leaf_base(
 146   Register java_thread,
 147   address  entry_point,
 148   int      number_of_arguments
 149 ) {
 150   if (!java_thread->is_valid())
 151     java_thread = L7_thread_cache;
 152   // super call
 153   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 154 }
 155 
 156 
 157 void InterpreterMacroAssembler::call_VM_base(
 158   Register        oop_result,
 159   Register        java_thread,
 160   Register        last_java_sp,
 161   address         entry_point,
 162   int             number_of_arguments,
 163   bool            check_exception
 164 ) {
 165   if (!java_thread->is_valid())
 166     java_thread = L7_thread_cache;
 167   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 168   // takes responsibility for setting its own thread-state on call-out.
 169   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 170 
 171   //save_bcp();                                  // save bcp
 172   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 173   //restore_bcp();                               // restore bcp
 174   //restore_locals();                            // restore locals pointer
 175 }
 176 
 177 
 178 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 179   if (JvmtiExport::can_pop_frame()) {
 180     Label L;
 181 
 182     // Check the "pending popframe condition" flag in the current thread
 183     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 184 
 185     // Initiate popframe handling only if it is not already being processed.  If the flag
 186     // has the popframe_processing bit set, it means that this code is called *during* popframe
 187     // handling - we don't want to reenter.
 188     btst(JavaThread::popframe_pending_bit, scratch_reg);
 189     br(zero, false, pt, L);
 190     delayed()->nop();
 191     btst(JavaThread::popframe_processing_bit, scratch_reg);
 192     br(notZero, false, pt, L);
 193     delayed()->nop();
 194 
 195     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 196     // address of the same-named entrypoint in the generated interpreter code.
 197     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 198 
 199     // Jump to Interpreter::_remove_activation_preserving_args_entry
 200     jmpl(O0, G0, G0);
 201     delayed()->nop();
 202     bind(L);
 203   }
 204 }
 205 
 206 
 207 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 208   Register thr_state = G4_scratch;
 209   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 210   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 211   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 212   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 213   switch (state) {
 214   case ltos: ld_long(val_addr, Otos_l);                   break;
 215   case atos: ld_ptr(oop_addr, Otos_l);
 216              st_ptr(G0, oop_addr);                        break;
 217   case btos:                                           // fall through
 218   case ctos:                                           // fall through
 219   case stos:                                           // fall through
 220   case itos: ld(val_addr, Otos_l1);                       break;
 221   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 222   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 223   case vtos: /* nothing to do */                          break;
 224   default  : ShouldNotReachHere();
 225   }
 226   // Clean up tos value in the jvmti thread state
 227   or3(G0, ilgl, G3_scratch);
 228   stw(G3_scratch, tos_addr);
 229   st_long(G0, val_addr);
 230   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 231 }
 232 
 233 
 234 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 235   if (JvmtiExport::can_force_early_return()) {
 236     Label L;
 237     Register thr_state = G3_scratch;
 238     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 239     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 240 
 241     // Initiate earlyret handling only if it is not already being processed.
 242     // If the flag has the earlyret_processing bit set, it means that this code
 243     // is called *during* earlyret handling - we don't want to reenter.
 244     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 245     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
 246 
 247     // Call Interpreter::remove_activation_early_entry() to get the address of the
 248     // same-named entrypoint in the generated interpreter code
 249     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 250     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 251 
 252     // Jump to Interpreter::_remove_activation_early_entry
 253     jmpl(O0, G0, G0);
 254     delayed()->nop();
 255     bind(L);
 256   }
 257 }
 258 
 259 
 260 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 261   mov(arg_1, O0);
 262   mov(arg_2, O1);
 263   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 264 }
 265 #endif /* CC_INTERP */
 266 
 267 
 268 #ifndef CC_INTERP
 269 
 270 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 271   assert_not_delayed();
 272   dispatch_Lbyte_code(state, table);
 273 }
 274 
 275 
 276 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 277   dispatch_base(state, Interpreter::normal_table(state));
 278 }
 279 
 280 
 281 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 282   dispatch_base(state, Interpreter::dispatch_table(state));
 283 }
 284 
 285 
 286 // common code to dispatch and dispatch_only
 287 // dispatch value in Lbyte_code and increment Lbcp
 288 
 289 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
 290   verify_FPU(1, state);
 291   // %%%%% maybe implement +VerifyActivationFrameSize here
 292   //verify_thread(); //too slow; we will just verify on method entry & exit
 293   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 294 #ifdef FAST_DISPATCH
 295   if (table == Interpreter::dispatch_table(state)) {
 296     // use IdispatchTables
 297     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 298                                                         // add offset to correct dispatch table
 299     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 300     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
 301   } else {
 302 #endif
 303     // dispatch table to use
 304     AddressLiteral tbl(table);
 305     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 306     set(tbl, G3_scratch);                               // compute addr of table
 307     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 308 #ifdef FAST_DISPATCH
 309   }
 310 #endif
 311   jmp( G3_scratch, 0 );
 312   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 313   else                delayed()->nop();
 314 }
 315 
 316 
 317 // Helpers for expression stack
 318 
 319 // Longs and doubles are Category 2 computational types in the
 320 // JVM specification (section 3.11.1) and take 2 expression stack or
 321 // local slots.
 322 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 323 // for the dup* bytecodes depends on what types are already on the stack.
 324 // If the types are split into the two stack/local slots, that is much easier
 325 // (and we can use 0 for non-reference tags).
 326 
 327 // Known good alignment in _LP64 but unknown otherwise
 328 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 329   assert_not_delayed();
 330 
 331 #ifdef _LP64
 332   ldf(FloatRegisterImpl::D, r1, offset, d);
 333 #else
 334   ldf(FloatRegisterImpl::S, r1, offset, d);
 335   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
 336 #endif
 337 }
 338 
 339 // Known good alignment in _LP64 but unknown otherwise
 340 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 341   assert_not_delayed();
 342 
 343 #ifdef _LP64
 344   stf(FloatRegisterImpl::D, d, r1, offset);
 345   // store something more useful here
 346   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 347 #else
 348   stf(FloatRegisterImpl::S, d, r1, offset);
 349   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
 350 #endif
 351 }
 352 
 353 
 354 // Known good alignment in _LP64 but unknown otherwise
 355 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 356   assert_not_delayed();
 357 #ifdef _LP64
 358   ldx(r1, offset, rd);
 359 #else
 360   ld(r1, offset, rd);
 361   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
 362 #endif
 363 }
 364 
 365 // Known good alignment in _LP64 but unknown otherwise
 366 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 367   assert_not_delayed();
 368 
 369 #ifdef _LP64
 370   stx(l, r1, offset);
 371   // store something more useful here
 372   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 373 #else
 374   st(l, r1, offset);
 375   st(l->successor(), r1, offset + Interpreter::stackElementSize);
 376 #endif
 377 }
 378 
 379 void InterpreterMacroAssembler::pop_i(Register r) {
 380   assert_not_delayed();
 381   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 382   inc(Lesp, Interpreter::stackElementSize);
 383   debug_only(verify_esp(Lesp));
 384 }
 385 
 386 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 387   assert_not_delayed();
 388   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 389   inc(Lesp, Interpreter::stackElementSize);
 390   debug_only(verify_esp(Lesp));
 391 }
 392 
 393 void InterpreterMacroAssembler::pop_l(Register r) {
 394   assert_not_delayed();
 395   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 396   inc(Lesp, 2*Interpreter::stackElementSize);
 397   debug_only(verify_esp(Lesp));
 398 }
 399 
 400 
 401 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 402   assert_not_delayed();
 403   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 404   inc(Lesp, Interpreter::stackElementSize);
 405   debug_only(verify_esp(Lesp));
 406 }
 407 
 408 
 409 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 410   assert_not_delayed();
 411   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 412   inc(Lesp, 2*Interpreter::stackElementSize);
 413   debug_only(verify_esp(Lesp));
 414 }
 415 
 416 
 417 void InterpreterMacroAssembler::push_i(Register r) {
 418   assert_not_delayed();
 419   debug_only(verify_esp(Lesp));
 420   st(r, Lesp, 0);
 421   dec(Lesp, Interpreter::stackElementSize);
 422 }
 423 
 424 void InterpreterMacroAssembler::push_ptr(Register r) {
 425   assert_not_delayed();
 426   st_ptr(r, Lesp, 0);
 427   dec(Lesp, Interpreter::stackElementSize);
 428 }
 429 
 430 // remember: our convention for longs in SPARC is:
 431 // O0 (Otos_l1) has high-order part in first word,
 432 // O1 (Otos_l2) has low-order part in second word
 433 
 434 void InterpreterMacroAssembler::push_l(Register r) {
 435   assert_not_delayed();
 436   debug_only(verify_esp(Lesp));
 437   // Longs are stored in memory-correct order, even if unaligned.
 438   int offset = -Interpreter::stackElementSize;
 439   store_unaligned_long(r, Lesp, offset);
 440   dec(Lesp, 2 * Interpreter::stackElementSize);
 441 }
 442 
 443 
 444 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 445   assert_not_delayed();
 446   debug_only(verify_esp(Lesp));
 447   stf(FloatRegisterImpl::S, f, Lesp, 0);
 448   dec(Lesp, Interpreter::stackElementSize);
 449 }
 450 
 451 
 452 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 453   assert_not_delayed();
 454   debug_only(verify_esp(Lesp));
 455   // Longs are stored in memory-correct order, even if unaligned.
 456   int offset = -Interpreter::stackElementSize;
 457   store_unaligned_double(d, Lesp, offset);
 458   dec(Lesp, 2 * Interpreter::stackElementSize);
 459 }
 460 
 461 
 462 void InterpreterMacroAssembler::push(TosState state) {
 463   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 464   switch (state) {
 465     case atos: push_ptr();            break;
 466     case btos: push_i();              break;
 467     case ctos:
 468     case stos: push_i();              break;
 469     case itos: push_i();              break;
 470     case ltos: push_l();              break;
 471     case ftos: push_f();              break;
 472     case dtos: push_d();              break;
 473     case vtos: /* nothing to do */    break;
 474     default  : ShouldNotReachHere();
 475   }
 476 }
 477 
 478 
 479 void InterpreterMacroAssembler::pop(TosState state) {
 480   switch (state) {
 481     case atos: pop_ptr();            break;
 482     case btos: pop_i();              break;
 483     case ctos:
 484     case stos: pop_i();              break;
 485     case itos: pop_i();              break;
 486     case ltos: pop_l();              break;
 487     case ftos: pop_f();              break;
 488     case dtos: pop_d();              break;
 489     case vtos: /* nothing to do */   break;
 490     default  : ShouldNotReachHere();
 491   }
 492   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 493 }
 494 
 495 
 496 // Helpers for swap and dup
 497 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 498   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 499 }
 500 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 501   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 502 }
 503 
 504 
 505 void InterpreterMacroAssembler::load_receiver(Register param_count,
 506                                               Register recv) {
 507   sll(param_count, Interpreter::logStackElementSize, param_count);
 508   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
 509 }
 510 
 511 void InterpreterMacroAssembler::empty_expression_stack() {
 512   // Reset Lesp.
 513   sub( Lmonitors, wordSize, Lesp );
 514 
 515   // Reset SP by subtracting more space from Lesp.
 516   Label done;
 517   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 518 
 519   // A native does not need to do this, since its callee does not change SP.
 520   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
 521   btst(JVM_ACC_NATIVE, Gframe_size);
 522   br(Assembler::notZero, false, Assembler::pt, done);
 523   delayed()->nop();
 524 
 525   // Compute max expression stack+register save area
 526   lduh(Lmethod, in_bytes(Method::max_stack_offset()), Gframe_size);  // Load max stack.
 527   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
 528 
 529   //
 530   // now set up a stack frame with the size computed above
 531   //
 532   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 533   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 534   sub( Lesp, Gframe_size, Gframe_size );
 535   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 536   debug_only(verify_sp(Gframe_size, G4_scratch));
 537 #ifdef _LP64
 538   sub(Gframe_size, STACK_BIAS, Gframe_size );
 539 #endif
 540   mov(Gframe_size, SP);
 541 
 542   bind(done);
 543 }
 544 
 545 
 546 #ifdef ASSERT
 547 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 548   Label Bad, OK;
 549 
 550   // Saved SP must be aligned.
 551 #ifdef _LP64
 552   btst(2*BytesPerWord-1, Rsp);
 553 #else
 554   btst(LongAlignmentMask, Rsp);
 555 #endif
 556   br(Assembler::notZero, false, Assembler::pn, Bad);
 557   delayed()->nop();
 558 
 559   // Saved SP, plus register window size, must not be above FP.
 560   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 561 #ifdef _LP64
 562   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 563 #endif
 564   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
 565 
 566   // Saved SP must not be ridiculously below current SP.
 567   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 568   set(maxstack, Rtemp);
 569   sub(SP, Rtemp, Rtemp);
 570 #ifdef _LP64
 571   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 572 #endif
 573   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
 574 
 575   ba_short(OK);
 576 
 577   bind(Bad);
 578   stop("on return to interpreted call, restored SP is corrupted");
 579 
 580   bind(OK);
 581 }
 582 
 583 
 584 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 585   // about to read or write Resp[0]
 586   // make sure it is not in the monitors or the register save area
 587   Label OK1, OK2;
 588 
 589   cmp(Resp, Lmonitors);
 590   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 591   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 592   stop("too many pops:  Lesp points into monitor area");
 593   bind(OK1);
 594 #ifdef _LP64
 595   sub(Resp, STACK_BIAS, Resp);
 596 #endif
 597   cmp(Resp, SP);
 598   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 599   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 600   stop("too many pushes:  Lesp points into register window");
 601   bind(OK2);
 602 }
 603 #endif // ASSERT
 604 
 605 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 606 // do the call. Centralized so that all interpreter calls will do the same actions.
 607 // If jvmti single stepping is on for a thread we must not call compiled code.
 608 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 609 
 610   // Assume we want to go compiled if available
 611 
 612   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
 613 
 614   if (JvmtiExport::can_post_interpreter_events()) {
 615     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 616     // compiled code in threads for which the event is enabled.  Check here for
 617     // interp_only_mode if these events CAN be enabled.
 618     verify_thread();
 619     Label skip_compiled_code;
 620 
 621     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 622     ld(interp_only, scratch);
 623     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
 624     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
 625     bind(skip_compiled_code);
 626   }
 627 
 628   // the i2c_adapters need Method* in G5_method (right? %%%)
 629   // do the call
 630 #ifdef ASSERT
 631   {
 632     Label ok;
 633     br_notnull_short(target, Assembler::pt, ok);
 634     stop("null entry point");
 635     bind(ok);
 636   }
 637 #endif // ASSERT
 638 
 639   // Adjust Rret first so Llast_SP can be same as Rret
 640   add(Rret, -frame::pc_return_offset, O7);
 641   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 642   // Record SP so we can remove any stack space allocated by adapter transition
 643   jmp(target, 0);
 644   delayed()->mov(SP, Llast_SP);
 645 }
 646 
 647 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 648   assert_not_delayed();
 649 
 650   Label not_taken;
 651   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 652   else             br (cc, false, Assembler::pn, not_taken);
 653   delayed()->nop();
 654 
 655   TemplateTable::branch(false,false);
 656 
 657   bind(not_taken);
 658 
 659   profile_not_taken_branch(G3_scratch);
 660 }
 661 
 662 
 663 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 664                                   int         bcp_offset,
 665                                   Register    Rtmp,
 666                                   Register    Rdst,
 667                                   signedOrNot is_signed,
 668                                   setCCOrNot  should_set_CC ) {
 669   assert(Rtmp != Rdst, "need separate temp register");
 670   assert_not_delayed();
 671   switch (is_signed) {
 672    default: ShouldNotReachHere();
 673 
 674    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 675    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 676   }
 677   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 678   sll( Rdst, BitsPerByte, Rdst);
 679   switch (should_set_CC ) {
 680    default: ShouldNotReachHere();
 681 
 682    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 683    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 684   }
 685 }
 686 
 687 
 688 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 689                                   int        bcp_offset,
 690                                   Register   Rtmp,
 691                                   Register   Rdst,
 692                                   setCCOrNot should_set_CC ) {
 693   assert(Rtmp != Rdst, "need separate temp register");
 694   assert_not_delayed();
 695   add( Lbcp, bcp_offset, Rtmp);
 696   andcc( Rtmp, 3, G0);
 697   Label aligned;
 698   switch (should_set_CC ) {
 699    default: ShouldNotReachHere();
 700 
 701    case      set_CC: break;
 702    case dont_set_CC: break;
 703   }
 704 
 705   br(Assembler::zero, true, Assembler::pn, aligned);
 706 #ifdef _LP64
 707   delayed()->ldsw(Rtmp, 0, Rdst);
 708 #else
 709   delayed()->ld(Rtmp, 0, Rdst);
 710 #endif
 711 
 712   ldub(Lbcp, bcp_offset + 3, Rdst);
 713   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 714   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 715 #ifdef _LP64
 716   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 717 #else
 718   // Unsigned load is faster than signed on some implementations
 719   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 720 #endif
 721   or3(Rtmp, Rdst, Rdst );
 722 
 723   bind(aligned);
 724   if (should_set_CC == set_CC) tst(Rdst);
 725 }
 726 
 727 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
 728                                                        int bcp_offset, size_t index_size) {
 729   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 730   if (index_size == sizeof(u2)) {
 731     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
 732   } else if (index_size == sizeof(u4)) {
 733     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 734     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
 735     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 736     xor3(index, -1, index);  // convert to plain index
 737   } else if (index_size == sizeof(u1)) {
 738     ldub(Lbcp, bcp_offset, index);
 739   } else {
 740     ShouldNotReachHere();
 741   }
 742 }
 743 
 744 
 745 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 746                                                            int bcp_offset, size_t index_size) {
 747   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 748   assert_different_registers(cache, tmp);
 749   assert_not_delayed();
 750   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 751   // convert from field index to ConstantPoolCacheEntry index and from
 752   // word index to byte offset
 753   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 754   add(LcpoolCache, tmp, cache);
 755 }
 756 
 757 
 758 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 759                                                                         Register temp,
 760                                                                         Register bytecode,
 761                                                                         int byte_no,
 762                                                                         int bcp_offset,
 763                                                                         size_t index_size) {
 764   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
 765   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
 766   const int shift_count = (1 + byte_no) * BitsPerByte;
 767   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 768          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 769          "correct shift count");
 770   srl(bytecode, shift_count, bytecode);
 771   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 772   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
 773 }
 774 
 775 
 776 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 777                                                                int bcp_offset, size_t index_size) {
 778   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 779   assert_different_registers(cache, tmp);
 780   assert_not_delayed();
 781   if (index_size == sizeof(u2)) {
 782     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 783   } else {
 784     ShouldNotReachHere();  // other sizes not supported here
 785   }
 786               // convert from field index to ConstantPoolCacheEntry index
 787               // and from word index to byte offset
 788   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 789               // skip past the header
 790   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
 791               // construct pointer to cache entry
 792   add(LcpoolCache, tmp, cache);
 793 }
 794 
 795 
 796 // Load object from cpool->resolved_references(index)
 797 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 798                                            Register result, Register index) {
 799   assert_different_registers(result, index);
 800   assert_not_delayed();
 801   // convert from field index to resolved_references() index and from
 802   // word index to byte offset. Since this is a java object, it can be compressed
 803   Register tmp = index;  // reuse
 804   sll(index, LogBytesPerHeapOop, tmp);
 805   get_constant_pool(result);
 806   // load pointer for resolved_references[] objArray
 807   ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
 808   // JNIHandles::resolve(result)
 809   ld_ptr(result, 0, result);
 810   // Add in the index
 811   add(result, tmp, result);
 812   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 813 }
 814 
 815 
 816 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 817 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 818 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 819                                                   Register Rsuper_klass,
 820                                                   Register Rtmp1,
 821                                                   Register Rtmp2,
 822                                                   Register Rtmp3,
 823                                                   Label &ok_is_subtype ) {
 824   Label not_subtype;
 825 
 826   // Profile the not-null value's klass.
 827   profile_typecheck(Rsub_klass, Rtmp1);
 828 
 829   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 830                                 Rtmp1, Rtmp2,
 831                                 &ok_is_subtype, &not_subtype, NULL);
 832 
 833   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 834                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 835                                 &ok_is_subtype, NULL);
 836 
 837   bind(not_subtype);
 838   profile_typecheck_failed(Rtmp1);
 839 }
 840 
 841 // Separate these two to allow for delay slot in middle
 842 // These are used to do a test and full jump to exception-throwing code.
 843 
 844 // %%%%% Could possibly reoptimize this by testing to see if could use
 845 // a single conditional branch (i.e. if span is small enough.
 846 // If you go that route, than get rid of the split and give up
 847 // on the delay-slot hack.
 848 
 849 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 850                                                     Label&    ok ) {
 851   assert_not_delayed();
 852   br(ok_condition, true, pt, ok);
 853   // DELAY SLOT
 854 }
 855 
 856 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 857                                                     Label&    ok ) {
 858   assert_not_delayed();
 859   bp( ok_condition, true, Assembler::xcc, pt, ok);
 860   // DELAY SLOT
 861 }
 862 
 863 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 864                                                   Label&    ok ) {
 865   assert_not_delayed();
 866   brx(ok_condition, true, pt, ok);
 867   // DELAY SLOT
 868 }
 869 
 870 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 871                                                 Register Rscratch,
 872                                                 Label&   ok ) {
 873   assert(throw_entry_point != NULL, "entry point must be generated by now");
 874   AddressLiteral dest(throw_entry_point);
 875   jump_to(dest, Rscratch);
 876   delayed()->nop();
 877   bind(ok);
 878 }
 879 
 880 
 881 // And if you cannot use the delay slot, here is a shorthand:
 882 
 883 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 884                                                   address   throw_entry_point,
 885                                                   Register  Rscratch ) {
 886   Label ok;
 887   if (ok_condition != never) {
 888     throw_if_not_1_icc( ok_condition, ok);
 889     delayed()->nop();
 890   }
 891   throw_if_not_2( throw_entry_point, Rscratch, ok);
 892 }
 893 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 894                                                   address   throw_entry_point,
 895                                                   Register  Rscratch ) {
 896   Label ok;
 897   if (ok_condition != never) {
 898     throw_if_not_1_xcc( ok_condition, ok);
 899     delayed()->nop();
 900   }
 901   throw_if_not_2( throw_entry_point, Rscratch, ok);
 902 }
 903 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 904                                                 address   throw_entry_point,
 905                                                 Register  Rscratch ) {
 906   Label ok;
 907   if (ok_condition != never) {
 908     throw_if_not_1_x( ok_condition, ok);
 909     delayed()->nop();
 910   }
 911   throw_if_not_2( throw_entry_point, Rscratch, ok);
 912 }
 913 
 914 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 915 // Note: res is still shy of address by array offset into object.
 916 
 917 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 918   assert_not_delayed();
 919 
 920   verify_oop(array);
 921 #ifdef _LP64
 922   // sign extend since tos (index) can be a 32bit value
 923   sra(index, G0, index);
 924 #endif // _LP64
 925 
 926   // check array
 927   Label ptr_ok;
 928   tst(array);
 929   throw_if_not_1_x( notZero, ptr_ok );
 930   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 931   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 932 
 933   Label index_ok;
 934   cmp(index, tmp);
 935   throw_if_not_1_icc( lessUnsigned, index_ok );
 936   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 937   else                  delayed()->add(array, index, res); // addr - const offset in index
 938   // convention: move aberrant index into G3_scratch for exception message
 939   mov(index, G3_scratch);
 940   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 941 
 942   // add offset if didn't do it in delay slot
 943   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 944 }
 945 
 946 
 947 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 948   assert_not_delayed();
 949 
 950   // pop array
 951   pop_ptr(array);
 952 
 953   // check array
 954   index_check_without_pop(array, index, index_shift, tmp, res);
 955 }
 956 
 957 
 958 void InterpreterMacroAssembler::get_const(Register Rdst) {
 959   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
 960 }
 961 
 962 
 963 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 964   get_const(Rdst);
 965   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 966 }
 967 
 968 
 969 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 970   get_constant_pool(Rdst);
 971   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 972 }
 973 
 974 
 975 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 976   get_constant_pool(Rcpool);
 977   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
 978 }
 979 
 980 
 981 // unlock if synchronized method
 982 //
 983 // Unlock the receiver if this is a synchronized method.
 984 // Unlock any Java monitors from syncronized blocks.
 985 //
 986 // If there are locked Java monitors
 987 //    If throw_monitor_exception
 988 //       throws IllegalMonitorStateException
 989 //    Else if install_monitor_exception
 990 //       installs IllegalMonitorStateException
 991 //    Else
 992 //       no error processing
 993 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 994                                                               bool throw_monitor_exception,
 995                                                               bool install_monitor_exception) {
 996   Label unlocked, unlock, no_unlock;
 997 
 998   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 999   const Address do_not_unlock_if_synchronized(G2_thread,
1000     JavaThread::do_not_unlock_if_synchronized_offset());
1001   ldbool(do_not_unlock_if_synchronized, G1_scratch);
1002   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
1003 
1004   // check if synchronized method
1005   const Address access_flags(Lmethod, Method::access_flags_offset());
1006   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1007   push(state); // save tos
1008   ld(access_flags, G3_scratch); // Load access flags.
1009   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1010   br(zero, false, pt, unlocked);
1011   delayed()->nop();
1012 
1013   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1014   // is set.
1015   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
1016   delayed()->nop();
1017 
1018   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1019   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1020 
1021   //Intel: if (throw_monitor_exception) ... else ...
1022   // Entry already unlocked, need to throw exception
1023   //...
1024 
1025   // pass top-most monitor elem
1026   add( top_most_monitor(), O1 );
1027 
1028   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1029   br_notnull_short(G3_scratch, pt, unlock);
1030 
1031   if (throw_monitor_exception) {
1032     // Entry already unlocked need to throw an exception
1033     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1034     should_not_reach_here();
1035   } else {
1036     // Monitor already unlocked during a stack unroll.
1037     // If requested, install an illegal_monitor_state_exception.
1038     // Continue with stack unrolling.
1039     if (install_monitor_exception) {
1040       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1041     }
1042     ba_short(unlocked);
1043   }
1044 
1045   bind(unlock);
1046 
1047   unlock_object(O1);
1048 
1049   bind(unlocked);
1050 
1051   // I0, I1: Might contain return value
1052 
1053   // Check that all monitors are unlocked
1054   { Label loop, exception, entry, restart;
1055 
1056     Register Rmptr   = O0;
1057     Register Rtemp   = O1;
1058     Register Rlimit  = Lmonitors;
1059     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1060     assert( (delta & LongAlignmentMask) == 0,
1061             "sizeof BasicObjectLock must be even number of doublewords");
1062 
1063     #ifdef ASSERT
1064     add(top_most_monitor(), Rmptr, delta);
1065     { Label L;
1066       // ensure that Rmptr starts out above (or at) Rlimit
1067       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1068       stop("monitor stack has negative size");
1069       bind(L);
1070     }
1071     #endif
1072     bind(restart);
1073     ba(entry);
1074     delayed()->
1075     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1076 
1077     // Entry is still locked, need to throw exception
1078     bind(exception);
1079     if (throw_monitor_exception) {
1080       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1081       should_not_reach_here();
1082     } else {
1083       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1084       // Unlock does not block, so don't have to worry about the frame
1085       unlock_object(Rmptr);
1086       if (install_monitor_exception) {
1087         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1088       }
1089       ba_short(restart);
1090     }
1091 
1092     bind(loop);
1093     cmp(Rtemp, G0);                             // check if current entry is used
1094     brx(Assembler::notEqual, false, pn, exception);
1095     delayed()->
1096     dec(Rmptr, delta);                          // otherwise advance to next entry
1097     #ifdef ASSERT
1098     { Label L;
1099       // ensure that Rmptr has not somehow stepped below Rlimit
1100       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1101       stop("ran off the end of the monitor stack");
1102       bind(L);
1103     }
1104     #endif
1105     bind(entry);
1106     cmp(Rmptr, Rlimit);                         // check if bottom reached
1107     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1108     delayed()->
1109     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1110   }
1111 
1112   bind(no_unlock);
1113   pop(state);
1114   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1115 }
1116 
1117 
1118 // remove activation
1119 //
1120 // Unlock the receiver if this is a synchronized method.
1121 // Unlock any Java monitors from syncronized blocks.
1122 // Remove the activation from the stack.
1123 //
1124 // If there are locked Java monitors
1125 //    If throw_monitor_exception
1126 //       throws IllegalMonitorStateException
1127 //    Else if install_monitor_exception
1128 //       installs IllegalMonitorStateException
1129 //    Else
1130 //       no error processing
1131 void InterpreterMacroAssembler::remove_activation(TosState state,
1132                                                   bool throw_monitor_exception,
1133                                                   bool install_monitor_exception) {
1134 
1135   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1136 
1137   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1138   notify_method_exit(false, state, NotifyJVMTI);
1139 
1140   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1141   verify_thread();
1142 
1143   // return tos
1144   assert(Otos_l1 == Otos_i, "adjust code below");
1145   switch (state) {
1146 #ifdef _LP64
1147   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1148 #else
1149   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1150 #endif
1151   case btos:                                      // fall through
1152   case ctos:
1153   case stos:                                      // fall through
1154   case atos:                                      // fall through
1155   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1156   case ftos:                                      // fall through
1157   case dtos:                                      // fall through
1158   case vtos: /* nothing to do */                     break;
1159   default  : ShouldNotReachHere();
1160   }
1161 
1162 #if defined(COMPILER2) && !defined(_LP64)
1163   if (state == ltos) {
1164     // C2 expects long results in G1 we can't tell if we're returning to interpreted
1165     // or compiled so just be safe use G1 and O0/O1
1166 
1167     // Shift bits into high (msb) of G1
1168     sllx(Otos_l1->after_save(), 32, G1);
1169     // Zero extend low bits
1170     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1171     or3 (Otos_l2->after_save(), G1, G1);
1172   }
1173 #endif /* COMPILER2 */
1174 
1175 }
1176 #endif /* CC_INTERP */
1177 
1178 
1179 // Lock object
1180 //
1181 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1182 //            it must be initialized with the object to lock
1183 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1184   if (UseHeavyMonitors) {
1185     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1186   }
1187   else {
1188     Register obj_reg = Object;
1189     Register mark_reg = G4_scratch;
1190     Register temp_reg = G1_scratch;
1191     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1192     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1193     Label    done;
1194 
1195     Label slow_case;
1196 
1197     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1198 
1199     // load markOop from object into mark_reg
1200     ld_ptr(mark_addr, mark_reg);
1201 
1202     if (UseBiasedLocking) {
1203       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1204     }
1205 
1206     // get the address of basicLock on stack that will be stored in the object
1207     // we need a temporary register here as we do not want to clobber lock_reg
1208     // (cas clobbers the destination register)
1209     mov(lock_reg, temp_reg);
1210     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1211     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1212     // initialize the box  (Must happen before we update the object mark!)
1213     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1214     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1215     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1216     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1217       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1218 
1219     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1220     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1221 
1222     // We did not see an unlocked object so try the fast recursive case
1223 
1224     // Check if owner is self by comparing the value in the markOop of object
1225     // with the stack pointer
1226     sub(temp_reg, SP, temp_reg);
1227 #ifdef _LP64
1228     sub(temp_reg, STACK_BIAS, temp_reg);
1229 #endif
1230     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1231 
1232     // Composite "andcc" test:
1233     // (a) %sp -vs- markword proximity check, and,
1234     // (b) verify mark word LSBs == 0 (Stack-locked).
1235     //
1236     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1237     // Note that the page size used for %sp proximity testing is arbitrary and is
1238     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1239     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1240     // field of the andcc instruction.
1241     andcc (temp_reg, 0xFFFFF003, G0) ;
1242 
1243     // if condition is true we are done and hence we can store 0 in the displaced
1244     // header indicating it is a recursive lock and be done
1245     brx(Assembler::zero, true, Assembler::pt, done);
1246     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1247 
1248     // none of the above fast optimizations worked so we have to get into the
1249     // slow case of monitor enter
1250     bind(slow_case);
1251     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1252 
1253     bind(done);
1254   }
1255 }
1256 
1257 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1258 //
1259 // Argument - lock_reg points to the BasicObjectLock for lock
1260 // Throw IllegalMonitorException if object is not locked by current thread
1261 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1262   if (UseHeavyMonitors) {
1263     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1264   } else {
1265     Register obj_reg = G3_scratch;
1266     Register mark_reg = G4_scratch;
1267     Register displaced_header_reg = G1_scratch;
1268     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1269     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1270     Label    done;
1271 
1272     if (UseBiasedLocking) {
1273       // load the object out of the BasicObjectLock
1274       ld_ptr(lockobj_addr, obj_reg);
1275       biased_locking_exit(mark_addr, mark_reg, done, true);
1276       st_ptr(G0, lockobj_addr);  // free entry
1277     }
1278 
1279     // Test first if we are in the fast recursive case
1280     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1281     ld_ptr(lock_addr, displaced_header_reg);
1282     br_null(displaced_header_reg, true, Assembler::pn, done);
1283     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1284 
1285     // See if it is still a light weight lock, if so we just unlock
1286     // the object and we are done
1287 
1288     if (!UseBiasedLocking) {
1289       // load the object out of the BasicObjectLock
1290       ld_ptr(lockobj_addr, obj_reg);
1291     }
1292 
1293     // we have the displaced header in displaced_header_reg
1294     // we expect to see the stack address of the basicLock in case the
1295     // lock is still a light weight lock (lock_reg)
1296     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1297     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1298       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1299     cmp(lock_reg, displaced_header_reg);
1300     brx(Assembler::equal, true, Assembler::pn, done);
1301     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1302 
1303     // The lock has been converted into a heavy lock and hence
1304     // we need to get into the slow case
1305 
1306     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1307 
1308     bind(done);
1309   }
1310 }
1311 
1312 #ifndef CC_INTERP
1313 
1314 // Get the method data pointer from the Method* and set the
1315 // specified register to its value.
1316 
1317 void InterpreterMacroAssembler::set_method_data_pointer() {
1318   assert(ProfileInterpreter, "must be profiling interpreter");
1319   Label get_continue;
1320 
1321   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1322   test_method_data_pointer(get_continue);
1323   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1324   bind(get_continue);
1325 }
1326 
1327 // Set the method data pointer for the current bcp.
1328 
1329 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1330   assert(ProfileInterpreter, "must be profiling interpreter");
1331   Label zero_continue;
1332 
1333   // Test MDO to avoid the call if it is NULL.
1334   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1335   test_method_data_pointer(zero_continue);
1336   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1337   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1338   add(ImethodDataPtr, O0, ImethodDataPtr);
1339   bind(zero_continue);
1340 }
1341 
1342 // Test ImethodDataPtr.  If it is null, continue at the specified label
1343 
1344 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1345   assert(ProfileInterpreter, "must be profiling interpreter");
1346   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1347 }
1348 
1349 void InterpreterMacroAssembler::verify_method_data_pointer() {
1350   assert(ProfileInterpreter, "must be profiling interpreter");
1351 #ifdef ASSERT
1352   Label verify_continue;
1353   test_method_data_pointer(verify_continue);
1354 
1355   // If the mdp is valid, it will point to a DataLayout header which is
1356   // consistent with the bcp.  The converse is highly probable also.
1357   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1358   ld_ptr(Lmethod, Method::const_offset(), O5);
1359   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1360   add(G3_scratch, O5, G3_scratch);
1361   cmp(Lbcp, G3_scratch);
1362   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1363 
1364   Register temp_reg = O5;
1365   delayed()->mov(ImethodDataPtr, temp_reg);
1366   // %%% should use call_VM_leaf here?
1367   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1368   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1369   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1370   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1371   mov(temp_reg->after_save(), O2);
1372   save_thread(L7_thread_cache);
1373   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1374   delayed()->nop();
1375   restore_thread(L7_thread_cache);
1376   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1377   restore();
1378   bind(verify_continue);
1379 #endif // ASSERT
1380 }
1381 
1382 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1383                                                                 Register Rtmp,
1384                                                                 Label &profile_continue) {
1385   assert(ProfileInterpreter, "must be profiling interpreter");
1386   // Control will flow to "profile_continue" if the counter is less than the
1387   // limit or if we call profile_method()
1388 
1389   Label done;
1390 
1391   // if no method data exists, and the counter is high enough, make one
1392   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1393 
1394   // Test to see if we should create a method data oop
1395   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1396   sethi(profile_limit, Rtmp);
1397   ld(Rtmp, profile_limit.low10(), Rtmp);
1398   cmp(invocation_count, Rtmp);
1399   // Use long branches because call_VM() code and following code generated by
1400   // test_backedge_count_for_osr() is large in debug VM.
1401   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1402   delayed()->nop();
1403 
1404   // Build it now.
1405   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1406   set_method_data_pointer_for_bcp();
1407   ba(profile_continue);
1408   delayed()->nop();
1409   bind(done);
1410 }
1411 
1412 // Store a value at some constant offset from the method data pointer.
1413 
1414 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1415   assert(ProfileInterpreter, "must be profiling interpreter");
1416   st_ptr(value, ImethodDataPtr, constant);
1417 }
1418 
1419 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1420                                                       Register bumped_count,
1421                                                       bool decrement) {
1422   assert(ProfileInterpreter, "must be profiling interpreter");
1423 
1424   // Load the counter.
1425   ld_ptr(counter, bumped_count);
1426 
1427   if (decrement) {
1428     // Decrement the register.  Set condition codes.
1429     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1430 
1431     // If the decrement causes the counter to overflow, stay negative
1432     Label L;
1433     brx(Assembler::negative, true, Assembler::pn, L);
1434 
1435     // Store the decremented counter, if it is still negative.
1436     delayed()->st_ptr(bumped_count, counter);
1437     bind(L);
1438   } else {
1439     // Increment the register.  Set carry flag.
1440     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1441 
1442     // If the increment causes the counter to overflow, pull back by 1.
1443     assert(DataLayout::counter_increment == 1, "subc works");
1444     subc(bumped_count, G0, bumped_count);
1445 
1446     // Store the incremented counter.
1447     st_ptr(bumped_count, counter);
1448   }
1449 }
1450 
1451 // Increment the value at some constant offset from the method data pointer.
1452 
1453 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1454                                                       Register bumped_count,
1455                                                       bool decrement) {
1456   // Locate the counter at a fixed offset from the mdp:
1457   Address counter(ImethodDataPtr, constant);
1458   increment_mdp_data_at(counter, bumped_count, decrement);
1459 }
1460 
1461 // Increment the value at some non-fixed (reg + constant) offset from
1462 // the method data pointer.
1463 
1464 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1465                                                       int constant,
1466                                                       Register bumped_count,
1467                                                       Register scratch2,
1468                                                       bool decrement) {
1469   // Add the constant to reg to get the offset.
1470   add(ImethodDataPtr, reg, scratch2);
1471   Address counter(scratch2, constant);
1472   increment_mdp_data_at(counter, bumped_count, decrement);
1473 }
1474 
1475 // Set a flag value at the current method data pointer position.
1476 // Updates a single byte of the header, to avoid races with other header bits.
1477 
1478 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1479                                                 Register scratch) {
1480   assert(ProfileInterpreter, "must be profiling interpreter");
1481   // Load the data header
1482   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1483 
1484   // Set the flag
1485   or3(scratch, flag_constant, scratch);
1486 
1487   // Store the modified header.
1488   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1489 }
1490 
1491 // Test the location at some offset from the method data pointer.
1492 // If it is not equal to value, branch to the not_equal_continue Label.
1493 // Set condition codes to match the nullness of the loaded value.
1494 
1495 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1496                                                  Register value,
1497                                                  Label& not_equal_continue,
1498                                                  Register scratch) {
1499   assert(ProfileInterpreter, "must be profiling interpreter");
1500   ld_ptr(ImethodDataPtr, offset, scratch);
1501   cmp(value, scratch);
1502   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1503   delayed()->tst(scratch);
1504 }
1505 
1506 // Update the method data pointer by the displacement located at some fixed
1507 // offset from the method data pointer.
1508 
1509 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1510                                                      Register scratch) {
1511   assert(ProfileInterpreter, "must be profiling interpreter");
1512   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1513   add(ImethodDataPtr, scratch, ImethodDataPtr);
1514 }
1515 
1516 // Update the method data pointer by the displacement located at the
1517 // offset (reg + offset_of_disp).
1518 
1519 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1520                                                      int offset_of_disp,
1521                                                      Register scratch) {
1522   assert(ProfileInterpreter, "must be profiling interpreter");
1523   add(reg, offset_of_disp, scratch);
1524   ld_ptr(ImethodDataPtr, scratch, scratch);
1525   add(ImethodDataPtr, scratch, ImethodDataPtr);
1526 }
1527 
1528 // Update the method data pointer by a simple constant displacement.
1529 
1530 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1531   assert(ProfileInterpreter, "must be profiling interpreter");
1532   add(ImethodDataPtr, constant, ImethodDataPtr);
1533 }
1534 
1535 // Update the method data pointer for a _ret bytecode whose target
1536 // was not among our cached targets.
1537 
1538 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1539                                                    Register return_bci) {
1540   assert(ProfileInterpreter, "must be profiling interpreter");
1541   push(state);
1542   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1543   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1544   ld_ptr(l_tmp, return_bci);
1545   pop(state);
1546 }
1547 
1548 // Count a taken branch in the bytecodes.
1549 
1550 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1551   if (ProfileInterpreter) {
1552     Label profile_continue;
1553 
1554     // If no method data exists, go to profile_continue.
1555     test_method_data_pointer(profile_continue);
1556 
1557     // We are taking a branch.  Increment the taken count.
1558     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1559 
1560     // The method data pointer needs to be updated to reflect the new target.
1561     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1562     bind (profile_continue);
1563   }
1564 }
1565 
1566 
1567 // Count a not-taken branch in the bytecodes.
1568 
1569 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1570   if (ProfileInterpreter) {
1571     Label profile_continue;
1572 
1573     // If no method data exists, go to profile_continue.
1574     test_method_data_pointer(profile_continue);
1575 
1576     // We are taking a branch.  Increment the not taken count.
1577     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1578 
1579     // The method data pointer needs to be updated to correspond to the
1580     // next bytecode.
1581     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1582     bind (profile_continue);
1583   }
1584 }
1585 
1586 
1587 // Count a non-virtual call in the bytecodes.
1588 
1589 void InterpreterMacroAssembler::profile_call(Register scratch) {
1590   if (ProfileInterpreter) {
1591     Label profile_continue;
1592 
1593     // If no method data exists, go to profile_continue.
1594     test_method_data_pointer(profile_continue);
1595 
1596     // We are making a call.  Increment the count.
1597     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1598 
1599     // The method data pointer needs to be updated to reflect the new target.
1600     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1601     bind (profile_continue);
1602   }
1603 }
1604 
1605 
1606 // Count a final call in the bytecodes.
1607 
1608 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1609   if (ProfileInterpreter) {
1610     Label profile_continue;
1611 
1612     // If no method data exists, go to profile_continue.
1613     test_method_data_pointer(profile_continue);
1614 
1615     // We are making a call.  Increment the count.
1616     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1617 
1618     // The method data pointer needs to be updated to reflect the new target.
1619     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1620     bind (profile_continue);
1621   }
1622 }
1623 
1624 
1625 // Count a virtual call in the bytecodes.
1626 
1627 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1628                                                      Register scratch,
1629                                                      bool receiver_can_be_null) {
1630   if (ProfileInterpreter) {
1631     Label profile_continue;
1632 
1633     // If no method data exists, go to profile_continue.
1634     test_method_data_pointer(profile_continue);
1635 
1636 
1637     Label skip_receiver_profile;
1638     if (receiver_can_be_null) {
1639       Label not_null;
1640       br_notnull_short(receiver, Assembler::pt, not_null);
1641       // We are making a call.  Increment the count for null receiver.
1642       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1643       ba_short(skip_receiver_profile);
1644       bind(not_null);
1645     }
1646 
1647     // Record the receiver type.
1648     record_klass_in_profile(receiver, scratch, true);
1649     bind(skip_receiver_profile);
1650 
1651     // The method data pointer needs to be updated to reflect the new target.
1652     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1653     bind (profile_continue);
1654   }
1655 }
1656 
1657 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1658                                         Register receiver, Register scratch,
1659                                         int start_row, Label& done, bool is_virtual_call) {
1660   if (TypeProfileWidth == 0) {
1661     if (is_virtual_call) {
1662       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1663     }
1664     return;
1665   }
1666 
1667   int last_row = VirtualCallData::row_limit() - 1;
1668   assert(start_row <= last_row, "must be work left to do");
1669   // Test this row for both the receiver and for null.
1670   // Take any of three different outcomes:
1671   //   1. found receiver => increment count and goto done
1672   //   2. found null => keep looking for case 1, maybe allocate this cell
1673   //   3. found something else => keep looking for cases 1 and 2
1674   // Case 3 is handled by a recursive call.
1675   for (int row = start_row; row <= last_row; row++) {
1676     Label next_test;
1677     bool test_for_null_also = (row == start_row);
1678 
1679     // See if the receiver is receiver[n].
1680     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1681     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1682     // delayed()->tst(scratch);
1683 
1684     // The receiver is receiver[n].  Increment count[n].
1685     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1686     increment_mdp_data_at(count_offset, scratch);
1687     ba_short(done);
1688     bind(next_test);
1689 
1690     if (test_for_null_also) {
1691       Label found_null;
1692       // Failed the equality check on receiver[n]...  Test for null.
1693       if (start_row == last_row) {
1694         // The only thing left to do is handle the null case.
1695         if (is_virtual_call) {
1696           brx(Assembler::zero, false, Assembler::pn, found_null);
1697           delayed()->nop();
1698           // Receiver did not match any saved receiver and there is no empty row for it.
1699           // Increment total counter to indicate polymorphic case.
1700           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1701           ba_short(done);
1702           bind(found_null);
1703         } else {
1704           brx(Assembler::notZero, false, Assembler::pt, done);
1705           delayed()->nop();
1706         }
1707         break;
1708       }
1709       // Since null is rare, make it be the branch-taken case.
1710       brx(Assembler::zero, false, Assembler::pn, found_null);
1711       delayed()->nop();
1712 
1713       // Put all the "Case 3" tests here.
1714       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1715 
1716       // Found a null.  Keep searching for a matching receiver,
1717       // but remember that this is an empty (unused) slot.
1718       bind(found_null);
1719     }
1720   }
1721 
1722   // In the fall-through case, we found no matching receiver, but we
1723   // observed the receiver[start_row] is NULL.
1724 
1725   // Fill in the receiver field and increment the count.
1726   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1727   set_mdp_data_at(recvr_offset, receiver);
1728   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1729   mov(DataLayout::counter_increment, scratch);
1730   set_mdp_data_at(count_offset, scratch);
1731   if (start_row > 0) {
1732     ba_short(done);
1733   }
1734 }
1735 
1736 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1737                                                         Register scratch, bool is_virtual_call) {
1738   assert(ProfileInterpreter, "must be profiling");
1739   Label done;
1740 
1741   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1742 
1743   bind (done);
1744 }
1745 
1746 
1747 // Count a ret in the bytecodes.
1748 
1749 void InterpreterMacroAssembler::profile_ret(TosState state,
1750                                             Register return_bci,
1751                                             Register scratch) {
1752   if (ProfileInterpreter) {
1753     Label profile_continue;
1754     uint row;
1755 
1756     // If no method data exists, go to profile_continue.
1757     test_method_data_pointer(profile_continue);
1758 
1759     // Update the total ret count.
1760     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1761 
1762     for (row = 0; row < RetData::row_limit(); row++) {
1763       Label next_test;
1764 
1765       // See if return_bci is equal to bci[n]:
1766       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1767                        return_bci, next_test, scratch);
1768 
1769       // return_bci is equal to bci[n].  Increment the count.
1770       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1771 
1772       // The method data pointer needs to be updated to reflect the new target.
1773       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1774       ba_short(profile_continue);
1775       bind(next_test);
1776     }
1777 
1778     update_mdp_for_ret(state, return_bci);
1779 
1780     bind (profile_continue);
1781   }
1782 }
1783 
1784 // Profile an unexpected null in the bytecodes.
1785 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1786   if (ProfileInterpreter) {
1787     Label profile_continue;
1788 
1789     // If no method data exists, go to profile_continue.
1790     test_method_data_pointer(profile_continue);
1791 
1792     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1793 
1794     // The method data pointer needs to be updated.
1795     int mdp_delta = in_bytes(BitData::bit_data_size());
1796     if (TypeProfileCasts) {
1797       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1798     }
1799     update_mdp_by_constant(mdp_delta);
1800 
1801     bind (profile_continue);
1802   }
1803 }
1804 
1805 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1806                                                   Register scratch) {
1807   if (ProfileInterpreter) {
1808     Label profile_continue;
1809 
1810     // If no method data exists, go to profile_continue.
1811     test_method_data_pointer(profile_continue);
1812 
1813     int mdp_delta = in_bytes(BitData::bit_data_size());
1814     if (TypeProfileCasts) {
1815       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1816 
1817       // Record the object type.
1818       record_klass_in_profile(klass, scratch, false);
1819     }
1820 
1821     // The method data pointer needs to be updated.
1822     update_mdp_by_constant(mdp_delta);
1823 
1824     bind (profile_continue);
1825   }
1826 }
1827 
1828 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1829   if (ProfileInterpreter && TypeProfileCasts) {
1830     Label profile_continue;
1831 
1832     // If no method data exists, go to profile_continue.
1833     test_method_data_pointer(profile_continue);
1834 
1835     int count_offset = in_bytes(CounterData::count_offset());
1836     // Back up the address, since we have already bumped the mdp.
1837     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1838 
1839     // *Decrement* the counter.  We expect to see zero or small negatives.
1840     increment_mdp_data_at(count_offset, scratch, true);
1841 
1842     bind (profile_continue);
1843   }
1844 }
1845 
1846 // Count the default case of a switch construct.
1847 
1848 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1849   if (ProfileInterpreter) {
1850     Label profile_continue;
1851 
1852     // If no method data exists, go to profile_continue.
1853     test_method_data_pointer(profile_continue);
1854 
1855     // Update the default case count
1856     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1857                           scratch);
1858 
1859     // The method data pointer needs to be updated.
1860     update_mdp_by_offset(
1861                     in_bytes(MultiBranchData::default_displacement_offset()),
1862                     scratch);
1863 
1864     bind (profile_continue);
1865   }
1866 }
1867 
1868 // Count the index'th case of a switch construct.
1869 
1870 void InterpreterMacroAssembler::profile_switch_case(Register index,
1871                                                     Register scratch,
1872                                                     Register scratch2,
1873                                                     Register scratch3) {
1874   if (ProfileInterpreter) {
1875     Label profile_continue;
1876 
1877     // If no method data exists, go to profile_continue.
1878     test_method_data_pointer(profile_continue);
1879 
1880     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1881     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1882     smul(index, scratch, scratch);
1883     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1884 
1885     // Update the case count
1886     increment_mdp_data_at(scratch,
1887                           in_bytes(MultiBranchData::relative_count_offset()),
1888                           scratch2,
1889                           scratch3);
1890 
1891     // The method data pointer needs to be updated.
1892     update_mdp_by_offset(scratch,
1893                      in_bytes(MultiBranchData::relative_displacement_offset()),
1894                      scratch2);
1895 
1896     bind (profile_continue);
1897   }
1898 }
1899 
1900 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
1901 
1902 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1903                                                       Register Rtemp,
1904                                                       Register Rtemp2 ) {
1905 
1906   Register Rlimit = Lmonitors;
1907   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1908   assert( (delta & LongAlignmentMask) == 0,
1909           "sizeof BasicObjectLock must be even number of doublewords");
1910 
1911   sub( SP,        delta, SP);
1912   sub( Lesp,      delta, Lesp);
1913   sub( Lmonitors, delta, Lmonitors);
1914 
1915   if (!stack_is_empty) {
1916 
1917     // must copy stack contents down
1918 
1919     Label start_copying, next;
1920 
1921     // untested("monitor stack expansion");
1922     compute_stack_base(Rtemp);
1923     ba(start_copying);
1924     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
1925 
1926     // note: must copy from low memory upwards
1927     // On entry to loop,
1928     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1929     // Loop mutates Rtemp
1930 
1931     bind( next);
1932 
1933     st_ptr(Rtemp2, Rtemp, 0);
1934     inc(Rtemp, wordSize);
1935     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1936 
1937     bind( start_copying );
1938 
1939     brx( notEqual, true, pn, next );
1940     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1941 
1942     // done copying stack
1943   }
1944 }
1945 
1946 // Locals
1947 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1948   assert_not_delayed();
1949   sll(index, Interpreter::logStackElementSize, index);
1950   sub(Llocals, index, index);
1951   ld_ptr(index, 0, dst);
1952   // Note:  index must hold the effective address--the iinc template uses it
1953 }
1954 
1955 // Just like access_local_ptr but the tag is a returnAddress
1956 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1957                                                            Register dst ) {
1958   assert_not_delayed();
1959   sll(index, Interpreter::logStackElementSize, index);
1960   sub(Llocals, index, index);
1961   ld_ptr(index, 0, dst);
1962 }
1963 
1964 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1965   assert_not_delayed();
1966   sll(index, Interpreter::logStackElementSize, index);
1967   sub(Llocals, index, index);
1968   ld(index, 0, dst);
1969   // Note:  index must hold the effective address--the iinc template uses it
1970 }
1971 
1972 
1973 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1974   assert_not_delayed();
1975   sll(index, Interpreter::logStackElementSize, index);
1976   sub(Llocals, index, index);
1977   // First half stored at index n+1 (which grows down from Llocals[n])
1978   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1979 }
1980 
1981 
1982 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1983   assert_not_delayed();
1984   sll(index, Interpreter::logStackElementSize, index);
1985   sub(Llocals, index, index);
1986   ldf(FloatRegisterImpl::S, index, 0, dst);
1987 }
1988 
1989 
1990 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1991   assert_not_delayed();
1992   sll(index, Interpreter::logStackElementSize, index);
1993   sub(Llocals, index, index);
1994   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
1995 }
1996 
1997 
1998 #ifdef ASSERT
1999 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2000   Label L;
2001 
2002   assert(Rindex != Rscratch, "Registers cannot be same");
2003   assert(Rindex != Rscratch1, "Registers cannot be same");
2004   assert(Rlimit != Rscratch, "Registers cannot be same");
2005   assert(Rlimit != Rscratch1, "Registers cannot be same");
2006   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2007 
2008   // untested("reg area corruption");
2009   add(Rindex, offset, Rscratch);
2010   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2011   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2012   stop("regsave area is being clobbered");
2013   bind(L);
2014 }
2015 #endif // ASSERT
2016 
2017 
2018 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2019   assert_not_delayed();
2020   sll(index, Interpreter::logStackElementSize, index);
2021   sub(Llocals, index, index);
2022   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2023   st(src, index, 0);
2024 }
2025 
2026 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2027   assert_not_delayed();
2028   sll(index, Interpreter::logStackElementSize, index);
2029   sub(Llocals, index, index);
2030 #ifdef ASSERT
2031   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2032 #endif
2033   st_ptr(src, index, 0);
2034 }
2035 
2036 
2037 
2038 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2039   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2040 }
2041 
2042 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2043   assert_not_delayed();
2044   sll(index, Interpreter::logStackElementSize, index);
2045   sub(Llocals, index, index);
2046 #ifdef ASSERT
2047   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2048 #endif
2049   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2050 }
2051 
2052 
2053 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2054   assert_not_delayed();
2055   sll(index, Interpreter::logStackElementSize, index);
2056   sub(Llocals, index, index);
2057 #ifdef ASSERT
2058   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2059 #endif
2060   stf(FloatRegisterImpl::S, src, index, 0);
2061 }
2062 
2063 
2064 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2065   assert_not_delayed();
2066   sll(index, Interpreter::logStackElementSize, index);
2067   sub(Llocals, index, index);
2068 #ifdef ASSERT
2069   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2070 #endif
2071   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2072 }
2073 
2074 
2075 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2076   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2077   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2078   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2079 }
2080 
2081 
2082 Address InterpreterMacroAssembler::top_most_monitor() {
2083   return Address(FP, top_most_monitor_byte_offset());
2084 }
2085 
2086 
2087 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2088   add( Lesp,      wordSize,                                    Rdest );
2089 }
2090 
2091 #endif /* CC_INTERP */
2092 
2093 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2094   assert(UseCompiler, "incrementing must be useful");
2095 #ifdef CC_INTERP
2096   Address inv_counter(G5_method, Method::invocation_counter_offset() +
2097                                  InvocationCounter::counter_offset());
2098   Address be_counter (G5_method, Method::backedge_counter_offset() +
2099                                  InvocationCounter::counter_offset());
2100 #else
2101   Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2102                                InvocationCounter::counter_offset());
2103   Address be_counter (Lmethod, Method::backedge_counter_offset() +
2104                                InvocationCounter::counter_offset());
2105 #endif /* CC_INTERP */
2106   int delta = InvocationCounter::count_increment;
2107 
2108   // Load each counter in a register
2109   ld( inv_counter, Rtmp );
2110   ld( be_counter, Rtmp2 );
2111 
2112   assert( is_simm13( delta ), " delta too large.");
2113 
2114   // Add the delta to the invocation counter and store the result
2115   add( Rtmp, delta, Rtmp );
2116 
2117   // Mask the backedge counter
2118   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2119 
2120   // Store value
2121   st( Rtmp, inv_counter);
2122 
2123   // Add invocation counter + backedge counter
2124   add( Rtmp, Rtmp2, Rtmp);
2125 
2126   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2127 }
2128 
2129 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2130   assert(UseCompiler, "incrementing must be useful");
2131 #ifdef CC_INTERP
2132   Address be_counter (G5_method, Method::backedge_counter_offset() +
2133                                  InvocationCounter::counter_offset());
2134   Address inv_counter(G5_method, Method::invocation_counter_offset() +
2135                                  InvocationCounter::counter_offset());
2136 #else
2137   Address be_counter (Lmethod, Method::backedge_counter_offset() +
2138                                InvocationCounter::counter_offset());
2139   Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2140                                InvocationCounter::counter_offset());
2141 #endif /* CC_INTERP */
2142   int delta = InvocationCounter::count_increment;
2143   // Load each counter in a register
2144   ld( be_counter, Rtmp );
2145   ld( inv_counter, Rtmp2 );
2146 
2147   // Add the delta to the backedge counter
2148   add( Rtmp, delta, Rtmp );
2149 
2150   // Mask the invocation counter, add to backedge counter
2151   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2152 
2153   // and store the result to memory
2154   st( Rtmp, be_counter );
2155 
2156   // Add backedge + invocation counter
2157   add( Rtmp, Rtmp2, Rtmp );
2158 
2159   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2160 }
2161 
2162 #ifndef CC_INTERP
2163 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2164                                                              Register branch_bcp,
2165                                                              Register Rtmp ) {
2166   Label did_not_overflow;
2167   Label overflow_with_error;
2168   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2169   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2170 
2171   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2172   load_contents(limit, Rtmp);
2173   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2174 
2175   // When ProfileInterpreter is on, the backedge_count comes from the
2176   // MethodData*, which value does not get reset on the call to
2177   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2178   // routine while the method is being compiled, add a second test to make sure
2179   // the overflow function is called only once every overflow_frequency.
2180   if (ProfileInterpreter) {
2181     const int overflow_frequency = 1024;
2182     andcc(backedge_count, overflow_frequency-1, Rtmp);
2183     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2184     delayed()->nop();
2185   }
2186 
2187   // overflow in loop, pass branch bytecode
2188   set(6,Rtmp);
2189   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2190 
2191   // Was an OSR adapter generated?
2192   // O0 = osr nmethod
2193   br_null_short(O0, Assembler::pn, overflow_with_error);
2194 
2195   // Has the nmethod been invalidated already?
2196   ld(O0, nmethod::entry_bci_offset(), O2);
2197   cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
2198 
2199   // migrate the interpreter frame off of the stack
2200 
2201   mov(G2_thread, L7);
2202   // save nmethod
2203   mov(O0, L6);
2204   set_last_Java_frame(SP, noreg);
2205   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2206   reset_last_Java_frame();
2207   mov(L7, G2_thread);
2208 
2209   // move OSR nmethod to I1
2210   mov(L6, I1);
2211 
2212   // OSR buffer to I0
2213   mov(O0, I0);
2214 
2215   // remove the interpreter frame
2216   restore(I5_savedSP, 0, SP);
2217 
2218   // Jump to the osr code.
2219   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2220   jmp(O2, G0);
2221   delayed()->nop();
2222 
2223   bind(overflow_with_error);
2224 
2225   bind(did_not_overflow);
2226 }
2227 
2228 
2229 
2230 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2231   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2232 }
2233 
2234 
2235 // local helper function for the verify_oop_or_return_address macro
2236 static bool verify_return_address(Method* m, int bci) {
2237 #ifndef PRODUCT
2238   address pc = (address)(m->constMethod())
2239              + in_bytes(ConstMethod::codes_offset()) + bci;
2240   // assume it is a valid return address if it is inside m and is preceded by a jsr
2241   if (!m->contains(pc))                                          return false;
2242   address jsr_pc;
2243   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2244   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2245   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2246   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2247 #endif // PRODUCT
2248   return false;
2249 }
2250 
2251 
2252 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2253   if (!VerifyOops)  return;
2254   // the VM documentation for the astore[_wide] bytecode allows
2255   // the TOS to be not only an oop but also a return address
2256   Label test;
2257   Label skip;
2258   // See if it is an address (in the current method):
2259 
2260   mov(reg, Rtmp);
2261   const int log2_bytecode_size_limit = 16;
2262   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2263   br_notnull_short( Rtmp, pt, test );
2264 
2265   // %%% should use call_VM_leaf here?
2266   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2267   save_thread(L7_thread_cache);
2268   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2269   delayed()->nop();
2270   restore_thread(L7_thread_cache);
2271   br_notnull( O0, false, pt, skip );
2272   delayed()->restore();
2273 
2274   // Perform a more elaborate out-of-line call
2275   // Not an address; verify it:
2276   bind(test);
2277   verify_oop(reg);
2278   bind(skip);
2279 }
2280 
2281 
2282 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2283   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2284 }
2285 #endif /* CC_INTERP */
2286 
2287 // Inline assembly for:
2288 //
2289 // if (thread is in interp_only_mode) {
2290 //   InterpreterRuntime::post_method_entry();
2291 // }
2292 // if (DTraceMethodProbes) {
2293 //   SharedRuntime::dtrace_method_entry(method, receiver);
2294 // }
2295 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2296 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2297 // }
2298 
2299 void InterpreterMacroAssembler::notify_method_entry() {
2300 
2301   // C++ interpreter only uses this for native methods.
2302 
2303   // Whenever JVMTI puts a thread in interp_only_mode, method
2304   // entry/exit events are sent for that thread to track stack
2305   // depth.  If it is possible to enter interp_only_mode we add
2306   // the code to check if the event should be sent.
2307   if (JvmtiExport::can_post_interpreter_events()) {
2308     Label L;
2309     Register temp_reg = O5;
2310     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2311     ld(interp_only, temp_reg);
2312     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2313     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2314     bind(L);
2315   }
2316 
2317   {
2318     Register temp_reg = O5;
2319     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2320     call_VM_leaf(noreg,
2321       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2322       G2_thread, Lmethod);
2323   }
2324 
2325   // RedefineClasses() tracing support for obsolete method entry
2326   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2327     call_VM_leaf(noreg,
2328       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2329       G2_thread, Lmethod);
2330   }
2331 }
2332 
2333 
2334 // Inline assembly for:
2335 //
2336 // if (thread is in interp_only_mode) {
2337 //   // save result
2338 //   InterpreterRuntime::post_method_exit();
2339 //   // restore result
2340 // }
2341 // if (DTraceMethodProbes) {
2342 //   SharedRuntime::dtrace_method_exit(thread, method);
2343 // }
2344 //
2345 // Native methods have their result stored in d_tmp and l_tmp
2346 // Java methods have their result stored in the expression stack
2347 
2348 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2349                                                    TosState state,
2350                                                    NotifyMethodExitMode mode) {
2351   // C++ interpreter only uses this for native methods.
2352 
2353   // Whenever JVMTI puts a thread in interp_only_mode, method
2354   // entry/exit events are sent for that thread to track stack
2355   // depth.  If it is possible to enter interp_only_mode we add
2356   // the code to check if the event should be sent.
2357   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2358     Label L;
2359     Register temp_reg = O5;
2360     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2361     ld(interp_only, temp_reg);
2362     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2363 
2364     // Note: frame::interpreter_frame_result has a dependency on how the
2365     // method result is saved across the call to post_method_exit. For
2366     // native methods it assumes the result registers are saved to
2367     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2368     // implementation will need to be updated too.
2369 
2370     save_return_value(state, is_native_method);
2371     call_VM(noreg,
2372             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2373     restore_return_value(state, is_native_method);
2374     bind(L);
2375   }
2376 
2377   {
2378     Register temp_reg = O5;
2379     // Dtrace notification
2380     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2381     save_return_value(state, is_native_method);
2382     call_VM_leaf(
2383       noreg,
2384       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2385       G2_thread, Lmethod);
2386     restore_return_value(state, is_native_method);
2387   }
2388 }
2389 
2390 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2391 #ifdef CC_INTERP
2392   // result potentially in O0/O1: save it across calls
2393   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2394 #ifdef _LP64
2395   stx(O0, STATE(_native_lresult));
2396 #else
2397   std(O0, STATE(_native_lresult));
2398 #endif
2399 #else // CC_INTERP
2400   if (is_native_call) {
2401     stf(FloatRegisterImpl::D, F0, d_tmp);
2402 #ifdef _LP64
2403     stx(O0, l_tmp);
2404 #else
2405     std(O0, l_tmp);
2406 #endif
2407   } else {
2408     push(state);
2409   }
2410 #endif // CC_INTERP
2411 }
2412 
2413 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2414 #ifdef CC_INTERP
2415   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2416 #ifdef _LP64
2417   ldx(STATE(_native_lresult), O0);
2418 #else
2419   ldd(STATE(_native_lresult), O0);
2420 #endif
2421 #else // CC_INTERP
2422   if (is_native_call) {
2423     ldf(FloatRegisterImpl::D, d_tmp, F0);
2424 #ifdef _LP64
2425     ldx(l_tmp, O0);
2426 #else
2427     ldd(l_tmp, O0);
2428 #endif
2429   } else {
2430     pop(state);
2431   }
2432 #endif // CC_INTERP
2433 }
2434 
2435 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2436 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2437                                                         int increment, int mask,
2438                                                         Register scratch1, Register scratch2,
2439                                                         Condition cond, Label *where) {
2440   ld(counter_addr, scratch1);
2441   add(scratch1, increment, scratch1);
2442   if (is_simm13(mask)) {
2443     andcc(scratch1, mask, G0);
2444   } else {
2445     set(mask, scratch2);
2446     andcc(scratch1, scratch2,  G0);
2447   }
2448   br(cond, false, Assembler::pn, *where);
2449   delayed()->st(scratch1, counter_addr);
2450 }