1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_sparc.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 
  41 #ifndef CC_INTERP
  42 #ifndef FAST_DISPATCH
  43 #define FAST_DISPATCH 1
  44 #endif
  45 #undef FAST_DISPATCH
  46 
  47 // Implementation of InterpreterMacroAssembler
  48 
  49 // This file specializes the assember with interpreter-specific macros
  50 
  51 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  52 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  53 
  54 #else // CC_INTERP
  55 #ifndef STATE
  56 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  57 #endif // STATE
  58 
  59 #endif // CC_INTERP
  60 
  61 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  62   // Note: this algorithm is also used by C1's OSR entry sequence.
  63   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  64   assert_different_registers(args_size, locals_size);
  65   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  66   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  67   // Use br/mov combination because it works on both V8 and V9 and is
  68   // faster.
  69   Label skip_move;
  70   br(Assembler::negative, true, Assembler::pt, skip_move);
  71   delayed()->mov(G0, delta);
  72   bind(skip_move);
  73   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  74   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  75 }
  76 
  77 #ifndef CC_INTERP
  78 
  79 // Dispatch code executed in the prolog of a bytecode which does not do it's
  80 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  81 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  82   assert_not_delayed();
  83 #ifdef FAST_DISPATCH
  84   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  85   // they both use I2.
  86   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  87   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  88   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
  89                                                         // add offset to correct dispatch table
  90   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  91   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
  92 #else
  93   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  94   // dispatch table to use
  95   AddressLiteral tbl(Interpreter::dispatch_table(state));
  96   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  97   set(tbl, G3_scratch);                                 // compute addr of table
  98   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  99 #endif
 100 }
 101 
 102 
 103 // Dispatch code executed in the epilog of a bytecode which does not do it's
 104 // own dispatch. The dispatch address in IdispatchAddress is used for the
 105 // dispatch.
 106 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
 107   assert_not_delayed();
 108   verify_FPU(1, state);
 109   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 110   jmp( IdispatchAddress, 0 );
 111   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 112   else                delayed()->nop();
 113 }
 114 
 115 
 116 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
 117   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 118   assert_not_delayed();
 119   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 120   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
 121 }
 122 
 123 
 124 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 125   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 126   assert_not_delayed();
 127   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 128   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 129 }
 130 
 131 
 132 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 133   // load current bytecode
 134   assert_not_delayed();
 135   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 136   dispatch_base(state, table);
 137 }
 138 
 139 
 140 void InterpreterMacroAssembler::call_VM_leaf_base(
 141   Register java_thread,
 142   address  entry_point,
 143   int      number_of_arguments
 144 ) {
 145   if (!java_thread->is_valid())
 146     java_thread = L7_thread_cache;
 147   // super call
 148   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 149 }
 150 
 151 
 152 void InterpreterMacroAssembler::call_VM_base(
 153   Register        oop_result,
 154   Register        java_thread,
 155   Register        last_java_sp,
 156   address         entry_point,
 157   int             number_of_arguments,
 158   bool            check_exception
 159 ) {
 160   if (!java_thread->is_valid())
 161     java_thread = L7_thread_cache;
 162   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 163   // takes responsibility for setting its own thread-state on call-out.
 164   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 165 
 166   //save_bcp();                                  // save bcp
 167   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 168   //restore_bcp();                               // restore bcp
 169   //restore_locals();                            // restore locals pointer
 170 }
 171 
 172 
 173 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 174   if (JvmtiExport::can_pop_frame()) {
 175     Label L;
 176 
 177     // Check the "pending popframe condition" flag in the current thread
 178     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 179 
 180     // Initiate popframe handling only if it is not already being processed.  If the flag
 181     // has the popframe_processing bit set, it means that this code is called *during* popframe
 182     // handling - we don't want to reenter.
 183     btst(JavaThread::popframe_pending_bit, scratch_reg);
 184     br(zero, false, pt, L);
 185     delayed()->nop();
 186     btst(JavaThread::popframe_processing_bit, scratch_reg);
 187     br(notZero, false, pt, L);
 188     delayed()->nop();
 189 
 190     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 191     // address of the same-named entrypoint in the generated interpreter code.
 192     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 193 
 194     // Jump to Interpreter::_remove_activation_preserving_args_entry
 195     jmpl(O0, G0, G0);
 196     delayed()->nop();
 197     bind(L);
 198   }
 199 }
 200 
 201 
 202 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 203   Register thr_state = G4_scratch;
 204   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 205   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 206   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 207   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 208   switch (state) {
 209   case ltos: ld_long(val_addr, Otos_l);                   break;
 210   case atos: ld_ptr(oop_addr, Otos_l);
 211              st_ptr(G0, oop_addr);                        break;
 212   case btos:                                           // fall through
 213   case ctos:                                           // fall through
 214   case stos:                                           // fall through
 215   case itos: ld(val_addr, Otos_l1);                       break;
 216   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 217   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 218   case vtos: /* nothing to do */                          break;
 219   default  : ShouldNotReachHere();
 220   }
 221   // Clean up tos value in the jvmti thread state
 222   or3(G0, ilgl, G3_scratch);
 223   stw(G3_scratch, tos_addr);
 224   st_long(G0, val_addr);
 225   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 226 }
 227 
 228 
 229 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 230   if (JvmtiExport::can_force_early_return()) {
 231     Label L;
 232     Register thr_state = G3_scratch;
 233     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 234     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 235 
 236     // Initiate earlyret handling only if it is not already being processed.
 237     // If the flag has the earlyret_processing bit set, it means that this code
 238     // is called *during* earlyret handling - we don't want to reenter.
 239     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 240     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
 241 
 242     // Call Interpreter::remove_activation_early_entry() to get the address of the
 243     // same-named entrypoint in the generated interpreter code
 244     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 245     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 246 
 247     // Jump to Interpreter::_remove_activation_early_entry
 248     jmpl(O0, G0, G0);
 249     delayed()->nop();
 250     bind(L);
 251   }
 252 }
 253 
 254 
 255 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 256   mov(arg_1, O0);
 257   mov(arg_2, O1);
 258   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 259 }
 260 #endif /* CC_INTERP */
 261 
 262 
 263 #ifndef CC_INTERP
 264 
 265 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 266   assert_not_delayed();
 267   dispatch_Lbyte_code(state, table);
 268 }
 269 
 270 
 271 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 272   dispatch_base(state, Interpreter::normal_table(state));
 273 }
 274 
 275 
 276 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 277   dispatch_base(state, Interpreter::dispatch_table(state));
 278 }
 279 
 280 
 281 // common code to dispatch and dispatch_only
 282 // dispatch value in Lbyte_code and increment Lbcp
 283 
 284 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
 285   verify_FPU(1, state);
 286   // %%%%% maybe implement +VerifyActivationFrameSize here
 287   //verify_thread(); //too slow; we will just verify on method entry & exit
 288   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 289 #ifdef FAST_DISPATCH
 290   if (table == Interpreter::dispatch_table(state)) {
 291     // use IdispatchTables
 292     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 293                                                         // add offset to correct dispatch table
 294     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 295     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
 296   } else {
 297 #endif
 298     // dispatch table to use
 299     AddressLiteral tbl(table);
 300     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 301     set(tbl, G3_scratch);                               // compute addr of table
 302     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 303 #ifdef FAST_DISPATCH
 304   }
 305 #endif
 306   jmp( G3_scratch, 0 );
 307   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 308   else                delayed()->nop();
 309 }
 310 
 311 
 312 // Helpers for expression stack
 313 
 314 // Longs and doubles are Category 2 computational types in the
 315 // JVM specification (section 3.11.1) and take 2 expression stack or
 316 // local slots.
 317 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 318 // for the dup* bytecodes depends on what types are already on the stack.
 319 // If the types are split into the two stack/local slots, that is much easier
 320 // (and we can use 0 for non-reference tags).
 321 
 322 // Known good alignment in _LP64 but unknown otherwise
 323 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 324   assert_not_delayed();
 325 
 326 #ifdef _LP64
 327   ldf(FloatRegisterImpl::D, r1, offset, d);
 328 #else
 329   ldf(FloatRegisterImpl::S, r1, offset, d);
 330   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
 331 #endif
 332 }
 333 
 334 // Known good alignment in _LP64 but unknown otherwise
 335 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 336   assert_not_delayed();
 337 
 338 #ifdef _LP64
 339   stf(FloatRegisterImpl::D, d, r1, offset);
 340   // store something more useful here
 341   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 342 #else
 343   stf(FloatRegisterImpl::S, d, r1, offset);
 344   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
 345 #endif
 346 }
 347 
 348 
 349 // Known good alignment in _LP64 but unknown otherwise
 350 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 351   assert_not_delayed();
 352 #ifdef _LP64
 353   ldx(r1, offset, rd);
 354 #else
 355   ld(r1, offset, rd);
 356   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
 357 #endif
 358 }
 359 
 360 // Known good alignment in _LP64 but unknown otherwise
 361 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 362   assert_not_delayed();
 363 
 364 #ifdef _LP64
 365   stx(l, r1, offset);
 366   // store something more useful here
 367   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 368 #else
 369   st(l, r1, offset);
 370   st(l->successor(), r1, offset + Interpreter::stackElementSize);
 371 #endif
 372 }
 373 
 374 void InterpreterMacroAssembler::pop_i(Register r) {
 375   assert_not_delayed();
 376   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 377   inc(Lesp, Interpreter::stackElementSize);
 378   debug_only(verify_esp(Lesp));
 379 }
 380 
 381 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 382   assert_not_delayed();
 383   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 384   inc(Lesp, Interpreter::stackElementSize);
 385   debug_only(verify_esp(Lesp));
 386 }
 387 
 388 void InterpreterMacroAssembler::pop_l(Register r) {
 389   assert_not_delayed();
 390   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 391   inc(Lesp, 2*Interpreter::stackElementSize);
 392   debug_only(verify_esp(Lesp));
 393 }
 394 
 395 
 396 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 397   assert_not_delayed();
 398   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 399   inc(Lesp, Interpreter::stackElementSize);
 400   debug_only(verify_esp(Lesp));
 401 }
 402 
 403 
 404 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 405   assert_not_delayed();
 406   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 407   inc(Lesp, 2*Interpreter::stackElementSize);
 408   debug_only(verify_esp(Lesp));
 409 }
 410 
 411 
 412 void InterpreterMacroAssembler::push_i(Register r) {
 413   assert_not_delayed();
 414   debug_only(verify_esp(Lesp));
 415   st(r, Lesp, 0);
 416   dec(Lesp, Interpreter::stackElementSize);
 417 }
 418 
 419 void InterpreterMacroAssembler::push_ptr(Register r) {
 420   assert_not_delayed();
 421   st_ptr(r, Lesp, 0);
 422   dec(Lesp, Interpreter::stackElementSize);
 423 }
 424 
 425 // remember: our convention for longs in SPARC is:
 426 // O0 (Otos_l1) has high-order part in first word,
 427 // O1 (Otos_l2) has low-order part in second word
 428 
 429 void InterpreterMacroAssembler::push_l(Register r) {
 430   assert_not_delayed();
 431   debug_only(verify_esp(Lesp));
 432   // Longs are stored in memory-correct order, even if unaligned.
 433   int offset = -Interpreter::stackElementSize;
 434   store_unaligned_long(r, Lesp, offset);
 435   dec(Lesp, 2 * Interpreter::stackElementSize);
 436 }
 437 
 438 
 439 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 440   assert_not_delayed();
 441   debug_only(verify_esp(Lesp));
 442   stf(FloatRegisterImpl::S, f, Lesp, 0);
 443   dec(Lesp, Interpreter::stackElementSize);
 444 }
 445 
 446 
 447 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 448   assert_not_delayed();
 449   debug_only(verify_esp(Lesp));
 450   // Longs are stored in memory-correct order, even if unaligned.
 451   int offset = -Interpreter::stackElementSize;
 452   store_unaligned_double(d, Lesp, offset);
 453   dec(Lesp, 2 * Interpreter::stackElementSize);
 454 }
 455 
 456 
 457 void InterpreterMacroAssembler::push(TosState state) {
 458   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 459   switch (state) {
 460     case atos: push_ptr();            break;
 461     case btos: push_i();              break;
 462     case ctos:
 463     case stos: push_i();              break;
 464     case itos: push_i();              break;
 465     case ltos: push_l();              break;
 466     case ftos: push_f();              break;
 467     case dtos: push_d();              break;
 468     case vtos: /* nothing to do */    break;
 469     default  : ShouldNotReachHere();
 470   }
 471 }
 472 
 473 
 474 void InterpreterMacroAssembler::pop(TosState state) {
 475   switch (state) {
 476     case atos: pop_ptr();            break;
 477     case btos: pop_i();              break;
 478     case ctos:
 479     case stos: pop_i();              break;
 480     case itos: pop_i();              break;
 481     case ltos: pop_l();              break;
 482     case ftos: pop_f();              break;
 483     case dtos: pop_d();              break;
 484     case vtos: /* nothing to do */   break;
 485     default  : ShouldNotReachHere();
 486   }
 487   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 488 }
 489 
 490 
 491 // Helpers for swap and dup
 492 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 493   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 494 }
 495 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 496   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 497 }
 498 
 499 
 500 void InterpreterMacroAssembler::load_receiver(Register param_count,
 501                                               Register recv) {
 502   sll(param_count, Interpreter::logStackElementSize, param_count);
 503   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
 504 }
 505 
 506 void InterpreterMacroAssembler::empty_expression_stack() {
 507   // Reset Lesp.
 508   sub( Lmonitors, wordSize, Lesp );
 509 
 510   // Reset SP by subtracting more space from Lesp.
 511   Label done;
 512   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 513 
 514   // A native does not need to do this, since its callee does not change SP.
 515   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
 516   btst(JVM_ACC_NATIVE, Gframe_size);
 517   br(Assembler::notZero, false, Assembler::pt, done);
 518   delayed()->nop();
 519 
 520   // Compute max expression stack+register save area
 521   lduh(Lmethod, in_bytes(Method::max_stack_offset()), Gframe_size);  // Load max stack.
 522   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
 523 
 524   //
 525   // now set up a stack frame with the size computed above
 526   //
 527   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 528   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 529   sub( Lesp, Gframe_size, Gframe_size );
 530   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 531   debug_only(verify_sp(Gframe_size, G4_scratch));
 532 #ifdef _LP64
 533   sub(Gframe_size, STACK_BIAS, Gframe_size );
 534 #endif
 535   mov(Gframe_size, SP);
 536 
 537   bind(done);
 538 }
 539 
 540 
 541 #ifdef ASSERT
 542 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 543   Label Bad, OK;
 544 
 545   // Saved SP must be aligned.
 546 #ifdef _LP64
 547   btst(2*BytesPerWord-1, Rsp);
 548 #else
 549   btst(LongAlignmentMask, Rsp);
 550 #endif
 551   br(Assembler::notZero, false, Assembler::pn, Bad);
 552   delayed()->nop();
 553 
 554   // Saved SP, plus register window size, must not be above FP.
 555   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 556 #ifdef _LP64
 557   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 558 #endif
 559   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
 560 
 561   // Saved SP must not be ridiculously below current SP.
 562   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 563   set(maxstack, Rtemp);
 564   sub(SP, Rtemp, Rtemp);
 565 #ifdef _LP64
 566   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 567 #endif
 568   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
 569 
 570   ba_short(OK);
 571 
 572   bind(Bad);
 573   stop("on return to interpreted call, restored SP is corrupted");
 574 
 575   bind(OK);
 576 }
 577 
 578 
 579 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 580   // about to read or write Resp[0]
 581   // make sure it is not in the monitors or the register save area
 582   Label OK1, OK2;
 583 
 584   cmp(Resp, Lmonitors);
 585   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 586   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 587   stop("too many pops:  Lesp points into monitor area");
 588   bind(OK1);
 589 #ifdef _LP64
 590   sub(Resp, STACK_BIAS, Resp);
 591 #endif
 592   cmp(Resp, SP);
 593   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 594   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 595   stop("too many pushes:  Lesp points into register window");
 596   bind(OK2);
 597 }
 598 #endif // ASSERT
 599 
 600 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 601 // do the call. Centralized so that all interpreter calls will do the same actions.
 602 // If jvmti single stepping is on for a thread we must not call compiled code.
 603 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 604 
 605   // Assume we want to go compiled if available
 606 
 607   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
 608 
 609   if (JvmtiExport::can_post_interpreter_events()) {
 610     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 611     // compiled code in threads for which the event is enabled.  Check here for
 612     // interp_only_mode if these events CAN be enabled.
 613     verify_thread();
 614     Label skip_compiled_code;
 615 
 616     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 617     ld(interp_only, scratch);
 618     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
 619     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
 620     bind(skip_compiled_code);
 621   }
 622 
 623   // the i2c_adapters need Method* in G5_method (right? %%%)
 624   // do the call
 625 #ifdef ASSERT
 626   {
 627     Label ok;
 628     br_notnull_short(target, Assembler::pt, ok);
 629     stop("null entry point");
 630     bind(ok);
 631   }
 632 #endif // ASSERT
 633 
 634   // Adjust Rret first so Llast_SP can be same as Rret
 635   add(Rret, -frame::pc_return_offset, O7);
 636   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 637   // Record SP so we can remove any stack space allocated by adapter transition
 638   jmp(target, 0);
 639   delayed()->mov(SP, Llast_SP);
 640 }
 641 
 642 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 643   assert_not_delayed();
 644 
 645   Label not_taken;
 646   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 647   else             br (cc, false, Assembler::pn, not_taken);
 648   delayed()->nop();
 649 
 650   TemplateTable::branch(false,false);
 651 
 652   bind(not_taken);
 653 
 654   profile_not_taken_branch(G3_scratch);
 655 }
 656 
 657 
 658 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 659                                   int         bcp_offset,
 660                                   Register    Rtmp,
 661                                   Register    Rdst,
 662                                   signedOrNot is_signed,
 663                                   setCCOrNot  should_set_CC ) {
 664   assert(Rtmp != Rdst, "need separate temp register");
 665   assert_not_delayed();
 666   switch (is_signed) {
 667    default: ShouldNotReachHere();
 668 
 669    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 670    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 671   }
 672   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 673   sll( Rdst, BitsPerByte, Rdst);
 674   switch (should_set_CC ) {
 675    default: ShouldNotReachHere();
 676 
 677    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 678    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 679   }
 680 }
 681 
 682 
 683 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 684                                   int        bcp_offset,
 685                                   Register   Rtmp,
 686                                   Register   Rdst,
 687                                   setCCOrNot should_set_CC ) {
 688   assert(Rtmp != Rdst, "need separate temp register");
 689   assert_not_delayed();
 690   add( Lbcp, bcp_offset, Rtmp);
 691   andcc( Rtmp, 3, G0);
 692   Label aligned;
 693   switch (should_set_CC ) {
 694    default: ShouldNotReachHere();
 695 
 696    case      set_CC: break;
 697    case dont_set_CC: break;
 698   }
 699 
 700   br(Assembler::zero, true, Assembler::pn, aligned);
 701 #ifdef _LP64
 702   delayed()->ldsw(Rtmp, 0, Rdst);
 703 #else
 704   delayed()->ld(Rtmp, 0, Rdst);
 705 #endif
 706 
 707   ldub(Lbcp, bcp_offset + 3, Rdst);
 708   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 709   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 710 #ifdef _LP64
 711   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 712 #else
 713   // Unsigned load is faster than signed on some implementations
 714   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 715 #endif
 716   or3(Rtmp, Rdst, Rdst );
 717 
 718   bind(aligned);
 719   if (should_set_CC == set_CC) tst(Rdst);
 720 }
 721 
 722 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
 723                                                        int bcp_offset, size_t index_size) {
 724   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 725   if (index_size == sizeof(u2)) {
 726     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
 727   } else if (index_size == sizeof(u4)) {
 728     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 729     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
 730     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 731     xor3(index, -1, index);  // convert to plain index
 732   } else if (index_size == sizeof(u1)) {
 733     ldub(Lbcp, bcp_offset, index);
 734   } else {
 735     ShouldNotReachHere();
 736   }
 737 }
 738 
 739 
 740 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 741                                                            int bcp_offset, size_t index_size) {
 742   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 743   assert_different_registers(cache, tmp);
 744   assert_not_delayed();
 745   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 746   // convert from field index to ConstantPoolCacheEntry index and from
 747   // word index to byte offset
 748   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 749   add(LcpoolCache, tmp, cache);
 750 }
 751 
 752 
 753 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 754                                                                         Register temp,
 755                                                                         Register bytecode,
 756                                                                         int byte_no,
 757                                                                         int bcp_offset,
 758                                                                         size_t index_size) {
 759   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
 760   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
 761   const int shift_count = (1 + byte_no) * BitsPerByte;
 762   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 763          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 764          "correct shift count");
 765   srl(bytecode, shift_count, bytecode);
 766   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 767   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
 768 }
 769 
 770 
 771 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 772                                                                int bcp_offset, size_t index_size) {
 773   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 774   assert_different_registers(cache, tmp);
 775   assert_not_delayed();
 776   if (index_size == sizeof(u2)) {
 777     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 778   } else {
 779     ShouldNotReachHere();  // other sizes not supported here
 780   }
 781               // convert from field index to ConstantPoolCacheEntry index
 782               // and from word index to byte offset
 783   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 784               // skip past the header
 785   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
 786               // construct pointer to cache entry
 787   add(LcpoolCache, tmp, cache);
 788 }
 789 
 790 
 791 // Load object from cpool->resolved_references(index)
 792 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 793                                            Register result, Register index) {
 794   assert_different_registers(result, index);
 795   assert_not_delayed();
 796   // convert from field index to resolved_references() index and from
 797   // word index to byte offset. Since this is a java object, it can be compressed
 798   Register tmp = index;  // reuse
 799   sll(index, LogBytesPerHeapOop, tmp);
 800   get_constant_pool(result);
 801   // load pointer for resolved_references[] objArray
 802   ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
 803   // JNIHandles::resolve(result)
 804   ld_ptr(result, 0, result);
 805   // Add in the index
 806   add(result, tmp, result);
 807   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 808 }
 809 
 810 
 811 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 812 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 813 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 814                                                   Register Rsuper_klass,
 815                                                   Register Rtmp1,
 816                                                   Register Rtmp2,
 817                                                   Register Rtmp3,
 818                                                   Label &ok_is_subtype ) {
 819   Label not_subtype;
 820 
 821   // Profile the not-null value's klass.
 822   profile_typecheck(Rsub_klass, Rtmp1);
 823 
 824   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 825                                 Rtmp1, Rtmp2,
 826                                 &ok_is_subtype, &not_subtype, NULL);
 827 
 828   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 829                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 830                                 &ok_is_subtype, NULL);
 831 
 832   bind(not_subtype);
 833   profile_typecheck_failed(Rtmp1);
 834 }
 835 
 836 // Separate these two to allow for delay slot in middle
 837 // These are used to do a test and full jump to exception-throwing code.
 838 
 839 // %%%%% Could possibly reoptimize this by testing to see if could use
 840 // a single conditional branch (i.e. if span is small enough.
 841 // If you go that route, than get rid of the split and give up
 842 // on the delay-slot hack.
 843 
 844 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 845                                                     Label&    ok ) {
 846   assert_not_delayed();
 847   br(ok_condition, true, pt, ok);
 848   // DELAY SLOT
 849 }
 850 
 851 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 852                                                     Label&    ok ) {
 853   assert_not_delayed();
 854   bp( ok_condition, true, Assembler::xcc, pt, ok);
 855   // DELAY SLOT
 856 }
 857 
 858 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 859                                                   Label&    ok ) {
 860   assert_not_delayed();
 861   brx(ok_condition, true, pt, ok);
 862   // DELAY SLOT
 863 }
 864 
 865 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 866                                                 Register Rscratch,
 867                                                 Label&   ok ) {
 868   assert(throw_entry_point != NULL, "entry point must be generated by now");
 869   AddressLiteral dest(throw_entry_point);
 870   jump_to(dest, Rscratch);
 871   delayed()->nop();
 872   bind(ok);
 873 }
 874 
 875 
 876 // And if you cannot use the delay slot, here is a shorthand:
 877 
 878 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 879                                                   address   throw_entry_point,
 880                                                   Register  Rscratch ) {
 881   Label ok;
 882   if (ok_condition != never) {
 883     throw_if_not_1_icc( ok_condition, ok);
 884     delayed()->nop();
 885   }
 886   throw_if_not_2( throw_entry_point, Rscratch, ok);
 887 }
 888 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 889                                                   address   throw_entry_point,
 890                                                   Register  Rscratch ) {
 891   Label ok;
 892   if (ok_condition != never) {
 893     throw_if_not_1_xcc( ok_condition, ok);
 894     delayed()->nop();
 895   }
 896   throw_if_not_2( throw_entry_point, Rscratch, ok);
 897 }
 898 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 899                                                 address   throw_entry_point,
 900                                                 Register  Rscratch ) {
 901   Label ok;
 902   if (ok_condition != never) {
 903     throw_if_not_1_x( ok_condition, ok);
 904     delayed()->nop();
 905   }
 906   throw_if_not_2( throw_entry_point, Rscratch, ok);
 907 }
 908 
 909 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 910 // Note: res is still shy of address by array offset into object.
 911 
 912 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 913   assert_not_delayed();
 914 
 915   verify_oop(array);
 916 #ifdef _LP64
 917   // sign extend since tos (index) can be a 32bit value
 918   sra(index, G0, index);
 919 #endif // _LP64
 920 
 921   // check array
 922   Label ptr_ok;
 923   tst(array);
 924   throw_if_not_1_x( notZero, ptr_ok );
 925   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 926   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 927 
 928   Label index_ok;
 929   cmp(index, tmp);
 930   throw_if_not_1_icc( lessUnsigned, index_ok );
 931   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 932   else                  delayed()->add(array, index, res); // addr - const offset in index
 933   // convention: move aberrant index into G3_scratch for exception message
 934   mov(index, G3_scratch);
 935   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 936 
 937   // add offset if didn't do it in delay slot
 938   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 939 }
 940 
 941 
 942 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 943   assert_not_delayed();
 944 
 945   // pop array
 946   pop_ptr(array);
 947 
 948   // check array
 949   index_check_without_pop(array, index, index_shift, tmp, res);
 950 }
 951 
 952 
 953 void InterpreterMacroAssembler::get_const(Register Rdst) {
 954   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
 955 }
 956 
 957 
 958 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 959   get_const(Rdst);
 960   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 961 }
 962 
 963 
 964 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 965   get_constant_pool(Rdst);
 966   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 967 }
 968 
 969 
 970 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 971   get_constant_pool(Rcpool);
 972   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
 973 }
 974 
 975 
 976 // unlock if synchronized method
 977 //
 978 // Unlock the receiver if this is a synchronized method.
 979 // Unlock any Java monitors from syncronized blocks.
 980 //
 981 // If there are locked Java monitors
 982 //    If throw_monitor_exception
 983 //       throws IllegalMonitorStateException
 984 //    Else if install_monitor_exception
 985 //       installs IllegalMonitorStateException
 986 //    Else
 987 //       no error processing
 988 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 989                                                               bool throw_monitor_exception,
 990                                                               bool install_monitor_exception) {
 991   Label unlocked, unlock, no_unlock;
 992 
 993   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 994   const Address do_not_unlock_if_synchronized(G2_thread,
 995     JavaThread::do_not_unlock_if_synchronized_offset());
 996   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 997   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 998 
 999   // check if synchronized method
1000   const Address access_flags(Lmethod, Method::access_flags_offset());
1001   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1002   push(state); // save tos
1003   ld(access_flags, G3_scratch); // Load access flags.
1004   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1005   br(zero, false, pt, unlocked);
1006   delayed()->nop();
1007 
1008   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1009   // is set.
1010   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
1011   delayed()->nop();
1012 
1013   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1014   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1015 
1016   //Intel: if (throw_monitor_exception) ... else ...
1017   // Entry already unlocked, need to throw exception
1018   //...
1019 
1020   // pass top-most monitor elem
1021   add( top_most_monitor(), O1 );
1022 
1023   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1024   br_notnull_short(G3_scratch, pt, unlock);
1025 
1026   if (throw_monitor_exception) {
1027     // Entry already unlocked need to throw an exception
1028     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1029     should_not_reach_here();
1030   } else {
1031     // Monitor already unlocked during a stack unroll.
1032     // If requested, install an illegal_monitor_state_exception.
1033     // Continue with stack unrolling.
1034     if (install_monitor_exception) {
1035       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1036     }
1037     ba_short(unlocked);
1038   }
1039 
1040   bind(unlock);
1041 
1042   unlock_object(O1);
1043 
1044   bind(unlocked);
1045 
1046   // I0, I1: Might contain return value
1047 
1048   // Check that all monitors are unlocked
1049   { Label loop, exception, entry, restart;
1050 
1051     Register Rmptr   = O0;
1052     Register Rtemp   = O1;
1053     Register Rlimit  = Lmonitors;
1054     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1055     assert( (delta & LongAlignmentMask) == 0,
1056             "sizeof BasicObjectLock must be even number of doublewords");
1057 
1058     #ifdef ASSERT
1059     add(top_most_monitor(), Rmptr, delta);
1060     { Label L;
1061       // ensure that Rmptr starts out above (or at) Rlimit
1062       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1063       stop("monitor stack has negative size");
1064       bind(L);
1065     }
1066     #endif
1067     bind(restart);
1068     ba(entry);
1069     delayed()->
1070     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1071 
1072     // Entry is still locked, need to throw exception
1073     bind(exception);
1074     if (throw_monitor_exception) {
1075       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1076       should_not_reach_here();
1077     } else {
1078       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1079       // Unlock does not block, so don't have to worry about the frame
1080       unlock_object(Rmptr);
1081       if (install_monitor_exception) {
1082         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1083       }
1084       ba_short(restart);
1085     }
1086 
1087     bind(loop);
1088     cmp(Rtemp, G0);                             // check if current entry is used
1089     brx(Assembler::notEqual, false, pn, exception);
1090     delayed()->
1091     dec(Rmptr, delta);                          // otherwise advance to next entry
1092     #ifdef ASSERT
1093     { Label L;
1094       // ensure that Rmptr has not somehow stepped below Rlimit
1095       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1096       stop("ran off the end of the monitor stack");
1097       bind(L);
1098     }
1099     #endif
1100     bind(entry);
1101     cmp(Rmptr, Rlimit);                         // check if bottom reached
1102     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1103     delayed()->
1104     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1105   }
1106 
1107   bind(no_unlock);
1108   pop(state);
1109   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1110 }
1111 
1112 
1113 // remove activation
1114 //
1115 // Unlock the receiver if this is a synchronized method.
1116 // Unlock any Java monitors from syncronized blocks.
1117 // Remove the activation from the stack.
1118 //
1119 // If there are locked Java monitors
1120 //    If throw_monitor_exception
1121 //       throws IllegalMonitorStateException
1122 //    Else if install_monitor_exception
1123 //       installs IllegalMonitorStateException
1124 //    Else
1125 //       no error processing
1126 void InterpreterMacroAssembler::remove_activation(TosState state,
1127                                                   bool throw_monitor_exception,
1128                                                   bool install_monitor_exception) {
1129 
1130   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1131 
1132   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1133   notify_method_exit(false, state, NotifyJVMTI);
1134 
1135   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1136   verify_thread();
1137 
1138   // return tos
1139   assert(Otos_l1 == Otos_i, "adjust code below");
1140   switch (state) {
1141 #ifdef _LP64
1142   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1143 #else
1144   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1145 #endif
1146   case btos:                                      // fall through
1147   case ctos:
1148   case stos:                                      // fall through
1149   case atos:                                      // fall through
1150   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1151   case ftos:                                      // fall through
1152   case dtos:                                      // fall through
1153   case vtos: /* nothing to do */                     break;
1154   default  : ShouldNotReachHere();
1155   }
1156 
1157 #if defined(COMPILER2) && !defined(_LP64)
1158   if (state == ltos) {
1159     // C2 expects long results in G1 we can't tell if we're returning to interpreted
1160     // or compiled so just be safe use G1 and O0/O1
1161 
1162     // Shift bits into high (msb) of G1
1163     sllx(Otos_l1->after_save(), 32, G1);
1164     // Zero extend low bits
1165     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1166     or3 (Otos_l2->after_save(), G1, G1);
1167   }
1168 #endif /* COMPILER2 */
1169 
1170 }
1171 #endif /* CC_INTERP */
1172 
1173 
1174 // Lock object
1175 //
1176 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1177 //            it must be initialized with the object to lock
1178 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1179   if (UseHeavyMonitors) {
1180     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1181   }
1182   else {
1183     Register obj_reg = Object;
1184     Register mark_reg = G4_scratch;
1185     Register temp_reg = G1_scratch;
1186     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1187     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1188     Label    done;
1189 
1190     Label slow_case;
1191 
1192     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1193 
1194     // load markOop from object into mark_reg
1195     ld_ptr(mark_addr, mark_reg);
1196 
1197     if (UseBiasedLocking) {
1198       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1199     }
1200 
1201     // get the address of basicLock on stack that will be stored in the object
1202     // we need a temporary register here as we do not want to clobber lock_reg
1203     // (cas clobbers the destination register)
1204     mov(lock_reg, temp_reg);
1205     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1206     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1207     // initialize the box  (Must happen before we update the object mark!)
1208     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1209     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1210     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1211     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1212       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1213 
1214     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1215     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1216 
1217     // We did not see an unlocked object so try the fast recursive case
1218 
1219     // Check if owner is self by comparing the value in the markOop of object
1220     // with the stack pointer
1221     sub(temp_reg, SP, temp_reg);
1222 #ifdef _LP64
1223     sub(temp_reg, STACK_BIAS, temp_reg);
1224 #endif
1225     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1226 
1227     // Composite "andcc" test:
1228     // (a) %sp -vs- markword proximity check, and,
1229     // (b) verify mark word LSBs == 0 (Stack-locked).
1230     //
1231     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1232     // Note that the page size used for %sp proximity testing is arbitrary and is
1233     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1234     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1235     // field of the andcc instruction.
1236     andcc (temp_reg, 0xFFFFF003, G0) ;
1237 
1238     // if condition is true we are done and hence we can store 0 in the displaced
1239     // header indicating it is a recursive lock and be done
1240     brx(Assembler::zero, true, Assembler::pt, done);
1241     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1242 
1243     // none of the above fast optimizations worked so we have to get into the
1244     // slow case of monitor enter
1245     bind(slow_case);
1246     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1247 
1248     bind(done);
1249   }
1250 }
1251 
1252 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1253 //
1254 // Argument - lock_reg points to the BasicObjectLock for lock
1255 // Throw IllegalMonitorException if object is not locked by current thread
1256 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1257   if (UseHeavyMonitors) {
1258     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1259   } else {
1260     Register obj_reg = G3_scratch;
1261     Register mark_reg = G4_scratch;
1262     Register displaced_header_reg = G1_scratch;
1263     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1264     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1265     Label    done;
1266 
1267     if (UseBiasedLocking) {
1268       // load the object out of the BasicObjectLock
1269       ld_ptr(lockobj_addr, obj_reg);
1270       biased_locking_exit(mark_addr, mark_reg, done, true);
1271       st_ptr(G0, lockobj_addr);  // free entry
1272     }
1273 
1274     // Test first if we are in the fast recursive case
1275     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1276     ld_ptr(lock_addr, displaced_header_reg);
1277     br_null(displaced_header_reg, true, Assembler::pn, done);
1278     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1279 
1280     // See if it is still a light weight lock, if so we just unlock
1281     // the object and we are done
1282 
1283     if (!UseBiasedLocking) {
1284       // load the object out of the BasicObjectLock
1285       ld_ptr(lockobj_addr, obj_reg);
1286     }
1287 
1288     // we have the displaced header in displaced_header_reg
1289     // we expect to see the stack address of the basicLock in case the
1290     // lock is still a light weight lock (lock_reg)
1291     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1292     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1293       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1294     cmp(lock_reg, displaced_header_reg);
1295     brx(Assembler::equal, true, Assembler::pn, done);
1296     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1297 
1298     // The lock has been converted into a heavy lock and hence
1299     // we need to get into the slow case
1300 
1301     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1302 
1303     bind(done);
1304   }
1305 }
1306 
1307 #ifndef CC_INTERP
1308 
1309 // Get the method data pointer from the Method* and set the
1310 // specified register to its value.
1311 
1312 void InterpreterMacroAssembler::set_method_data_pointer() {
1313   assert(ProfileInterpreter, "must be profiling interpreter");
1314   Label get_continue;
1315 
1316   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1317   test_method_data_pointer(get_continue);
1318   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1319   bind(get_continue);
1320 }
1321 
1322 // Set the method data pointer for the current bcp.
1323 
1324 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1325   assert(ProfileInterpreter, "must be profiling interpreter");
1326   Label zero_continue;
1327 
1328   // Test MDO to avoid the call if it is NULL.
1329   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1330   test_method_data_pointer(zero_continue);
1331   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1332   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1333   add(ImethodDataPtr, O0, ImethodDataPtr);
1334   bind(zero_continue);
1335 }
1336 
1337 // Test ImethodDataPtr.  If it is null, continue at the specified label
1338 
1339 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1340   assert(ProfileInterpreter, "must be profiling interpreter");
1341   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1342 }
1343 
1344 void InterpreterMacroAssembler::verify_method_data_pointer() {
1345   assert(ProfileInterpreter, "must be profiling interpreter");
1346 #ifdef ASSERT
1347   Label verify_continue;
1348   test_method_data_pointer(verify_continue);
1349 
1350   // If the mdp is valid, it will point to a DataLayout header which is
1351   // consistent with the bcp.  The converse is highly probable also.
1352   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1353   ld_ptr(Lmethod, Method::const_offset(), O5);
1354   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1355   add(G3_scratch, O5, G3_scratch);
1356   cmp(Lbcp, G3_scratch);
1357   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1358 
1359   Register temp_reg = O5;
1360   delayed()->mov(ImethodDataPtr, temp_reg);
1361   // %%% should use call_VM_leaf here?
1362   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1363   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1364   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1365   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1366   mov(temp_reg->after_save(), O2);
1367   save_thread(L7_thread_cache);
1368   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1369   delayed()->nop();
1370   restore_thread(L7_thread_cache);
1371   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1372   restore();
1373   bind(verify_continue);
1374 #endif // ASSERT
1375 }
1376 
1377 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1378                                                                 Register Rtmp,
1379                                                                 Label &profile_continue) {
1380   assert(ProfileInterpreter, "must be profiling interpreter");
1381   // Control will flow to "profile_continue" if the counter is less than the
1382   // limit or if we call profile_method()
1383 
1384   Label done;
1385 
1386   // if no method data exists, and the counter is high enough, make one
1387   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1388 
1389   // Test to see if we should create a method data oop
1390   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1391   sethi(profile_limit, Rtmp);
1392   ld(Rtmp, profile_limit.low10(), Rtmp);
1393   cmp(invocation_count, Rtmp);
1394   // Use long branches because call_VM() code and following code generated by
1395   // test_backedge_count_for_osr() is large in debug VM.
1396   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1397   delayed()->nop();
1398 
1399   // Build it now.
1400   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1401   set_method_data_pointer_for_bcp();
1402   ba(profile_continue);
1403   delayed()->nop();
1404   bind(done);
1405 }
1406 
1407 // Store a value at some constant offset from the method data pointer.
1408 
1409 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1410   assert(ProfileInterpreter, "must be profiling interpreter");
1411   st_ptr(value, ImethodDataPtr, constant);
1412 }
1413 
1414 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1415                                                       Register bumped_count,
1416                                                       bool decrement) {
1417   assert(ProfileInterpreter, "must be profiling interpreter");
1418 
1419   // Load the counter.
1420   ld_ptr(counter, bumped_count);
1421 
1422   if (decrement) {
1423     // Decrement the register.  Set condition codes.
1424     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1425 
1426     // If the decrement causes the counter to overflow, stay negative
1427     Label L;
1428     brx(Assembler::negative, true, Assembler::pn, L);
1429 
1430     // Store the decremented counter, if it is still negative.
1431     delayed()->st_ptr(bumped_count, counter);
1432     bind(L);
1433   } else {
1434     // Increment the register.  Set carry flag.
1435     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1436 
1437     // If the increment causes the counter to overflow, pull back by 1.
1438     assert(DataLayout::counter_increment == 1, "subc works");
1439     subc(bumped_count, G0, bumped_count);
1440 
1441     // Store the incremented counter.
1442     st_ptr(bumped_count, counter);
1443   }
1444 }
1445 
1446 // Increment the value at some constant offset from the method data pointer.
1447 
1448 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1449                                                       Register bumped_count,
1450                                                       bool decrement) {
1451   // Locate the counter at a fixed offset from the mdp:
1452   Address counter(ImethodDataPtr, constant);
1453   increment_mdp_data_at(counter, bumped_count, decrement);
1454 }
1455 
1456 // Increment the value at some non-fixed (reg + constant) offset from
1457 // the method data pointer.
1458 
1459 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1460                                                       int constant,
1461                                                       Register bumped_count,
1462                                                       Register scratch2,
1463                                                       bool decrement) {
1464   // Add the constant to reg to get the offset.
1465   add(ImethodDataPtr, reg, scratch2);
1466   Address counter(scratch2, constant);
1467   increment_mdp_data_at(counter, bumped_count, decrement);
1468 }
1469 
1470 // Set a flag value at the current method data pointer position.
1471 // Updates a single byte of the header, to avoid races with other header bits.
1472 
1473 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1474                                                 Register scratch) {
1475   assert(ProfileInterpreter, "must be profiling interpreter");
1476   // Load the data header
1477   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1478 
1479   // Set the flag
1480   or3(scratch, flag_constant, scratch);
1481 
1482   // Store the modified header.
1483   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1484 }
1485 
1486 // Test the location at some offset from the method data pointer.
1487 // If it is not equal to value, branch to the not_equal_continue Label.
1488 // Set condition codes to match the nullness of the loaded value.
1489 
1490 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1491                                                  Register value,
1492                                                  Label& not_equal_continue,
1493                                                  Register scratch) {
1494   assert(ProfileInterpreter, "must be profiling interpreter");
1495   ld_ptr(ImethodDataPtr, offset, scratch);
1496   cmp(value, scratch);
1497   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1498   delayed()->tst(scratch);
1499 }
1500 
1501 // Update the method data pointer by the displacement located at some fixed
1502 // offset from the method data pointer.
1503 
1504 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1505                                                      Register scratch) {
1506   assert(ProfileInterpreter, "must be profiling interpreter");
1507   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1508   add(ImethodDataPtr, scratch, ImethodDataPtr);
1509 }
1510 
1511 // Update the method data pointer by the displacement located at the
1512 // offset (reg + offset_of_disp).
1513 
1514 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1515                                                      int offset_of_disp,
1516                                                      Register scratch) {
1517   assert(ProfileInterpreter, "must be profiling interpreter");
1518   add(reg, offset_of_disp, scratch);
1519   ld_ptr(ImethodDataPtr, scratch, scratch);
1520   add(ImethodDataPtr, scratch, ImethodDataPtr);
1521 }
1522 
1523 // Update the method data pointer by a simple constant displacement.
1524 
1525 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1526   assert(ProfileInterpreter, "must be profiling interpreter");
1527   add(ImethodDataPtr, constant, ImethodDataPtr);
1528 }
1529 
1530 // Update the method data pointer for a _ret bytecode whose target
1531 // was not among our cached targets.
1532 
1533 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1534                                                    Register return_bci) {
1535   assert(ProfileInterpreter, "must be profiling interpreter");
1536   push(state);
1537   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1538   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1539   ld_ptr(l_tmp, return_bci);
1540   pop(state);
1541 }
1542 
1543 // Count a taken branch in the bytecodes.
1544 
1545 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1546   if (ProfileInterpreter) {
1547     Label profile_continue;
1548 
1549     // If no method data exists, go to profile_continue.
1550     test_method_data_pointer(profile_continue);
1551 
1552     // We are taking a branch.  Increment the taken count.
1553     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1554 
1555     // The method data pointer needs to be updated to reflect the new target.
1556     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1557     bind (profile_continue);
1558   }
1559 }
1560 
1561 
1562 // Count a not-taken branch in the bytecodes.
1563 
1564 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1565   if (ProfileInterpreter) {
1566     Label profile_continue;
1567 
1568     // If no method data exists, go to profile_continue.
1569     test_method_data_pointer(profile_continue);
1570 
1571     // We are taking a branch.  Increment the not taken count.
1572     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1573 
1574     // The method data pointer needs to be updated to correspond to the
1575     // next bytecode.
1576     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1577     bind (profile_continue);
1578   }
1579 }
1580 
1581 
1582 // Count a non-virtual call in the bytecodes.
1583 
1584 void InterpreterMacroAssembler::profile_call(Register scratch) {
1585   if (ProfileInterpreter) {
1586     Label profile_continue;
1587 
1588     // If no method data exists, go to profile_continue.
1589     test_method_data_pointer(profile_continue);
1590 
1591     // We are making a call.  Increment the count.
1592     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1593 
1594     // The method data pointer needs to be updated to reflect the new target.
1595     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1596     bind (profile_continue);
1597   }
1598 }
1599 
1600 
1601 // Count a final call in the bytecodes.
1602 
1603 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1604   if (ProfileInterpreter) {
1605     Label profile_continue;
1606 
1607     // If no method data exists, go to profile_continue.
1608     test_method_data_pointer(profile_continue);
1609 
1610     // We are making a call.  Increment the count.
1611     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1612 
1613     // The method data pointer needs to be updated to reflect the new target.
1614     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1615     bind (profile_continue);
1616   }
1617 }
1618 
1619 
1620 // Count a virtual call in the bytecodes.
1621 
1622 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1623                                                      Register scratch,
1624                                                      bool receiver_can_be_null) {
1625   if (ProfileInterpreter) {
1626     Label profile_continue;
1627 
1628     // If no method data exists, go to profile_continue.
1629     test_method_data_pointer(profile_continue);
1630 
1631 
1632     Label skip_receiver_profile;
1633     if (receiver_can_be_null) {
1634       Label not_null;
1635       br_notnull_short(receiver, Assembler::pt, not_null);
1636       // We are making a call.  Increment the count for null receiver.
1637       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1638       ba_short(skip_receiver_profile);
1639       bind(not_null);
1640     }
1641 
1642     // Record the receiver type.
1643     record_klass_in_profile(receiver, scratch, true);
1644     bind(skip_receiver_profile);
1645 
1646     // The method data pointer needs to be updated to reflect the new target.
1647     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1648     bind (profile_continue);
1649   }
1650 }
1651 
1652 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1653                                         Register receiver, Register scratch,
1654                                         int start_row, Label& done, bool is_virtual_call) {
1655   if (TypeProfileWidth == 0) {
1656     if (is_virtual_call) {
1657       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1658     }
1659     return;
1660   }
1661 
1662   int last_row = VirtualCallData::row_limit() - 1;
1663   assert(start_row <= last_row, "must be work left to do");
1664   // Test this row for both the receiver and for null.
1665   // Take any of three different outcomes:
1666   //   1. found receiver => increment count and goto done
1667   //   2. found null => keep looking for case 1, maybe allocate this cell
1668   //   3. found something else => keep looking for cases 1 and 2
1669   // Case 3 is handled by a recursive call.
1670   for (int row = start_row; row <= last_row; row++) {
1671     Label next_test;
1672     bool test_for_null_also = (row == start_row);
1673 
1674     // See if the receiver is receiver[n].
1675     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1676     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1677     // delayed()->tst(scratch);
1678 
1679     // The receiver is receiver[n].  Increment count[n].
1680     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1681     increment_mdp_data_at(count_offset, scratch);
1682     ba_short(done);
1683     bind(next_test);
1684 
1685     if (test_for_null_also) {
1686       Label found_null;
1687       // Failed the equality check on receiver[n]...  Test for null.
1688       if (start_row == last_row) {
1689         // The only thing left to do is handle the null case.
1690         if (is_virtual_call) {
1691           brx(Assembler::zero, false, Assembler::pn, found_null);
1692           delayed()->nop();
1693           // Receiver did not match any saved receiver and there is no empty row for it.
1694           // Increment total counter to indicate polymorphic case.
1695           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1696           ba_short(done);
1697           bind(found_null);
1698         } else {
1699           brx(Assembler::notZero, false, Assembler::pt, done);
1700           delayed()->nop();
1701         }
1702         break;
1703       }
1704       // Since null is rare, make it be the branch-taken case.
1705       brx(Assembler::zero, false, Assembler::pn, found_null);
1706       delayed()->nop();
1707 
1708       // Put all the "Case 3" tests here.
1709       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1710 
1711       // Found a null.  Keep searching for a matching receiver,
1712       // but remember that this is an empty (unused) slot.
1713       bind(found_null);
1714     }
1715   }
1716 
1717   // In the fall-through case, we found no matching receiver, but we
1718   // observed the receiver[start_row] is NULL.
1719 
1720   // Fill in the receiver field and increment the count.
1721   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1722   set_mdp_data_at(recvr_offset, receiver);
1723   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1724   mov(DataLayout::counter_increment, scratch);
1725   set_mdp_data_at(count_offset, scratch);
1726   if (start_row > 0) {
1727     ba_short(done);
1728   }
1729 }
1730 
1731 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1732                                                         Register scratch, bool is_virtual_call) {
1733   assert(ProfileInterpreter, "must be profiling");
1734   Label done;
1735 
1736   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1737 
1738   bind (done);
1739 }
1740 
1741 
1742 // Count a ret in the bytecodes.
1743 
1744 void InterpreterMacroAssembler::profile_ret(TosState state,
1745                                             Register return_bci,
1746                                             Register scratch) {
1747   if (ProfileInterpreter) {
1748     Label profile_continue;
1749     uint row;
1750 
1751     // If no method data exists, go to profile_continue.
1752     test_method_data_pointer(profile_continue);
1753 
1754     // Update the total ret count.
1755     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1756 
1757     for (row = 0; row < RetData::row_limit(); row++) {
1758       Label next_test;
1759 
1760       // See if return_bci is equal to bci[n]:
1761       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1762                        return_bci, next_test, scratch);
1763 
1764       // return_bci is equal to bci[n].  Increment the count.
1765       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1766 
1767       // The method data pointer needs to be updated to reflect the new target.
1768       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1769       ba_short(profile_continue);
1770       bind(next_test);
1771     }
1772 
1773     update_mdp_for_ret(state, return_bci);
1774 
1775     bind (profile_continue);
1776   }
1777 }
1778 
1779 // Profile an unexpected null in the bytecodes.
1780 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1781   if (ProfileInterpreter) {
1782     Label profile_continue;
1783 
1784     // If no method data exists, go to profile_continue.
1785     test_method_data_pointer(profile_continue);
1786 
1787     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1788 
1789     // The method data pointer needs to be updated.
1790     int mdp_delta = in_bytes(BitData::bit_data_size());
1791     if (TypeProfileCasts) {
1792       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1793     }
1794     update_mdp_by_constant(mdp_delta);
1795 
1796     bind (profile_continue);
1797   }
1798 }
1799 
1800 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1801                                                   Register scratch) {
1802   if (ProfileInterpreter) {
1803     Label profile_continue;
1804 
1805     // If no method data exists, go to profile_continue.
1806     test_method_data_pointer(profile_continue);
1807 
1808     int mdp_delta = in_bytes(BitData::bit_data_size());
1809     if (TypeProfileCasts) {
1810       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1811 
1812       // Record the object type.
1813       record_klass_in_profile(klass, scratch, false);
1814     }
1815 
1816     // The method data pointer needs to be updated.
1817     update_mdp_by_constant(mdp_delta);
1818 
1819     bind (profile_continue);
1820   }
1821 }
1822 
1823 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1824   if (ProfileInterpreter && TypeProfileCasts) {
1825     Label profile_continue;
1826 
1827     // If no method data exists, go to profile_continue.
1828     test_method_data_pointer(profile_continue);
1829 
1830     int count_offset = in_bytes(CounterData::count_offset());
1831     // Back up the address, since we have already bumped the mdp.
1832     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1833 
1834     // *Decrement* the counter.  We expect to see zero or small negatives.
1835     increment_mdp_data_at(count_offset, scratch, true);
1836 
1837     bind (profile_continue);
1838   }
1839 }
1840 
1841 // Count the default case of a switch construct.
1842 
1843 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1844   if (ProfileInterpreter) {
1845     Label profile_continue;
1846 
1847     // If no method data exists, go to profile_continue.
1848     test_method_data_pointer(profile_continue);
1849 
1850     // Update the default case count
1851     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1852                           scratch);
1853 
1854     // The method data pointer needs to be updated.
1855     update_mdp_by_offset(
1856                     in_bytes(MultiBranchData::default_displacement_offset()),
1857                     scratch);
1858 
1859     bind (profile_continue);
1860   }
1861 }
1862 
1863 // Count the index'th case of a switch construct.
1864 
1865 void InterpreterMacroAssembler::profile_switch_case(Register index,
1866                                                     Register scratch,
1867                                                     Register scratch2,
1868                                                     Register scratch3) {
1869   if (ProfileInterpreter) {
1870     Label profile_continue;
1871 
1872     // If no method data exists, go to profile_continue.
1873     test_method_data_pointer(profile_continue);
1874 
1875     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1876     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1877     smul(index, scratch, scratch);
1878     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1879 
1880     // Update the case count
1881     increment_mdp_data_at(scratch,
1882                           in_bytes(MultiBranchData::relative_count_offset()),
1883                           scratch2,
1884                           scratch3);
1885 
1886     // The method data pointer needs to be updated.
1887     update_mdp_by_offset(scratch,
1888                      in_bytes(MultiBranchData::relative_displacement_offset()),
1889                      scratch2);
1890 
1891     bind (profile_continue);
1892   }
1893 }
1894 
1895 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
1896 
1897 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1898                                                       Register Rtemp,
1899                                                       Register Rtemp2 ) {
1900 
1901   Register Rlimit = Lmonitors;
1902   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1903   assert( (delta & LongAlignmentMask) == 0,
1904           "sizeof BasicObjectLock must be even number of doublewords");
1905 
1906   sub( SP,        delta, SP);
1907   sub( Lesp,      delta, Lesp);
1908   sub( Lmonitors, delta, Lmonitors);
1909 
1910   if (!stack_is_empty) {
1911 
1912     // must copy stack contents down
1913 
1914     Label start_copying, next;
1915 
1916     // untested("monitor stack expansion");
1917     compute_stack_base(Rtemp);
1918     ba(start_copying);
1919     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
1920 
1921     // note: must copy from low memory upwards
1922     // On entry to loop,
1923     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1924     // Loop mutates Rtemp
1925 
1926     bind( next);
1927 
1928     st_ptr(Rtemp2, Rtemp, 0);
1929     inc(Rtemp, wordSize);
1930     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1931 
1932     bind( start_copying );
1933 
1934     brx( notEqual, true, pn, next );
1935     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1936 
1937     // done copying stack
1938   }
1939 }
1940 
1941 // Locals
1942 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1943   assert_not_delayed();
1944   sll(index, Interpreter::logStackElementSize, index);
1945   sub(Llocals, index, index);
1946   ld_ptr(index, 0, dst);
1947   // Note:  index must hold the effective address--the iinc template uses it
1948 }
1949 
1950 // Just like access_local_ptr but the tag is a returnAddress
1951 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1952                                                            Register dst ) {
1953   assert_not_delayed();
1954   sll(index, Interpreter::logStackElementSize, index);
1955   sub(Llocals, index, index);
1956   ld_ptr(index, 0, dst);
1957 }
1958 
1959 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1960   assert_not_delayed();
1961   sll(index, Interpreter::logStackElementSize, index);
1962   sub(Llocals, index, index);
1963   ld(index, 0, dst);
1964   // Note:  index must hold the effective address--the iinc template uses it
1965 }
1966 
1967 
1968 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1969   assert_not_delayed();
1970   sll(index, Interpreter::logStackElementSize, index);
1971   sub(Llocals, index, index);
1972   // First half stored at index n+1 (which grows down from Llocals[n])
1973   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1974 }
1975 
1976 
1977 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1978   assert_not_delayed();
1979   sll(index, Interpreter::logStackElementSize, index);
1980   sub(Llocals, index, index);
1981   ldf(FloatRegisterImpl::S, index, 0, dst);
1982 }
1983 
1984 
1985 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1986   assert_not_delayed();
1987   sll(index, Interpreter::logStackElementSize, index);
1988   sub(Llocals, index, index);
1989   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
1990 }
1991 
1992 
1993 #ifdef ASSERT
1994 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
1995   Label L;
1996 
1997   assert(Rindex != Rscratch, "Registers cannot be same");
1998   assert(Rindex != Rscratch1, "Registers cannot be same");
1999   assert(Rlimit != Rscratch, "Registers cannot be same");
2000   assert(Rlimit != Rscratch1, "Registers cannot be same");
2001   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2002 
2003   // untested("reg area corruption");
2004   add(Rindex, offset, Rscratch);
2005   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2006   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2007   stop("regsave area is being clobbered");
2008   bind(L);
2009 }
2010 #endif // ASSERT
2011 
2012 
2013 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2014   assert_not_delayed();
2015   sll(index, Interpreter::logStackElementSize, index);
2016   sub(Llocals, index, index);
2017   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2018   st(src, index, 0);
2019 }
2020 
2021 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2022   assert_not_delayed();
2023   sll(index, Interpreter::logStackElementSize, index);
2024   sub(Llocals, index, index);
2025 #ifdef ASSERT
2026   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2027 #endif
2028   st_ptr(src, index, 0);
2029 }
2030 
2031 
2032 
2033 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2034   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2035 }
2036 
2037 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2038   assert_not_delayed();
2039   sll(index, Interpreter::logStackElementSize, index);
2040   sub(Llocals, index, index);
2041 #ifdef ASSERT
2042   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2043 #endif
2044   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2045 }
2046 
2047 
2048 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2049   assert_not_delayed();
2050   sll(index, Interpreter::logStackElementSize, index);
2051   sub(Llocals, index, index);
2052 #ifdef ASSERT
2053   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2054 #endif
2055   stf(FloatRegisterImpl::S, src, index, 0);
2056 }
2057 
2058 
2059 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2060   assert_not_delayed();
2061   sll(index, Interpreter::logStackElementSize, index);
2062   sub(Llocals, index, index);
2063 #ifdef ASSERT
2064   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2065 #endif
2066   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2067 }
2068 
2069 
2070 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2071   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2072   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2073   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2074 }
2075 
2076 
2077 Address InterpreterMacroAssembler::top_most_monitor() {
2078   return Address(FP, top_most_monitor_byte_offset());
2079 }
2080 
2081 
2082 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2083   add( Lesp,      wordSize,                                    Rdest );
2084 }
2085 
2086 #endif /* CC_INTERP */
2087 
2088 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2089   assert(UseCompiler, "incrementing must be useful");
2090 #ifdef CC_INTERP
2091   Address inv_counter(G5_method, Method::invocation_counter_offset() +
2092                                  InvocationCounter::counter_offset());
2093   Address be_counter (G5_method, Method::backedge_counter_offset() +
2094                                  InvocationCounter::counter_offset());
2095 #else
2096   Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2097                                InvocationCounter::counter_offset());
2098   Address be_counter (Lmethod, Method::backedge_counter_offset() +
2099                                InvocationCounter::counter_offset());
2100 #endif /* CC_INTERP */
2101   int delta = InvocationCounter::count_increment;
2102 
2103   // Load each counter in a register
2104   ld( inv_counter, Rtmp );
2105   ld( be_counter, Rtmp2 );
2106 
2107   assert( is_simm13( delta ), " delta too large.");
2108 
2109   // Add the delta to the invocation counter and store the result
2110   add( Rtmp, delta, Rtmp );
2111 
2112   // Mask the backedge counter
2113   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2114 
2115   // Store value
2116   st( Rtmp, inv_counter);
2117 
2118   // Add invocation counter + backedge counter
2119   add( Rtmp, Rtmp2, Rtmp);
2120 
2121   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2122 }
2123 
2124 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2125   assert(UseCompiler, "incrementing must be useful");
2126 #ifdef CC_INTERP
2127   Address be_counter (G5_method, Method::backedge_counter_offset() +
2128                                  InvocationCounter::counter_offset());
2129   Address inv_counter(G5_method, Method::invocation_counter_offset() +
2130                                  InvocationCounter::counter_offset());
2131 #else
2132   Address be_counter (Lmethod, Method::backedge_counter_offset() +
2133                                InvocationCounter::counter_offset());
2134   Address inv_counter(Lmethod, Method::invocation_counter_offset() +
2135                                InvocationCounter::counter_offset());
2136 #endif /* CC_INTERP */
2137   int delta = InvocationCounter::count_increment;
2138   // Load each counter in a register
2139   ld( be_counter, Rtmp );
2140   ld( inv_counter, Rtmp2 );
2141 
2142   // Add the delta to the backedge counter
2143   add( Rtmp, delta, Rtmp );
2144 
2145   // Mask the invocation counter, add to backedge counter
2146   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2147 
2148   // and store the result to memory
2149   st( Rtmp, be_counter );
2150 
2151   // Add backedge + invocation counter
2152   add( Rtmp, Rtmp2, Rtmp );
2153 
2154   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2155 }
2156 
2157 #ifndef CC_INTERP
2158 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2159                                                              Register branch_bcp,
2160                                                              Register Rtmp ) {
2161   Label did_not_overflow;
2162   Label overflow_with_error;
2163   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2164   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2165 
2166   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2167   load_contents(limit, Rtmp);
2168   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2169 
2170   // When ProfileInterpreter is on, the backedge_count comes from the
2171   // MethodData*, which value does not get reset on the call to
2172   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2173   // routine while the method is being compiled, add a second test to make sure
2174   // the overflow function is called only once every overflow_frequency.
2175   if (ProfileInterpreter) {
2176     const int overflow_frequency = 1024;
2177     andcc(backedge_count, overflow_frequency-1, Rtmp);
2178     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2179     delayed()->nop();
2180   }
2181 
2182   // overflow in loop, pass branch bytecode
2183   set(6,Rtmp);
2184   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2185 
2186   // Was an OSR adapter generated?
2187   // O0 = osr nmethod
2188   br_null_short(O0, Assembler::pn, overflow_with_error);
2189 
2190   // Has the nmethod been invalidated already?
2191   ld(O0, nmethod::entry_bci_offset(), O2);
2192   cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
2193 
2194   // migrate the interpreter frame off of the stack
2195 
2196   mov(G2_thread, L7);
2197   // save nmethod
2198   mov(O0, L6);
2199   set_last_Java_frame(SP, noreg);
2200   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2201   reset_last_Java_frame();
2202   mov(L7, G2_thread);
2203 
2204   // move OSR nmethod to I1
2205   mov(L6, I1);
2206 
2207   // OSR buffer to I0
2208   mov(O0, I0);
2209 
2210   // remove the interpreter frame
2211   restore(I5_savedSP, 0, SP);
2212 
2213   // Jump to the osr code.
2214   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2215   jmp(O2, G0);
2216   delayed()->nop();
2217 
2218   bind(overflow_with_error);
2219 
2220   bind(did_not_overflow);
2221 }
2222 
2223 
2224 
2225 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2226   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2227 }
2228 
2229 
2230 // local helper function for the verify_oop_or_return_address macro
2231 static bool verify_return_address(Method* m, int bci) {
2232 #ifndef PRODUCT
2233   address pc = (address)(m->constMethod())
2234              + in_bytes(ConstMethod::codes_offset()) + bci;
2235   // assume it is a valid return address if it is inside m and is preceded by a jsr
2236   if (!m->contains(pc))                                          return false;
2237   address jsr_pc;
2238   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2239   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2240   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2241   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2242 #endif // PRODUCT
2243   return false;
2244 }
2245 
2246 
2247 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2248   if (!VerifyOops)  return;
2249   // the VM documentation for the astore[_wide] bytecode allows
2250   // the TOS to be not only an oop but also a return address
2251   Label test;
2252   Label skip;
2253   // See if it is an address (in the current method):
2254 
2255   mov(reg, Rtmp);
2256   const int log2_bytecode_size_limit = 16;
2257   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2258   br_notnull_short( Rtmp, pt, test );
2259 
2260   // %%% should use call_VM_leaf here?
2261   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2262   save_thread(L7_thread_cache);
2263   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2264   delayed()->nop();
2265   restore_thread(L7_thread_cache);
2266   br_notnull( O0, false, pt, skip );
2267   delayed()->restore();
2268 
2269   // Perform a more elaborate out-of-line call
2270   // Not an address; verify it:
2271   bind(test);
2272   verify_oop(reg);
2273   bind(skip);
2274 }
2275 
2276 
2277 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2278   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2279 }
2280 #endif /* CC_INTERP */
2281 
2282 // Inline assembly for:
2283 //
2284 // if (thread is in interp_only_mode) {
2285 //   InterpreterRuntime::post_method_entry();
2286 // }
2287 // if (DTraceMethodProbes) {
2288 //   SharedRuntime::dtrace_method_entry(method, receiver);
2289 // }
2290 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2291 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2292 // }
2293 
2294 void InterpreterMacroAssembler::notify_method_entry() {
2295 
2296   // C++ interpreter only uses this for native methods.
2297 
2298   // Whenever JVMTI puts a thread in interp_only_mode, method
2299   // entry/exit events are sent for that thread to track stack
2300   // depth.  If it is possible to enter interp_only_mode we add
2301   // the code to check if the event should be sent.
2302   if (JvmtiExport::can_post_interpreter_events()) {
2303     Label L;
2304     Register temp_reg = O5;
2305     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2306     ld(interp_only, temp_reg);
2307     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2308     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2309     bind(L);
2310   }
2311 
2312   {
2313     Register temp_reg = O5;
2314     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2315     call_VM_leaf(noreg,
2316       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2317       G2_thread, Lmethod);
2318   }
2319 
2320   // RedefineClasses() tracing support for obsolete method entry
2321   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2322     call_VM_leaf(noreg,
2323       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2324       G2_thread, Lmethod);
2325   }
2326 }
2327 
2328 
2329 // Inline assembly for:
2330 //
2331 // if (thread is in interp_only_mode) {
2332 //   // save result
2333 //   InterpreterRuntime::post_method_exit();
2334 //   // restore result
2335 // }
2336 // if (DTraceMethodProbes) {
2337 //   SharedRuntime::dtrace_method_exit(thread, method);
2338 // }
2339 //
2340 // Native methods have their result stored in d_tmp and l_tmp
2341 // Java methods have their result stored in the expression stack
2342 
2343 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2344                                                    TosState state,
2345                                                    NotifyMethodExitMode mode) {
2346   // C++ interpreter only uses this for native methods.
2347 
2348   // Whenever JVMTI puts a thread in interp_only_mode, method
2349   // entry/exit events are sent for that thread to track stack
2350   // depth.  If it is possible to enter interp_only_mode we add
2351   // the code to check if the event should be sent.
2352   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2353     Label L;
2354     Register temp_reg = O5;
2355     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2356     ld(interp_only, temp_reg);
2357     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2358 
2359     // Note: frame::interpreter_frame_result has a dependency on how the
2360     // method result is saved across the call to post_method_exit. For
2361     // native methods it assumes the result registers are saved to
2362     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2363     // implementation will need to be updated too.
2364 
2365     save_return_value(state, is_native_method);
2366     call_VM(noreg,
2367             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2368     restore_return_value(state, is_native_method);
2369     bind(L);
2370   }
2371 
2372   {
2373     Register temp_reg = O5;
2374     // Dtrace notification
2375     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2376     save_return_value(state, is_native_method);
2377     call_VM_leaf(
2378       noreg,
2379       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2380       G2_thread, Lmethod);
2381     restore_return_value(state, is_native_method);
2382   }
2383 }
2384 
2385 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2386 #ifdef CC_INTERP
2387   // result potentially in O0/O1: save it across calls
2388   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2389 #ifdef _LP64
2390   stx(O0, STATE(_native_lresult));
2391 #else
2392   std(O0, STATE(_native_lresult));
2393 #endif
2394 #else // CC_INTERP
2395   if (is_native_call) {
2396     stf(FloatRegisterImpl::D, F0, d_tmp);
2397 #ifdef _LP64
2398     stx(O0, l_tmp);
2399 #else
2400     std(O0, l_tmp);
2401 #endif
2402   } else {
2403     push(state);
2404   }
2405 #endif // CC_INTERP
2406 }
2407 
2408 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2409 #ifdef CC_INTERP
2410   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2411 #ifdef _LP64
2412   ldx(STATE(_native_lresult), O0);
2413 #else
2414   ldd(STATE(_native_lresult), O0);
2415 #endif
2416 #else // CC_INTERP
2417   if (is_native_call) {
2418     ldf(FloatRegisterImpl::D, d_tmp, F0);
2419 #ifdef _LP64
2420     ldx(l_tmp, O0);
2421 #else
2422     ldd(l_tmp, O0);
2423 #endif
2424   } else {
2425     pop(state);
2426   }
2427 #endif // CC_INTERP
2428 }
2429 
2430 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2431 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2432                                                         int increment, int mask,
2433                                                         Register scratch1, Register scratch2,
2434                                                         Condition cond, Label *where) {
2435   ld(counter_addr, scratch1);
2436   add(scratch1, increment, scratch1);
2437   if (is_simm13(mask)) {
2438     andcc(scratch1, mask, G0);
2439   } else {
2440     set(mask, scratch2);
2441     andcc(scratch1, scratch2,  G0);
2442   }
2443   br(cond, false, Assembler::pn, *where);
2444   delayed()->st(scratch1, counter_addr);
2445 }