1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "mutex_linux.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "os_share_linux.hpp"
  39 #include "prims/jniFastGetField.hpp"
  40 #include "prims/jvm.h"
  41 #include "prims/jvm_misc.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/extendedPC.hpp"
  44 #include "runtime/globals.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/objectMonitor.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/perfMemory.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/statSampler.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/thread.inline.hpp"
  56 #include "runtime/threadCritical.hpp"
  57 #include "runtime/timer.hpp"
  58 #include "services/attachListener.hpp"
  59 #include "services/runtimeService.hpp"
  60 #include "utilities/decoder.hpp"
  61 #include "utilities/defaultStream.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/growableArray.hpp"
  64 #include "utilities/vmError.hpp"
  65 #ifdef TARGET_ARCH_x86
  66 # include "assembler_x86.inline.hpp"
  67 # include "nativeInst_x86.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_sparc
  70 # include "assembler_sparc.inline.hpp"
  71 # include "nativeInst_sparc.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_zero
  74 # include "assembler_zero.inline.hpp"
  75 # include "nativeInst_zero.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_arm
  78 # include "assembler_arm.inline.hpp"
  79 # include "nativeInst_arm.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_ppc
  82 # include "assembler_ppc.inline.hpp"
  83 # include "nativeInst_ppc.hpp"
  84 #endif
  85 
  86 // put OS-includes here
  87 # include <sys/types.h>
  88 # include <sys/mman.h>
  89 # include <sys/stat.h>
  90 # include <sys/select.h>
  91 # include <pthread.h>
  92 # include <signal.h>
  93 # include <errno.h>
  94 # include <dlfcn.h>
  95 # include <stdio.h>
  96 # include <unistd.h>
  97 # include <sys/resource.h>
  98 # include <pthread.h>
  99 # include <sys/stat.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/utsname.h>
 103 # include <sys/socket.h>
 104 # include <sys/wait.h>
 105 # include <pwd.h>
 106 # include <poll.h>
 107 # include <semaphore.h>
 108 # include <fcntl.h>
 109 # include <string.h>
 110 # include <syscall.h>
 111 # include <sys/sysinfo.h>
 112 # include <gnu/libc-version.h>
 113 # include <sys/ipc.h>
 114 # include <sys/shm.h>
 115 # include <link.h>
 116 # include <stdint.h>
 117 # include <inttypes.h>
 118 # include <sys/ioctl.h>
 119 
 120 #define MAX_PATH    (2 * K)
 121 
 122 // for timer info max values which include all bits
 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 124 
 125 #define LARGEPAGES_BIT (1 << 6)
 126 ////////////////////////////////////////////////////////////////////////////////
 127 // global variables
 128 julong os::Linux::_physical_memory = 0;
 129 
 130 address   os::Linux::_initial_thread_stack_bottom = NULL;
 131 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 132 
 133 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 134 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 135 Mutex* os::Linux::_createThread_lock = NULL;
 136 pthread_t os::Linux::_main_thread;
 137 int os::Linux::_page_size = -1;
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 /* Signal number used to suspend/resume a thread */
 155 
 156 /* do not use any signal number less than SIGSEGV, see 4355769 */
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 /* Used to protect dlsym() calls */
 161 static pthread_mutex_t dl_mutex;
 162 
 163 #ifdef JAVASE_EMBEDDED
 164 class MemNotifyThread: public Thread {
 165   friend class VMStructs;
 166  public:
 167   virtual void run();
 168 
 169  private:
 170   static MemNotifyThread* _memnotify_thread;
 171   int _fd;
 172 
 173  public:
 174 
 175   // Constructor
 176   MemNotifyThread(int fd);
 177 
 178   // Tester
 179   bool is_memnotify_thread() const { return true; }
 180 
 181   // Printing
 182   char* name() const { return (char*)"Linux MemNotify Thread"; }
 183 
 184   // Returns the single instance of the MemNotifyThread
 185   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 186 
 187   // Create and start the single instance of MemNotifyThread
 188   static void start();
 189 };
 190 #endif // JAVASE_EMBEDDED
 191 
 192 // utility functions
 193 
 194 static int SR_initialize();
 195 static int SR_finalize();
 196 
 197 julong os::available_memory() {
 198   return Linux::available_memory();
 199 }
 200 
 201 julong os::Linux::available_memory() {
 202   // values in struct sysinfo are "unsigned long"
 203   struct sysinfo si;
 204   sysinfo(&si);
 205 
 206   return (julong)si.freeram * si.mem_unit;
 207 }
 208 
 209 julong os::physical_memory() {
 210   return Linux::physical_memory();
 211 }
 212 
 213 julong os::allocatable_physical_memory(julong size) {
 214 #ifdef _LP64
 215   return size;
 216 #else
 217   julong result = MIN2(size, (julong)3800*M);
 218    if (!is_allocatable(result)) {
 219      // See comments under solaris for alignment considerations
 220      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 221      result =  MIN2(size, reasonable_size);
 222    }
 223    return result;
 224 #endif // _LP64
 225 }
 226 
 227 ////////////////////////////////////////////////////////////////////////////////
 228 // environment support
 229 
 230 bool os::getenv(const char* name, char* buf, int len) {
 231   const char* val = ::getenv(name);
 232   if (val != NULL && strlen(val) < (size_t)len) {
 233     strcpy(buf, val);
 234     return true;
 235   }
 236   if (len > 0) buf[0] = 0;  // return a null string
 237   return false;
 238 }
 239 
 240 
 241 // Return true if user is running as root.
 242 
 243 bool os::have_special_privileges() {
 244   static bool init = false;
 245   static bool privileges = false;
 246   if (!init) {
 247     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 248     init = true;
 249   }
 250   return privileges;
 251 }
 252 
 253 
 254 #ifndef SYS_gettid
 255 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 256 #ifdef __ia64__
 257 #define SYS_gettid 1105
 258 #elif __i386__
 259 #define SYS_gettid 224
 260 #elif __amd64__
 261 #define SYS_gettid 186
 262 #elif __sparc__
 263 #define SYS_gettid 143
 264 #else
 265 #error define gettid for the arch
 266 #endif
 267 #endif
 268 
 269 // Cpu architecture string
 270 #if   defined(ZERO)
 271 static char cpu_arch[] = ZERO_LIBARCH;
 272 #elif defined(IA64)
 273 static char cpu_arch[] = "ia64";
 274 #elif defined(IA32)
 275 static char cpu_arch[] = "i386";
 276 #elif defined(AMD64)
 277 static char cpu_arch[] = "amd64";
 278 #elif defined(ARM)
 279 static char cpu_arch[] = "arm";
 280 #elif defined(PPC)
 281 static char cpu_arch[] = "ppc";
 282 #elif defined(SPARC)
 283 #  ifdef _LP64
 284 static char cpu_arch[] = "sparcv9";
 285 #  else
 286 static char cpu_arch[] = "sparc";
 287 #  endif
 288 #else
 289 #error Add appropriate cpu_arch setting
 290 #endif
 291 
 292 
 293 // pid_t gettid()
 294 //
 295 // Returns the kernel thread id of the currently running thread. Kernel
 296 // thread id is used to access /proc.
 297 //
 298 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 299 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 300 //
 301 pid_t os::Linux::gettid() {
 302   int rslt = syscall(SYS_gettid);
 303   if (rslt == -1) {
 304      // old kernel, no NPTL support
 305      return getpid();
 306   } else {
 307      return (pid_t)rslt;
 308   }
 309 }
 310 
 311 // Most versions of linux have a bug where the number of processors are
 312 // determined by looking at the /proc file system.  In a chroot environment,
 313 // the system call returns 1.  This causes the VM to act as if it is
 314 // a single processor and elide locking (see is_MP() call).
 315 static bool unsafe_chroot_detected = false;
 316 static const char *unstable_chroot_error = "/proc file system not found.\n"
 317                      "Java may be unstable running multithreaded in a chroot "
 318                      "environment on Linux when /proc filesystem is not mounted.";
 319 
 320 void os::Linux::initialize_system_info() {
 321   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 322   if (processor_count() == 1) {
 323     pid_t pid = os::Linux::gettid();
 324     char fname[32];
 325     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 326     FILE *fp = fopen(fname, "r");
 327     if (fp == NULL) {
 328       unsafe_chroot_detected = true;
 329     } else {
 330       fclose(fp);
 331     }
 332   }
 333   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 334   assert(processor_count() > 0, "linux error");
 335 }
 336 
 337 void os::init_system_properties_values() {
 338 //  char arch[12];
 339 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 340 
 341   // The next steps are taken in the product version:
 342   //
 343   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 344   // This library should be located at:
 345   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 346   //
 347   // If "/jre/lib/" appears at the right place in the path, then we
 348   // assume libjvm[_g].so is installed in a JDK and we use this path.
 349   //
 350   // Otherwise exit with message: "Could not create the Java virtual machine."
 351   //
 352   // The following extra steps are taken in the debugging version:
 353   //
 354   // If "/jre/lib/" does NOT appear at the right place in the path
 355   // instead of exit check for $JAVA_HOME environment variable.
 356   //
 357   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 358   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 359   // it looks like libjvm[_g].so is installed there
 360   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 361   //
 362   // Otherwise exit.
 363   //
 364   // Important note: if the location of libjvm.so changes this
 365   // code needs to be changed accordingly.
 366 
 367   // The next few definitions allow the code to be verbatim:
 368 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 369 #define getenv(n) ::getenv(n)
 370 
 371 /*
 372  * See ld(1):
 373  *      The linker uses the following search paths to locate required
 374  *      shared libraries:
 375  *        1: ...
 376  *        ...
 377  *        7: The default directories, normally /lib and /usr/lib.
 378  */
 379 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 380 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 381 #else
 382 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 383 #endif
 384 
 385 #define EXTENSIONS_DIR  "/lib/ext"
 386 #define ENDORSED_DIR    "/lib/endorsed"
 387 #define REG_DIR         "/usr/java/packages"
 388 
 389   {
 390     /* sysclasspath, java_home, dll_dir */
 391     {
 392         char *home_path;
 393         char *dll_path;
 394         char *pslash;
 395         char buf[MAXPATHLEN];
 396         os::jvm_path(buf, sizeof(buf));
 397 
 398         // Found the full path to libjvm.so.
 399         // Now cut the path to <java_home>/jre if we can.
 400         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 401         pslash = strrchr(buf, '/');
 402         if (pslash != NULL)
 403             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 404         dll_path = malloc(strlen(buf) + 1);
 405         if (dll_path == NULL)
 406             return;
 407         strcpy(dll_path, buf);
 408         Arguments::set_dll_dir(dll_path);
 409 
 410         if (pslash != NULL) {
 411             pslash = strrchr(buf, '/');
 412             if (pslash != NULL) {
 413                 *pslash = '\0';       /* get rid of /<arch> */
 414                 pslash = strrchr(buf, '/');
 415                 if (pslash != NULL)
 416                     *pslash = '\0';   /* get rid of /lib */
 417             }
 418         }
 419 
 420         home_path = malloc(strlen(buf) + 1);
 421         if (home_path == NULL)
 422             return;
 423         strcpy(home_path, buf);
 424         Arguments::set_java_home(home_path);
 425 
 426         if (!set_boot_path('/', ':'))
 427             return;
 428     }
 429 
 430     /*
 431      * Where to look for native libraries
 432      *
 433      * Note: Due to a legacy implementation, most of the library path
 434      * is set in the launcher.  This was to accomodate linking restrictions
 435      * on legacy Linux implementations (which are no longer supported).
 436      * Eventually, all the library path setting will be done here.
 437      *
 438      * However, to prevent the proliferation of improperly built native
 439      * libraries, the new path component /usr/java/packages is added here.
 440      * Eventually, all the library path setting will be done here.
 441      */
 442     {
 443         char *ld_library_path;
 444 
 445         /*
 446          * Construct the invariant part of ld_library_path. Note that the
 447          * space for the colon and the trailing null are provided by the
 448          * nulls included by the sizeof operator (so actually we allocate
 449          * a byte more than necessary).
 450          */
 451         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 452             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 453         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 454 
 455         /*
 456          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 457          * should always exist (until the legacy problem cited above is
 458          * addressed).
 459          */
 460         char *v = getenv("LD_LIBRARY_PATH");
 461         if (v != NULL) {
 462             char *t = ld_library_path;
 463             /* That's +1 for the colon and +1 for the trailing '\0' */
 464             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 465             sprintf(ld_library_path, "%s:%s", v, t);
 466         }
 467         Arguments::set_library_path(ld_library_path);
 468     }
 469 
 470     /*
 471      * Extensions directories.
 472      *
 473      * Note that the space for the colon and the trailing null are provided
 474      * by the nulls included by the sizeof operator (so actually one byte more
 475      * than necessary is allocated).
 476      */
 477     {
 478         char *buf = malloc(strlen(Arguments::get_java_home()) +
 479             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 480         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 481             Arguments::get_java_home());
 482         Arguments::set_ext_dirs(buf);
 483     }
 484 
 485     /* Endorsed standards default directory. */
 486     {
 487         char * buf;
 488         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 489         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 490         Arguments::set_endorsed_dirs(buf);
 491     }
 492   }
 493 
 494 #undef malloc
 495 #undef getenv
 496 #undef EXTENSIONS_DIR
 497 #undef ENDORSED_DIR
 498 
 499   // Done
 500   return;
 501 }
 502 
 503 ////////////////////////////////////////////////////////////////////////////////
 504 // breakpoint support
 505 
 506 void os::breakpoint() {
 507   BREAKPOINT;
 508 }
 509 
 510 extern "C" void breakpoint() {
 511   // use debugger to set breakpoint here
 512 }
 513 
 514 ////////////////////////////////////////////////////////////////////////////////
 515 // signal support
 516 
 517 debug_only(static bool signal_sets_initialized = false);
 518 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 519 
 520 bool os::Linux::is_sig_ignored(int sig) {
 521       struct sigaction oact;
 522       sigaction(sig, (struct sigaction*)NULL, &oact);
 523       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 524                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 525       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 526            return true;
 527       else
 528            return false;
 529 }
 530 
 531 void os::Linux::signal_sets_init() {
 532   // Should also have an assertion stating we are still single-threaded.
 533   assert(!signal_sets_initialized, "Already initialized");
 534   // Fill in signals that are necessarily unblocked for all threads in
 535   // the VM. Currently, we unblock the following signals:
 536   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 537   //                         by -Xrs (=ReduceSignalUsage));
 538   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 539   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 540   // the dispositions or masks wrt these signals.
 541   // Programs embedding the VM that want to use the above signals for their
 542   // own purposes must, at this time, use the "-Xrs" option to prevent
 543   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 544   // (See bug 4345157, and other related bugs).
 545   // In reality, though, unblocking these signals is really a nop, since
 546   // these signals are not blocked by default.
 547   sigemptyset(&unblocked_sigs);
 548   sigemptyset(&allowdebug_blocked_sigs);
 549   sigaddset(&unblocked_sigs, SIGILL);
 550   sigaddset(&unblocked_sigs, SIGSEGV);
 551   sigaddset(&unblocked_sigs, SIGBUS);
 552   sigaddset(&unblocked_sigs, SIGFPE);
 553   sigaddset(&unblocked_sigs, SR_signum);
 554 
 555   if (!ReduceSignalUsage) {
 556    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 557       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 558       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 559    }
 560    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 561       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 562       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 563    }
 564    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 565       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 566       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 567    }
 568   }
 569   // Fill in signals that are blocked by all but the VM thread.
 570   sigemptyset(&vm_sigs);
 571   if (!ReduceSignalUsage)
 572     sigaddset(&vm_sigs, BREAK_SIGNAL);
 573   debug_only(signal_sets_initialized = true);
 574 
 575 }
 576 
 577 // These are signals that are unblocked while a thread is running Java.
 578 // (For some reason, they get blocked by default.)
 579 sigset_t* os::Linux::unblocked_signals() {
 580   assert(signal_sets_initialized, "Not initialized");
 581   return &unblocked_sigs;
 582 }
 583 
 584 // These are the signals that are blocked while a (non-VM) thread is
 585 // running Java. Only the VM thread handles these signals.
 586 sigset_t* os::Linux::vm_signals() {
 587   assert(signal_sets_initialized, "Not initialized");
 588   return &vm_sigs;
 589 }
 590 
 591 // These are signals that are blocked during cond_wait to allow debugger in
 592 sigset_t* os::Linux::allowdebug_blocked_signals() {
 593   assert(signal_sets_initialized, "Not initialized");
 594   return &allowdebug_blocked_sigs;
 595 }
 596 
 597 void os::Linux::hotspot_sigmask(Thread* thread) {
 598 
 599   //Save caller's signal mask before setting VM signal mask
 600   sigset_t caller_sigmask;
 601   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 602 
 603   OSThread* osthread = thread->osthread();
 604   osthread->set_caller_sigmask(caller_sigmask);
 605 
 606   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 607 
 608   if (!ReduceSignalUsage) {
 609     if (thread->is_VM_thread()) {
 610       // Only the VM thread handles BREAK_SIGNAL ...
 611       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 612     } else {
 613       // ... all other threads block BREAK_SIGNAL
 614       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 615     }
 616   }
 617 }
 618 
 619 //////////////////////////////////////////////////////////////////////////////
 620 // detecting pthread library
 621 
 622 void os::Linux::libpthread_init() {
 623   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 624   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 625   // generic name for earlier versions.
 626   // Define macros here so we can build HotSpot on old systems.
 627 # ifndef _CS_GNU_LIBC_VERSION
 628 # define _CS_GNU_LIBC_VERSION 2
 629 # endif
 630 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 631 # define _CS_GNU_LIBPTHREAD_VERSION 3
 632 # endif
 633 
 634   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 635   if (n > 0) {
 636      char *str = (char *)malloc(n, mtInternal);
 637      confstr(_CS_GNU_LIBC_VERSION, str, n);
 638      os::Linux::set_glibc_version(str);
 639   } else {
 640      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 641      static char _gnu_libc_version[32];
 642      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 643               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 644      os::Linux::set_glibc_version(_gnu_libc_version);
 645   }
 646 
 647   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 648   if (n > 0) {
 649      char *str = (char *)malloc(n, mtInternal);
 650      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 651      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 652      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 653      // is the case. LinuxThreads has a hard limit on max number of threads.
 654      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 655      // On the other hand, NPTL does not have such a limit, sysconf()
 656      // will return -1 and errno is not changed. Check if it is really NPTL.
 657      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 658          strstr(str, "NPTL") &&
 659          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 660        free(str);
 661        os::Linux::set_libpthread_version("linuxthreads");
 662      } else {
 663        os::Linux::set_libpthread_version(str);
 664      }
 665   } else {
 666     // glibc before 2.3.2 only has LinuxThreads.
 667     os::Linux::set_libpthread_version("linuxthreads");
 668   }
 669 
 670   if (strstr(libpthread_version(), "NPTL")) {
 671      os::Linux::set_is_NPTL();
 672   } else {
 673      os::Linux::set_is_LinuxThreads();
 674   }
 675 
 676   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 677   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 678   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 679      os::Linux::set_is_floating_stack();
 680   }
 681 }
 682 
 683 /////////////////////////////////////////////////////////////////////////////
 684 // thread stack
 685 
 686 // Force Linux kernel to expand current thread stack. If "bottom" is close
 687 // to the stack guard, caller should block all signals.
 688 //
 689 // MAP_GROWSDOWN:
 690 //   A special mmap() flag that is used to implement thread stacks. It tells
 691 //   kernel that the memory region should extend downwards when needed. This
 692 //   allows early versions of LinuxThreads to only mmap the first few pages
 693 //   when creating a new thread. Linux kernel will automatically expand thread
 694 //   stack as needed (on page faults).
 695 //
 696 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 697 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 698 //   region, it's hard to tell if the fault is due to a legitimate stack
 699 //   access or because of reading/writing non-exist memory (e.g. buffer
 700 //   overrun). As a rule, if the fault happens below current stack pointer,
 701 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 702 //   application (see Linux kernel fault.c).
 703 //
 704 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 705 //   stack overflow detection.
 706 //
 707 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 708 //   not use this flag. However, the stack of initial thread is not created
 709 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 710 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 711 //   and then attach the thread to JVM.
 712 //
 713 // To get around the problem and allow stack banging on Linux, we need to
 714 // manually expand thread stack after receiving the SIGSEGV.
 715 //
 716 // There are two ways to expand thread stack to address "bottom", we used
 717 // both of them in JVM before 1.5:
 718 //   1. adjust stack pointer first so that it is below "bottom", and then
 719 //      touch "bottom"
 720 //   2. mmap() the page in question
 721 //
 722 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 723 // if current sp is already near the lower end of page 101, and we need to
 724 // call mmap() to map page 100, it is possible that part of the mmap() frame
 725 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 726 // That will destroy the mmap() frame and cause VM to crash.
 727 //
 728 // The following code works by adjusting sp first, then accessing the "bottom"
 729 // page to force a page fault. Linux kernel will then automatically expand the
 730 // stack mapping.
 731 //
 732 // _expand_stack_to() assumes its frame size is less than page size, which
 733 // should always be true if the function is not inlined.
 734 
 735 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 736 #define NOINLINE
 737 #else
 738 #define NOINLINE __attribute__ ((noinline))
 739 #endif
 740 
 741 static void _expand_stack_to(address bottom) NOINLINE;
 742 
 743 static void _expand_stack_to(address bottom) {
 744   address sp;
 745   size_t size;
 746   volatile char *p;
 747 
 748   // Adjust bottom to point to the largest address within the same page, it
 749   // gives us a one-page buffer if alloca() allocates slightly more memory.
 750   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 751   bottom += os::Linux::page_size() - 1;
 752 
 753   // sp might be slightly above current stack pointer; if that's the case, we
 754   // will alloca() a little more space than necessary, which is OK. Don't use
 755   // os::current_stack_pointer(), as its result can be slightly below current
 756   // stack pointer, causing us to not alloca enough to reach "bottom".
 757   sp = (address)&sp;
 758 
 759   if (sp > bottom) {
 760     size = sp - bottom;
 761     p = (volatile char *)alloca(size);
 762     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 763     p[0] = '\0';
 764   }
 765 }
 766 
 767 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 768   assert(t!=NULL, "just checking");
 769   assert(t->osthread()->expanding_stack(), "expand should be set");
 770   assert(t->stack_base() != NULL, "stack_base was not initialized");
 771 
 772   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 773     sigset_t mask_all, old_sigset;
 774     sigfillset(&mask_all);
 775     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 776     _expand_stack_to(addr);
 777     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 778     return true;
 779   }
 780   return false;
 781 }
 782 
 783 //////////////////////////////////////////////////////////////////////////////
 784 // create new thread
 785 
 786 static address highest_vm_reserved_address();
 787 
 788 // check if it's safe to start a new thread
 789 static bool _thread_safety_check(Thread* thread) {
 790   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 791     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 792     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 793     //   allocated (MAP_FIXED) from high address space. Every thread stack
 794     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 795     //   it to other values if they rebuild LinuxThreads).
 796     //
 797     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 798     // the memory region has already been mmap'ed. That means if we have too
 799     // many threads and/or very large heap, eventually thread stack will
 800     // collide with heap.
 801     //
 802     // Here we try to prevent heap/stack collision by comparing current
 803     // stack bottom with the highest address that has been mmap'ed by JVM
 804     // plus a safety margin for memory maps created by native code.
 805     //
 806     // This feature can be disabled by setting ThreadSafetyMargin to 0
 807     //
 808     if (ThreadSafetyMargin > 0) {
 809       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 810 
 811       // not safe if our stack extends below the safety margin
 812       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 813     } else {
 814       return true;
 815     }
 816   } else {
 817     // Floating stack LinuxThreads or NPTL:
 818     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 819     //   there's not enough space left, pthread_create() will fail. If we come
 820     //   here, that means enough space has been reserved for stack.
 821     return true;
 822   }
 823 }
 824 
 825 // Thread start routine for all newly created threads
 826 static void *java_start(Thread *thread) {
 827   // Try to randomize the cache line index of hot stack frames.
 828   // This helps when threads of the same stack traces evict each other's
 829   // cache lines. The threads can be either from the same JVM instance, or
 830   // from different JVM instances. The benefit is especially true for
 831   // processors with hyperthreading technology.
 832   static int counter = 0;
 833   int pid = os::current_process_id();
 834   alloca(((pid ^ counter++) & 7) * 128);
 835 
 836   ThreadLocalStorage::set_thread(thread);
 837 
 838   OSThread* osthread = thread->osthread();
 839   Monitor* sync = osthread->startThread_lock();
 840 
 841   // non floating stack LinuxThreads needs extra check, see above
 842   if (!_thread_safety_check(thread)) {
 843     // notify parent thread
 844     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 845     osthread->set_state(ZOMBIE);
 846     sync->notify_all();
 847     return NULL;
 848   }
 849 
 850   // thread_id is kernel thread id (similar to Solaris LWP id)
 851   osthread->set_thread_id(os::Linux::gettid());
 852 
 853   if (UseNUMA) {
 854     int lgrp_id = os::numa_get_group_id();
 855     if (lgrp_id != -1) {
 856       thread->set_lgrp_id(lgrp_id);
 857     }
 858   }
 859   // initialize signal mask for this thread
 860   os::Linux::hotspot_sigmask(thread);
 861 
 862   // initialize floating point control register
 863   os::Linux::init_thread_fpu_state();
 864 
 865   // handshaking with parent thread
 866   {
 867     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 868 
 869     // notify parent thread
 870     osthread->set_state(INITIALIZED);
 871     sync->notify_all();
 872 
 873     // wait until os::start_thread()
 874     while (osthread->get_state() == INITIALIZED) {
 875       sync->wait(Mutex::_no_safepoint_check_flag);
 876     }
 877   }
 878 
 879   // call one more level start routine
 880   thread->run();
 881 
 882   return 0;
 883 }
 884 
 885 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 886   assert(thread->osthread() == NULL, "caller responsible");
 887 
 888   // Allocate the OSThread object
 889   OSThread* osthread = new OSThread(NULL, NULL);
 890   if (osthread == NULL) {
 891     return false;
 892   }
 893 
 894   // set the correct thread state
 895   osthread->set_thread_type(thr_type);
 896 
 897   // Initial state is ALLOCATED but not INITIALIZED
 898   osthread->set_state(ALLOCATED);
 899 
 900   thread->set_osthread(osthread);
 901 
 902   // init thread attributes
 903   pthread_attr_t attr;
 904   pthread_attr_init(&attr);
 905   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 906 
 907   // stack size
 908   if (os::Linux::supports_variable_stack_size()) {
 909     // calculate stack size if it's not specified by caller
 910     if (stack_size == 0) {
 911       stack_size = os::Linux::default_stack_size(thr_type);
 912 
 913       switch (thr_type) {
 914       case os::java_thread:
 915         // Java threads use ThreadStackSize which default value can be
 916         // changed with the flag -Xss
 917         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 918         stack_size = JavaThread::stack_size_at_create();
 919         break;
 920       case os::compiler_thread:
 921         if (CompilerThreadStackSize > 0) {
 922           stack_size = (size_t)(CompilerThreadStackSize * K);
 923           break;
 924         } // else fall through:
 925           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 926       case os::vm_thread:
 927       case os::pgc_thread:
 928       case os::cgc_thread:
 929       case os::watcher_thread:
 930         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 931         break;
 932       }
 933     }
 934 
 935     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 936     pthread_attr_setstacksize(&attr, stack_size);
 937   } else {
 938     // let pthread_create() pick the default value.
 939   }
 940 
 941   // glibc guard page
 942   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 943 
 944   ThreadState state;
 945 
 946   {
 947     // Serialize thread creation if we are running with fixed stack LinuxThreads
 948     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 949     if (lock) {
 950       os::Linux::createThread_lock()->lock_without_safepoint_check();
 951     }
 952 
 953     pthread_t tid;
 954     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 955 
 956     pthread_attr_destroy(&attr);
 957 
 958     if (ret != 0) {
 959       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 960         perror("pthread_create()");
 961       }
 962       // Need to clean up stuff we've allocated so far
 963       thread->set_osthread(NULL);
 964       delete osthread;
 965       if (lock) os::Linux::createThread_lock()->unlock();
 966       return false;
 967     }
 968 
 969     // Store pthread info into the OSThread
 970     osthread->set_pthread_id(tid);
 971 
 972     // Wait until child thread is either initialized or aborted
 973     {
 974       Monitor* sync_with_child = osthread->startThread_lock();
 975       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 976       while ((state = osthread->get_state()) == ALLOCATED) {
 977         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 978       }
 979     }
 980 
 981     if (lock) {
 982       os::Linux::createThread_lock()->unlock();
 983     }
 984   }
 985 
 986   // Aborted due to thread limit being reached
 987   if (state == ZOMBIE) {
 988       thread->set_osthread(NULL);
 989       delete osthread;
 990       return false;
 991   }
 992 
 993   // The thread is returned suspended (in state INITIALIZED),
 994   // and is started higher up in the call chain
 995   assert(state == INITIALIZED, "race condition");
 996   return true;
 997 }
 998 
 999 /////////////////////////////////////////////////////////////////////////////
1000 // attach existing thread
1001 
1002 // bootstrap the main thread
1003 bool os::create_main_thread(JavaThread* thread) {
1004   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1005   return create_attached_thread(thread);
1006 }
1007 
1008 bool os::create_attached_thread(JavaThread* thread) {
1009 #ifdef ASSERT
1010     thread->verify_not_published();
1011 #endif
1012 
1013   // Allocate the OSThread object
1014   OSThread* osthread = new OSThread(NULL, NULL);
1015 
1016   if (osthread == NULL) {
1017     return false;
1018   }
1019 
1020   // Store pthread info into the OSThread
1021   osthread->set_thread_id(os::Linux::gettid());
1022   osthread->set_pthread_id(::pthread_self());
1023 
1024   // initialize floating point control register
1025   os::Linux::init_thread_fpu_state();
1026 
1027   // Initial thread state is RUNNABLE
1028   osthread->set_state(RUNNABLE);
1029 
1030   thread->set_osthread(osthread);
1031 
1032   if (UseNUMA) {
1033     int lgrp_id = os::numa_get_group_id();
1034     if (lgrp_id != -1) {
1035       thread->set_lgrp_id(lgrp_id);
1036     }
1037   }
1038 
1039   if (os::Linux::is_initial_thread()) {
1040     // If current thread is initial thread, its stack is mapped on demand,
1041     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1042     // the entire stack region to avoid SEGV in stack banging.
1043     // It is also useful to get around the heap-stack-gap problem on SuSE
1044     // kernel (see 4821821 for details). We first expand stack to the top
1045     // of yellow zone, then enable stack yellow zone (order is significant,
1046     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1047     // is no gap between the last two virtual memory regions.
1048 
1049     JavaThread *jt = (JavaThread *)thread;
1050     address addr = jt->stack_yellow_zone_base();
1051     assert(addr != NULL, "initialization problem?");
1052     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1053 
1054     osthread->set_expanding_stack();
1055     os::Linux::manually_expand_stack(jt, addr);
1056     osthread->clear_expanding_stack();
1057   }
1058 
1059   // initialize signal mask for this thread
1060   // and save the caller's signal mask
1061   os::Linux::hotspot_sigmask(thread);
1062 
1063   return true;
1064 }
1065 
1066 void os::pd_start_thread(Thread* thread) {
1067   OSThread * osthread = thread->osthread();
1068   assert(osthread->get_state() != INITIALIZED, "just checking");
1069   Monitor* sync_with_child = osthread->startThread_lock();
1070   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1071   sync_with_child->notify();
1072 }
1073 
1074 // Free Linux resources related to the OSThread
1075 void os::free_thread(OSThread* osthread) {
1076   assert(osthread != NULL, "osthread not set");
1077 
1078   if (Thread::current()->osthread() == osthread) {
1079     // Restore caller's signal mask
1080     sigset_t sigmask = osthread->caller_sigmask();
1081     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1082    }
1083 
1084   delete osthread;
1085 }
1086 
1087 //////////////////////////////////////////////////////////////////////////////
1088 // thread local storage
1089 
1090 int os::allocate_thread_local_storage() {
1091   pthread_key_t key;
1092   int rslt = pthread_key_create(&key, NULL);
1093   assert(rslt == 0, "cannot allocate thread local storage");
1094   return (int)key;
1095 }
1096 
1097 // Note: This is currently not used by VM, as we don't destroy TLS key
1098 // on VM exit.
1099 void os::free_thread_local_storage(int index) {
1100   int rslt = pthread_key_delete((pthread_key_t)index);
1101   assert(rslt == 0, "invalid index");
1102 }
1103 
1104 void os::thread_local_storage_at_put(int index, void* value) {
1105   int rslt = pthread_setspecific((pthread_key_t)index, value);
1106   assert(rslt == 0, "pthread_setspecific failed");
1107 }
1108 
1109 extern "C" Thread* get_thread() {
1110   return ThreadLocalStorage::thread();
1111 }
1112 
1113 //////////////////////////////////////////////////////////////////////////////
1114 // initial thread
1115 
1116 // Check if current thread is the initial thread, similar to Solaris thr_main.
1117 bool os::Linux::is_initial_thread(void) {
1118   char dummy;
1119   // If called before init complete, thread stack bottom will be null.
1120   // Can be called if fatal error occurs before initialization.
1121   if (initial_thread_stack_bottom() == NULL) return false;
1122   assert(initial_thread_stack_bottom() != NULL &&
1123          initial_thread_stack_size()   != 0,
1124          "os::init did not locate initial thread's stack region");
1125   if ((address)&dummy >= initial_thread_stack_bottom() &&
1126       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1127        return true;
1128   else return false;
1129 }
1130 
1131 // Find the virtual memory area that contains addr
1132 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1133   FILE *fp = fopen("/proc/self/maps", "r");
1134   if (fp) {
1135     address low, high;
1136     while (!feof(fp)) {
1137       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1138         if (low <= addr && addr < high) {
1139            if (vma_low)  *vma_low  = low;
1140            if (vma_high) *vma_high = high;
1141            fclose (fp);
1142            return true;
1143         }
1144       }
1145       for (;;) {
1146         int ch = fgetc(fp);
1147         if (ch == EOF || ch == (int)'\n') break;
1148       }
1149     }
1150     fclose(fp);
1151   }
1152   return false;
1153 }
1154 
1155 // Locate initial thread stack. This special handling of initial thread stack
1156 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1157 // bogus value for initial thread.
1158 void os::Linux::capture_initial_stack(size_t max_size) {
1159   // stack size is the easy part, get it from RLIMIT_STACK
1160   size_t stack_size;
1161   struct rlimit rlim;
1162   getrlimit(RLIMIT_STACK, &rlim);
1163   stack_size = rlim.rlim_cur;
1164 
1165   // 6308388: a bug in ld.so will relocate its own .data section to the
1166   //   lower end of primordial stack; reduce ulimit -s value a little bit
1167   //   so we won't install guard page on ld.so's data section.
1168   stack_size -= 2 * page_size();
1169 
1170   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1171   //   7.1, in both cases we will get 2G in return value.
1172   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1173   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1174   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1175   //   in case other parts in glibc still assumes 2M max stack size.
1176   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1177 #ifndef IA64
1178   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1179 #else
1180   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1181   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1182 #endif
1183 
1184   // Try to figure out where the stack base (top) is. This is harder.
1185   //
1186   // When an application is started, glibc saves the initial stack pointer in
1187   // a global variable "__libc_stack_end", which is then used by system
1188   // libraries. __libc_stack_end should be pretty close to stack top. The
1189   // variable is available since the very early days. However, because it is
1190   // a private interface, it could disappear in the future.
1191   //
1192   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1193   // to __libc_stack_end, it is very close to stack top, but isn't the real
1194   // stack top. Note that /proc may not exist if VM is running as a chroot
1195   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1196   // /proc/<pid>/stat could change in the future (though unlikely).
1197   //
1198   // We try __libc_stack_end first. If that doesn't work, look for
1199   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1200   // as a hint, which should work well in most cases.
1201 
1202   uintptr_t stack_start;
1203 
1204   // try __libc_stack_end first
1205   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1206   if (p && *p) {
1207     stack_start = *p;
1208   } else {
1209     // see if we can get the start_stack field from /proc/self/stat
1210     FILE *fp;
1211     int pid;
1212     char state;
1213     int ppid;
1214     int pgrp;
1215     int session;
1216     int nr;
1217     int tpgrp;
1218     unsigned long flags;
1219     unsigned long minflt;
1220     unsigned long cminflt;
1221     unsigned long majflt;
1222     unsigned long cmajflt;
1223     unsigned long utime;
1224     unsigned long stime;
1225     long cutime;
1226     long cstime;
1227     long prio;
1228     long nice;
1229     long junk;
1230     long it_real;
1231     uintptr_t start;
1232     uintptr_t vsize;
1233     intptr_t rss;
1234     uintptr_t rsslim;
1235     uintptr_t scodes;
1236     uintptr_t ecode;
1237     int i;
1238 
1239     // Figure what the primordial thread stack base is. Code is inspired
1240     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1241     // followed by command name surrounded by parentheses, state, etc.
1242     char stat[2048];
1243     int statlen;
1244 
1245     fp = fopen("/proc/self/stat", "r");
1246     if (fp) {
1247       statlen = fread(stat, 1, 2047, fp);
1248       stat[statlen] = '\0';
1249       fclose(fp);
1250 
1251       // Skip pid and the command string. Note that we could be dealing with
1252       // weird command names, e.g. user could decide to rename java launcher
1253       // to "java 1.4.2 :)", then the stat file would look like
1254       //                1234 (java 1.4.2 :)) R ... ...
1255       // We don't really need to know the command string, just find the last
1256       // occurrence of ")" and then start parsing from there. See bug 4726580.
1257       char * s = strrchr(stat, ')');
1258 
1259       i = 0;
1260       if (s) {
1261         // Skip blank chars
1262         do s++; while (isspace(*s));
1263 
1264 #define _UFM UINTX_FORMAT
1265 #define _DFM INTX_FORMAT
1266 
1267         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1268         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1269         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1270              &state,          /* 3  %c  */
1271              &ppid,           /* 4  %d  */
1272              &pgrp,           /* 5  %d  */
1273              &session,        /* 6  %d  */
1274              &nr,             /* 7  %d  */
1275              &tpgrp,          /* 8  %d  */
1276              &flags,          /* 9  %lu  */
1277              &minflt,         /* 10 %lu  */
1278              &cminflt,        /* 11 %lu  */
1279              &majflt,         /* 12 %lu  */
1280              &cmajflt,        /* 13 %lu  */
1281              &utime,          /* 14 %lu  */
1282              &stime,          /* 15 %lu  */
1283              &cutime,         /* 16 %ld  */
1284              &cstime,         /* 17 %ld  */
1285              &prio,           /* 18 %ld  */
1286              &nice,           /* 19 %ld  */
1287              &junk,           /* 20 %ld  */
1288              &it_real,        /* 21 %ld  */
1289              &start,          /* 22 UINTX_FORMAT */
1290              &vsize,          /* 23 UINTX_FORMAT */
1291              &rss,            /* 24 INTX_FORMAT  */
1292              &rsslim,         /* 25 UINTX_FORMAT */
1293              &scodes,         /* 26 UINTX_FORMAT */
1294              &ecode,          /* 27 UINTX_FORMAT */
1295              &stack_start);   /* 28 UINTX_FORMAT */
1296       }
1297 
1298 #undef _UFM
1299 #undef _DFM
1300 
1301       if (i != 28 - 2) {
1302          assert(false, "Bad conversion from /proc/self/stat");
1303          // product mode - assume we are the initial thread, good luck in the
1304          // embedded case.
1305          warning("Can't detect initial thread stack location - bad conversion");
1306          stack_start = (uintptr_t) &rlim;
1307       }
1308     } else {
1309       // For some reason we can't open /proc/self/stat (for example, running on
1310       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1311       // most cases, so don't abort:
1312       warning("Can't detect initial thread stack location - no /proc/self/stat");
1313       stack_start = (uintptr_t) &rlim;
1314     }
1315   }
1316 
1317   // Now we have a pointer (stack_start) very close to the stack top, the
1318   // next thing to do is to figure out the exact location of stack top. We
1319   // can find out the virtual memory area that contains stack_start by
1320   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1321   // and its upper limit is the real stack top. (again, this would fail if
1322   // running inside chroot, because /proc may not exist.)
1323 
1324   uintptr_t stack_top;
1325   address low, high;
1326   if (find_vma((address)stack_start, &low, &high)) {
1327     // success, "high" is the true stack top. (ignore "low", because initial
1328     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1329     stack_top = (uintptr_t)high;
1330   } else {
1331     // failed, likely because /proc/self/maps does not exist
1332     warning("Can't detect initial thread stack location - find_vma failed");
1333     // best effort: stack_start is normally within a few pages below the real
1334     // stack top, use it as stack top, and reduce stack size so we won't put
1335     // guard page outside stack.
1336     stack_top = stack_start;
1337     stack_size -= 16 * page_size();
1338   }
1339 
1340   // stack_top could be partially down the page so align it
1341   stack_top = align_size_up(stack_top, page_size());
1342 
1343   if (max_size && stack_size > max_size) {
1344      _initial_thread_stack_size = max_size;
1345   } else {
1346      _initial_thread_stack_size = stack_size;
1347   }
1348 
1349   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1350   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1351 }
1352 
1353 ////////////////////////////////////////////////////////////////////////////////
1354 // time support
1355 
1356 // Time since start-up in seconds to a fine granularity.
1357 // Used by VMSelfDestructTimer and the MemProfiler.
1358 double os::elapsedTime() {
1359 
1360   return (double)(os::elapsed_counter()) * 0.000001;
1361 }
1362 
1363 jlong os::elapsed_counter() {
1364   timeval time;
1365   int status = gettimeofday(&time, NULL);
1366   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1367 }
1368 
1369 jlong os::elapsed_frequency() {
1370   return (1000 * 1000);
1371 }
1372 
1373 // For now, we say that linux does not support vtime.  I have no idea
1374 // whether it can actually be made to (DLD, 9/13/05).
1375 
1376 bool os::supports_vtime() { return false; }
1377 bool os::enable_vtime()   { return false; }
1378 bool os::vtime_enabled()  { return false; }
1379 double os::elapsedVTime() {
1380   // better than nothing, but not much
1381   return elapsedTime();
1382 }
1383 
1384 jlong os::javaTimeMillis() {
1385   timeval time;
1386   int status = gettimeofday(&time, NULL);
1387   assert(status != -1, "linux error");
1388   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1389 }
1390 
1391 #ifndef CLOCK_MONOTONIC
1392 #define CLOCK_MONOTONIC (1)
1393 #endif
1394 
1395 void os::Linux::clock_init() {
1396   // we do dlopen's in this particular order due to bug in linux
1397   // dynamical loader (see 6348968) leading to crash on exit
1398   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1399   if (handle == NULL) {
1400     handle = dlopen("librt.so", RTLD_LAZY);
1401   }
1402 
1403   if (handle) {
1404     int (*clock_getres_func)(clockid_t, struct timespec*) =
1405            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1406     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1407            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1408     if (clock_getres_func && clock_gettime_func) {
1409       // See if monotonic clock is supported by the kernel. Note that some
1410       // early implementations simply return kernel jiffies (updated every
1411       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1412       // for nano time (though the monotonic property is still nice to have).
1413       // It's fixed in newer kernels, however clock_getres() still returns
1414       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1415       // resolution for now. Hopefully as people move to new kernels, this
1416       // won't be a problem.
1417       struct timespec res;
1418       struct timespec tp;
1419       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1420           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1421         // yes, monotonic clock is supported
1422         _clock_gettime = clock_gettime_func;
1423       } else {
1424         // close librt if there is no monotonic clock
1425         dlclose(handle);
1426       }
1427     }
1428   }
1429 }
1430 
1431 #ifndef SYS_clock_getres
1432 
1433 #if defined(IA32) || defined(AMD64)
1434 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1435 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1436 #else
1437 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1438 #define sys_clock_getres(x,y)  -1
1439 #endif
1440 
1441 #else
1442 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1443 #endif
1444 
1445 void os::Linux::fast_thread_clock_init() {
1446   if (!UseLinuxPosixThreadCPUClocks) {
1447     return;
1448   }
1449   clockid_t clockid;
1450   struct timespec tp;
1451   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1452       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1453 
1454   // Switch to using fast clocks for thread cpu time if
1455   // the sys_clock_getres() returns 0 error code.
1456   // Note, that some kernels may support the current thread
1457   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1458   // returned by the pthread_getcpuclockid().
1459   // If the fast Posix clocks are supported then the sys_clock_getres()
1460   // must return at least tp.tv_sec == 0 which means a resolution
1461   // better than 1 sec. This is extra check for reliability.
1462 
1463   if(pthread_getcpuclockid_func &&
1464      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1465      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1466 
1467     _supports_fast_thread_cpu_time = true;
1468     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1469   }
1470 }
1471 
1472 jlong os::javaTimeNanos() {
1473   if (Linux::supports_monotonic_clock()) {
1474     struct timespec tp;
1475     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1476     assert(status == 0, "gettime error");
1477     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1478     return result;
1479   } else {
1480     timeval time;
1481     int status = gettimeofday(&time, NULL);
1482     assert(status != -1, "linux error");
1483     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1484     return 1000 * usecs;
1485   }
1486 }
1487 
1488 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1489   if (Linux::supports_monotonic_clock()) {
1490     info_ptr->max_value = ALL_64_BITS;
1491 
1492     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1493     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1494     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1495   } else {
1496     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1497     info_ptr->max_value = ALL_64_BITS;
1498 
1499     // gettimeofday is a real time clock so it skips
1500     info_ptr->may_skip_backward = true;
1501     info_ptr->may_skip_forward = true;
1502   }
1503 
1504   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1505 }
1506 
1507 // Return the real, user, and system times in seconds from an
1508 // arbitrary fixed point in the past.
1509 bool os::getTimesSecs(double* process_real_time,
1510                       double* process_user_time,
1511                       double* process_system_time) {
1512   struct tms ticks;
1513   clock_t real_ticks = times(&ticks);
1514 
1515   if (real_ticks == (clock_t) (-1)) {
1516     return false;
1517   } else {
1518     double ticks_per_second = (double) clock_tics_per_sec;
1519     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1520     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1521     *process_real_time = ((double) real_ticks) / ticks_per_second;
1522 
1523     return true;
1524   }
1525 }
1526 
1527 
1528 char * os::local_time_string(char *buf, size_t buflen) {
1529   struct tm t;
1530   time_t long_time;
1531   time(&long_time);
1532   localtime_r(&long_time, &t);
1533   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1534                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1535                t.tm_hour, t.tm_min, t.tm_sec);
1536   return buf;
1537 }
1538 
1539 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1540   return localtime_r(clock, res);
1541 }
1542 
1543 ////////////////////////////////////////////////////////////////////////////////
1544 // runtime exit support
1545 
1546 // Note: os::shutdown() might be called very early during initialization, or
1547 // called from signal handler. Before adding something to os::shutdown(), make
1548 // sure it is async-safe and can handle partially initialized VM.
1549 void os::shutdown() {
1550 
1551   // allow PerfMemory to attempt cleanup of any persistent resources
1552   perfMemory_exit();
1553 
1554   // needs to remove object in file system
1555   AttachListener::abort();
1556 
1557   // flush buffered output, finish log files
1558   ostream_abort();
1559 
1560   // Check for abort hook
1561   abort_hook_t abort_hook = Arguments::abort_hook();
1562   if (abort_hook != NULL) {
1563     abort_hook();
1564   }
1565 
1566 }
1567 
1568 // Note: os::abort() might be called very early during initialization, or
1569 // called from signal handler. Before adding something to os::abort(), make
1570 // sure it is async-safe and can handle partially initialized VM.
1571 void os::abort(bool dump_core) {
1572   os::shutdown();
1573   if (dump_core) {
1574 #ifndef PRODUCT
1575     fdStream out(defaultStream::output_fd());
1576     out.print_raw("Current thread is ");
1577     char buf[16];
1578     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1579     out.print_raw_cr(buf);
1580     out.print_raw_cr("Dumping core ...");
1581 #endif
1582     ::abort(); // dump core
1583   }
1584 
1585   ::exit(1);
1586 }
1587 
1588 // Die immediately, no exit hook, no abort hook, no cleanup.
1589 void os::die() {
1590   // _exit() on LinuxThreads only kills current thread
1591   ::abort();
1592 }
1593 
1594 // unused on linux for now.
1595 void os::set_error_file(const char *logfile) {}
1596 
1597 
1598 // This method is a copy of JDK's sysGetLastErrorString
1599 // from src/solaris/hpi/src/system_md.c
1600 
1601 size_t os::lasterror(char *buf, size_t len) {
1602 
1603   if (errno == 0)  return 0;
1604 
1605   const char *s = ::strerror(errno);
1606   size_t n = ::strlen(s);
1607   if (n >= len) {
1608     n = len - 1;
1609   }
1610   ::strncpy(buf, s, n);
1611   buf[n] = '\0';
1612   return n;
1613 }
1614 
1615 intx os::current_thread_id() { return (intx)pthread_self(); }
1616 int os::current_process_id() {
1617 
1618   // Under the old linux thread library, linux gives each thread
1619   // its own process id. Because of this each thread will return
1620   // a different pid if this method were to return the result
1621   // of getpid(2). Linux provides no api that returns the pid
1622   // of the launcher thread for the vm. This implementation
1623   // returns a unique pid, the pid of the launcher thread
1624   // that starts the vm 'process'.
1625 
1626   // Under the NPTL, getpid() returns the same pid as the
1627   // launcher thread rather than a unique pid per thread.
1628   // Use gettid() if you want the old pre NPTL behaviour.
1629 
1630   // if you are looking for the result of a call to getpid() that
1631   // returns a unique pid for the calling thread, then look at the
1632   // OSThread::thread_id() method in osThread_linux.hpp file
1633 
1634   return (int)(_initial_pid ? _initial_pid : getpid());
1635 }
1636 
1637 // DLL functions
1638 
1639 const char* os::dll_file_extension() { return ".so"; }
1640 
1641 // This must be hard coded because it's the system's temporary
1642 // directory not the java application's temp directory, ala java.io.tmpdir.
1643 const char* os::get_temp_directory() { return "/tmp"; }
1644 
1645 static bool file_exists(const char* filename) {
1646   struct stat statbuf;
1647   if (filename == NULL || strlen(filename) == 0) {
1648     return false;
1649   }
1650   return os::stat(filename, &statbuf) == 0;
1651 }
1652 
1653 bool os::dll_build_name(char* buffer, size_t buflen,
1654                         const char* pname, const char* fname) {
1655   bool retval = false;
1656   // Copied from libhpi
1657   const size_t pnamelen = pname ? strlen(pname) : 0;
1658 
1659   // Return error on buffer overflow.
1660   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1661     return retval;
1662   }
1663 
1664   if (pnamelen == 0) {
1665     snprintf(buffer, buflen, "lib%s.so", fname);
1666     retval = true;
1667   } else if (strchr(pname, *os::path_separator()) != NULL) {
1668     int n;
1669     char** pelements = split_path(pname, &n);
1670     for (int i = 0 ; i < n ; i++) {
1671       // Really shouldn't be NULL, but check can't hurt
1672       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1673         continue; // skip the empty path values
1674       }
1675       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1676       if (file_exists(buffer)) {
1677         retval = true;
1678         break;
1679       }
1680     }
1681     // release the storage
1682     for (int i = 0 ; i < n ; i++) {
1683       if (pelements[i] != NULL) {
1684         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1685       }
1686     }
1687     if (pelements != NULL) {
1688       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1689     }
1690   } else {
1691     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1692     retval = true;
1693   }
1694   return retval;
1695 }
1696 
1697 const char* os::get_current_directory(char *buf, int buflen) {
1698   return getcwd(buf, buflen);
1699 }
1700 
1701 // check if addr is inside libjvm[_g].so
1702 bool os::address_is_in_vm(address addr) {
1703   static address libjvm_base_addr;
1704   Dl_info dlinfo;
1705 
1706   if (libjvm_base_addr == NULL) {
1707     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1708     libjvm_base_addr = (address)dlinfo.dli_fbase;
1709     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1710   }
1711 
1712   if (dladdr((void *)addr, &dlinfo)) {
1713     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1714   }
1715 
1716   return false;
1717 }
1718 
1719 bool os::dll_address_to_function_name(address addr, char *buf,
1720                                       int buflen, int *offset) {
1721   Dl_info dlinfo;
1722 
1723   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1724     if (buf != NULL) {
1725       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1726         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1727       }
1728     }
1729     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1730     return true;
1731   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1732     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1733         buf, buflen, offset, dlinfo.dli_fname)) {
1734        return true;
1735     }
1736   }
1737 
1738   if (buf != NULL) buf[0] = '\0';
1739   if (offset != NULL) *offset = -1;
1740   return false;
1741 }
1742 
1743 struct _address_to_library_name {
1744   address addr;          // input : memory address
1745   size_t  buflen;        //         size of fname
1746   char*   fname;         // output: library name
1747   address base;          //         library base addr
1748 };
1749 
1750 static int address_to_library_name_callback(struct dl_phdr_info *info,
1751                                             size_t size, void *data) {
1752   int i;
1753   bool found = false;
1754   address libbase = NULL;
1755   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1756 
1757   // iterate through all loadable segments
1758   for (i = 0; i < info->dlpi_phnum; i++) {
1759     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1760     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1761       // base address of a library is the lowest address of its loaded
1762       // segments.
1763       if (libbase == NULL || libbase > segbase) {
1764         libbase = segbase;
1765       }
1766       // see if 'addr' is within current segment
1767       if (segbase <= d->addr &&
1768           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1769         found = true;
1770       }
1771     }
1772   }
1773 
1774   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1775   // so dll_address_to_library_name() can fall through to use dladdr() which
1776   // can figure out executable name from argv[0].
1777   if (found && info->dlpi_name && info->dlpi_name[0]) {
1778     d->base = libbase;
1779     if (d->fname) {
1780       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1781     }
1782     return 1;
1783   }
1784   return 0;
1785 }
1786 
1787 bool os::dll_address_to_library_name(address addr, char* buf,
1788                                      int buflen, int* offset) {
1789   Dl_info dlinfo;
1790   struct _address_to_library_name data;
1791 
1792   // There is a bug in old glibc dladdr() implementation that it could resolve
1793   // to wrong library name if the .so file has a base address != NULL. Here
1794   // we iterate through the program headers of all loaded libraries to find
1795   // out which library 'addr' really belongs to. This workaround can be
1796   // removed once the minimum requirement for glibc is moved to 2.3.x.
1797   data.addr = addr;
1798   data.fname = buf;
1799   data.buflen = buflen;
1800   data.base = NULL;
1801   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1802 
1803   if (rslt) {
1804      // buf already contains library name
1805      if (offset) *offset = addr - data.base;
1806      return true;
1807   } else if (dladdr((void*)addr, &dlinfo)){
1808      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1809      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1810      return true;
1811   } else {
1812      if (buf) buf[0] = '\0';
1813      if (offset) *offset = -1;
1814      return false;
1815   }
1816 }
1817 
1818   // Loads .dll/.so and
1819   // in case of error it checks if .dll/.so was built for the
1820   // same architecture as Hotspot is running on
1821 
1822 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1823 {
1824   void * result= ::dlopen(filename, RTLD_LAZY);
1825   if (result != NULL) {
1826     // Successful loading
1827     return result;
1828   }
1829 
1830   Elf32_Ehdr elf_head;
1831 
1832   // Read system error message into ebuf
1833   // It may or may not be overwritten below
1834   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1835   ebuf[ebuflen-1]='\0';
1836   int diag_msg_max_length=ebuflen-strlen(ebuf);
1837   char* diag_msg_buf=ebuf+strlen(ebuf);
1838 
1839   if (diag_msg_max_length==0) {
1840     // No more space in ebuf for additional diagnostics message
1841     return NULL;
1842   }
1843 
1844 
1845   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1846 
1847   if (file_descriptor < 0) {
1848     // Can't open library, report dlerror() message
1849     return NULL;
1850   }
1851 
1852   bool failed_to_read_elf_head=
1853     (sizeof(elf_head)!=
1854         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1855 
1856   ::close(file_descriptor);
1857   if (failed_to_read_elf_head) {
1858     // file i/o error - report dlerror() msg
1859     return NULL;
1860   }
1861 
1862   typedef struct {
1863     Elf32_Half  code;         // Actual value as defined in elf.h
1864     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1865     char        elf_class;    // 32 or 64 bit
1866     char        endianess;    // MSB or LSB
1867     char*       name;         // String representation
1868   } arch_t;
1869 
1870   #ifndef EM_486
1871   #define EM_486          6               /* Intel 80486 */
1872   #endif
1873 
1874   static const arch_t arch_array[]={
1875     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1876     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1877     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1878     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1879     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1880     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1881     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1882     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1883     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1884     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1885     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1886     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1887     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1888     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1889     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1890     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1891   };
1892 
1893   #if  (defined IA32)
1894     static  Elf32_Half running_arch_code=EM_386;
1895   #elif   (defined AMD64)
1896     static  Elf32_Half running_arch_code=EM_X86_64;
1897   #elif  (defined IA64)
1898     static  Elf32_Half running_arch_code=EM_IA_64;
1899   #elif  (defined __sparc) && (defined _LP64)
1900     static  Elf32_Half running_arch_code=EM_SPARCV9;
1901   #elif  (defined __sparc) && (!defined _LP64)
1902     static  Elf32_Half running_arch_code=EM_SPARC;
1903   #elif  (defined __powerpc64__)
1904     static  Elf32_Half running_arch_code=EM_PPC64;
1905   #elif  (defined __powerpc__)
1906     static  Elf32_Half running_arch_code=EM_PPC;
1907   #elif  (defined ARM)
1908     static  Elf32_Half running_arch_code=EM_ARM;
1909   #elif  (defined S390)
1910     static  Elf32_Half running_arch_code=EM_S390;
1911   #elif  (defined ALPHA)
1912     static  Elf32_Half running_arch_code=EM_ALPHA;
1913   #elif  (defined MIPSEL)
1914     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1915   #elif  (defined PARISC)
1916     static  Elf32_Half running_arch_code=EM_PARISC;
1917   #elif  (defined MIPS)
1918     static  Elf32_Half running_arch_code=EM_MIPS;
1919   #elif  (defined M68K)
1920     static  Elf32_Half running_arch_code=EM_68K;
1921   #else
1922     #error Method os::dll_load requires that one of following is defined:\
1923          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1924   #endif
1925 
1926   // Identify compatability class for VM's architecture and library's architecture
1927   // Obtain string descriptions for architectures
1928 
1929   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1930   int running_arch_index=-1;
1931 
1932   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1933     if (running_arch_code == arch_array[i].code) {
1934       running_arch_index    = i;
1935     }
1936     if (lib_arch.code == arch_array[i].code) {
1937       lib_arch.compat_class = arch_array[i].compat_class;
1938       lib_arch.name         = arch_array[i].name;
1939     }
1940   }
1941 
1942   assert(running_arch_index != -1,
1943     "Didn't find running architecture code (running_arch_code) in arch_array");
1944   if (running_arch_index == -1) {
1945     // Even though running architecture detection failed
1946     // we may still continue with reporting dlerror() message
1947     return NULL;
1948   }
1949 
1950   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1951     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1952     return NULL;
1953   }
1954 
1955 #ifndef S390
1956   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1957     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1958     return NULL;
1959   }
1960 #endif // !S390
1961 
1962   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1963     if ( lib_arch.name!=NULL ) {
1964       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1965         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1966         lib_arch.name, arch_array[running_arch_index].name);
1967     } else {
1968       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1969       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1970         lib_arch.code,
1971         arch_array[running_arch_index].name);
1972     }
1973   }
1974 
1975   return NULL;
1976 }
1977 
1978 /*
1979  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1980  * chances are you might want to run the generated bits against glibc-2.0
1981  * libdl.so, so always use locking for any version of glibc.
1982  */
1983 void* os::dll_lookup(void* handle, const char* name) {
1984   pthread_mutex_lock(&dl_mutex);
1985   void* res = dlsym(handle, name);
1986   pthread_mutex_unlock(&dl_mutex);
1987   return res;
1988 }
1989 
1990 
1991 static bool _print_ascii_file(const char* filename, outputStream* st) {
1992   int fd = ::open(filename, O_RDONLY);
1993   if (fd == -1) {
1994      return false;
1995   }
1996 
1997   char buf[32];
1998   int bytes;
1999   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2000     st->print_raw(buf, bytes);
2001   }
2002 
2003   ::close(fd);
2004 
2005   return true;
2006 }
2007 
2008 void os::print_dll_info(outputStream *st) {
2009    st->print_cr("Dynamic libraries:");
2010 
2011    char fname[32];
2012    pid_t pid = os::Linux::gettid();
2013 
2014    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2015 
2016    if (!_print_ascii_file(fname, st)) {
2017      st->print("Can not get library information for pid = %d\n", pid);
2018    }
2019 }
2020 
2021 void os::print_os_info_brief(outputStream* st) {
2022   os::Linux::print_distro_info(st);
2023 
2024   os::Posix::print_uname_info(st);
2025 
2026   os::Linux::print_libversion_info(st);
2027 
2028 }
2029 
2030 void os::print_os_info(outputStream* st) {
2031   st->print("OS:");
2032 
2033   os::Linux::print_distro_info(st);
2034 
2035   os::Posix::print_uname_info(st);
2036 
2037   // Print warning if unsafe chroot environment detected
2038   if (unsafe_chroot_detected) {
2039     st->print("WARNING!! ");
2040     st->print_cr(unstable_chroot_error);
2041   }
2042 
2043   os::Linux::print_libversion_info(st);
2044 
2045   os::Posix::print_rlimit_info(st);
2046 
2047   os::Posix::print_load_average(st);
2048 
2049   os::Linux::print_full_memory_info(st);
2050 }
2051 
2052 // Try to identify popular distros.
2053 // Most Linux distributions have /etc/XXX-release file, which contains
2054 // the OS version string. Some have more than one /etc/XXX-release file
2055 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2056 // so the order is important.
2057 void os::Linux::print_distro_info(outputStream* st) {
2058   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2059       !_print_ascii_file("/etc/sun-release", st) &&
2060       !_print_ascii_file("/etc/redhat-release", st) &&
2061       !_print_ascii_file("/etc/SuSE-release", st) &&
2062       !_print_ascii_file("/etc/turbolinux-release", st) &&
2063       !_print_ascii_file("/etc/gentoo-release", st) &&
2064       !_print_ascii_file("/etc/debian_version", st) &&
2065       !_print_ascii_file("/etc/ltib-release", st) &&
2066       !_print_ascii_file("/etc/angstrom-version", st)) {
2067       st->print("Linux");
2068   }
2069   st->cr();
2070 }
2071 
2072 void os::Linux::print_libversion_info(outputStream* st) {
2073   // libc, pthread
2074   st->print("libc:");
2075   st->print(os::Linux::glibc_version()); st->print(" ");
2076   st->print(os::Linux::libpthread_version()); st->print(" ");
2077   if (os::Linux::is_LinuxThreads()) {
2078      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2079   }
2080   st->cr();
2081 }
2082 
2083 void os::Linux::print_full_memory_info(outputStream* st) {
2084    st->print("\n/proc/meminfo:\n");
2085    _print_ascii_file("/proc/meminfo", st);
2086    st->cr();
2087 }
2088 
2089 void os::print_memory_info(outputStream* st) {
2090 
2091   st->print("Memory:");
2092   st->print(" %dk page", os::vm_page_size()>>10);
2093 
2094   // values in struct sysinfo are "unsigned long"
2095   struct sysinfo si;
2096   sysinfo(&si);
2097 
2098   st->print(", physical " UINT64_FORMAT "k",
2099             os::physical_memory() >> 10);
2100   st->print("(" UINT64_FORMAT "k free)",
2101             os::available_memory() >> 10);
2102   st->print(", swap " UINT64_FORMAT "k",
2103             ((jlong)si.totalswap * si.mem_unit) >> 10);
2104   st->print("(" UINT64_FORMAT "k free)",
2105             ((jlong)si.freeswap * si.mem_unit) >> 10);
2106   st->cr();
2107 }
2108 
2109 void os::pd_print_cpu_info(outputStream* st) {
2110   st->print("\n/proc/cpuinfo:\n");
2111   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2112     st->print("  <Not Available>");
2113   }
2114   st->cr();
2115 }
2116 
2117 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2118 // but they're the same for all the linux arch that we support
2119 // and they're the same for solaris but there's no common place to put this.
2120 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2121                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2122                           "ILL_COPROC", "ILL_BADSTK" };
2123 
2124 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2125                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2126                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2127 
2128 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2129 
2130 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2131 
2132 void os::print_siginfo(outputStream* st, void* siginfo) {
2133   st->print("siginfo:");
2134 
2135   const int buflen = 100;
2136   char buf[buflen];
2137   siginfo_t *si = (siginfo_t*)siginfo;
2138   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2139   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2140     st->print("si_errno=%s", buf);
2141   } else {
2142     st->print("si_errno=%d", si->si_errno);
2143   }
2144   const int c = si->si_code;
2145   assert(c > 0, "unexpected si_code");
2146   switch (si->si_signo) {
2147   case SIGILL:
2148     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2149     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2150     break;
2151   case SIGFPE:
2152     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2153     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2154     break;
2155   case SIGSEGV:
2156     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2157     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2158     break;
2159   case SIGBUS:
2160     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2161     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2162     break;
2163   default:
2164     st->print(", si_code=%d", si->si_code);
2165     // no si_addr
2166   }
2167 
2168   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2169       UseSharedSpaces) {
2170     FileMapInfo* mapinfo = FileMapInfo::current_info();
2171     if (mapinfo->is_in_shared_space(si->si_addr)) {
2172       st->print("\n\nError accessing class data sharing archive."   \
2173                 " Mapped file inaccessible during execution, "      \
2174                 " possible disk/network problem.");
2175     }
2176   }
2177   st->cr();
2178 }
2179 
2180 
2181 static void print_signal_handler(outputStream* st, int sig,
2182                                  char* buf, size_t buflen);
2183 
2184 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2185   st->print_cr("Signal Handlers:");
2186   print_signal_handler(st, SIGSEGV, buf, buflen);
2187   print_signal_handler(st, SIGBUS , buf, buflen);
2188   print_signal_handler(st, SIGFPE , buf, buflen);
2189   print_signal_handler(st, SIGPIPE, buf, buflen);
2190   print_signal_handler(st, SIGXFSZ, buf, buflen);
2191   print_signal_handler(st, SIGILL , buf, buflen);
2192   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2193   print_signal_handler(st, SR_signum, buf, buflen);
2194   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2195   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2196   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2197   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2198 }
2199 
2200 static char saved_jvm_path[MAXPATHLEN] = {0};
2201 
2202 // Find the full path to the current module, libjvm.so or libjvm_g.so
2203 void os::jvm_path(char *buf, jint buflen) {
2204   // Error checking.
2205   if (buflen < MAXPATHLEN) {
2206     assert(false, "must use a large-enough buffer");
2207     buf[0] = '\0';
2208     return;
2209   }
2210   // Lazy resolve the path to current module.
2211   if (saved_jvm_path[0] != 0) {
2212     strcpy(buf, saved_jvm_path);
2213     return;
2214   }
2215 
2216   char dli_fname[MAXPATHLEN];
2217   bool ret = dll_address_to_library_name(
2218                 CAST_FROM_FN_PTR(address, os::jvm_path),
2219                 dli_fname, sizeof(dli_fname), NULL);
2220   assert(ret != 0, "cannot locate libjvm");
2221   char *rp = realpath(dli_fname, buf);
2222   if (rp == NULL)
2223     return;
2224 
2225   if (Arguments::created_by_gamma_launcher()) {
2226     // Support for the gamma launcher.  Typical value for buf is
2227     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2228     // the right place in the string, then assume we are installed in a JDK and
2229     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2230     // up the path so it looks like libjvm.so is installed there (append a
2231     // fake suffix hotspot/libjvm.so).
2232     const char *p = buf + strlen(buf) - 1;
2233     for (int count = 0; p > buf && count < 5; ++count) {
2234       for (--p; p > buf && *p != '/'; --p)
2235         /* empty */ ;
2236     }
2237 
2238     if (strncmp(p, "/jre/lib/", 9) != 0) {
2239       // Look for JAVA_HOME in the environment.
2240       char* java_home_var = ::getenv("JAVA_HOME");
2241       if (java_home_var != NULL && java_home_var[0] != 0) {
2242         char* jrelib_p;
2243         int len;
2244 
2245         // Check the current module name "libjvm.so" or "libjvm_g.so".
2246         p = strrchr(buf, '/');
2247         assert(strstr(p, "/libjvm") == p, "invalid library name");
2248         p = strstr(p, "_g") ? "_g" : "";
2249 
2250         rp = realpath(java_home_var, buf);
2251         if (rp == NULL)
2252           return;
2253 
2254         // determine if this is a legacy image or modules image
2255         // modules image doesn't have "jre" subdirectory
2256         len = strlen(buf);
2257         jrelib_p = buf + len;
2258         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2259         if (0 != access(buf, F_OK)) {
2260           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2261         }
2262 
2263         if (0 == access(buf, F_OK)) {
2264           // Use current module name "libjvm[_g].so" instead of
2265           // "libjvm"debug_only("_g")".so" since for fastdebug version
2266           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2267           len = strlen(buf);
2268           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2269         } else {
2270           // Go back to path of .so
2271           rp = realpath(dli_fname, buf);
2272           if (rp == NULL)
2273             return;
2274         }
2275       }
2276     }
2277   }
2278 
2279   strcpy(saved_jvm_path, buf);
2280 }
2281 
2282 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2283   // no prefix required, not even "_"
2284 }
2285 
2286 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2287   // no suffix required
2288 }
2289 
2290 ////////////////////////////////////////////////////////////////////////////////
2291 // sun.misc.Signal support
2292 
2293 static volatile jint sigint_count = 0;
2294 
2295 static void
2296 UserHandler(int sig, void *siginfo, void *context) {
2297   // 4511530 - sem_post is serialized and handled by the manager thread. When
2298   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2299   // don't want to flood the manager thread with sem_post requests.
2300   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2301       return;
2302 
2303   // Ctrl-C is pressed during error reporting, likely because the error
2304   // handler fails to abort. Let VM die immediately.
2305   if (sig == SIGINT && is_error_reported()) {
2306      os::die();
2307   }
2308 
2309   os::signal_notify(sig);
2310 }
2311 
2312 void* os::user_handler() {
2313   return CAST_FROM_FN_PTR(void*, UserHandler);
2314 }
2315 
2316 extern "C" {
2317   typedef void (*sa_handler_t)(int);
2318   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2319 }
2320 
2321 void* os::signal(int signal_number, void* handler) {
2322   struct sigaction sigAct, oldSigAct;
2323 
2324   sigfillset(&(sigAct.sa_mask));
2325   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2326   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2327 
2328   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2329     // -1 means registration failed
2330     return (void *)-1;
2331   }
2332 
2333   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2334 }
2335 
2336 void os::signal_raise(int signal_number) {
2337   ::raise(signal_number);
2338 }
2339 
2340 /*
2341  * The following code is moved from os.cpp for making this
2342  * code platform specific, which it is by its very nature.
2343  */
2344 
2345 // Will be modified when max signal is changed to be dynamic
2346 int os::sigexitnum_pd() {
2347   return NSIG;
2348 }
2349 
2350 // a counter for each possible signal value
2351 static volatile jint pending_signals[NSIG+1] = { 0 };
2352 
2353 // Linux(POSIX) specific hand shaking semaphore.
2354 static sem_t sig_sem;
2355 
2356 void os::signal_init_pd() {
2357   // Initialize signal structures
2358   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2359 
2360   // Initialize signal semaphore
2361   ::sem_init(&sig_sem, 0, 0);
2362 }
2363 
2364 void os::signal_notify(int sig) {
2365   Atomic::inc(&pending_signals[sig]);
2366   ::sem_post(&sig_sem);
2367 }
2368 
2369 static int check_pending_signals(bool wait) {
2370   Atomic::store(0, &sigint_count);
2371   for (;;) {
2372     for (int i = 0; i < NSIG + 1; i++) {
2373       jint n = pending_signals[i];
2374       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2375         return i;
2376       }
2377     }
2378     if (!wait) {
2379       return -1;
2380     }
2381     JavaThread *thread = JavaThread::current();
2382     ThreadBlockInVM tbivm(thread);
2383 
2384     bool threadIsSuspended;
2385     do {
2386       thread->set_suspend_equivalent();
2387       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2388       ::sem_wait(&sig_sem);
2389 
2390       // were we externally suspended while we were waiting?
2391       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2392       if (threadIsSuspended) {
2393         //
2394         // The semaphore has been incremented, but while we were waiting
2395         // another thread suspended us. We don't want to continue running
2396         // while suspended because that would surprise the thread that
2397         // suspended us.
2398         //
2399         ::sem_post(&sig_sem);
2400 
2401         thread->java_suspend_self();
2402       }
2403     } while (threadIsSuspended);
2404   }
2405 }
2406 
2407 int os::signal_lookup() {
2408   return check_pending_signals(false);
2409 }
2410 
2411 int os::signal_wait() {
2412   return check_pending_signals(true);
2413 }
2414 
2415 ////////////////////////////////////////////////////////////////////////////////
2416 // Virtual Memory
2417 
2418 int os::vm_page_size() {
2419   // Seems redundant as all get out
2420   assert(os::Linux::page_size() != -1, "must call os::init");
2421   return os::Linux::page_size();
2422 }
2423 
2424 // Solaris allocates memory by pages.
2425 int os::vm_allocation_granularity() {
2426   assert(os::Linux::page_size() != -1, "must call os::init");
2427   return os::Linux::page_size();
2428 }
2429 
2430 // Rationale behind this function:
2431 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2432 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2433 //  samples for JITted code. Here we create private executable mapping over the code cache
2434 //  and then we can use standard (well, almost, as mapping can change) way to provide
2435 //  info for the reporting script by storing timestamp and location of symbol
2436 void linux_wrap_code(char* base, size_t size) {
2437   static volatile jint cnt = 0;
2438 
2439   if (!UseOprofile) {
2440     return;
2441   }
2442 
2443   char buf[PATH_MAX+1];
2444   int num = Atomic::add(1, &cnt);
2445 
2446   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2447            os::get_temp_directory(), os::current_process_id(), num);
2448   unlink(buf);
2449 
2450   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2451 
2452   if (fd != -1) {
2453     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2454     if (rv != (off_t)-1) {
2455       if (::write(fd, "", 1) == 1) {
2456         mmap(base, size,
2457              PROT_READ|PROT_WRITE|PROT_EXEC,
2458              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2459       }
2460     }
2461     ::close(fd);
2462     unlink(buf);
2463   }
2464 }
2465 
2466 // NOTE: Linux kernel does not really reserve the pages for us.
2467 //       All it does is to check if there are enough free pages
2468 //       left at the time of mmap(). This could be a potential
2469 //       problem.
2470 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2471   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2472   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2473                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2474   if (res != (uintptr_t) MAP_FAILED) {
2475     if (UseNUMAInterleaving) {
2476       numa_make_global(addr, size);
2477     }
2478     return true;
2479   }
2480   return false;
2481 }
2482 
2483 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2484 #ifndef MAP_HUGETLB
2485 #define MAP_HUGETLB 0x40000
2486 #endif
2487 
2488 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2489 #ifndef MADV_HUGEPAGE
2490 #define MADV_HUGEPAGE 14
2491 #endif
2492 
2493 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2494                        bool exec) {
2495   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2496     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2497     uintptr_t res =
2498       (uintptr_t) ::mmap(addr, size, prot,
2499                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2500                          -1, 0);
2501     if (res != (uintptr_t) MAP_FAILED) {
2502       if (UseNUMAInterleaving) {
2503         numa_make_global(addr, size);
2504       }
2505       return true;
2506     }
2507     // Fall through and try to use small pages
2508   }
2509 
2510   if (commit_memory(addr, size, exec)) {
2511     realign_memory(addr, size, alignment_hint);
2512     return true;
2513   }
2514   return false;
2515 }
2516 
2517 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2518   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2519     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2520     // be supported or the memory may already be backed by huge pages.
2521     ::madvise(addr, bytes, MADV_HUGEPAGE);
2522   }
2523 }
2524 
2525 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2526   // This method works by doing an mmap over an existing mmaping and effectively discarding
2527   // the existing pages. However it won't work for SHM-based large pages that cannot be
2528   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2529   // small pages on top of the SHM segment. This method always works for small pages, so we
2530   // allow that in any case.
2531   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2532     commit_memory(addr, bytes, alignment_hint, false);
2533   }
2534 }
2535 
2536 void os::numa_make_global(char *addr, size_t bytes) {
2537   Linux::numa_interleave_memory(addr, bytes);
2538 }
2539 
2540 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2541   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2542 }
2543 
2544 bool os::numa_topology_changed()   { return false; }
2545 
2546 size_t os::numa_get_groups_num() {
2547   int max_node = Linux::numa_max_node();
2548   return max_node > 0 ? max_node + 1 : 1;
2549 }
2550 
2551 int os::numa_get_group_id() {
2552   int cpu_id = Linux::sched_getcpu();
2553   if (cpu_id != -1) {
2554     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2555     if (lgrp_id != -1) {
2556       return lgrp_id;
2557     }
2558   }
2559   return 0;
2560 }
2561 
2562 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2563   for (size_t i = 0; i < size; i++) {
2564     ids[i] = i;
2565   }
2566   return size;
2567 }
2568 
2569 bool os::get_page_info(char *start, page_info* info) {
2570   return false;
2571 }
2572 
2573 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2574   return end;
2575 }
2576 
2577 
2578 int os::Linux::sched_getcpu_syscall(void) {
2579   unsigned int cpu;
2580   int retval = -1;
2581 
2582 #if defined(IA32)
2583 # ifndef SYS_getcpu
2584 # define SYS_getcpu 318
2585 # endif
2586   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2587 #elif defined(AMD64)
2588 // Unfortunately we have to bring all these macros here from vsyscall.h
2589 // to be able to compile on old linuxes.
2590 # define __NR_vgetcpu 2
2591 # define VSYSCALL_START (-10UL << 20)
2592 # define VSYSCALL_SIZE 1024
2593 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2594   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2595   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2596   retval = vgetcpu(&cpu, NULL, NULL);
2597 #endif
2598 
2599   return (retval == -1) ? retval : cpu;
2600 }
2601 
2602 // Something to do with the numa-aware allocator needs these symbols
2603 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2604 extern "C" JNIEXPORT void numa_error(char *where) { }
2605 extern "C" JNIEXPORT int fork1() { return fork(); }
2606 
2607 
2608 // If we are running with libnuma version > 2, then we should
2609 // be trying to use symbols with versions 1.1
2610 // If we are running with earlier version, which did not have symbol versions,
2611 // we should use the base version.
2612 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2613   void *f = dlvsym(handle, name, "libnuma_1.1");
2614   if (f == NULL) {
2615     f = dlsym(handle, name);
2616   }
2617   return f;
2618 }
2619 
2620 bool os::Linux::libnuma_init() {
2621   // sched_getcpu() should be in libc.
2622   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2623                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2624 
2625   // If it's not, try a direct syscall.
2626   if (sched_getcpu() == -1)
2627     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2628 
2629   if (sched_getcpu() != -1) { // Does it work?
2630     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2631     if (handle != NULL) {
2632       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2633                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2634       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2635                                        libnuma_dlsym(handle, "numa_max_node")));
2636       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2637                                         libnuma_dlsym(handle, "numa_available")));
2638       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2639                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2640       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2641                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2642 
2643 
2644       if (numa_available() != -1) {
2645         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2646         // Create a cpu -> node mapping
2647         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2648         rebuild_cpu_to_node_map();
2649         return true;
2650       }
2651     }
2652   }
2653   return false;
2654 }
2655 
2656 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2657 // The table is later used in get_node_by_cpu().
2658 void os::Linux::rebuild_cpu_to_node_map() {
2659   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2660                               // in libnuma (possible values are starting from 16,
2661                               // and continuing up with every other power of 2, but less
2662                               // than the maximum number of CPUs supported by kernel), and
2663                               // is a subject to change (in libnuma version 2 the requirements
2664                               // are more reasonable) we'll just hardcode the number they use
2665                               // in the library.
2666   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2667 
2668   size_t cpu_num = os::active_processor_count();
2669   size_t cpu_map_size = NCPUS / BitsPerCLong;
2670   size_t cpu_map_valid_size =
2671     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2672 
2673   cpu_to_node()->clear();
2674   cpu_to_node()->at_grow(cpu_num - 1);
2675   size_t node_num = numa_get_groups_num();
2676 
2677   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2678   for (size_t i = 0; i < node_num; i++) {
2679     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2680       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2681         if (cpu_map[j] != 0) {
2682           for (size_t k = 0; k < BitsPerCLong; k++) {
2683             if (cpu_map[j] & (1UL << k)) {
2684               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2685             }
2686           }
2687         }
2688       }
2689     }
2690   }
2691   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2692 }
2693 
2694 int os::Linux::get_node_by_cpu(int cpu_id) {
2695   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2696     return cpu_to_node()->at(cpu_id);
2697   }
2698   return -1;
2699 }
2700 
2701 GrowableArray<int>* os::Linux::_cpu_to_node;
2702 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2703 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2704 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2705 os::Linux::numa_available_func_t os::Linux::_numa_available;
2706 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2707 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2708 unsigned long* os::Linux::_numa_all_nodes;
2709 
2710 bool os::pd_uncommit_memory(char* addr, size_t size) {
2711   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2712                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2713   return res  != (uintptr_t) MAP_FAILED;
2714 }
2715 
2716 // Linux uses a growable mapping for the stack, and if the mapping for
2717 // the stack guard pages is not removed when we detach a thread the
2718 // stack cannot grow beyond the pages where the stack guard was
2719 // mapped.  If at some point later in the process the stack expands to
2720 // that point, the Linux kernel cannot expand the stack any further
2721 // because the guard pages are in the way, and a segfault occurs.
2722 //
2723 // However, it's essential not to split the stack region by unmapping
2724 // a region (leaving a hole) that's already part of the stack mapping,
2725 // so if the stack mapping has already grown beyond the guard pages at
2726 // the time we create them, we have to truncate the stack mapping.
2727 // So, we need to know the extent of the stack mapping when
2728 // create_stack_guard_pages() is called.
2729 
2730 // Find the bounds of the stack mapping.  Return true for success.
2731 //
2732 // We only need this for stacks that are growable: at the time of
2733 // writing thread stacks don't use growable mappings (i.e. those
2734 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2735 // only applies to the main thread.
2736 
2737 static
2738 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2739 
2740   char buf[128];
2741   int fd, sz;
2742 
2743   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2744     return false;
2745   }
2746 
2747   const char kw[] = "[stack]";
2748   const int kwlen = sizeof(kw)-1;
2749 
2750   // Address part of /proc/self/maps couldn't be more than 128 bytes
2751   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2752      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2753         // Extract addresses
2754         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2755            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2756            if (sp >= *bottom && sp <= *top) {
2757               ::close(fd);
2758               return true;
2759            }
2760         }
2761      }
2762   }
2763 
2764  ::close(fd);
2765   return false;
2766 }
2767 
2768 
2769 // If the (growable) stack mapping already extends beyond the point
2770 // where we're going to put our guard pages, truncate the mapping at
2771 // that point by munmap()ping it.  This ensures that when we later
2772 // munmap() the guard pages we don't leave a hole in the stack
2773 // mapping. This only affects the main/initial thread, but guard
2774 // against future OS changes
2775 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2776   uintptr_t stack_extent, stack_base;
2777   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2778   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2779       assert(os::Linux::is_initial_thread(),
2780            "growable stack in non-initial thread");
2781     if (stack_extent < (uintptr_t)addr)
2782       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2783   }
2784 
2785   return os::commit_memory(addr, size);
2786 }
2787 
2788 // If this is a growable mapping, remove the guard pages entirely by
2789 // munmap()ping them.  If not, just call uncommit_memory(). This only
2790 // affects the main/initial thread, but guard against future OS changes
2791 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2792   uintptr_t stack_extent, stack_base;
2793   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2794   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2795       assert(os::Linux::is_initial_thread(),
2796            "growable stack in non-initial thread");
2797 
2798     return ::munmap(addr, size) == 0;
2799   }
2800 
2801   return os::uncommit_memory(addr, size);
2802 }
2803 
2804 static address _highest_vm_reserved_address = NULL;
2805 
2806 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2807 // at 'requested_addr'. If there are existing memory mappings at the same
2808 // location, however, they will be overwritten. If 'fixed' is false,
2809 // 'requested_addr' is only treated as a hint, the return value may or
2810 // may not start from the requested address. Unlike Linux mmap(), this
2811 // function returns NULL to indicate failure.
2812 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2813   char * addr;
2814   int flags;
2815 
2816   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2817   if (fixed) {
2818     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2819     flags |= MAP_FIXED;
2820   }
2821 
2822   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2823   // to PROT_EXEC if executable when we commit the page.
2824   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2825                        flags, -1, 0);
2826 
2827   if (addr != MAP_FAILED) {
2828     // anon_mmap() should only get called during VM initialization,
2829     // don't need lock (actually we can skip locking even it can be called
2830     // from multiple threads, because _highest_vm_reserved_address is just a
2831     // hint about the upper limit of non-stack memory regions.)
2832     if ((address)addr + bytes > _highest_vm_reserved_address) {
2833       _highest_vm_reserved_address = (address)addr + bytes;
2834     }
2835   }
2836 
2837   return addr == MAP_FAILED ? NULL : addr;
2838 }
2839 
2840 // Don't update _highest_vm_reserved_address, because there might be memory
2841 // regions above addr + size. If so, releasing a memory region only creates
2842 // a hole in the address space, it doesn't help prevent heap-stack collision.
2843 //
2844 static int anon_munmap(char * addr, size_t size) {
2845   return ::munmap(addr, size) == 0;
2846 }
2847 
2848 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2849                          size_t alignment_hint) {
2850   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2851 }
2852 
2853 bool os::pd_release_memory(char* addr, size_t size) {
2854   return anon_munmap(addr, size);
2855 }
2856 
2857 static address highest_vm_reserved_address() {
2858   return _highest_vm_reserved_address;
2859 }
2860 
2861 static bool linux_mprotect(char* addr, size_t size, int prot) {
2862   // Linux wants the mprotect address argument to be page aligned.
2863   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2864 
2865   // According to SUSv3, mprotect() should only be used with mappings
2866   // established by mmap(), and mmap() always maps whole pages. Unaligned
2867   // 'addr' likely indicates problem in the VM (e.g. trying to change
2868   // protection of malloc'ed or statically allocated memory). Check the
2869   // caller if you hit this assert.
2870   assert(addr == bottom, "sanity check");
2871 
2872   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2873   return ::mprotect(bottom, size, prot) == 0;
2874 }
2875 
2876 // Set protections specified
2877 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2878                         bool is_committed) {
2879   unsigned int p = 0;
2880   switch (prot) {
2881   case MEM_PROT_NONE: p = PROT_NONE; break;
2882   case MEM_PROT_READ: p = PROT_READ; break;
2883   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2884   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2885   default:
2886     ShouldNotReachHere();
2887   }
2888   // is_committed is unused.
2889   return linux_mprotect(addr, bytes, p);
2890 }
2891 
2892 bool os::guard_memory(char* addr, size_t size) {
2893   return linux_mprotect(addr, size, PROT_NONE);
2894 }
2895 
2896 bool os::unguard_memory(char* addr, size_t size) {
2897   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2898 }
2899 
2900 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2901   bool result = false;
2902   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2903                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2904                   -1, 0);
2905 
2906   if (p != (void *) -1) {
2907     // We don't know if this really is a huge page or not.
2908     FILE *fp = fopen("/proc/self/maps", "r");
2909     if (fp) {
2910       while (!feof(fp)) {
2911         char chars[257];
2912         long x = 0;
2913         if (fgets(chars, sizeof(chars), fp)) {
2914           if (sscanf(chars, "%lx-%*x", &x) == 1
2915               && x == (long)p) {
2916             if (strstr (chars, "hugepage")) {
2917               result = true;
2918               break;
2919             }
2920           }
2921         }
2922       }
2923       fclose(fp);
2924     }
2925     munmap (p, page_size);
2926     if (result)
2927       return true;
2928   }
2929 
2930   if (warn) {
2931     warning("HugeTLBFS is not supported by the operating system.");
2932   }
2933 
2934   return result;
2935 }
2936 
2937 /*
2938 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2939 *
2940 * From the coredump_filter documentation:
2941 *
2942 * - (bit 0) anonymous private memory
2943 * - (bit 1) anonymous shared memory
2944 * - (bit 2) file-backed private memory
2945 * - (bit 3) file-backed shared memory
2946 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2947 *           effective only if the bit 2 is cleared)
2948 * - (bit 5) hugetlb private memory
2949 * - (bit 6) hugetlb shared memory
2950 */
2951 static void set_coredump_filter(void) {
2952   FILE *f;
2953   long cdm;
2954 
2955   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2956     return;
2957   }
2958 
2959   if (fscanf(f, "%lx", &cdm) != 1) {
2960     fclose(f);
2961     return;
2962   }
2963 
2964   rewind(f);
2965 
2966   if ((cdm & LARGEPAGES_BIT) == 0) {
2967     cdm |= LARGEPAGES_BIT;
2968     fprintf(f, "%#lx", cdm);
2969   }
2970 
2971   fclose(f);
2972 }
2973 
2974 // Large page support
2975 
2976 static size_t _large_page_size = 0;
2977 
2978 void os::large_page_init() {
2979   if (!UseLargePages) {
2980     UseHugeTLBFS = false;
2981     UseSHM = false;
2982     return;
2983   }
2984 
2985   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2986     // If UseLargePages is specified on the command line try both methods,
2987     // if it's default, then try only HugeTLBFS.
2988     if (FLAG_IS_DEFAULT(UseLargePages)) {
2989       UseHugeTLBFS = true;
2990     } else {
2991       UseHugeTLBFS = UseSHM = true;
2992     }
2993   }
2994 
2995   if (LargePageSizeInBytes) {
2996     _large_page_size = LargePageSizeInBytes;
2997   } else {
2998     // large_page_size on Linux is used to round up heap size. x86 uses either
2999     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3000     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3001     // page as large as 256M.
3002     //
3003     // Here we try to figure out page size by parsing /proc/meminfo and looking
3004     // for a line with the following format:
3005     //    Hugepagesize:     2048 kB
3006     //
3007     // If we can't determine the value (e.g. /proc is not mounted, or the text
3008     // format has been changed), we'll use the largest page size supported by
3009     // the processor.
3010 
3011 #ifndef ZERO
3012     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3013                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3014 #endif // ZERO
3015 
3016     FILE *fp = fopen("/proc/meminfo", "r");
3017     if (fp) {
3018       while (!feof(fp)) {
3019         int x = 0;
3020         char buf[16];
3021         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3022           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3023             _large_page_size = x * K;
3024             break;
3025           }
3026         } else {
3027           // skip to next line
3028           for (;;) {
3029             int ch = fgetc(fp);
3030             if (ch == EOF || ch == (int)'\n') break;
3031           }
3032         }
3033       }
3034       fclose(fp);
3035     }
3036   }
3037 
3038   // print a warning if any large page related flag is specified on command line
3039   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3040 
3041   const size_t default_page_size = (size_t)Linux::page_size();
3042   if (_large_page_size > default_page_size) {
3043     _page_sizes[0] = _large_page_size;
3044     _page_sizes[1] = default_page_size;
3045     _page_sizes[2] = 0;
3046   }
3047   UseHugeTLBFS = UseHugeTLBFS &&
3048                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3049 
3050   if (UseHugeTLBFS)
3051     UseSHM = false;
3052 
3053   UseLargePages = UseHugeTLBFS || UseSHM;
3054 
3055   set_coredump_filter();
3056 }
3057 
3058 #ifndef SHM_HUGETLB
3059 #define SHM_HUGETLB 04000
3060 #endif
3061 
3062 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3063   // "exec" is passed in but not used.  Creating the shared image for
3064   // the code cache doesn't have an SHM_X executable permission to check.
3065   assert(UseLargePages && UseSHM, "only for SHM large pages");
3066 
3067   key_t key = IPC_PRIVATE;
3068   char *addr;
3069 
3070   bool warn_on_failure = UseLargePages &&
3071                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3072                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3073                         );
3074   char msg[128];
3075 
3076   // Create a large shared memory region to attach to based on size.
3077   // Currently, size is the total size of the heap
3078   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3079   if (shmid == -1) {
3080      // Possible reasons for shmget failure:
3081      // 1. shmmax is too small for Java heap.
3082      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3083      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3084      // 2. not enough large page memory.
3085      //    > check available large pages: cat /proc/meminfo
3086      //    > increase amount of large pages:
3087      //          echo new_value > /proc/sys/vm/nr_hugepages
3088      //      Note 1: different Linux may use different name for this property,
3089      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3090      //      Note 2: it's possible there's enough physical memory available but
3091      //            they are so fragmented after a long run that they can't
3092      //            coalesce into large pages. Try to reserve large pages when
3093      //            the system is still "fresh".
3094      if (warn_on_failure) {
3095        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3096        warning(msg);
3097      }
3098      return NULL;
3099   }
3100 
3101   // attach to the region
3102   addr = (char*)shmat(shmid, req_addr, 0);
3103   int err = errno;
3104 
3105   // Remove shmid. If shmat() is successful, the actual shared memory segment
3106   // will be deleted when it's detached by shmdt() or when the process
3107   // terminates. If shmat() is not successful this will remove the shared
3108   // segment immediately.
3109   shmctl(shmid, IPC_RMID, NULL);
3110 
3111   if ((intptr_t)addr == -1) {
3112      if (warn_on_failure) {
3113        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3114        warning(msg);
3115      }
3116      return NULL;
3117   }
3118 
3119   if ((addr != NULL) && UseNUMAInterleaving) {
3120     numa_make_global(addr, bytes);
3121   }
3122 
3123   return addr;
3124 }
3125 
3126 bool os::release_memory_special(char* base, size_t bytes) {
3127   // detaching the SHM segment will also delete it, see reserve_memory_special()
3128   int rslt = shmdt(base);
3129   return rslt == 0;
3130 }
3131 
3132 size_t os::large_page_size() {
3133   return _large_page_size;
3134 }
3135 
3136 // HugeTLBFS allows application to commit large page memory on demand;
3137 // with SysV SHM the entire memory region must be allocated as shared
3138 // memory.
3139 bool os::can_commit_large_page_memory() {
3140   return UseHugeTLBFS;
3141 }
3142 
3143 bool os::can_execute_large_page_memory() {
3144   return UseHugeTLBFS;
3145 }
3146 
3147 // Reserve memory at an arbitrary address, only if that area is
3148 // available (and not reserved for something else).
3149 
3150 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3151   const int max_tries = 10;
3152   char* base[max_tries];
3153   size_t size[max_tries];
3154   const size_t gap = 0x000000;
3155 
3156   // Assert only that the size is a multiple of the page size, since
3157   // that's all that mmap requires, and since that's all we really know
3158   // about at this low abstraction level.  If we need higher alignment,
3159   // we can either pass an alignment to this method or verify alignment
3160   // in one of the methods further up the call chain.  See bug 5044738.
3161   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3162 
3163   // Repeatedly allocate blocks until the block is allocated at the
3164   // right spot. Give up after max_tries. Note that reserve_memory() will
3165   // automatically update _highest_vm_reserved_address if the call is
3166   // successful. The variable tracks the highest memory address every reserved
3167   // by JVM. It is used to detect heap-stack collision if running with
3168   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3169   // space than needed, it could confuse the collision detecting code. To
3170   // solve the problem, save current _highest_vm_reserved_address and
3171   // calculate the correct value before return.
3172   address old_highest = _highest_vm_reserved_address;
3173 
3174   // Linux mmap allows caller to pass an address as hint; give it a try first,
3175   // if kernel honors the hint then we can return immediately.
3176   char * addr = anon_mmap(requested_addr, bytes, false);
3177   if (addr == requested_addr) {
3178      return requested_addr;
3179   }
3180 
3181   if (addr != NULL) {
3182      // mmap() is successful but it fails to reserve at the requested address
3183      anon_munmap(addr, bytes);
3184   }
3185 
3186   int i;
3187   for (i = 0; i < max_tries; ++i) {
3188     base[i] = reserve_memory(bytes);
3189 
3190     if (base[i] != NULL) {
3191       // Is this the block we wanted?
3192       if (base[i] == requested_addr) {
3193         size[i] = bytes;
3194         break;
3195       }
3196 
3197       // Does this overlap the block we wanted? Give back the overlapped
3198       // parts and try again.
3199 
3200       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3201       if (top_overlap >= 0 && top_overlap < bytes) {
3202         unmap_memory(base[i], top_overlap);
3203         base[i] += top_overlap;
3204         size[i] = bytes - top_overlap;
3205       } else {
3206         size_t bottom_overlap = base[i] + bytes - requested_addr;
3207         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3208           unmap_memory(requested_addr, bottom_overlap);
3209           size[i] = bytes - bottom_overlap;
3210         } else {
3211           size[i] = bytes;
3212         }
3213       }
3214     }
3215   }
3216 
3217   // Give back the unused reserved pieces.
3218 
3219   for (int j = 0; j < i; ++j) {
3220     if (base[j] != NULL) {
3221       unmap_memory(base[j], size[j]);
3222     }
3223   }
3224 
3225   if (i < max_tries) {
3226     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3227     return requested_addr;
3228   } else {
3229     _highest_vm_reserved_address = old_highest;
3230     return NULL;
3231   }
3232 }
3233 
3234 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3235   return ::read(fd, buf, nBytes);
3236 }
3237 
3238 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3239 // Solaris uses poll(), linux uses park().
3240 // Poll() is likely a better choice, assuming that Thread.interrupt()
3241 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3242 // SIGSEGV, see 4355769.
3243 
3244 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3245   assert(thread == Thread::current(),  "thread consistency check");
3246 
3247   ParkEvent * const slp = thread->_SleepEvent ;
3248   slp->reset() ;
3249   OrderAccess::fence() ;
3250 
3251   if (interruptible) {
3252     jlong prevtime = javaTimeNanos();
3253 
3254     for (;;) {
3255       if (os::is_interrupted(thread, true)) {
3256         return OS_INTRPT;
3257       }
3258 
3259       jlong newtime = javaTimeNanos();
3260 
3261       if (newtime - prevtime < 0) {
3262         // time moving backwards, should only happen if no monotonic clock
3263         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3264         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3265       } else {
3266         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3267       }
3268 
3269       if(millis <= 0) {
3270         return OS_OK;
3271       }
3272 
3273       prevtime = newtime;
3274 
3275       {
3276         assert(thread->is_Java_thread(), "sanity check");
3277         JavaThread *jt = (JavaThread *) thread;
3278         ThreadBlockInVM tbivm(jt);
3279         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3280 
3281         jt->set_suspend_equivalent();
3282         // cleared by handle_special_suspend_equivalent_condition() or
3283         // java_suspend_self() via check_and_wait_while_suspended()
3284 
3285         slp->park(millis);
3286 
3287         // were we externally suspended while we were waiting?
3288         jt->check_and_wait_while_suspended();
3289       }
3290     }
3291   } else {
3292     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3293     jlong prevtime = javaTimeNanos();
3294 
3295     for (;;) {
3296       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3297       // the 1st iteration ...
3298       jlong newtime = javaTimeNanos();
3299 
3300       if (newtime - prevtime < 0) {
3301         // time moving backwards, should only happen if no monotonic clock
3302         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3303         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3304       } else {
3305         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3306       }
3307 
3308       if(millis <= 0) break ;
3309 
3310       prevtime = newtime;
3311       slp->park(millis);
3312     }
3313     return OS_OK ;
3314   }
3315 }
3316 
3317 int os::naked_sleep() {
3318   // %% make the sleep time an integer flag. for now use 1 millisec.
3319   return os::sleep(Thread::current(), 1, false);
3320 }
3321 
3322 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3323 void os::infinite_sleep() {
3324   while (true) {    // sleep forever ...
3325     ::sleep(100);   // ... 100 seconds at a time
3326   }
3327 }
3328 
3329 // Used to convert frequent JVM_Yield() to nops
3330 bool os::dont_yield() {
3331   return DontYieldALot;
3332 }
3333 
3334 void os::yield() {
3335   sched_yield();
3336 }
3337 
3338 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3339 
3340 void os::yield_all(int attempts) {
3341   // Yields to all threads, including threads with lower priorities
3342   // Threads on Linux are all with same priority. The Solaris style
3343   // os::yield_all() with nanosleep(1ms) is not necessary.
3344   sched_yield();
3345 }
3346 
3347 // Called from the tight loops to possibly influence time-sharing heuristics
3348 void os::loop_breaker(int attempts) {
3349   os::yield_all(attempts);
3350 }
3351 
3352 ////////////////////////////////////////////////////////////////////////////////
3353 // thread priority support
3354 
3355 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3356 // only supports dynamic priority, static priority must be zero. For real-time
3357 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3358 // However, for large multi-threaded applications, SCHED_RR is not only slower
3359 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3360 // of 5 runs - Sep 2005).
3361 //
3362 // The following code actually changes the niceness of kernel-thread/LWP. It
3363 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3364 // not the entire user process, and user level threads are 1:1 mapped to kernel
3365 // threads. It has always been the case, but could change in the future. For
3366 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3367 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3368 
3369 int os::java_to_os_priority[CriticalPriority + 1] = {
3370   19,              // 0 Entry should never be used
3371 
3372    4,              // 1 MinPriority
3373    3,              // 2
3374    2,              // 3
3375 
3376    1,              // 4
3377    0,              // 5 NormPriority
3378   -1,              // 6
3379 
3380   -2,              // 7
3381   -3,              // 8
3382   -4,              // 9 NearMaxPriority
3383 
3384   -5,              // 10 MaxPriority
3385 
3386   -5               // 11 CriticalPriority
3387 };
3388 
3389 static int prio_init() {
3390   if (ThreadPriorityPolicy == 1) {
3391     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3392     // if effective uid is not root. Perhaps, a more elegant way of doing
3393     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3394     if (geteuid() != 0) {
3395       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3396         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3397       }
3398       ThreadPriorityPolicy = 0;
3399     }
3400   }
3401   if (UseCriticalJavaThreadPriority) {
3402     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3403   }
3404   return 0;
3405 }
3406 
3407 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3408   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3409 
3410   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3411   return (ret == 0) ? OS_OK : OS_ERR;
3412 }
3413 
3414 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3415   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3416     *priority_ptr = java_to_os_priority[NormPriority];
3417     return OS_OK;
3418   }
3419 
3420   errno = 0;
3421   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3422   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3423 }
3424 
3425 // Hint to the underlying OS that a task switch would not be good.
3426 // Void return because it's a hint and can fail.
3427 void os::hint_no_preempt() {}
3428 
3429 ////////////////////////////////////////////////////////////////////////////////
3430 // suspend/resume support
3431 
3432 //  the low-level signal-based suspend/resume support is a remnant from the
3433 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3434 //  within hotspot. Now there is a single use-case for this:
3435 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3436 //      that runs in the watcher thread.
3437 //  The remaining code is greatly simplified from the more general suspension
3438 //  code that used to be used.
3439 //
3440 //  The protocol is quite simple:
3441 //  - suspend:
3442 //      - sends a signal to the target thread
3443 //      - polls the suspend state of the osthread using a yield loop
3444 //      - target thread signal handler (SR_handler) sets suspend state
3445 //        and blocks in sigsuspend until continued
3446 //  - resume:
3447 //      - sets target osthread state to continue
3448 //      - sends signal to end the sigsuspend loop in the SR_handler
3449 //
3450 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3451 //
3452 
3453 static void resume_clear_context(OSThread *osthread) {
3454   osthread->set_ucontext(NULL);
3455   osthread->set_siginfo(NULL);
3456 
3457   // notify the suspend action is completed, we have now resumed
3458   osthread->sr.clear_suspended();
3459 }
3460 
3461 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3462   osthread->set_ucontext(context);
3463   osthread->set_siginfo(siginfo);
3464 }
3465 
3466 //
3467 // Handler function invoked when a thread's execution is suspended or
3468 // resumed. We have to be careful that only async-safe functions are
3469 // called here (Note: most pthread functions are not async safe and
3470 // should be avoided.)
3471 //
3472 // Note: sigwait() is a more natural fit than sigsuspend() from an
3473 // interface point of view, but sigwait() prevents the signal hander
3474 // from being run. libpthread would get very confused by not having
3475 // its signal handlers run and prevents sigwait()'s use with the
3476 // mutex granting granting signal.
3477 //
3478 // Currently only ever called on the VMThread
3479 //
3480 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3481   // Save and restore errno to avoid confusing native code with EINTR
3482   // after sigsuspend.
3483   int old_errno = errno;
3484 
3485   Thread* thread = Thread::current();
3486   OSThread* osthread = thread->osthread();
3487   assert(thread->is_VM_thread(), "Must be VMThread");
3488   // read current suspend action
3489   int action = osthread->sr.suspend_action();
3490   if (action == SR_SUSPEND) {
3491     suspend_save_context(osthread, siginfo, context);
3492 
3493     // Notify the suspend action is about to be completed. do_suspend()
3494     // waits until SR_SUSPENDED is set and then returns. We will wait
3495     // here for a resume signal and that completes the suspend-other
3496     // action. do_suspend/do_resume is always called as a pair from
3497     // the same thread - so there are no races
3498 
3499     // notify the caller
3500     osthread->sr.set_suspended();
3501 
3502     sigset_t suspend_set;  // signals for sigsuspend()
3503 
3504     // get current set of blocked signals and unblock resume signal
3505     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3506     sigdelset(&suspend_set, SR_signum);
3507 
3508     // wait here until we are resumed
3509     do {
3510       sigsuspend(&suspend_set);
3511       // ignore all returns until we get a resume signal
3512     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3513 
3514     resume_clear_context(osthread);
3515 
3516   } else {
3517     assert(action == SR_CONTINUE, "unexpected sr action");
3518     // nothing special to do - just leave the handler
3519   }
3520 
3521   errno = old_errno;
3522 }
3523 
3524 
3525 static int SR_initialize() {
3526   struct sigaction act;
3527   char *s;
3528   /* Get signal number to use for suspend/resume */
3529   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3530     int sig = ::strtol(s, 0, 10);
3531     if (sig > 0 || sig < _NSIG) {
3532         SR_signum = sig;
3533     }
3534   }
3535 
3536   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3537         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3538 
3539   sigemptyset(&SR_sigset);
3540   sigaddset(&SR_sigset, SR_signum);
3541 
3542   /* Set up signal handler for suspend/resume */
3543   act.sa_flags = SA_RESTART|SA_SIGINFO;
3544   act.sa_handler = (void (*)(int)) SR_handler;
3545 
3546   // SR_signum is blocked by default.
3547   // 4528190 - We also need to block pthread restart signal (32 on all
3548   // supported Linux platforms). Note that LinuxThreads need to block
3549   // this signal for all threads to work properly. So we don't have
3550   // to use hard-coded signal number when setting up the mask.
3551   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3552 
3553   if (sigaction(SR_signum, &act, 0) == -1) {
3554     return -1;
3555   }
3556 
3557   // Save signal flag
3558   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3559   return 0;
3560 }
3561 
3562 static int SR_finalize() {
3563   return 0;
3564 }
3565 
3566 
3567 // returns true on success and false on error - really an error is fatal
3568 // but this seems the normal response to library errors
3569 static bool do_suspend(OSThread* osthread) {
3570   // mark as suspended and send signal
3571   osthread->sr.set_suspend_action(SR_SUSPEND);
3572   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3573   assert_status(status == 0, status, "pthread_kill");
3574 
3575   // check status and wait until notified of suspension
3576   if (status == 0) {
3577     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3578       os::yield_all(i);
3579     }
3580     osthread->sr.set_suspend_action(SR_NONE);
3581     return true;
3582   }
3583   else {
3584     osthread->sr.set_suspend_action(SR_NONE);
3585     return false;
3586   }
3587 }
3588 
3589 static void do_resume(OSThread* osthread) {
3590   assert(osthread->sr.is_suspended(), "thread should be suspended");
3591   osthread->sr.set_suspend_action(SR_CONTINUE);
3592 
3593   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3594   assert_status(status == 0, status, "pthread_kill");
3595   // check status and wait unit notified of resumption
3596   if (status == 0) {
3597     for (int i = 0; osthread->sr.is_suspended(); i++) {
3598       os::yield_all(i);
3599     }
3600   }
3601   osthread->sr.set_suspend_action(SR_NONE);
3602 }
3603 
3604 ////////////////////////////////////////////////////////////////////////////////
3605 // interrupt support
3606 
3607 void os::interrupt(Thread* thread) {
3608   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3609     "possibility of dangling Thread pointer");
3610 
3611   OSThread* osthread = thread->osthread();
3612 
3613   if (!osthread->interrupted()) {
3614     osthread->set_interrupted(true);
3615     // More than one thread can get here with the same value of osthread,
3616     // resulting in multiple notifications.  We do, however, want the store
3617     // to interrupted() to be visible to other threads before we execute unpark().
3618     OrderAccess::fence();
3619     ParkEvent * const slp = thread->_SleepEvent ;
3620     if (slp != NULL) slp->unpark() ;
3621   }
3622 
3623   // For JSR166. Unpark even if interrupt status already was set
3624   if (thread->is_Java_thread())
3625     ((JavaThread*)thread)->parker()->unpark();
3626 
3627   ParkEvent * ev = thread->_ParkEvent ;
3628   if (ev != NULL) ev->unpark() ;
3629 
3630 }
3631 
3632 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3633   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3634     "possibility of dangling Thread pointer");
3635 
3636   OSThread* osthread = thread->osthread();
3637 
3638   bool interrupted = osthread->interrupted();
3639 
3640   if (interrupted && clear_interrupted) {
3641     osthread->set_interrupted(false);
3642     // consider thread->_SleepEvent->reset() ... optional optimization
3643   }
3644 
3645   return interrupted;
3646 }
3647 
3648 ///////////////////////////////////////////////////////////////////////////////////
3649 // signal handling (except suspend/resume)
3650 
3651 // This routine may be used by user applications as a "hook" to catch signals.
3652 // The user-defined signal handler must pass unrecognized signals to this
3653 // routine, and if it returns true (non-zero), then the signal handler must
3654 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3655 // routine will never retun false (zero), but instead will execute a VM panic
3656 // routine kill the process.
3657 //
3658 // If this routine returns false, it is OK to call it again.  This allows
3659 // the user-defined signal handler to perform checks either before or after
3660 // the VM performs its own checks.  Naturally, the user code would be making
3661 // a serious error if it tried to handle an exception (such as a null check
3662 // or breakpoint) that the VM was generating for its own correct operation.
3663 //
3664 // This routine may recognize any of the following kinds of signals:
3665 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3666 // It should be consulted by handlers for any of those signals.
3667 //
3668 // The caller of this routine must pass in the three arguments supplied
3669 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3670 // field of the structure passed to sigaction().  This routine assumes that
3671 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3672 //
3673 // Note that the VM will print warnings if it detects conflicting signal
3674 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3675 //
3676 extern "C" JNIEXPORT int
3677 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3678                         void* ucontext, int abort_if_unrecognized);
3679 
3680 void signalHandler(int sig, siginfo_t* info, void* uc) {
3681   assert(info != NULL && uc != NULL, "it must be old kernel");
3682   JVM_handle_linux_signal(sig, info, uc, true);
3683 }
3684 
3685 
3686 // This boolean allows users to forward their own non-matching signals
3687 // to JVM_handle_linux_signal, harmlessly.
3688 bool os::Linux::signal_handlers_are_installed = false;
3689 
3690 // For signal-chaining
3691 struct sigaction os::Linux::sigact[MAXSIGNUM];
3692 unsigned int os::Linux::sigs = 0;
3693 bool os::Linux::libjsig_is_loaded = false;
3694 typedef struct sigaction *(*get_signal_t)(int);
3695 get_signal_t os::Linux::get_signal_action = NULL;
3696 
3697 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3698   struct sigaction *actp = NULL;
3699 
3700   if (libjsig_is_loaded) {
3701     // Retrieve the old signal handler from libjsig
3702     actp = (*get_signal_action)(sig);
3703   }
3704   if (actp == NULL) {
3705     // Retrieve the preinstalled signal handler from jvm
3706     actp = get_preinstalled_handler(sig);
3707   }
3708 
3709   return actp;
3710 }
3711 
3712 static bool call_chained_handler(struct sigaction *actp, int sig,
3713                                  siginfo_t *siginfo, void *context) {
3714   // Call the old signal handler
3715   if (actp->sa_handler == SIG_DFL) {
3716     // It's more reasonable to let jvm treat it as an unexpected exception
3717     // instead of taking the default action.
3718     return false;
3719   } else if (actp->sa_handler != SIG_IGN) {
3720     if ((actp->sa_flags & SA_NODEFER) == 0) {
3721       // automaticlly block the signal
3722       sigaddset(&(actp->sa_mask), sig);
3723     }
3724 
3725     sa_handler_t hand;
3726     sa_sigaction_t sa;
3727     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3728     // retrieve the chained handler
3729     if (siginfo_flag_set) {
3730       sa = actp->sa_sigaction;
3731     } else {
3732       hand = actp->sa_handler;
3733     }
3734 
3735     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3736       actp->sa_handler = SIG_DFL;
3737     }
3738 
3739     // try to honor the signal mask
3740     sigset_t oset;
3741     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3742 
3743     // call into the chained handler
3744     if (siginfo_flag_set) {
3745       (*sa)(sig, siginfo, context);
3746     } else {
3747       (*hand)(sig);
3748     }
3749 
3750     // restore the signal mask
3751     pthread_sigmask(SIG_SETMASK, &oset, 0);
3752   }
3753   // Tell jvm's signal handler the signal is taken care of.
3754   return true;
3755 }
3756 
3757 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3758   bool chained = false;
3759   // signal-chaining
3760   if (UseSignalChaining) {
3761     struct sigaction *actp = get_chained_signal_action(sig);
3762     if (actp != NULL) {
3763       chained = call_chained_handler(actp, sig, siginfo, context);
3764     }
3765   }
3766   return chained;
3767 }
3768 
3769 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3770   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3771     return &sigact[sig];
3772   }
3773   return NULL;
3774 }
3775 
3776 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3777   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3778   sigact[sig] = oldAct;
3779   sigs |= (unsigned int)1 << sig;
3780 }
3781 
3782 // for diagnostic
3783 int os::Linux::sigflags[MAXSIGNUM];
3784 
3785 int os::Linux::get_our_sigflags(int sig) {
3786   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3787   return sigflags[sig];
3788 }
3789 
3790 void os::Linux::set_our_sigflags(int sig, int flags) {
3791   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3792   sigflags[sig] = flags;
3793 }
3794 
3795 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3796   // Check for overwrite.
3797   struct sigaction oldAct;
3798   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3799 
3800   void* oldhand = oldAct.sa_sigaction
3801                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3802                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3803   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3804       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3805       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3806     if (AllowUserSignalHandlers || !set_installed) {
3807       // Do not overwrite; user takes responsibility to forward to us.
3808       return;
3809     } else if (UseSignalChaining) {
3810       // save the old handler in jvm
3811       save_preinstalled_handler(sig, oldAct);
3812       // libjsig also interposes the sigaction() call below and saves the
3813       // old sigaction on it own.
3814     } else {
3815       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3816                     "%#lx for signal %d.", (long)oldhand, sig));
3817     }
3818   }
3819 
3820   struct sigaction sigAct;
3821   sigfillset(&(sigAct.sa_mask));
3822   sigAct.sa_handler = SIG_DFL;
3823   if (!set_installed) {
3824     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3825   } else {
3826     sigAct.sa_sigaction = signalHandler;
3827     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3828   }
3829   // Save flags, which are set by ours
3830   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3831   sigflags[sig] = sigAct.sa_flags;
3832 
3833   int ret = sigaction(sig, &sigAct, &oldAct);
3834   assert(ret == 0, "check");
3835 
3836   void* oldhand2  = oldAct.sa_sigaction
3837                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3838                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3839   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3840 }
3841 
3842 // install signal handlers for signals that HotSpot needs to
3843 // handle in order to support Java-level exception handling.
3844 
3845 void os::Linux::install_signal_handlers() {
3846   if (!signal_handlers_are_installed) {
3847     signal_handlers_are_installed = true;
3848 
3849     // signal-chaining
3850     typedef void (*signal_setting_t)();
3851     signal_setting_t begin_signal_setting = NULL;
3852     signal_setting_t end_signal_setting = NULL;
3853     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3854                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3855     if (begin_signal_setting != NULL) {
3856       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3857                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3858       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3859                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3860       libjsig_is_loaded = true;
3861       assert(UseSignalChaining, "should enable signal-chaining");
3862     }
3863     if (libjsig_is_loaded) {
3864       // Tell libjsig jvm is setting signal handlers
3865       (*begin_signal_setting)();
3866     }
3867 
3868     set_signal_handler(SIGSEGV, true);
3869     set_signal_handler(SIGPIPE, true);
3870     set_signal_handler(SIGBUS, true);
3871     set_signal_handler(SIGILL, true);
3872     set_signal_handler(SIGFPE, true);
3873     set_signal_handler(SIGXFSZ, true);
3874 
3875     if (libjsig_is_loaded) {
3876       // Tell libjsig jvm finishes setting signal handlers
3877       (*end_signal_setting)();
3878     }
3879 
3880     // We don't activate signal checker if libjsig is in place, we trust ourselves
3881     // and if UserSignalHandler is installed all bets are off.
3882     // Log that signal checking is off only if -verbose:jni is specified.
3883     if (CheckJNICalls) {
3884       if (libjsig_is_loaded) {
3885         if (PrintJNIResolving) {
3886           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3887         }
3888         check_signals = false;
3889       }
3890       if (AllowUserSignalHandlers) {
3891         if (PrintJNIResolving) {
3892           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3893         }
3894         check_signals = false;
3895       }
3896     }
3897   }
3898 }
3899 
3900 // This is the fastest way to get thread cpu time on Linux.
3901 // Returns cpu time (user+sys) for any thread, not only for current.
3902 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3903 // It might work on 2.6.10+ with a special kernel/glibc patch.
3904 // For reference, please, see IEEE Std 1003.1-2004:
3905 //   http://www.unix.org/single_unix_specification
3906 
3907 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3908   struct timespec tp;
3909   int rc = os::Linux::clock_gettime(clockid, &tp);
3910   assert(rc == 0, "clock_gettime is expected to return 0 code");
3911 
3912   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3913 }
3914 
3915 /////
3916 // glibc on Linux platform uses non-documented flag
3917 // to indicate, that some special sort of signal
3918 // trampoline is used.
3919 // We will never set this flag, and we should
3920 // ignore this flag in our diagnostic
3921 #ifdef SIGNIFICANT_SIGNAL_MASK
3922 #undef SIGNIFICANT_SIGNAL_MASK
3923 #endif
3924 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3925 
3926 static const char* get_signal_handler_name(address handler,
3927                                            char* buf, int buflen) {
3928   int offset;
3929   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3930   if (found) {
3931     // skip directory names
3932     const char *p1, *p2;
3933     p1 = buf;
3934     size_t len = strlen(os::file_separator());
3935     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3936     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3937   } else {
3938     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3939   }
3940   return buf;
3941 }
3942 
3943 static void print_signal_handler(outputStream* st, int sig,
3944                                  char* buf, size_t buflen) {
3945   struct sigaction sa;
3946 
3947   sigaction(sig, NULL, &sa);
3948 
3949   // See comment for SIGNIFICANT_SIGNAL_MASK define
3950   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3951 
3952   st->print("%s: ", os::exception_name(sig, buf, buflen));
3953 
3954   address handler = (sa.sa_flags & SA_SIGINFO)
3955     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3956     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3957 
3958   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3959     st->print("SIG_DFL");
3960   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3961     st->print("SIG_IGN");
3962   } else {
3963     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3964   }
3965 
3966   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3967 
3968   address rh = VMError::get_resetted_sighandler(sig);
3969   // May be, handler was resetted by VMError?
3970   if(rh != NULL) {
3971     handler = rh;
3972     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3973   }
3974 
3975   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3976 
3977   // Check: is it our handler?
3978   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3979      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3980     // It is our signal handler
3981     // check for flags, reset system-used one!
3982     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3983       st->print(
3984                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3985                 os::Linux::get_our_sigflags(sig));
3986     }
3987   }
3988   st->cr();
3989 }
3990 
3991 
3992 #define DO_SIGNAL_CHECK(sig) \
3993   if (!sigismember(&check_signal_done, sig)) \
3994     os::Linux::check_signal_handler(sig)
3995 
3996 // This method is a periodic task to check for misbehaving JNI applications
3997 // under CheckJNI, we can add any periodic checks here
3998 
3999 void os::run_periodic_checks() {
4000 
4001   if (check_signals == false) return;
4002 
4003   // SEGV and BUS if overridden could potentially prevent
4004   // generation of hs*.log in the event of a crash, debugging
4005   // such a case can be very challenging, so we absolutely
4006   // check the following for a good measure:
4007   DO_SIGNAL_CHECK(SIGSEGV);
4008   DO_SIGNAL_CHECK(SIGILL);
4009   DO_SIGNAL_CHECK(SIGFPE);
4010   DO_SIGNAL_CHECK(SIGBUS);
4011   DO_SIGNAL_CHECK(SIGPIPE);
4012   DO_SIGNAL_CHECK(SIGXFSZ);
4013 
4014 
4015   // ReduceSignalUsage allows the user to override these handlers
4016   // see comments at the very top and jvm_solaris.h
4017   if (!ReduceSignalUsage) {
4018     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4019     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4020     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4021     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4022   }
4023 
4024   DO_SIGNAL_CHECK(SR_signum);
4025   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4026 }
4027 
4028 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4029 
4030 static os_sigaction_t os_sigaction = NULL;
4031 
4032 void os::Linux::check_signal_handler(int sig) {
4033   char buf[O_BUFLEN];
4034   address jvmHandler = NULL;
4035 
4036 
4037   struct sigaction act;
4038   if (os_sigaction == NULL) {
4039     // only trust the default sigaction, in case it has been interposed
4040     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4041     if (os_sigaction == NULL) return;
4042   }
4043 
4044   os_sigaction(sig, (struct sigaction*)NULL, &act);
4045 
4046 
4047   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4048 
4049   address thisHandler = (act.sa_flags & SA_SIGINFO)
4050     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4051     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4052 
4053 
4054   switch(sig) {
4055   case SIGSEGV:
4056   case SIGBUS:
4057   case SIGFPE:
4058   case SIGPIPE:
4059   case SIGILL:
4060   case SIGXFSZ:
4061     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4062     break;
4063 
4064   case SHUTDOWN1_SIGNAL:
4065   case SHUTDOWN2_SIGNAL:
4066   case SHUTDOWN3_SIGNAL:
4067   case BREAK_SIGNAL:
4068     jvmHandler = (address)user_handler();
4069     break;
4070 
4071   case INTERRUPT_SIGNAL:
4072     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4073     break;
4074 
4075   default:
4076     if (sig == SR_signum) {
4077       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4078     } else {
4079       return;
4080     }
4081     break;
4082   }
4083 
4084   if (thisHandler != jvmHandler) {
4085     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4086     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4087     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4088     // No need to check this sig any longer
4089     sigaddset(&check_signal_done, sig);
4090   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4091     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4092     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4093     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4094     // No need to check this sig any longer
4095     sigaddset(&check_signal_done, sig);
4096   }
4097 
4098   // Dump all the signal
4099   if (sigismember(&check_signal_done, sig)) {
4100     print_signal_handlers(tty, buf, O_BUFLEN);
4101   }
4102 }
4103 
4104 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4105 
4106 extern bool signal_name(int signo, char* buf, size_t len);
4107 
4108 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4109   if (0 < exception_code && exception_code <= SIGRTMAX) {
4110     // signal
4111     if (!signal_name(exception_code, buf, size)) {
4112       jio_snprintf(buf, size, "SIG%d", exception_code);
4113     }
4114     return buf;
4115   } else {
4116     return NULL;
4117   }
4118 }
4119 
4120 // this is called _before_ the most of global arguments have been parsed
4121 void os::init(void) {
4122   char dummy;   /* used to get a guess on initial stack address */
4123 //  first_hrtime = gethrtime();
4124 
4125   // With LinuxThreads the JavaMain thread pid (primordial thread)
4126   // is different than the pid of the java launcher thread.
4127   // So, on Linux, the launcher thread pid is passed to the VM
4128   // via the sun.java.launcher.pid property.
4129   // Use this property instead of getpid() if it was correctly passed.
4130   // See bug 6351349.
4131   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4132 
4133   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4134 
4135   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4136 
4137   init_random(1234567);
4138 
4139   ThreadCritical::initialize();
4140 
4141   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4142   if (Linux::page_size() == -1) {
4143     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4144                   strerror(errno)));
4145   }
4146   init_page_sizes((size_t) Linux::page_size());
4147 
4148   Linux::initialize_system_info();
4149 
4150   // main_thread points to the aboriginal thread
4151   Linux::_main_thread = pthread_self();
4152 
4153   Linux::clock_init();
4154   initial_time_count = os::elapsed_counter();
4155   pthread_mutex_init(&dl_mutex, NULL);
4156 }
4157 
4158 // To install functions for atexit system call
4159 extern "C" {
4160   static void perfMemory_exit_helper() {
4161     perfMemory_exit();
4162   }
4163 }
4164 
4165 // this is called _after_ the global arguments have been parsed
4166 jint os::init_2(void)
4167 {
4168   Linux::fast_thread_clock_init();
4169 
4170   // Allocate a single page and mark it as readable for safepoint polling
4171   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4172   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4173 
4174   os::set_polling_page( polling_page );
4175 
4176 #ifndef PRODUCT
4177   if(Verbose && PrintMiscellaneous)
4178     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4179 #endif
4180 
4181   if (!UseMembar) {
4182     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4183     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4184     os::set_memory_serialize_page( mem_serialize_page );
4185 
4186 #ifndef PRODUCT
4187     if(Verbose && PrintMiscellaneous)
4188       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4189 #endif
4190   }
4191 
4192   os::large_page_init();
4193 
4194   // initialize suspend/resume support - must do this before signal_sets_init()
4195   if (SR_initialize() != 0) {
4196     perror("SR_initialize failed");
4197     return JNI_ERR;
4198   }
4199 
4200   Linux::signal_sets_init();
4201   Linux::install_signal_handlers();
4202 
4203   // Check minimum allowable stack size for thread creation and to initialize
4204   // the java system classes, including StackOverflowError - depends on page
4205   // size.  Add a page for compiler2 recursion in main thread.
4206   // Add in 2*BytesPerWord times page size to account for VM stack during
4207   // class initialization depending on 32 or 64 bit VM.
4208   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4209             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4210                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4211 
4212   size_t threadStackSizeInBytes = ThreadStackSize * K;
4213   if (threadStackSizeInBytes != 0 &&
4214       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4215         tty->print_cr("\nThe stack size specified is too small, "
4216                       "Specify at least %dk",
4217                       os::Linux::min_stack_allowed/ K);
4218         return JNI_ERR;
4219   }
4220 
4221   // Make the stack size a multiple of the page size so that
4222   // the yellow/red zones can be guarded.
4223   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4224         vm_page_size()));
4225 
4226   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4227 
4228   Linux::libpthread_init();
4229   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4230      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4231           Linux::glibc_version(), Linux::libpthread_version(),
4232           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4233   }
4234 
4235   if (UseNUMA) {
4236     if (!Linux::libnuma_init()) {
4237       UseNUMA = false;
4238     } else {
4239       if ((Linux::numa_max_node() < 1)) {
4240         // There's only one node(they start from 0), disable NUMA.
4241         UseNUMA = false;
4242       }
4243     }
4244     // With SHM large pages we cannot uncommit a page, so there's not way
4245     // we can make the adaptive lgrp chunk resizing work. If the user specified
4246     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4247     // disable adaptive resizing.
4248     if (UseNUMA && UseLargePages && UseSHM) {
4249       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4250         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4251           UseLargePages = false;
4252         } else {
4253           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4254           UseAdaptiveSizePolicy = false;
4255           UseAdaptiveNUMAChunkSizing = false;
4256         }
4257       } else {
4258         UseNUMA = false;
4259       }
4260     }
4261     if (!UseNUMA && ForceNUMA) {
4262       UseNUMA = true;
4263     }
4264   }
4265 
4266   if (MaxFDLimit) {
4267     // set the number of file descriptors to max. print out error
4268     // if getrlimit/setrlimit fails but continue regardless.
4269     struct rlimit nbr_files;
4270     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4271     if (status != 0) {
4272       if (PrintMiscellaneous && (Verbose || WizardMode))
4273         perror("os::init_2 getrlimit failed");
4274     } else {
4275       nbr_files.rlim_cur = nbr_files.rlim_max;
4276       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4277       if (status != 0) {
4278         if (PrintMiscellaneous && (Verbose || WizardMode))
4279           perror("os::init_2 setrlimit failed");
4280       }
4281     }
4282   }
4283 
4284   // Initialize lock used to serialize thread creation (see os::create_thread)
4285   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4286 
4287   // at-exit methods are called in the reverse order of their registration.
4288   // atexit functions are called on return from main or as a result of a
4289   // call to exit(3C). There can be only 32 of these functions registered
4290   // and atexit() does not set errno.
4291 
4292   if (PerfAllowAtExitRegistration) {
4293     // only register atexit functions if PerfAllowAtExitRegistration is set.
4294     // atexit functions can be delayed until process exit time, which
4295     // can be problematic for embedded VM situations. Embedded VMs should
4296     // call DestroyJavaVM() to assure that VM resources are released.
4297 
4298     // note: perfMemory_exit_helper atexit function may be removed in
4299     // the future if the appropriate cleanup code can be added to the
4300     // VM_Exit VMOperation's doit method.
4301     if (atexit(perfMemory_exit_helper) != 0) {
4302       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4303     }
4304   }
4305 
4306   // initialize thread priority policy
4307   prio_init();
4308 
4309   return JNI_OK;
4310 }
4311 
4312 // this is called at the end of vm_initialization
4313 void os::init_3(void)
4314 {
4315 #ifdef JAVASE_EMBEDDED
4316   // Start the MemNotifyThread
4317   if (LowMemoryProtection) {
4318     MemNotifyThread::start();
4319   }
4320   return;
4321 #endif
4322 }
4323 
4324 // Mark the polling page as unreadable
4325 void os::make_polling_page_unreadable(void) {
4326   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4327     fatal("Could not disable polling page");
4328 };
4329 
4330 // Mark the polling page as readable
4331 void os::make_polling_page_readable(void) {
4332   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4333     fatal("Could not enable polling page");
4334   }
4335 };
4336 
4337 int os::active_processor_count() {
4338   // Linux doesn't yet have a (official) notion of processor sets,
4339   // so just return the number of online processors.
4340   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4341   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4342   return online_cpus;
4343 }
4344 
4345 void os::set_native_thread_name(const char *name) {
4346   // Not yet implemented.
4347   return;
4348 }
4349 
4350 bool os::distribute_processes(uint length, uint* distribution) {
4351   // Not yet implemented.
4352   return false;
4353 }
4354 
4355 bool os::bind_to_processor(uint processor_id) {
4356   // Not yet implemented.
4357   return false;
4358 }
4359 
4360 ///
4361 
4362 // Suspends the target using the signal mechanism and then grabs the PC before
4363 // resuming the target. Used by the flat-profiler only
4364 ExtendedPC os::get_thread_pc(Thread* thread) {
4365   // Make sure that it is called by the watcher for the VMThread
4366   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4367   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4368 
4369   ExtendedPC epc;
4370 
4371   OSThread* osthread = thread->osthread();
4372   if (do_suspend(osthread)) {
4373     if (osthread->ucontext() != NULL) {
4374       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4375     } else {
4376       // NULL context is unexpected, double-check this is the VMThread
4377       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4378     }
4379     do_resume(osthread);
4380   }
4381   // failure means pthread_kill failed for some reason - arguably this is
4382   // a fatal problem, but such problems are ignored elsewhere
4383 
4384   return epc;
4385 }
4386 
4387 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4388 {
4389    if (is_NPTL()) {
4390       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4391    } else {
4392 #ifndef IA64
4393       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4394       // word back to default 64bit precision if condvar is signaled. Java
4395       // wants 53bit precision.  Save and restore current value.
4396       int fpu = get_fpu_control_word();
4397 #endif // IA64
4398       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4399 #ifndef IA64
4400       set_fpu_control_word(fpu);
4401 #endif // IA64
4402       return status;
4403    }
4404 }
4405 
4406 ////////////////////////////////////////////////////////////////////////////////
4407 // debug support
4408 
4409 static address same_page(address x, address y) {
4410   int page_bits = -os::vm_page_size();
4411   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4412     return x;
4413   else if (x > y)
4414     return (address)(intptr_t(y) | ~page_bits) + 1;
4415   else
4416     return (address)(intptr_t(y) & page_bits);
4417 }
4418 
4419 bool os::find(address addr, outputStream* st) {
4420   Dl_info dlinfo;
4421   memset(&dlinfo, 0, sizeof(dlinfo));
4422   if (dladdr(addr, &dlinfo)) {
4423     st->print(PTR_FORMAT ": ", addr);
4424     if (dlinfo.dli_sname != NULL) {
4425       st->print("%s+%#x", dlinfo.dli_sname,
4426                  addr - (intptr_t)dlinfo.dli_saddr);
4427     } else if (dlinfo.dli_fname) {
4428       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4429     } else {
4430       st->print("<absolute address>");
4431     }
4432     if (dlinfo.dli_fname) {
4433       st->print(" in %s", dlinfo.dli_fname);
4434     }
4435     if (dlinfo.dli_fbase) {
4436       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4437     }
4438     st->cr();
4439 
4440     if (Verbose) {
4441       // decode some bytes around the PC
4442       address begin = same_page(addr-40, addr);
4443       address end   = same_page(addr+40, addr);
4444       address       lowest = (address) dlinfo.dli_sname;
4445       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4446       if (begin < lowest)  begin = lowest;
4447       Dl_info dlinfo2;
4448       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4449           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4450         end = (address) dlinfo2.dli_saddr;
4451       Disassembler::decode(begin, end, st);
4452     }
4453     return true;
4454   }
4455   return false;
4456 }
4457 
4458 ////////////////////////////////////////////////////////////////////////////////
4459 // misc
4460 
4461 // This does not do anything on Linux. This is basically a hook for being
4462 // able to use structured exception handling (thread-local exception filters)
4463 // on, e.g., Win32.
4464 void
4465 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4466                          JavaCallArguments* args, Thread* thread) {
4467   f(value, method, args, thread);
4468 }
4469 
4470 void os::print_statistics() {
4471 }
4472 
4473 int os::message_box(const char* title, const char* message) {
4474   int i;
4475   fdStream err(defaultStream::error_fd());
4476   for (i = 0; i < 78; i++) err.print_raw("=");
4477   err.cr();
4478   err.print_raw_cr(title);
4479   for (i = 0; i < 78; i++) err.print_raw("-");
4480   err.cr();
4481   err.print_raw_cr(message);
4482   for (i = 0; i < 78; i++) err.print_raw("=");
4483   err.cr();
4484 
4485   char buf[16];
4486   // Prevent process from exiting upon "read error" without consuming all CPU
4487   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4488 
4489   return buf[0] == 'y' || buf[0] == 'Y';
4490 }
4491 
4492 int os::stat(const char *path, struct stat *sbuf) {
4493   char pathbuf[MAX_PATH];
4494   if (strlen(path) > MAX_PATH - 1) {
4495     errno = ENAMETOOLONG;
4496     return -1;
4497   }
4498   os::native_path(strcpy(pathbuf, path));
4499   return ::stat(pathbuf, sbuf);
4500 }
4501 
4502 bool os::check_heap(bool force) {
4503   return true;
4504 }
4505 
4506 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4507   return ::vsnprintf(buf, count, format, args);
4508 }
4509 
4510 // Is a (classpath) directory empty?
4511 bool os::dir_is_empty(const char* path) {
4512   DIR *dir = NULL;
4513   struct dirent *ptr;
4514 
4515   dir = opendir(path);
4516   if (dir == NULL) return true;
4517 
4518   /* Scan the directory */
4519   bool result = true;
4520   char buf[sizeof(struct dirent) + MAX_PATH];
4521   while (result && (ptr = ::readdir(dir)) != NULL) {
4522     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4523       result = false;
4524     }
4525   }
4526   closedir(dir);
4527   return result;
4528 }
4529 
4530 // This code originates from JDK's sysOpen and open64_w
4531 // from src/solaris/hpi/src/system_md.c
4532 
4533 #ifndef O_DELETE
4534 #define O_DELETE 0x10000
4535 #endif
4536 
4537 // Open a file. Unlink the file immediately after open returns
4538 // if the specified oflag has the O_DELETE flag set.
4539 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4540 
4541 int os::open(const char *path, int oflag, int mode) {
4542 
4543   if (strlen(path) > MAX_PATH - 1) {
4544     errno = ENAMETOOLONG;
4545     return -1;
4546   }
4547   int fd;
4548   int o_delete = (oflag & O_DELETE);
4549   oflag = oflag & ~O_DELETE;
4550 
4551   fd = ::open64(path, oflag, mode);
4552   if (fd == -1) return -1;
4553 
4554   //If the open succeeded, the file might still be a directory
4555   {
4556     struct stat64 buf64;
4557     int ret = ::fstat64(fd, &buf64);
4558     int st_mode = buf64.st_mode;
4559 
4560     if (ret != -1) {
4561       if ((st_mode & S_IFMT) == S_IFDIR) {
4562         errno = EISDIR;
4563         ::close(fd);
4564         return -1;
4565       }
4566     } else {
4567       ::close(fd);
4568       return -1;
4569     }
4570   }
4571 
4572     /*
4573      * All file descriptors that are opened in the JVM and not
4574      * specifically destined for a subprocess should have the
4575      * close-on-exec flag set.  If we don't set it, then careless 3rd
4576      * party native code might fork and exec without closing all
4577      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4578      * UNIXProcess.c), and this in turn might:
4579      *
4580      * - cause end-of-file to fail to be detected on some file
4581      *   descriptors, resulting in mysterious hangs, or
4582      *
4583      * - might cause an fopen in the subprocess to fail on a system
4584      *   suffering from bug 1085341.
4585      *
4586      * (Yes, the default setting of the close-on-exec flag is a Unix
4587      * design flaw)
4588      *
4589      * See:
4590      * 1085341: 32-bit stdio routines should support file descriptors >255
4591      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4592      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4593      */
4594 #ifdef FD_CLOEXEC
4595     {
4596         int flags = ::fcntl(fd, F_GETFD);
4597         if (flags != -1)
4598             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4599     }
4600 #endif
4601 
4602   if (o_delete != 0) {
4603     ::unlink(path);
4604   }
4605   return fd;
4606 }
4607 
4608 
4609 // create binary file, rewriting existing file if required
4610 int os::create_binary_file(const char* path, bool rewrite_existing) {
4611   int oflags = O_WRONLY | O_CREAT;
4612   if (!rewrite_existing) {
4613     oflags |= O_EXCL;
4614   }
4615   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4616 }
4617 
4618 // return current position of file pointer
4619 jlong os::current_file_offset(int fd) {
4620   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4621 }
4622 
4623 // move file pointer to the specified offset
4624 jlong os::seek_to_file_offset(int fd, jlong offset) {
4625   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4626 }
4627 
4628 // This code originates from JDK's sysAvailable
4629 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4630 
4631 int os::available(int fd, jlong *bytes) {
4632   jlong cur, end;
4633   int mode;
4634   struct stat64 buf64;
4635 
4636   if (::fstat64(fd, &buf64) >= 0) {
4637     mode = buf64.st_mode;
4638     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4639       /*
4640       * XXX: is the following call interruptible? If so, this might
4641       * need to go through the INTERRUPT_IO() wrapper as for other
4642       * blocking, interruptible calls in this file.
4643       */
4644       int n;
4645       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4646         *bytes = n;
4647         return 1;
4648       }
4649     }
4650   }
4651   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4652     return 0;
4653   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4654     return 0;
4655   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4656     return 0;
4657   }
4658   *bytes = end - cur;
4659   return 1;
4660 }
4661 
4662 int os::socket_available(int fd, jint *pbytes) {
4663   // Linux doc says EINTR not returned, unlike Solaris
4664   int ret = ::ioctl(fd, FIONREAD, pbytes);
4665 
4666   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4667   // is expected to return 0 on failure and 1 on success to the jdk.
4668   return (ret < 0) ? 0 : 1;
4669 }
4670 
4671 // Map a block of memory.
4672 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4673                      char *addr, size_t bytes, bool read_only,
4674                      bool allow_exec) {
4675   int prot;
4676   int flags = MAP_PRIVATE;
4677 
4678   if (read_only) {
4679     prot = PROT_READ;
4680   } else {
4681     prot = PROT_READ | PROT_WRITE;
4682   }
4683 
4684   if (allow_exec) {
4685     prot |= PROT_EXEC;
4686   }
4687 
4688   if (addr != NULL) {
4689     flags |= MAP_FIXED;
4690   }
4691 
4692   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4693                                      fd, file_offset);
4694   if (mapped_address == MAP_FAILED) {
4695     return NULL;
4696   }
4697   return mapped_address;
4698 }
4699 
4700 
4701 // Remap a block of memory.
4702 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4703                        char *addr, size_t bytes, bool read_only,
4704                        bool allow_exec) {
4705   // same as map_memory() on this OS
4706   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4707                         allow_exec);
4708 }
4709 
4710 
4711 // Unmap a block of memory.
4712 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4713   return munmap(addr, bytes) == 0;
4714 }
4715 
4716 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4717 
4718 static clockid_t thread_cpu_clockid(Thread* thread) {
4719   pthread_t tid = thread->osthread()->pthread_id();
4720   clockid_t clockid;
4721 
4722   // Get thread clockid
4723   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4724   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4725   return clockid;
4726 }
4727 
4728 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4729 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4730 // of a thread.
4731 //
4732 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4733 // the fast estimate available on the platform.
4734 
4735 jlong os::current_thread_cpu_time() {
4736   if (os::Linux::supports_fast_thread_cpu_time()) {
4737     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4738   } else {
4739     // return user + sys since the cost is the same
4740     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4741   }
4742 }
4743 
4744 jlong os::thread_cpu_time(Thread* thread) {
4745   // consistent with what current_thread_cpu_time() returns
4746   if (os::Linux::supports_fast_thread_cpu_time()) {
4747     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4748   } else {
4749     return slow_thread_cpu_time(thread, true /* user + sys */);
4750   }
4751 }
4752 
4753 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4754   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4755     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4756   } else {
4757     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4758   }
4759 }
4760 
4761 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4762   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4763     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4764   } else {
4765     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4766   }
4767 }
4768 
4769 //
4770 //  -1 on error.
4771 //
4772 
4773 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4774   static bool proc_pid_cpu_avail = true;
4775   static bool proc_task_unchecked = true;
4776   static const char *proc_stat_path = "/proc/%d/stat";
4777   pid_t  tid = thread->osthread()->thread_id();
4778   int i;
4779   char *s;
4780   char stat[2048];
4781   int statlen;
4782   char proc_name[64];
4783   int count;
4784   long sys_time, user_time;
4785   char string[64];
4786   char cdummy;
4787   int idummy;
4788   long ldummy;
4789   FILE *fp;
4790 
4791   // We first try accessing /proc/<pid>/cpu since this is faster to
4792   // process.  If this file is not present (linux kernels 2.5 and above)
4793   // then we open /proc/<pid>/stat.
4794   if ( proc_pid_cpu_avail ) {
4795     sprintf(proc_name, "/proc/%d/cpu", tid);
4796     fp =  fopen(proc_name, "r");
4797     if ( fp != NULL ) {
4798       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4799       fclose(fp);
4800       if ( count != 3 ) return -1;
4801 
4802       if (user_sys_cpu_time) {
4803         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4804       } else {
4805         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4806       }
4807     }
4808     else proc_pid_cpu_avail = false;
4809   }
4810 
4811   // The /proc/<tid>/stat aggregates per-process usage on
4812   // new Linux kernels 2.6+ where NPTL is supported.
4813   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4814   // See bug 6328462.
4815   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4816   // and possibly in some other cases, so we check its availability.
4817   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4818     // This is executed only once
4819     proc_task_unchecked = false;
4820     fp = fopen("/proc/self/task", "r");
4821     if (fp != NULL) {
4822       proc_stat_path = "/proc/self/task/%d/stat";
4823       fclose(fp);
4824     }
4825   }
4826 
4827   sprintf(proc_name, proc_stat_path, tid);
4828   fp = fopen(proc_name, "r");
4829   if ( fp == NULL ) return -1;
4830   statlen = fread(stat, 1, 2047, fp);
4831   stat[statlen] = '\0';
4832   fclose(fp);
4833 
4834   // Skip pid and the command string. Note that we could be dealing with
4835   // weird command names, e.g. user could decide to rename java launcher
4836   // to "java 1.4.2 :)", then the stat file would look like
4837   //                1234 (java 1.4.2 :)) R ... ...
4838   // We don't really need to know the command string, just find the last
4839   // occurrence of ")" and then start parsing from there. See bug 4726580.
4840   s = strrchr(stat, ')');
4841   i = 0;
4842   if (s == NULL ) return -1;
4843 
4844   // Skip blank chars
4845   do s++; while (isspace(*s));
4846 
4847   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4848                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4849                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4850                  &user_time, &sys_time);
4851   if ( count != 13 ) return -1;
4852   if (user_sys_cpu_time) {
4853     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4854   } else {
4855     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4856   }
4857 }
4858 
4859 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4860   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4861   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4862   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4863   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4864 }
4865 
4866 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4867   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4868   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4869   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4870   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4871 }
4872 
4873 bool os::is_thread_cpu_time_supported() {
4874   return true;
4875 }
4876 
4877 // System loadavg support.  Returns -1 if load average cannot be obtained.
4878 // Linux doesn't yet have a (official) notion of processor sets,
4879 // so just return the system wide load average.
4880 int os::loadavg(double loadavg[], int nelem) {
4881   return ::getloadavg(loadavg, nelem);
4882 }
4883 
4884 void os::pause() {
4885   char filename[MAX_PATH];
4886   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4887     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4888   } else {
4889     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4890   }
4891 
4892   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4893   if (fd != -1) {
4894     struct stat buf;
4895     ::close(fd);
4896     while (::stat(filename, &buf) == 0) {
4897       (void)::poll(NULL, 0, 100);
4898     }
4899   } else {
4900     jio_fprintf(stderr,
4901       "Could not open pause file '%s', continuing immediately.\n", filename);
4902   }
4903 }
4904 
4905 
4906 // Refer to the comments in os_solaris.cpp park-unpark.
4907 //
4908 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4909 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4910 // For specifics regarding the bug see GLIBC BUGID 261237 :
4911 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4912 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4913 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4914 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4915 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4916 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4917 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4918 // of libpthread avoids the problem, but isn't practical.
4919 //
4920 // Possible remedies:
4921 //
4922 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4923 //      This is palliative and probabilistic, however.  If the thread is preempted
4924 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4925 //      than the minimum period may have passed, and the abstime may be stale (in the
4926 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4927 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4928 //
4929 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4930 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4931 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4932 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4933 //      thread.
4934 //
4935 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4936 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4937 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4938 //      This also works well.  In fact it avoids kernel-level scalability impediments
4939 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4940 //      timers in a graceful fashion.
4941 //
4942 // 4.   When the abstime value is in the past it appears that control returns
4943 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4944 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4945 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4946 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4947 //      It may be possible to avoid reinitialization by checking the return
4948 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4949 //      condvar we must establish the invariant that cond_signal() is only called
4950 //      within critical sections protected by the adjunct mutex.  This prevents
4951 //      cond_signal() from "seeing" a condvar that's in the midst of being
4952 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4953 //      desirable signal-after-unlock optimization that avoids futile context switching.
4954 //
4955 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4956 //      structure when a condvar is used or initialized.  cond_destroy()  would
4957 //      release the helper structure.  Our reinitialize-after-timedwait fix
4958 //      put excessive stress on malloc/free and locks protecting the c-heap.
4959 //
4960 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4961 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4962 // and only enabling the work-around for vulnerable environments.
4963 
4964 // utility to compute the abstime argument to timedwait:
4965 // millis is the relative timeout time
4966 // abstime will be the absolute timeout time
4967 // TODO: replace compute_abstime() with unpackTime()
4968 
4969 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4970   if (millis < 0)  millis = 0;
4971   struct timeval now;
4972   int status = gettimeofday(&now, NULL);
4973   assert(status == 0, "gettimeofday");
4974   jlong seconds = millis / 1000;
4975   millis %= 1000;
4976   if (seconds > 50000000) { // see man cond_timedwait(3T)
4977     seconds = 50000000;
4978   }
4979   abstime->tv_sec = now.tv_sec  + seconds;
4980   long       usec = now.tv_usec + millis * 1000;
4981   if (usec >= 1000000) {
4982     abstime->tv_sec += 1;
4983     usec -= 1000000;
4984   }
4985   abstime->tv_nsec = usec * 1000;
4986   return abstime;
4987 }
4988 
4989 
4990 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4991 // Conceptually TryPark() should be equivalent to park(0).
4992 
4993 int os::PlatformEvent::TryPark() {
4994   for (;;) {
4995     const int v = _Event ;
4996     guarantee ((v == 0) || (v == 1), "invariant") ;
4997     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4998   }
4999 }
5000 
5001 void os::PlatformEvent::park() {       // AKA "down()"
5002   // Invariant: Only the thread associated with the Event/PlatformEvent
5003   // may call park().
5004   // TODO: assert that _Assoc != NULL or _Assoc == Self
5005   int v ;
5006   for (;;) {
5007       v = _Event ;
5008       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5009   }
5010   guarantee (v >= 0, "invariant") ;
5011   if (v == 0) {
5012      // Do this the hard way by blocking ...
5013      int status = pthread_mutex_lock(_mutex);
5014      assert_status(status == 0, status, "mutex_lock");
5015      guarantee (_nParked == 0, "invariant") ;
5016      ++ _nParked ;
5017      while (_Event < 0) {
5018         status = pthread_cond_wait(_cond, _mutex);
5019         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5020         // Treat this the same as if the wait was interrupted
5021         if (status == ETIME) { status = EINTR; }
5022         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5023      }
5024      -- _nParked ;
5025 
5026     // In theory we could move the ST of 0 into _Event past the unlock(),
5027     // but then we'd need a MEMBAR after the ST.
5028     _Event = 0 ;
5029      status = pthread_mutex_unlock(_mutex);
5030      assert_status(status == 0, status, "mutex_unlock");
5031   }
5032   guarantee (_Event >= 0, "invariant") ;
5033 }
5034 
5035 int os::PlatformEvent::park(jlong millis) {
5036   guarantee (_nParked == 0, "invariant") ;
5037 
5038   int v ;
5039   for (;;) {
5040       v = _Event ;
5041       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5042   }
5043   guarantee (v >= 0, "invariant") ;
5044   if (v != 0) return OS_OK ;
5045 
5046   // We do this the hard way, by blocking the thread.
5047   // Consider enforcing a minimum timeout value.
5048   struct timespec abst;
5049   compute_abstime(&abst, millis);
5050 
5051   int ret = OS_TIMEOUT;
5052   int status = pthread_mutex_lock(_mutex);
5053   assert_status(status == 0, status, "mutex_lock");
5054   guarantee (_nParked == 0, "invariant") ;
5055   ++_nParked ;
5056 
5057   // Object.wait(timo) will return because of
5058   // (a) notification
5059   // (b) timeout
5060   // (c) thread.interrupt
5061   //
5062   // Thread.interrupt and object.notify{All} both call Event::set.
5063   // That is, we treat thread.interrupt as a special case of notification.
5064   // The underlying Solaris implementation, cond_timedwait, admits
5065   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5066   // JVM from making those visible to Java code.  As such, we must
5067   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5068   //
5069   // TODO: properly differentiate simultaneous notify+interrupt.
5070   // In that case, we should propagate the notify to another waiter.
5071 
5072   while (_Event < 0) {
5073     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5074     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5075       pthread_cond_destroy (_cond);
5076       pthread_cond_init (_cond, NULL) ;
5077     }
5078     assert_status(status == 0 || status == EINTR ||
5079                   status == ETIME || status == ETIMEDOUT,
5080                   status, "cond_timedwait");
5081     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5082     if (status == ETIME || status == ETIMEDOUT) break ;
5083     // We consume and ignore EINTR and spurious wakeups.
5084   }
5085   --_nParked ;
5086   if (_Event >= 0) {
5087      ret = OS_OK;
5088   }
5089   _Event = 0 ;
5090   status = pthread_mutex_unlock(_mutex);
5091   assert_status(status == 0, status, "mutex_unlock");
5092   assert (_nParked == 0, "invariant") ;
5093   return ret;
5094 }
5095 
5096 void os::PlatformEvent::unpark() {
5097   int v, AnyWaiters ;
5098   for (;;) {
5099       v = _Event ;
5100       if (v > 0) {
5101          // The LD of _Event could have reordered or be satisfied
5102          // by a read-aside from this processor's write buffer.
5103          // To avoid problems execute a barrier and then
5104          // ratify the value.
5105          OrderAccess::fence() ;
5106          if (_Event == v) return ;
5107          continue ;
5108       }
5109       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5110   }
5111   if (v < 0) {
5112      // Wait for the thread associated with the event to vacate
5113      int status = pthread_mutex_lock(_mutex);
5114      assert_status(status == 0, status, "mutex_lock");
5115      AnyWaiters = _nParked ;
5116      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5117      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5118         AnyWaiters = 0 ;
5119         pthread_cond_signal (_cond);
5120      }
5121      status = pthread_mutex_unlock(_mutex);
5122      assert_status(status == 0, status, "mutex_unlock");
5123      if (AnyWaiters != 0) {
5124         status = pthread_cond_signal(_cond);
5125         assert_status(status == 0, status, "cond_signal");
5126      }
5127   }
5128 
5129   // Note that we signal() _after dropping the lock for "immortal" Events.
5130   // This is safe and avoids a common class of  futile wakeups.  In rare
5131   // circumstances this can cause a thread to return prematurely from
5132   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5133   // simply re-test the condition and re-park itself.
5134 }
5135 
5136 
5137 // JSR166
5138 // -------------------------------------------------------
5139 
5140 /*
5141  * The solaris and linux implementations of park/unpark are fairly
5142  * conservative for now, but can be improved. They currently use a
5143  * mutex/condvar pair, plus a a count.
5144  * Park decrements count if > 0, else does a condvar wait.  Unpark
5145  * sets count to 1 and signals condvar.  Only one thread ever waits
5146  * on the condvar. Contention seen when trying to park implies that someone
5147  * is unparking you, so don't wait. And spurious returns are fine, so there
5148  * is no need to track notifications.
5149  */
5150 
5151 #define MAX_SECS 100000000
5152 /*
5153  * This code is common to linux and solaris and will be moved to a
5154  * common place in dolphin.
5155  *
5156  * The passed in time value is either a relative time in nanoseconds
5157  * or an absolute time in milliseconds. Either way it has to be unpacked
5158  * into suitable seconds and nanoseconds components and stored in the
5159  * given timespec structure.
5160  * Given time is a 64-bit value and the time_t used in the timespec is only
5161  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5162  * overflow if times way in the future are given. Further on Solaris versions
5163  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5164  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5165  * As it will be 28 years before "now + 100000000" will overflow we can
5166  * ignore overflow and just impose a hard-limit on seconds using the value
5167  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5168  * years from "now".
5169  */
5170 
5171 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5172   assert (time > 0, "convertTime");
5173 
5174   struct timeval now;
5175   int status = gettimeofday(&now, NULL);
5176   assert(status == 0, "gettimeofday");
5177 
5178   time_t max_secs = now.tv_sec + MAX_SECS;
5179 
5180   if (isAbsolute) {
5181     jlong secs = time / 1000;
5182     if (secs > max_secs) {
5183       absTime->tv_sec = max_secs;
5184     }
5185     else {
5186       absTime->tv_sec = secs;
5187     }
5188     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5189   }
5190   else {
5191     jlong secs = time / NANOSECS_PER_SEC;
5192     if (secs >= MAX_SECS) {
5193       absTime->tv_sec = max_secs;
5194       absTime->tv_nsec = 0;
5195     }
5196     else {
5197       absTime->tv_sec = now.tv_sec + secs;
5198       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5199       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5200         absTime->tv_nsec -= NANOSECS_PER_SEC;
5201         ++absTime->tv_sec; // note: this must be <= max_secs
5202       }
5203     }
5204   }
5205   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5206   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5207   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5208   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5209 }
5210 
5211 void Parker::park(bool isAbsolute, jlong time) {
5212   // Optional fast-path check:
5213   // Return immediately if a permit is available.
5214   if (_counter > 0) {
5215       _counter = 0 ;
5216       OrderAccess::fence();
5217       return ;
5218   }
5219 
5220   Thread* thread = Thread::current();
5221   assert(thread->is_Java_thread(), "Must be JavaThread");
5222   JavaThread *jt = (JavaThread *)thread;
5223 
5224   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5225   // Check interrupt before trying to wait
5226   if (Thread::is_interrupted(thread, false)) {
5227     return;
5228   }
5229 
5230   // Next, demultiplex/decode time arguments
5231   timespec absTime;
5232   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5233     return;
5234   }
5235   if (time > 0) {
5236     unpackTime(&absTime, isAbsolute, time);
5237   }
5238 
5239 
5240   // Enter safepoint region
5241   // Beware of deadlocks such as 6317397.
5242   // The per-thread Parker:: mutex is a classic leaf-lock.
5243   // In particular a thread must never block on the Threads_lock while
5244   // holding the Parker:: mutex.  If safepoints are pending both the
5245   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5246   ThreadBlockInVM tbivm(jt);
5247 
5248   // Don't wait if cannot get lock since interference arises from
5249   // unblocking.  Also. check interrupt before trying wait
5250   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5251     return;
5252   }
5253 
5254   int status ;
5255   if (_counter > 0)  { // no wait needed
5256     _counter = 0;
5257     status = pthread_mutex_unlock(_mutex);
5258     assert (status == 0, "invariant") ;
5259     OrderAccess::fence();
5260     return;
5261   }
5262 
5263 #ifdef ASSERT
5264   // Don't catch signals while blocked; let the running threads have the signals.
5265   // (This allows a debugger to break into the running thread.)
5266   sigset_t oldsigs;
5267   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5268   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5269 #endif
5270 
5271   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5272   jt->set_suspend_equivalent();
5273   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5274 
5275   if (time == 0) {
5276     status = pthread_cond_wait (_cond, _mutex) ;
5277   } else {
5278     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5279     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5280       pthread_cond_destroy (_cond) ;
5281       pthread_cond_init    (_cond, NULL);
5282     }
5283   }
5284   assert_status(status == 0 || status == EINTR ||
5285                 status == ETIME || status == ETIMEDOUT,
5286                 status, "cond_timedwait");
5287 
5288 #ifdef ASSERT
5289   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5290 #endif
5291 
5292   _counter = 0 ;
5293   status = pthread_mutex_unlock(_mutex) ;
5294   assert_status(status == 0, status, "invariant") ;
5295   // If externally suspended while waiting, re-suspend
5296   if (jt->handle_special_suspend_equivalent_condition()) {
5297     jt->java_suspend_self();
5298   }
5299 
5300   OrderAccess::fence();
5301 }
5302 
5303 void Parker::unpark() {
5304   int s, status ;
5305   status = pthread_mutex_lock(_mutex);
5306   assert (status == 0, "invariant") ;
5307   s = _counter;
5308   _counter = 1;
5309   if (s < 1) {
5310      if (WorkAroundNPTLTimedWaitHang) {
5311         status = pthread_cond_signal (_cond) ;
5312         assert (status == 0, "invariant") ;
5313         status = pthread_mutex_unlock(_mutex);
5314         assert (status == 0, "invariant") ;
5315      } else {
5316         status = pthread_mutex_unlock(_mutex);
5317         assert (status == 0, "invariant") ;
5318         status = pthread_cond_signal (_cond) ;
5319         assert (status == 0, "invariant") ;
5320      }
5321   } else {
5322     pthread_mutex_unlock(_mutex);
5323     assert (status == 0, "invariant") ;
5324   }
5325 }
5326 
5327 
5328 extern char** environ;
5329 
5330 #ifndef __NR_fork
5331 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5332 #endif
5333 
5334 #ifndef __NR_execve
5335 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5336 #endif
5337 
5338 // Run the specified command in a separate process. Return its exit value,
5339 // or -1 on failure (e.g. can't fork a new process).
5340 // Unlike system(), this function can be called from signal handler. It
5341 // doesn't block SIGINT et al.
5342 int os::fork_and_exec(char* cmd) {
5343   const char * argv[4] = {"sh", "-c", cmd, NULL};
5344 
5345   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5346   // pthread_atfork handlers and reset pthread library. All we need is a
5347   // separate process to execve. Make a direct syscall to fork process.
5348   // On IA64 there's no fork syscall, we have to use fork() and hope for
5349   // the best...
5350   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5351               IA64_ONLY(fork();)
5352 
5353   if (pid < 0) {
5354     // fork failed
5355     return -1;
5356 
5357   } else if (pid == 0) {
5358     // child process
5359 
5360     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5361     // first to kill every thread on the thread list. Because this list is
5362     // not reset by fork() (see notes above), execve() will instead kill
5363     // every thread in the parent process. We know this is the only thread
5364     // in the new process, so make a system call directly.
5365     // IA64 should use normal execve() from glibc to match the glibc fork()
5366     // above.
5367     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5368     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5369 
5370     // execve failed
5371     _exit(-1);
5372 
5373   } else  {
5374     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5375     // care about the actual exit code, for now.
5376 
5377     int status;
5378 
5379     // Wait for the child process to exit.  This returns immediately if
5380     // the child has already exited. */
5381     while (waitpid(pid, &status, 0) < 0) {
5382         switch (errno) {
5383         case ECHILD: return 0;
5384         case EINTR: break;
5385         default: return -1;
5386         }
5387     }
5388 
5389     if (WIFEXITED(status)) {
5390        // The child exited normally; get its exit code.
5391        return WEXITSTATUS(status);
5392     } else if (WIFSIGNALED(status)) {
5393        // The child exited because of a signal
5394        // The best value to return is 0x80 + signal number,
5395        // because that is what all Unix shells do, and because
5396        // it allows callers to distinguish between process exit and
5397        // process death by signal.
5398        return 0x80 + WTERMSIG(status);
5399     } else {
5400        // Unknown exit code; pass it through
5401        return status;
5402     }
5403   }
5404 }
5405 
5406 // is_headless_jre()
5407 //
5408 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5409 // in order to report if we are running in a headless jre
5410 //
5411 // Since JDK8 xawt/libmawt.so was moved into the same directory
5412 // as libawt.so, and renamed libawt_xawt.so
5413 //
5414 bool os::is_headless_jre() {
5415     struct stat statbuf;
5416     char buf[MAXPATHLEN];
5417     char libmawtpath[MAXPATHLEN];
5418     const char *xawtstr  = "/xawt/libmawt.so";
5419     const char *new_xawtstr = "/libawt_xawt.so";
5420     char *p;
5421 
5422     // Get path to libjvm.so
5423     os::jvm_path(buf, sizeof(buf));
5424 
5425     // Get rid of libjvm.so
5426     p = strrchr(buf, '/');
5427     if (p == NULL) return false;
5428     else *p = '\0';
5429 
5430     // Get rid of client or server
5431     p = strrchr(buf, '/');
5432     if (p == NULL) return false;
5433     else *p = '\0';
5434 
5435     // check xawt/libmawt.so
5436     strcpy(libmawtpath, buf);
5437     strcat(libmawtpath, xawtstr);
5438     if (::stat(libmawtpath, &statbuf) == 0) return false;
5439 
5440     // check libawt_xawt.so
5441     strcpy(libmawtpath, buf);
5442     strcat(libmawtpath, new_xawtstr);
5443     if (::stat(libmawtpath, &statbuf) == 0) return false;
5444 
5445     return true;
5446 }
5447 
5448 // Get the default path to the core file
5449 // Returns the length of the string
5450 int os::get_core_path(char* buffer, size_t bufferSize) {
5451   const char* p = get_current_directory(buffer, bufferSize);
5452 
5453   if (p == NULL) {
5454     assert(p != NULL, "failed to get current directory");
5455     return 0;
5456   }
5457 
5458   return strlen(buffer);
5459 }
5460 
5461 #ifdef JAVASE_EMBEDDED
5462 //
5463 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5464 //
5465 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5466 
5467 // ctor
5468 //
5469 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5470   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5471   _fd = fd;
5472 
5473   if (os::create_thread(this, os::os_thread)) {
5474     _memnotify_thread = this;
5475     os::set_priority(this, NearMaxPriority);
5476     os::start_thread(this);
5477   }
5478 }
5479 
5480 // Where all the work gets done
5481 //
5482 void MemNotifyThread::run() {
5483   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5484 
5485   // Set up the select arguments
5486   fd_set rfds;
5487   if (_fd != -1) {
5488     FD_ZERO(&rfds);
5489     FD_SET(_fd, &rfds);
5490   }
5491 
5492   // Now wait for the mem_notify device to wake up
5493   while (1) {
5494     // Wait for the mem_notify device to signal us..
5495     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5496     if (rc == -1) {
5497       perror("select!\n");
5498       break;
5499     } else if (rc) {
5500       //ssize_t free_before = os::available_memory();
5501       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5502 
5503       // The kernel is telling us there is not much memory left...
5504       // try to do something about that
5505 
5506       // If we are not already in a GC, try one.
5507       if (!Universe::heap()->is_gc_active()) {
5508         Universe::heap()->collect(GCCause::_allocation_failure);
5509 
5510         //ssize_t free_after = os::available_memory();
5511         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5512         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5513       }
5514       // We might want to do something like the following if we find the GC's are not helping...
5515       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5516     }
5517   }
5518 }
5519 
5520 //
5521 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5522 //
5523 void MemNotifyThread::start() {
5524   int    fd;
5525   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5526   if (fd < 0) {
5527       return;
5528   }
5529 
5530   if (memnotify_thread() == NULL) {
5531     new MemNotifyThread(fd);
5532   }
5533 }
5534 #endif // JAVASE_EMBEDDED