1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GCLOCKER_HPP
  26 #define SHARE_VM_MEMORY_GCLOCKER_HPP
  27 
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "memory/genCollectedHeap.hpp"
  30 #include "memory/universe.hpp"
  31 #include "oops/oop.hpp"
  32 #ifdef TARGET_OS_FAMILY_linux
  33 # include "os_linux.inline.hpp"
  34 # include "thread_linux.inline.hpp"
  35 #endif
  36 #ifdef TARGET_OS_FAMILY_solaris
  37 # include "os_solaris.inline.hpp"
  38 # include "thread_solaris.inline.hpp"
  39 #endif
  40 #ifdef TARGET_OS_FAMILY_windows
  41 # include "os_windows.inline.hpp"
  42 # include "thread_windows.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_bsd
  45 # include "os_bsd.inline.hpp"
  46 # include "thread_bsd.inline.hpp"
  47 #endif
  48 
  49 // The direct lock/unlock calls do not force a collection if an unlock
  50 // decrements the count to zero. Avoid calling these if at all possible.
  51 
  52 class GC_locker: public AllStatic {
  53  private:
  54   // The _jni_lock_count keeps track of the number of threads that are
  55   // currently in a critical region.  It's only kept up to date when
  56   // _needs_gc is true.  The current value is computed during
  57   // safepointing and decremented during the slow path of GC_locker
  58   // unlocking.
  59   static volatile jint _jni_lock_count;  // number of jni active instances.
  60 
  61   static volatile jint _lock_count;      // number of other active instances
  62   static volatile bool _needs_gc;        // heap is filling, we need a GC
  63                                          // note: bool is typedef'd as jint
  64   static volatile bool _doing_gc;        // unlock_critical() is doing a GC
  65 
  66 #ifdef ASSERT
  67   // This lock count is updated for all operations and is used to
  68   // validate the jni_lock_count that is computed during safepoints.
  69   static volatile jint _debug_jni_lock_count;
  70 #endif
  71 
  72   // Accessors
  73   static bool is_jni_active() {
  74     assert(_needs_gc, "only valid when _needs_gc is set");
  75     return _jni_lock_count > 0;
  76   }
  77 
  78   // At a safepoint, visit all threads and count the number of active
  79   // critical sections.  This is used to ensure that all active
  80   // critical sections are exited before a new one is started.
  81   static void verify_critical_count() NOT_DEBUG_RETURN;
  82 
  83   static void jni_lock(JavaThread* thread);
  84   static void jni_unlock(JavaThread* thread);
  85 
  86   static bool is_active_internal() {
  87     verify_critical_count();
  88     return _lock_count > 0 || _jni_lock_count > 0;
  89   }
  90 
  91  public:
  92   // Accessors
  93   static bool is_active() {
  94     assert(_needs_gc || SafepointSynchronize::is_at_safepoint(), "only read at safepoint");
  95     return is_active_internal();
  96   }
  97   static bool needs_gc()       { return _needs_gc;                        }
  98 
  99   // Shorthand
 100   static bool is_active_and_needs_gc() {
 101     // Use is_active_internal since _needs_gc can change from true to
 102     // false outside of a safepoint, triggering the assert in
 103     // is_active.
 104     return needs_gc() && is_active_internal();
 105   }
 106 
 107   // In debug mode track the locking state at all times
 108   static void increment_debug_jni_lock_count() {
 109 #ifdef ASSERT
 110     assert(_debug_jni_lock_count >= 0, "bad value");
 111     Atomic::inc(&_debug_jni_lock_count);
 112 #endif
 113   }
 114   static void decrement_debug_jni_lock_count() {
 115 #ifdef ASSERT
 116     assert(_debug_jni_lock_count > 0, "bad value");
 117     Atomic::dec(&_debug_jni_lock_count);
 118 #endif
 119   }
 120 
 121   // Set the current lock count
 122   static void set_jni_lock_count(int count) {
 123     _jni_lock_count = count;
 124     verify_critical_count();
 125   }
 126 
 127   // Sets _needs_gc if is_active() is true. Returns is_active().
 128   static bool check_active_before_gc();
 129 
 130   // Stalls the caller (who should not be in a jni critical section)
 131   // until needs_gc() clears. Note however that needs_gc() may be
 132   // set at a subsequent safepoint and/or cleared under the
 133   // JNICritical_lock, so the caller may not safely assert upon
 134   // return from this method that "!needs_gc()" since that is
 135   // not a stable predicate.
 136   static void stall_until_clear();
 137 
 138   // Non-structured GC locking: currently needed for JNI. Use with care!
 139   static void lock();
 140   static void unlock();
 141 
 142   // The following two methods are used for JNI critical regions.
 143   // If we find that we failed to perform a GC because the GC_locker
 144   // was active, arrange for one as soon as possible by allowing
 145   // all threads in critical regions to complete, but not allowing
 146   // other critical regions to be entered. The reasons for that are:
 147   // 1) a GC request won't be starved by overlapping JNI critical
 148   //    region activities, which can cause unnecessary OutOfMemory errors.
 149   // 2) even if allocation requests can still be satisfied before GC locker
 150   //    becomes inactive, for example, in tenured generation possibly with
 151   //    heap expansion, those allocations can trigger lots of safepointing
 152   //    attempts (ineffective GC attempts) and require Heap_lock which
 153   //    slow down allocations tremendously.
 154   //
 155   // Note that critical regions can be nested in a single thread, so
 156   // we must allow threads already in critical regions to continue.
 157   //
 158   // JNI critical regions are the only participants in this scheme
 159   // because they are, by spec, well bounded while in a critical region.
 160   //
 161   // Each of the following two method is split into a fast path and a
 162   // slow path. JNICritical_lock is only grabbed in the slow path.
 163   // _needs_gc is initially false and every java thread will go
 164   // through the fast path, which simply increments or decrements the
 165   // current thread's critical count.  When GC happens at a safepoint,
 166   // GC_locker::is_active() is checked. Since there is no safepoint in
 167   // the fast path of lock_critical() and unlock_critical(), there is
 168   // no race condition between the fast path and GC. After _needs_gc
 169   // is set at a safepoint, every thread will go through the slow path
 170   // after the safepoint.  Since after a safepoint, each of the
 171   // following two methods is either entered from the method entry and
 172   // falls into the slow path, or is resumed from the safepoints in
 173   // the method, which only exist in the slow path. So when _needs_gc
 174   // is set, the slow path is always taken, till _needs_gc is cleared.
 175   static void lock_critical(JavaThread* thread);
 176   static void unlock_critical(JavaThread* thread);
 177 
 178   static address needs_gc_address() { return (address) &_needs_gc; }
 179 };
 180 
 181 
 182 // A No_GC_Verifier object can be placed in methods where one assumes that
 183 // no garbage collection will occur. The destructor will verify this property
 184 // unless the constructor is called with argument false (not verifygc).
 185 //
 186 // The check will only be done in debug mode and if verifygc true.
 187 
 188 class No_GC_Verifier: public StackObj {
 189  friend class Pause_No_GC_Verifier;
 190 
 191  protected:
 192   bool _verifygc;
 193   unsigned int _old_invocations;
 194 
 195  public:
 196 #ifdef ASSERT
 197   No_GC_Verifier(bool verifygc = true);
 198   ~No_GC_Verifier();
 199 #else
 200   No_GC_Verifier(bool verifygc = true) {}
 201   ~No_GC_Verifier() {}
 202 #endif
 203 };
 204 
 205 // A Pause_No_GC_Verifier is used to temporarily pause the behavior
 206 // of a No_GC_Verifier object. If we are not in debug mode or if the
 207 // No_GC_Verifier object has a _verifygc value of false, then there
 208 // is nothing to do.
 209 
 210 class Pause_No_GC_Verifier: public StackObj {
 211  private:
 212   No_GC_Verifier * _ngcv;
 213 
 214  public:
 215 #ifdef ASSERT
 216   Pause_No_GC_Verifier(No_GC_Verifier * ngcv);
 217   ~Pause_No_GC_Verifier();
 218 #else
 219   Pause_No_GC_Verifier(No_GC_Verifier * ngcv) {}
 220   ~Pause_No_GC_Verifier() {}
 221 #endif
 222 };
 223 
 224 
 225 // A No_Safepoint_Verifier object will throw an assertion failure if
 226 // the current thread passes a possible safepoint while this object is
 227 // instantiated. A safepoint, will either be: an oop allocation, blocking
 228 // on a Mutex or JavaLock, or executing a VM operation.
 229 //
 230 // If StrictSafepointChecks is turned off, it degrades into a No_GC_Verifier
 231 //
 232 class No_Safepoint_Verifier : public No_GC_Verifier {
 233  friend class Pause_No_Safepoint_Verifier;
 234 
 235  private:
 236   bool _activated;
 237   Thread *_thread;
 238  public:
 239 #ifdef ASSERT
 240   No_Safepoint_Verifier(bool activated = true, bool verifygc = true ) :
 241     No_GC_Verifier(verifygc),
 242     _activated(activated) {
 243     _thread = Thread::current();
 244     if (_activated) {
 245       _thread->_allow_allocation_count++;
 246       _thread->_allow_safepoint_count++;
 247     }
 248   }
 249 
 250   ~No_Safepoint_Verifier() {
 251     if (_activated) {
 252       _thread->_allow_allocation_count--;
 253       _thread->_allow_safepoint_count--;
 254     }
 255   }
 256 #else
 257   No_Safepoint_Verifier(bool activated = true, bool verifygc = true) : No_GC_Verifier(verifygc){}
 258   ~No_Safepoint_Verifier() {}
 259 #endif
 260 };
 261 
 262 // A Pause_No_Safepoint_Verifier is used to temporarily pause the
 263 // behavior of a No_Safepoint_Verifier object. If we are not in debug
 264 // mode then there is nothing to do. If the No_Safepoint_Verifier
 265 // object has an _activated value of false, then there is nothing to
 266 // do for safepoint and allocation checking, but there may still be
 267 // something to do for the underlying No_GC_Verifier object.
 268 
 269 class Pause_No_Safepoint_Verifier : public Pause_No_GC_Verifier {
 270  private:
 271   No_Safepoint_Verifier * _nsv;
 272 
 273  public:
 274 #ifdef ASSERT
 275   Pause_No_Safepoint_Verifier(No_Safepoint_Verifier * nsv)
 276     : Pause_No_GC_Verifier(nsv) {
 277 
 278     _nsv = nsv;
 279     if (_nsv->_activated) {
 280       _nsv->_thread->_allow_allocation_count--;
 281       _nsv->_thread->_allow_safepoint_count--;
 282     }
 283   }
 284 
 285   ~Pause_No_Safepoint_Verifier() {
 286     if (_nsv->_activated) {
 287       _nsv->_thread->_allow_allocation_count++;
 288       _nsv->_thread->_allow_safepoint_count++;
 289     }
 290   }
 291 #else
 292   Pause_No_Safepoint_Verifier(No_Safepoint_Verifier * nsv)
 293     : Pause_No_GC_Verifier(nsv) {}
 294   ~Pause_No_Safepoint_Verifier() {}
 295 #endif
 296 };
 297 
 298 // A SkipGCALot object is used to elide the usual effect of gc-a-lot
 299 // over a section of execution by a thread. Currently, it's used only to
 300 // prevent re-entrant calls to GC.
 301 class SkipGCALot : public StackObj {
 302   private:
 303    bool _saved;
 304    Thread* _t;
 305 
 306   public:
 307 #ifdef ASSERT
 308     SkipGCALot(Thread* t) : _t(t) {
 309       _saved = _t->skip_gcalot();
 310       _t->set_skip_gcalot(true);
 311     }
 312 
 313     ~SkipGCALot() {
 314       assert(_t->skip_gcalot(), "Save-restore protocol invariant");
 315       _t->set_skip_gcalot(_saved);
 316     }
 317 #else
 318     SkipGCALot(Thread* t) { }
 319     ~SkipGCALot() { }
 320 #endif
 321 };
 322 
 323 // JRT_LEAF currently can be called from either _thread_in_Java or
 324 // _thread_in_native mode. In _thread_in_native, it is ok
 325 // for another thread to trigger GC. The rest of the JRT_LEAF
 326 // rules apply.
 327 class JRT_Leaf_Verifier : public No_Safepoint_Verifier {
 328   static bool should_verify_GC();
 329  public:
 330 #ifdef ASSERT
 331   JRT_Leaf_Verifier();
 332   ~JRT_Leaf_Verifier();
 333 #else
 334   JRT_Leaf_Verifier() {}
 335   ~JRT_Leaf_Verifier() {}
 336 #endif
 337 };
 338 
 339 // A No_Alloc_Verifier object can be placed in methods where one assumes that
 340 // no allocation will occur. The destructor will verify this property
 341 // unless the constructor is called with argument false (not activated).
 342 //
 343 // The check will only be done in debug mode and if activated.
 344 // Note: this only makes sense at safepoints (otherwise, other threads may
 345 // allocate concurrently.)
 346 
 347 class No_Alloc_Verifier : public StackObj {
 348  private:
 349   bool  _activated;
 350 
 351  public:
 352 #ifdef ASSERT
 353   No_Alloc_Verifier(bool activated = true) {
 354     _activated = activated;
 355     if (_activated) Thread::current()->_allow_allocation_count++;
 356   }
 357 
 358   ~No_Alloc_Verifier() {
 359     if (_activated) Thread::current()->_allow_allocation_count--;
 360   }
 361 #else
 362   No_Alloc_Verifier(bool activated = true) {}
 363   ~No_Alloc_Verifier() {}
 364 #endif
 365 };
 366 
 367 #endif // SHARE_VM_MEMORY_GCLOCKER_HPP