1 /*
   2  * Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 #include "precompiled.hpp"
  25 #include "gc_interface/collectedHeap.hpp"
  26 #include "memory/binaryTreeDictionary.hpp"
  27 #include "memory/freeList.hpp"
  28 #include "memory/collectorPolicy.hpp"
  29 #include "memory/filemap.hpp"
  30 #include "memory/freeList.hpp"
  31 #include "memory/metablock.hpp"
  32 #include "memory/metachunk.hpp"
  33 #include "memory/metaspace.hpp"
  34 #include "memory/metaspaceShared.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.hpp"
  37 #include "runtime/globals.hpp"
  38 #include "runtime/mutex.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "services/memTracker.hpp"
  41 #include "utilities/copy.hpp"
  42 #include "utilities/debug.hpp"
  43 
  44 typedef BinaryTreeDictionary<Metablock, FreeList> BlockTreeDictionary;
  45 typedef BinaryTreeDictionary<Metachunk, FreeList> ChunkTreeDictionary;
  46 // Define this macro to enable slow integrity checking of
  47 // the free chunk lists
  48 const bool metaspace_slow_verify = false;
  49 
  50 
  51 // Parameters for stress mode testing
  52 const uint metadata_deallocate_a_lot_block = 10;
  53 const uint metadata_deallocate_a_lock_chunk = 3;
  54 size_t const allocation_from_dictionary_limit = 64 * K;
  55 const size_t metadata_deallocate = 0xf5f5f5f5;
  56 
  57 MetaWord* last_allocated = 0;
  58 
  59 // Used in declarations in SpaceManager and ChunkManager
  60 enum ChunkIndex {
  61   SmallIndex = 0,
  62   MediumIndex = 1,
  63   HumongousIndex = 2,
  64   NumberOfFreeLists = 2,
  65   NumberOfInUseLists = 3
  66 };
  67 
  68 static ChunkIndex next_chunk_index(ChunkIndex i) {
  69   assert(i < NumberOfInUseLists, "Out of bound");
  70   return (ChunkIndex) (i+1);
  71 }
  72 
  73 // Originally _capacity_until_GC was set to MetaspaceSize here but
  74 // the default MetaspaceSize before argument processing was being
  75 // used which was not the desired value.  See the code
  76 // in should_expand() to see how the initialization is handled
  77 // now.
  78 size_t MetaspaceGC::_capacity_until_GC = 0;
  79 bool MetaspaceGC::_expand_after_GC = false;
  80 uint MetaspaceGC::_shrink_factor = 0;
  81 bool MetaspaceGC::_should_concurrent_collect = false;
  82 
  83 // Blocks of space for metadata are allocated out of Metachunks.
  84 //
  85 // Metachunk are allocated out of MetadataVirtualspaces and once
  86 // allocated there is no explicit link between a Metachunk and
  87 // the MetadataVirtualspaces from which it was allocated.
  88 //
  89 // Each SpaceManager maintains a
  90 // list of the chunks it is using and the current chunk.  The current
  91 // chunk is the chunk from which allocations are done.  Space freed in
  92 // a chunk is placed on the free list of blocks (BlockFreelist) and
  93 // reused from there.
  94 
  95 // Pointer to list of Metachunks.
  96 class ChunkList VALUE_OBJ_CLASS_SPEC {
  97   // List of free chunks
  98   Metachunk* _head;
  99 
 100  public:
 101   // Constructor
 102   ChunkList() : _head(NULL) {}
 103 
 104   // Accessors
 105   Metachunk* head() { return _head; }
 106   void set_head(Metachunk* v) { _head = v; }
 107 
 108   // Link at head of the list
 109   void add_at_head(Metachunk* head, Metachunk* tail);
 110   void add_at_head(Metachunk* head);
 111 
 112   size_t sum_list_size();
 113   size_t sum_list_count();
 114   size_t sum_list_capacity();
 115 };
 116 
 117 // Manages the global free lists of chunks.
 118 // Has three lists of free chunks, and a total size and
 119 // count that includes all three
 120 
 121 class ChunkManager VALUE_OBJ_CLASS_SPEC {
 122 
 123   // Free list of chunks of different sizes.
 124   //   SmallChunk
 125   //   MediumChunk
 126   //   HumongousChunk
 127   ChunkList _free_chunks[NumberOfFreeLists];
 128 
 129   //   HumongousChunk
 130   ChunkTreeDictionary _humongous_dictionary;
 131 
 132   // ChunkManager in all lists of this type
 133   size_t _free_chunks_total;
 134   size_t _free_chunks_count;
 135 
 136   void dec_free_chunks_total(size_t v) {
 137     assert(_free_chunks_count > 0 &&
 138              _free_chunks_total > 0,
 139              "About to go negative");
 140     Atomic::add_ptr(-1, &_free_chunks_count);
 141     jlong minus_v = (jlong) - (jlong) v;
 142     Atomic::add_ptr(minus_v, &_free_chunks_total);
 143   }
 144 
 145   // Debug support
 146 
 147   size_t sum_free_chunks();
 148   size_t sum_free_chunks_count();
 149 
 150   void locked_verify_free_chunks_total();
 151   void slow_locked_verify_free_chunks_total() {
 152     if (metaspace_slow_verify) {
 153       locked_verify_free_chunks_total();
 154     }
 155   }
 156   void locked_verify_free_chunks_count();
 157   void slow_locked_verify_free_chunks_count() {
 158     if (metaspace_slow_verify) {
 159       locked_verify_free_chunks_count();
 160     }
 161   }
 162   void verify_free_chunks_count();
 163 
 164  public:
 165 
 166   ChunkManager() : _free_chunks_total(0), _free_chunks_count(0) {}
 167 
 168   // add or delete (return) a chunk to the global freelist.
 169   Metachunk* chunk_freelist_allocate(size_t word_size);
 170   void chunk_freelist_deallocate(Metachunk* chunk);
 171 
 172   // Total of the space in the free chunks list
 173   size_t free_chunks_total();
 174   size_t free_chunks_total_in_bytes();
 175 
 176   // Number of chunks in the free chunks list
 177   size_t free_chunks_count();
 178 
 179   void inc_free_chunks_total(size_t v, size_t count = 1) {
 180     Atomic::add_ptr(count, &_free_chunks_count);
 181     Atomic::add_ptr(v, &_free_chunks_total);
 182   }
 183   ChunkList* free_medium_chunks() { return &_free_chunks[1]; }
 184   ChunkList* free_small_chunks() { return &_free_chunks[0]; }
 185   ChunkTreeDictionary* humongous_dictionary() {
 186     return &_humongous_dictionary;
 187   }
 188 
 189   ChunkList* free_chunks(ChunkIndex index);
 190 
 191   // Returns the list for the given chunk word size.
 192   ChunkList* find_free_chunks_list(size_t word_size);
 193 
 194   // Add and remove from a list by size.  Selects
 195   // list based on size of chunk.
 196   void free_chunks_put(Metachunk* chuck);
 197   Metachunk* free_chunks_get(size_t chunk_word_size);
 198 
 199   // Debug support
 200   void verify();
 201   void slow_verify() {
 202     if (metaspace_slow_verify) {
 203       verify();
 204     }
 205   }
 206   void locked_verify();
 207   void slow_locked_verify() {
 208     if (metaspace_slow_verify) {
 209       locked_verify();
 210     }
 211   }
 212   void verify_free_chunks_total();
 213 
 214   void locked_print_free_chunks(outputStream* st);
 215   void locked_print_sum_free_chunks(outputStream* st);
 216 
 217   void print_on(outputStream* st);
 218 };
 219 
 220 
 221 // Used to manage the free list of Metablocks (a block corresponds
 222 // to the allocation of a quantum of metadata).
 223 class BlockFreelist VALUE_OBJ_CLASS_SPEC {
 224   BlockTreeDictionary* _dictionary;
 225   static Metablock* initialize_free_chunk(MetaWord* p, size_t word_size);
 226 
 227   // Accessors
 228   BlockTreeDictionary* dictionary() const { return _dictionary; }
 229 
 230  public:
 231   BlockFreelist();
 232   ~BlockFreelist();
 233 
 234   // Get and return a block to the free list
 235   MetaWord* get_block(size_t word_size);
 236   void return_block(MetaWord* p, size_t word_size);
 237 
 238   size_t total_size() {
 239   if (dictionary() == NULL) {
 240     return 0;
 241   } else {
 242     return dictionary()->total_size();
 243   }
 244 }
 245 
 246   void print_on(outputStream* st) const;
 247 };
 248 
 249 class VirtualSpaceNode : public CHeapObj<mtClass> {
 250   friend class VirtualSpaceList;
 251 
 252   // Link to next VirtualSpaceNode
 253   VirtualSpaceNode* _next;
 254 
 255   // total in the VirtualSpace
 256   MemRegion _reserved;
 257   ReservedSpace _rs;
 258   VirtualSpace _virtual_space;
 259   MetaWord* _top;
 260 
 261   // Convenience functions for logical bottom and end
 262   MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
 263   MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
 264 
 265   // Convenience functions to access the _virtual_space
 266   char* low()  const { return virtual_space()->low(); }
 267   char* high() const { return virtual_space()->high(); }
 268 
 269  public:
 270 
 271   VirtualSpaceNode(size_t byte_size);
 272   VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs) {}
 273   ~VirtualSpaceNode();
 274 
 275   // address of next available space in _virtual_space;
 276   // Accessors
 277   VirtualSpaceNode* next() { return _next; }
 278   void set_next(VirtualSpaceNode* v) { _next = v; }
 279 
 280   void set_reserved(MemRegion const v) { _reserved = v; }
 281   void set_top(MetaWord* v) { _top = v; }
 282 
 283   // Accessors
 284   MemRegion* reserved() { return &_reserved; }
 285   VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
 286 
 287   // Returns true if "word_size" is available in the virtual space
 288   bool is_available(size_t word_size) { return _top + word_size <= end(); }
 289 
 290   MetaWord* top() const { return _top; }
 291   void inc_top(size_t word_size) { _top += word_size; }
 292 
 293   // used and capacity in this single entry in the list
 294   size_t used_words_in_vs() const;
 295   size_t capacity_words_in_vs() const;
 296 
 297   bool initialize();
 298 
 299   // get space from the virtual space
 300   Metachunk* take_from_committed(size_t chunk_word_size);
 301 
 302   // Allocate a chunk from the virtual space and return it.
 303   Metachunk* get_chunk_vs(size_t chunk_word_size);
 304   Metachunk* get_chunk_vs_with_expand(size_t chunk_word_size);
 305 
 306   // Expands/shrinks the committed space in a virtual space.  Delegates
 307   // to Virtualspace
 308   bool expand_by(size_t words, bool pre_touch = false);
 309   bool shrink_by(size_t words);
 310 
 311 #ifdef ASSERT
 312   // Debug support
 313   static void verify_virtual_space_total();
 314   static void verify_virtual_space_count();
 315   void mangle();
 316 #endif
 317 
 318   void print_on(outputStream* st) const;
 319 };
 320 
 321   // byte_size is the size of the associated virtualspace.
 322 VirtualSpaceNode::VirtualSpaceNode(size_t byte_size) : _top(NULL), _next(NULL), _rs(0) {
 323   // This allocates memory with mmap.  For DumpSharedspaces, allocate the
 324   // space at low memory so that other shared images don't conflict.
 325   // This is the same address as memory needed for UseCompressedOops but
 326   // compressed oops don't work with CDS (offsets in metadata are wrong), so
 327   // borrow the same address.
 328   if (DumpSharedSpaces) {
 329     char* shared_base = (char*)HeapBaseMinAddress;
 330     _rs = ReservedSpace(byte_size, 0, false, shared_base, 0);
 331     if (_rs.is_reserved()) {
 332       assert(_rs.base() == shared_base, "should match");
 333     } else {
 334       // If we are dumping the heap, then allocate a wasted block of address
 335       // space in order to push the heap to a lower address.  This extra
 336       // address range allows for other (or larger) libraries to be loaded
 337       // without them occupying the space required for the shared spaces.
 338       uintx reserved = 0;
 339       uintx block_size = 64*1024*1024;
 340       while (reserved < SharedDummyBlockSize) {
 341         char* dummy = os::reserve_memory(block_size);
 342         reserved += block_size;
 343       }
 344       _rs = ReservedSpace(byte_size);
 345     }
 346     MetaspaceShared::set_shared_rs(&_rs);
 347   } else {
 348     _rs = ReservedSpace(byte_size);
 349   }
 350 
 351   MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
 352 }
 353 
 354 // List of VirtualSpaces for metadata allocation.
 355 // It has a  _next link for singly linked list and a MemRegion
 356 // for total space in the VirtualSpace.
 357 class VirtualSpaceList : public CHeapObj<mtClass> {
 358   friend class VirtualSpaceNode;
 359 
 360   enum VirtualSpaceSizes {
 361     VirtualSpaceSize = 256 * K
 362   };
 363 
 364   // Global list of virtual spaces
 365   // Head of the list
 366   VirtualSpaceNode* _virtual_space_list;
 367   // virtual space currently being used for allocations
 368   VirtualSpaceNode* _current_virtual_space;
 369   // Free chunk list for all other metadata
 370   ChunkManager      _chunk_manager;
 371 
 372   // Can this virtual list allocate >1 spaces?  Also, used to determine
 373   // whether to allocate unlimited small chunks in this virtual space
 374   bool _is_class;
 375   bool can_grow() const { return !is_class() || !UseCompressedKlassPointers; }
 376 
 377   // Sum of space in all virtual spaces and number of virtual spaces
 378   size_t _virtual_space_total;
 379   size_t _virtual_space_count;
 380 
 381   ~VirtualSpaceList();
 382 
 383   VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
 384 
 385   void set_virtual_space_list(VirtualSpaceNode* v) {
 386     _virtual_space_list = v;
 387   }
 388   void set_current_virtual_space(VirtualSpaceNode* v) {
 389     _current_virtual_space = v;
 390   }
 391 
 392   void link_vs(VirtualSpaceNode* new_entry, size_t vs_word_size);
 393 
 394   // Get another virtual space and add it to the list.  This
 395   // is typically prompted by a failed attempt to allocate a chunk
 396   // and is typically followed by the allocation of a chunk.
 397   bool grow_vs(size_t vs_word_size);
 398 
 399  public:
 400   VirtualSpaceList(size_t word_size);
 401   VirtualSpaceList(ReservedSpace rs);
 402 
 403   Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);
 404 
 405   VirtualSpaceNode* current_virtual_space() {
 406     return _current_virtual_space;
 407   }
 408 
 409   ChunkManager* chunk_manager() { return &_chunk_manager; }
 410   bool is_class() const { return _is_class; }
 411 
 412   // Allocate the first virtualspace.
 413   void initialize(size_t word_size);
 414 
 415   size_t virtual_space_total() { return _virtual_space_total; }
 416   void inc_virtual_space_total(size_t v) {
 417     Atomic::add_ptr(v, &_virtual_space_total);
 418   }
 419 
 420   size_t virtual_space_count() { return _virtual_space_count; }
 421   void inc_virtual_space_count() {
 422     Atomic::inc_ptr(&_virtual_space_count);
 423   }
 424 
 425   // Used and capacity in the entire list of virtual spaces.
 426   // These are global values shared by all Metaspaces
 427   size_t capacity_words_sum();
 428   size_t capacity_bytes_sum() { return capacity_words_sum() * BytesPerWord; }
 429   size_t used_words_sum();
 430   size_t used_bytes_sum() { return used_words_sum() * BytesPerWord; }
 431 
 432   bool contains(const void *ptr);
 433 
 434   void print_on(outputStream* st) const;
 435 
 436   class VirtualSpaceListIterator : public StackObj {
 437     VirtualSpaceNode* _virtual_spaces;
 438    public:
 439     VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
 440       _virtual_spaces(virtual_spaces) {}
 441 
 442     bool repeat() {
 443       return _virtual_spaces != NULL;
 444     }
 445 
 446     VirtualSpaceNode* get_next() {
 447       VirtualSpaceNode* result = _virtual_spaces;
 448       if (_virtual_spaces != NULL) {
 449         _virtual_spaces = _virtual_spaces->next();
 450       }
 451       return result;
 452     }
 453   };
 454 };
 455 
 456 class Metadebug : AllStatic {
 457   // Debugging support for Metaspaces
 458   static int _deallocate_block_a_lot_count;
 459   static int _deallocate_chunk_a_lot_count;
 460   static int _allocation_fail_alot_count;
 461 
 462  public:
 463   static int deallocate_block_a_lot_count() {
 464     return _deallocate_block_a_lot_count;
 465   }
 466   static void set_deallocate_block_a_lot_count(int v) {
 467     _deallocate_block_a_lot_count = v;
 468   }
 469   static void inc_deallocate_block_a_lot_count() {
 470     _deallocate_block_a_lot_count++;
 471   }
 472   static int deallocate_chunk_a_lot_count() {
 473     return _deallocate_chunk_a_lot_count;
 474   }
 475   static void reset_deallocate_chunk_a_lot_count() {
 476     _deallocate_chunk_a_lot_count = 1;
 477   }
 478   static void inc_deallocate_chunk_a_lot_count() {
 479     _deallocate_chunk_a_lot_count++;
 480   }
 481 
 482   static void init_allocation_fail_alot_count();
 483 #ifdef ASSERT
 484   static bool test_metadata_failure();
 485 #endif
 486 
 487   static void deallocate_chunk_a_lot(SpaceManager* sm,
 488                                      size_t chunk_word_size);
 489   static void deallocate_block_a_lot(SpaceManager* sm,
 490                                      size_t chunk_word_size);
 491 
 492 };
 493 
 494 int Metadebug::_deallocate_block_a_lot_count = 0;
 495 int Metadebug::_deallocate_chunk_a_lot_count = 0;
 496 int Metadebug::_allocation_fail_alot_count = 0;
 497 
 498 //  SpaceManager - used by Metaspace to handle allocations
 499 class SpaceManager : public CHeapObj<mtClass> {
 500   friend class Metaspace;
 501   friend class Metadebug;
 502 
 503  private:
 504   // protects allocations and contains.
 505   Mutex* const _lock;
 506 
 507   // List of chunks in use by this SpaceManager.  Allocations
 508   // are done from the current chunk.  The list is used for deallocating
 509   // chunks when the SpaceManager is freed.
 510   Metachunk* _chunks_in_use[NumberOfInUseLists];
 511   Metachunk* _current_chunk;
 512 
 513   // Virtual space where allocation comes from.
 514   VirtualSpaceList* _vs_list;
 515 
 516   // Number of small chunks to allocate to a manager
 517   // If class space manager, small chunks are unlimited
 518   static uint const _small_chunk_limit;
 519   bool has_small_chunk_limit() { return !vs_list()->is_class(); }
 520 
 521   // Sum of all space in allocated chunks
 522   size_t _allocation_total;
 523 
 524   // Free lists of blocks are per SpaceManager since they
 525   // are assumed to be in chunks in use by the SpaceManager
 526   // and all chunks in use by a SpaceManager are freed when
 527   // the class loader using the SpaceManager is collected.
 528   BlockFreelist _block_freelists;
 529 
 530   // protects virtualspace and chunk expansions
 531   static const char*  _expand_lock_name;
 532   static const int    _expand_lock_rank;
 533   static Mutex* const _expand_lock;
 534 
 535   // Accessors
 536   Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
 537   void set_chunks_in_use(ChunkIndex index, Metachunk* v) { _chunks_in_use[index] = v; }
 538 
 539   BlockFreelist* block_freelists() const {
 540     return (BlockFreelist*) &_block_freelists;
 541   }
 542 
 543   VirtualSpaceList* vs_list() const    { return _vs_list; }
 544 
 545   Metachunk* current_chunk() const { return _current_chunk; }
 546   void set_current_chunk(Metachunk* v) {
 547     _current_chunk = v;
 548   }
 549 
 550   Metachunk* find_current_chunk(size_t word_size);
 551 
 552   // Add chunk to the list of chunks in use
 553   void add_chunk(Metachunk* v, bool make_current);
 554 
 555   Mutex* lock() const { return _lock; }
 556 
 557  public:
 558   SpaceManager(Mutex* lock, VirtualSpaceList* vs_list);
 559   ~SpaceManager();
 560 
 561   enum ChunkSizes {    // in words.
 562     SmallChunk = 512,
 563     MediumChunk = 8 * K,
 564     MediumChunkBunch = 4 * MediumChunk
 565   };
 566 
 567   // Accessors
 568   size_t allocation_total() const { return _allocation_total; }
 569   void inc_allocation_total(size_t v) { Atomic::add_ptr(v, &_allocation_total); }
 570   static bool is_humongous(size_t word_size) { return word_size > MediumChunk; }
 571 
 572   static Mutex* expand_lock() { return _expand_lock; }
 573 
 574   size_t sum_capacity_in_chunks_in_use() const;
 575   size_t sum_used_in_chunks_in_use() const;
 576   size_t sum_free_in_chunks_in_use() const;
 577   size_t sum_waste_in_chunks_in_use() const;
 578   size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
 579 
 580   size_t sum_count_in_chunks_in_use();
 581   size_t sum_count_in_chunks_in_use(ChunkIndex i);
 582 
 583   // Block allocation and deallocation.
 584   // Allocates a block from the current chunk
 585   MetaWord* allocate(size_t word_size);
 586 
 587   // Helper for allocations
 588   MetaWord* allocate_work(size_t word_size);
 589 
 590   // Returns a block to the per manager freelist
 591   void deallocate(MetaWord* p, size_t word_size);
 592 
 593   // Based on the allocation size and a minimum chunk size,
 594   // returned chunk size (for expanding space for chunk allocation).
 595   size_t calc_chunk_size(size_t allocation_word_size);
 596 
 597   // Called when an allocation from the current chunk fails.
 598   // Gets a new chunk (may require getting a new virtual space),
 599   // and allocates from that chunk.
 600   MetaWord* grow_and_allocate(size_t word_size);
 601 
 602   // debugging support.
 603 
 604   void dump(outputStream* const out) const;
 605   void print_on(outputStream* st) const;
 606   void locked_print_chunks_in_use_on(outputStream* st) const;
 607 
 608   void verify();
 609   void verify_chunk_size(Metachunk* chunk);
 610   NOT_PRODUCT(void mangle_freed_chunks();)
 611 #ifdef ASSERT
 612   void verify_allocation_total();
 613 #endif
 614 };
 615 
 616 uint const SpaceManager::_small_chunk_limit = 4;
 617 
 618 const char* SpaceManager::_expand_lock_name =
 619   "SpaceManager chunk allocation lock";
 620 const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
 621 Mutex* const SpaceManager::_expand_lock =
 622   new Mutex(SpaceManager::_expand_lock_rank,
 623             SpaceManager::_expand_lock_name,
 624             Mutex::_allow_vm_block_flag);
 625 
 626 // BlockFreelist methods
 627 
 628 BlockFreelist::BlockFreelist() : _dictionary(NULL) {}
 629 
 630 BlockFreelist::~BlockFreelist() {
 631   if (_dictionary != NULL) {
 632     if (Verbose && TraceMetadataChunkAllocation) {
 633       _dictionary->print_free_lists(gclog_or_tty);
 634     }
 635     delete _dictionary;
 636   }
 637 }
 638 
 639 Metablock* BlockFreelist::initialize_free_chunk(MetaWord* p, size_t word_size) {
 640   Metablock* block = (Metablock*) p;
 641   block->set_word_size(word_size);
 642   block->set_prev(NULL);
 643   block->set_next(NULL);
 644 
 645   return block;
 646 }
 647 
 648 void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
 649   Metablock* free_chunk = initialize_free_chunk(p, word_size);
 650   if (dictionary() == NULL) {
 651    _dictionary = new BlockTreeDictionary();
 652   }
 653   dictionary()->return_chunk(free_chunk);
 654 }
 655 
 656 MetaWord* BlockFreelist::get_block(size_t word_size) {
 657   if (dictionary() == NULL) {
 658     return NULL;
 659   }
 660 
 661   if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
 662     // Dark matter.  Too small for dictionary.
 663     return NULL;
 664   }
 665 
 666   Metablock* free_block =
 667     dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::exactly);
 668   if (free_block == NULL) {
 669     return NULL;
 670   }
 671 
 672   return (MetaWord*) free_block;
 673 }
 674 
 675 void BlockFreelist::print_on(outputStream* st) const {
 676   if (dictionary() == NULL) {
 677     return;
 678   }
 679   dictionary()->print_free_lists(st);
 680 }
 681 
 682 // VirtualSpaceNode methods
 683 
 684 VirtualSpaceNode::~VirtualSpaceNode() {
 685   _rs.release();
 686 }
 687 
 688 size_t VirtualSpaceNode::used_words_in_vs() const {
 689   return pointer_delta(top(), bottom(), sizeof(MetaWord));
 690 }
 691 
 692 // Space committed in the VirtualSpace
 693 size_t VirtualSpaceNode::capacity_words_in_vs() const {
 694   return pointer_delta(end(), bottom(), sizeof(MetaWord));
 695 }
 696 
 697 
 698 // Allocates the chunk from the virtual space only.
 699 // This interface is also used internally for debugging.  Not all
 700 // chunks removed here are necessarily used for allocation.
 701 Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
 702   // Bottom of the new chunk
 703   MetaWord* chunk_limit = top();
 704   assert(chunk_limit != NULL, "Not safe to call this method");
 705 
 706   if (!is_available(chunk_word_size)) {
 707     if (TraceMetadataChunkAllocation) {
 708       tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
 709       // Dump some information about the virtual space that is nearly full
 710       print_on(tty);
 711     }
 712     return NULL;
 713   }
 714 
 715   // Take the space  (bump top on the current virtual space).
 716   inc_top(chunk_word_size);
 717 
 718   // Point the chunk at the space
 719   Metachunk* result = Metachunk::initialize(chunk_limit, chunk_word_size);
 720   return result;
 721 }
 722 
 723 
 724 // Expand the virtual space (commit more of the reserved space)
 725 bool VirtualSpaceNode::expand_by(size_t words, bool pre_touch) {
 726   size_t bytes = words * BytesPerWord;
 727   bool result =  virtual_space()->expand_by(bytes, pre_touch);
 728   if (TraceMetavirtualspaceAllocation && !result) {
 729     gclog_or_tty->print_cr("VirtualSpaceNode::expand_by() failed "
 730                            "for byte size " SIZE_FORMAT, bytes);
 731     virtual_space()->print();
 732   }
 733   return result;
 734 }
 735 
 736 // Shrink the virtual space (commit more of the reserved space)
 737 bool VirtualSpaceNode::shrink_by(size_t words) {
 738   size_t bytes = words * BytesPerWord;
 739   virtual_space()->shrink_by(bytes);
 740   return true;
 741 }
 742 
 743 // Add another chunk to the chunk list.
 744 
 745 Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
 746   assert_lock_strong(SpaceManager::expand_lock());
 747   Metachunk* result = NULL;
 748 
 749   return take_from_committed(chunk_word_size);
 750 }
 751 
 752 Metachunk* VirtualSpaceNode::get_chunk_vs_with_expand(size_t chunk_word_size) {
 753   assert_lock_strong(SpaceManager::expand_lock());
 754 
 755   Metachunk* new_chunk = get_chunk_vs(chunk_word_size);
 756 
 757   if (new_chunk == NULL) {
 758     // Only a small part of the virtualspace is committed when first
 759     // allocated so committing more here can be expected.
 760     size_t page_size_words = os::vm_page_size() / BytesPerWord;
 761     size_t aligned_expand_vs_by_words = align_size_up(chunk_word_size,
 762                                                     page_size_words);
 763     expand_by(aligned_expand_vs_by_words, false);
 764     new_chunk = get_chunk_vs(chunk_word_size);
 765   }
 766   return new_chunk;
 767 }
 768 
 769 bool VirtualSpaceNode::initialize() {
 770 
 771   if (!_rs.is_reserved()) {
 772     return false;
 773   }
 774 
 775   // Commit only 1 page instead of the whole reserved space _rs.size()
 776   size_t committed_byte_size = os::vm_page_size();
 777   bool result = virtual_space()->initialize(_rs, committed_byte_size);
 778   if (result) {
 779     set_top((MetaWord*)virtual_space()->low());
 780     set_reserved(MemRegion((HeapWord*)_rs.base(),
 781                  (HeapWord*)(_rs.base() + _rs.size())));
 782 
 783     assert(reserved()->start() == (HeapWord*) _rs.base(),
 784       err_msg("Reserved start was not set properly " PTR_FORMAT
 785         " != " PTR_FORMAT, reserved()->start(), _rs.base()));
 786     assert(reserved()->word_size() == _rs.size() / BytesPerWord,
 787       err_msg("Reserved size was not set properly " SIZE_FORMAT
 788         " != " SIZE_FORMAT, reserved()->word_size(),
 789         _rs.size() / BytesPerWord));
 790   }
 791 
 792   return result;
 793 }
 794 
 795 void VirtualSpaceNode::print_on(outputStream* st) const {
 796   size_t used = used_words_in_vs();
 797   size_t capacity = capacity_words_in_vs();
 798   VirtualSpace* vs = virtual_space();
 799   st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
 800            "[" PTR_FORMAT ", " PTR_FORMAT ", "
 801            PTR_FORMAT ", " PTR_FORMAT ")",
 802            vs, capacity / K, used * 100 / capacity,
 803            bottom(), top(), end(),
 804            vs->high_boundary());
 805 }
 806 
 807 #ifdef ASSERT
 808 void VirtualSpaceNode::mangle() {
 809   size_t word_size = capacity_words_in_vs();
 810   Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
 811 }
 812 #endif // ASSERT
 813 
 814 // VirtualSpaceList methods
 815 // Space allocated from the VirtualSpace
 816 
 817 VirtualSpaceList::~VirtualSpaceList() {
 818   VirtualSpaceListIterator iter(virtual_space_list());
 819   while (iter.repeat()) {
 820     VirtualSpaceNode* vsl = iter.get_next();
 821     delete vsl;
 822   }
 823 }
 824 
 825 size_t VirtualSpaceList::used_words_sum() {
 826   size_t allocated_by_vs = 0;
 827   VirtualSpaceListIterator iter(virtual_space_list());
 828   while (iter.repeat()) {
 829     VirtualSpaceNode* vsl = iter.get_next();
 830     // Sum used region [bottom, top) in each virtualspace
 831     allocated_by_vs += vsl->used_words_in_vs();
 832   }
 833   assert(allocated_by_vs >= chunk_manager()->free_chunks_total(),
 834     err_msg("Total in free chunks " SIZE_FORMAT
 835             " greater than total from virtual_spaces " SIZE_FORMAT,
 836             allocated_by_vs, chunk_manager()->free_chunks_total()));
 837   size_t used =
 838     allocated_by_vs - chunk_manager()->free_chunks_total();
 839   return used;
 840 }
 841 
 842 // Space available in all MetadataVirtualspaces allocated
 843 // for metadata.  This is the upper limit on the capacity
 844 // of chunks allocated out of all the MetadataVirtualspaces.
 845 size_t VirtualSpaceList::capacity_words_sum() {
 846   size_t capacity = 0;
 847   VirtualSpaceListIterator iter(virtual_space_list());
 848   while (iter.repeat()) {
 849     VirtualSpaceNode* vsl = iter.get_next();
 850     capacity += vsl->capacity_words_in_vs();
 851   }
 852   return capacity;
 853 }
 854 
 855 VirtualSpaceList::VirtualSpaceList(size_t word_size ) :
 856                                    _is_class(false),
 857                                    _virtual_space_list(NULL),
 858                                    _current_virtual_space(NULL),
 859                                    _virtual_space_total(0),
 860                                    _virtual_space_count(0) {
 861   MutexLockerEx cl(SpaceManager::expand_lock(),
 862                    Mutex::_no_safepoint_check_flag);
 863   bool initialization_succeeded = grow_vs(word_size);
 864 
 865   assert(initialization_succeeded,
 866     " VirtualSpaceList initialization should not fail");
 867 }
 868 
 869 VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
 870                                    _is_class(true),
 871                                    _virtual_space_list(NULL),
 872                                    _current_virtual_space(NULL),
 873                                    _virtual_space_total(0),
 874                                    _virtual_space_count(0) {
 875   MutexLockerEx cl(SpaceManager::expand_lock(),
 876                    Mutex::_no_safepoint_check_flag);
 877   VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
 878   bool succeeded = class_entry->initialize();
 879   assert(succeeded, " VirtualSpaceList initialization should not fail");
 880   link_vs(class_entry, rs.size()/BytesPerWord);
 881 }
 882 
 883 // Allocate another meta virtual space and add it to the list.
 884 bool VirtualSpaceList::grow_vs(size_t vs_word_size) {
 885   assert_lock_strong(SpaceManager::expand_lock());
 886   if (vs_word_size == 0) {
 887     return false;
 888   }
 889   // Reserve the space
 890   size_t vs_byte_size = vs_word_size * BytesPerWord;
 891   assert(vs_byte_size % os::vm_page_size() == 0, "Not aligned");
 892 
 893   // Allocate the meta virtual space and initialize it.
 894   VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
 895   if (!new_entry->initialize()) {
 896     delete new_entry;
 897     return false;
 898   } else {
 899     // ensure lock-free iteration sees fully initialized node
 900     OrderAccess::storestore();
 901     link_vs(new_entry, vs_word_size);
 902     return true;
 903   }
 904 }
 905 
 906 void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry, size_t vs_word_size) {
 907   if (virtual_space_list() == NULL) {
 908       set_virtual_space_list(new_entry);
 909   } else {
 910     current_virtual_space()->set_next(new_entry);
 911   }
 912   set_current_virtual_space(new_entry);
 913   inc_virtual_space_total(vs_word_size);
 914   inc_virtual_space_count();
 915 #ifdef ASSERT
 916   new_entry->mangle();
 917 #endif
 918   if (TraceMetavirtualspaceAllocation && Verbose) {
 919     VirtualSpaceNode* vsl = current_virtual_space();
 920     vsl->print_on(tty);
 921   }
 922 }
 923 
 924 Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
 925                                            size_t grow_chunks_by_words) {
 926 
 927   // Get a chunk from the chunk freelist
 928   Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
 929 
 930   // Allocate a chunk out of the current virtual space.
 931   if (next == NULL) {
 932     next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
 933   }
 934 
 935   if (next == NULL) {
 936     // Not enough room in current virtual space.  Try to commit
 937     // more space.
 938     size_t expand_vs_by_words = MAX2((size_t)SpaceManager::MediumChunkBunch,
 939                                        grow_chunks_by_words);
 940     size_t page_size_words = os::vm_page_size() / BytesPerWord;
 941     size_t aligned_expand_vs_by_words = align_size_up(expand_vs_by_words,
 942                                                         page_size_words);
 943     bool vs_expanded =
 944       current_virtual_space()->expand_by(aligned_expand_vs_by_words, false);
 945     if (!vs_expanded) {
 946       // Should the capacity of the metaspaces be expanded for
 947       // this allocation?  If it's the virtual space for classes and is
 948       // being used for CompressedHeaders, don't allocate a new virtualspace.
 949       if (can_grow() && MetaspaceGC::should_expand(this, word_size)) {
 950         // Get another virtual space.
 951           size_t grow_vs_words =
 952             MAX2((size_t)VirtualSpaceSize, aligned_expand_vs_by_words);
 953         if (grow_vs(grow_vs_words)) {
 954           // Got it.  It's on the list now.  Get a chunk from it.
 955           next = current_virtual_space()->get_chunk_vs_with_expand(grow_chunks_by_words);
 956         }
 957         if (TraceMetadataHumongousAllocation && SpaceManager::is_humongous(word_size)) {
 958           gclog_or_tty->print_cr("  aligned_expand_vs_by_words " PTR_FORMAT,
 959                                  aligned_expand_vs_by_words);
 960           gclog_or_tty->print_cr("  grow_vs_words " PTR_FORMAT,
 961                                  grow_vs_words);
 962         }
 963       } else {
 964         // Allocation will fail and induce a GC
 965         if (TraceMetadataChunkAllocation && Verbose) {
 966           gclog_or_tty->print_cr("VirtualSpaceList::get_new_chunk():"
 967             " Fail instead of expand the metaspace");
 968         }
 969       }
 970     } else {
 971       // The virtual space expanded, get a new chunk
 972       next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
 973       assert(next != NULL, "Just expanded, should succeed");
 974     }
 975   }
 976 
 977   return next;
 978 }
 979 
 980 void VirtualSpaceList::print_on(outputStream* st) const {
 981   if (TraceMetadataChunkAllocation && Verbose) {
 982     VirtualSpaceListIterator iter(virtual_space_list());
 983     while (iter.repeat()) {
 984       VirtualSpaceNode* node = iter.get_next();
 985       node->print_on(st);
 986     }
 987   }
 988 }
 989 
 990 bool VirtualSpaceList::contains(const void *ptr) {
 991   VirtualSpaceNode* list = virtual_space_list();
 992   VirtualSpaceListIterator iter(list);
 993   while (iter.repeat()) {
 994     VirtualSpaceNode* node = iter.get_next();
 995     if (node->reserved()->contains(ptr)) {
 996       return true;
 997     }
 998   }
 999   return false;
1000 }
1001 
1002 
1003 // MetaspaceGC methods
1004 
1005 // VM_CollectForMetadataAllocation is the vm operation used to GC.
1006 // Within the VM operation after the GC the attempt to allocate the metadata
1007 // should succeed.  If the GC did not free enough space for the metaspace
1008 // allocation, the HWM is increased so that another virtualspace will be
1009 // allocated for the metadata.  With perm gen the increase in the perm
1010 // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
1011 // metaspace policy uses those as the small and large steps for the HWM.
1012 //
1013 // After the GC the compute_new_size() for MetaspaceGC is called to
1014 // resize the capacity of the metaspaces.  The current implementation
1015 // is based on the flags MinHeapFreeRatio and MaxHeapFreeRatio used
1016 // to resize the Java heap by some GC's.  New flags can be implemented
1017 // if really needed.  MinHeapFreeRatio is used to calculate how much
1018 // free space is desirable in the metaspace capacity to decide how much
1019 // to increase the HWM.  MaxHeapFreeRatio is used to decide how much
1020 // free space is desirable in the metaspace capacity before decreasing
1021 // the HWM.
1022 
1023 // Calculate the amount to increase the high water mark (HWM).
1024 // Increase by a minimum amount (MinMetaspaceExpansion) so that
1025 // another expansion is not requested too soon.  If that is not
1026 // enough to satisfy the allocation (i.e. big enough for a word_size
1027 // allocation), increase by MaxMetaspaceExpansion.  If that is still
1028 // not enough, expand by the size of the allocation (word_size) plus
1029 // some.
1030 size_t MetaspaceGC::delta_capacity_until_GC(size_t word_size) {
1031   size_t before_inc = MetaspaceGC::capacity_until_GC();
1032   size_t min_delta_words = MinMetaspaceExpansion / BytesPerWord;
1033   size_t max_delta_words = MaxMetaspaceExpansion / BytesPerWord;
1034   size_t page_size_words = os::vm_page_size() / BytesPerWord;
1035   size_t size_delta_words = align_size_up(word_size, page_size_words);
1036   size_t delta_words = MAX2(size_delta_words, min_delta_words);
1037   if (delta_words > min_delta_words) {
1038     // Don't want to hit the high water mark on the next
1039     // allocation so make the delta greater than just enough
1040     // for this allocation.
1041     delta_words = MAX2(delta_words, max_delta_words);
1042     if (delta_words > max_delta_words) {
1043       // This allocation is large but the next ones are probably not
1044       // so increase by the minimum.
1045       delta_words = delta_words + min_delta_words;
1046     }
1047   }
1048   return delta_words;
1049 }
1050 
1051 bool MetaspaceGC::should_expand(VirtualSpaceList* vsl, size_t word_size) {
1052 
1053   // Class virtual space should always be expanded.  Call GC for the other
1054   // metadata virtual space.
1055   if (vsl == Metaspace::class_space_list()) return true;
1056 
1057   // If the user wants a limit, impose one.
1058   size_t max_metaspace_size_words = MaxMetaspaceSize / BytesPerWord;
1059   size_t metaspace_size_words = MetaspaceSize / BytesPerWord;
1060   if (!FLAG_IS_DEFAULT(MaxMetaspaceSize) &&
1061       vsl->capacity_words_sum() >= max_metaspace_size_words) {
1062     return false;
1063   }
1064 
1065   // If this is part of an allocation after a GC, expand
1066   // unconditionally.
1067   if(MetaspaceGC::expand_after_GC()) {
1068     return true;
1069   }
1070 
1071   // If the capacity is below the minimum capacity, allow the
1072   // expansion.  Also set the high-water-mark (capacity_until_GC)
1073   // to that minimum capacity so that a GC will not be induced
1074   // until that minimum capacity is exceeded.
1075   if (vsl->capacity_words_sum() < metaspace_size_words ||
1076       capacity_until_GC() == 0) {
1077     set_capacity_until_GC(metaspace_size_words);
1078     return true;
1079   } else {
1080     if (vsl->capacity_words_sum() < capacity_until_GC()) {
1081       return true;
1082     } else {
1083       if (TraceMetadataChunkAllocation && Verbose) {
1084         gclog_or_tty->print_cr("  allocation request size " SIZE_FORMAT
1085                         "  capacity_until_GC " SIZE_FORMAT
1086                         "  capacity_words_sum " SIZE_FORMAT
1087                         "  used_words_sum " SIZE_FORMAT
1088                         "  free chunks " SIZE_FORMAT
1089                         "  free chunks count %d",
1090                         word_size,
1091                         capacity_until_GC(),
1092                         vsl->capacity_words_sum(),
1093                         vsl->used_words_sum(),
1094                         vsl->chunk_manager()->free_chunks_total(),
1095                         vsl->chunk_manager()->free_chunks_count());
1096       }
1097       return false;
1098     }
1099   }
1100 }
1101 
1102 // Variables are in bytes
1103 
1104 void MetaspaceGC::compute_new_size() {
1105   assert(_shrink_factor <= 100, "invalid shrink factor");
1106   uint current_shrink_factor = _shrink_factor;
1107   _shrink_factor = 0;
1108 
1109   VirtualSpaceList *vsl = Metaspace::space_list();
1110 
1111   size_t capacity_after_gc = vsl->capacity_bytes_sum();
1112   // Check to see if these two can be calculated without walking the CLDG
1113   size_t used_after_gc = vsl->used_bytes_sum();
1114   size_t capacity_until_GC = vsl->capacity_bytes_sum();
1115   size_t free_after_gc = capacity_until_GC - used_after_gc;
1116 
1117   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
1118   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1119 
1120   const double min_tmp = used_after_gc / maximum_used_percentage;
1121   size_t minimum_desired_capacity =
1122     (size_t)MIN2(min_tmp, double(max_uintx));
1123   // Don't shrink less than the initial generation size
1124   minimum_desired_capacity = MAX2(minimum_desired_capacity,
1125                                   MetaspaceSize);
1126 
1127   if (PrintGCDetails && Verbose) {
1128     const double free_percentage = ((double)free_after_gc) / capacity_until_GC;
1129     gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
1130     gclog_or_tty->print_cr("  "
1131                   "  minimum_free_percentage: %6.2f"
1132                   "  maximum_used_percentage: %6.2f",
1133                   minimum_free_percentage,
1134                   maximum_used_percentage);
1135     double d_free_after_gc = free_after_gc / (double) K;
1136     gclog_or_tty->print_cr("  "
1137                   "   free_after_gc       : %6.1fK"
1138                   "   used_after_gc       : %6.1fK"
1139                   "   capacity_after_gc   : %6.1fK"
1140                   "   metaspace HWM     : %6.1fK",
1141                   free_after_gc / (double) K,
1142                   used_after_gc / (double) K,
1143                   capacity_after_gc / (double) K,
1144                   capacity_until_GC / (double) K);
1145     gclog_or_tty->print_cr("  "
1146                   "   free_percentage: %6.2f",
1147                   free_percentage);
1148   }
1149 
1150 
1151   if (capacity_until_GC < minimum_desired_capacity) {
1152     // If we have less capacity below the metaspace HWM, then
1153     // increment the HWM.
1154     size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1155     // Don't expand unless it's significant
1156     if (expand_bytes >= MinMetaspaceExpansion) {
1157       size_t expand_words = expand_bytes / BytesPerWord;
1158       MetaspaceGC::inc_capacity_until_GC(expand_words);
1159     }
1160     if (PrintGCDetails && Verbose) {
1161       size_t new_capacity_until_GC = MetaspaceGC::capacity_until_GC_in_bytes();
1162       gclog_or_tty->print_cr("    expanding:"
1163                     "  minimum_desired_capacity: %6.1fK"
1164                     "  expand_words: %6.1fK"
1165                     "  MinMetaspaceExpansion: %6.1fK"
1166                     "  new metaspace HWM:  %6.1fK",
1167                     minimum_desired_capacity / (double) K,
1168                     expand_bytes / (double) K,
1169                     MinMetaspaceExpansion / (double) K,
1170                     new_capacity_until_GC / (double) K);
1171     }
1172     return;
1173   }
1174 
1175   // No expansion, now see if we want to shrink
1176   size_t shrink_words = 0;
1177   // We would never want to shrink more than this
1178   size_t max_shrink_words = capacity_until_GC - minimum_desired_capacity;
1179   assert(max_shrink_words >= 0, err_msg("max_shrink_words " SIZE_FORMAT,
1180     max_shrink_words));
1181 
1182   // Should shrinking be considered?
1183   if (MaxHeapFreeRatio < 100) {
1184     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
1185     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1186     const double max_tmp = used_after_gc / minimum_used_percentage;
1187     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1188     maximum_desired_capacity = MAX2(maximum_desired_capacity,
1189                                     MetaspaceSize);
1190     if (PrintGC && Verbose) {
1191       gclog_or_tty->print_cr("  "
1192                              "  maximum_free_percentage: %6.2f"
1193                              "  minimum_used_percentage: %6.2f",
1194                              maximum_free_percentage,
1195                              minimum_used_percentage);
1196       gclog_or_tty->print_cr("  "
1197                              "  capacity_until_GC: %6.1fK"
1198                              "  minimum_desired_capacity: %6.1fK"
1199                              "  maximum_desired_capacity: %6.1fK",
1200                              capacity_until_GC / (double) K,
1201                              minimum_desired_capacity / (double) K,
1202                              maximum_desired_capacity / (double) K);
1203     }
1204 
1205     assert(minimum_desired_capacity <= maximum_desired_capacity,
1206            "sanity check");
1207 
1208     if (capacity_until_GC > maximum_desired_capacity) {
1209       // Capacity too large, compute shrinking size
1210       shrink_words = capacity_until_GC - maximum_desired_capacity;
1211       // We don't want shrink all the way back to initSize if people call
1212       // System.gc(), because some programs do that between "phases" and then
1213       // we'd just have to grow the heap up again for the next phase.  So we
1214       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1215       // on the third call, and 100% by the fourth call.  But if we recompute
1216       // size without shrinking, it goes back to 0%.
1217       shrink_words = shrink_words / 100 * current_shrink_factor;
1218       assert(shrink_words <= max_shrink_words,
1219         err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1220           shrink_words, max_shrink_words));
1221       if (current_shrink_factor == 0) {
1222         _shrink_factor = 10;
1223       } else {
1224         _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1225       }
1226       if (PrintGCDetails && Verbose) {
1227         gclog_or_tty->print_cr("  "
1228                       "  shrinking:"
1229                       "  initSize: %.1fK"
1230                       "  maximum_desired_capacity: %.1fK",
1231                       MetaspaceSize / (double) K,
1232                       maximum_desired_capacity / (double) K);
1233         gclog_or_tty->print_cr("  "
1234                       "  shrink_words: %.1fK"
1235                       "  current_shrink_factor: %d"
1236                       "  new shrink factor: %d"
1237                       "  MinMetaspaceExpansion: %.1fK",
1238                       shrink_words / (double) K,
1239                       current_shrink_factor,
1240                       _shrink_factor,
1241                       MinMetaspaceExpansion / (double) K);
1242       }
1243     }
1244   }
1245 
1246 
1247   // Don't shrink unless it's significant
1248   if (shrink_words >= MinMetaspaceExpansion) {
1249     VirtualSpaceNode* csp = vsl->current_virtual_space();
1250     size_t available_to_shrink = csp->capacity_words_in_vs() -
1251       csp->used_words_in_vs();
1252     shrink_words = MIN2(shrink_words, available_to_shrink);
1253     csp->shrink_by(shrink_words);
1254     MetaspaceGC::dec_capacity_until_GC(shrink_words);
1255     if (PrintGCDetails && Verbose) {
1256       size_t new_capacity_until_GC = MetaspaceGC::capacity_until_GC_in_bytes();
1257       gclog_or_tty->print_cr("  metaspace HWM: %.1fK", new_capacity_until_GC / (double) K);
1258     }
1259   }
1260   assert(vsl->used_bytes_sum() == used_after_gc &&
1261          used_after_gc <= vsl->capacity_bytes_sum(),
1262          "sanity check");
1263 
1264 }
1265 
1266 // Metadebug methods
1267 
1268 void Metadebug::deallocate_chunk_a_lot(SpaceManager* sm,
1269                                        size_t chunk_word_size){
1270 #ifdef ASSERT
1271   VirtualSpaceList* vsl = sm->vs_list();
1272   if (MetaDataDeallocateALot &&
1273       Metadebug::deallocate_chunk_a_lot_count() % MetaDataDeallocateALotInterval == 0 ) {
1274     Metadebug::reset_deallocate_chunk_a_lot_count();
1275     for (uint i = 0; i < metadata_deallocate_a_lock_chunk; i++) {
1276       Metachunk* dummy_chunk = vsl->current_virtual_space()->take_from_committed(chunk_word_size);
1277       if (dummy_chunk == NULL) {
1278         break;
1279       }
1280       vsl->chunk_manager()->chunk_freelist_deallocate(dummy_chunk);
1281 
1282       if (TraceMetadataChunkAllocation && Verbose) {
1283         gclog_or_tty->print("Metadebug::deallocate_chunk_a_lot: %d) ",
1284                                sm->sum_count_in_chunks_in_use());
1285         dummy_chunk->print_on(gclog_or_tty);
1286         gclog_or_tty->print_cr("  Free chunks total %d  count %d",
1287                                vsl->chunk_manager()->free_chunks_total(),
1288                                vsl->chunk_manager()->free_chunks_count());
1289       }
1290     }
1291   } else {
1292     Metadebug::inc_deallocate_chunk_a_lot_count();
1293   }
1294 #endif
1295 }
1296 
1297 void Metadebug::deallocate_block_a_lot(SpaceManager* sm,
1298                                        size_t raw_word_size){
1299 #ifdef ASSERT
1300   if (MetaDataDeallocateALot &&
1301         Metadebug::deallocate_block_a_lot_count() % MetaDataDeallocateALotInterval == 0 ) {
1302     Metadebug::set_deallocate_block_a_lot_count(0);
1303     for (uint i = 0; i < metadata_deallocate_a_lot_block; i++) {
1304       MetaWord* dummy_block = sm->allocate_work(raw_word_size);
1305       if (dummy_block == 0) {
1306         break;
1307       }
1308       sm->deallocate(dummy_block, raw_word_size);
1309     }
1310   } else {
1311     Metadebug::inc_deallocate_block_a_lot_count();
1312   }
1313 #endif
1314 }
1315 
1316 void Metadebug::init_allocation_fail_alot_count() {
1317   if (MetadataAllocationFailALot) {
1318     _allocation_fail_alot_count =
1319       1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1320   }
1321 }
1322 
1323 #ifdef ASSERT
1324 bool Metadebug::test_metadata_failure() {
1325   if (MetadataAllocationFailALot &&
1326       Threads::is_vm_complete()) {
1327     if (_allocation_fail_alot_count > 0) {
1328       _allocation_fail_alot_count--;
1329     } else {
1330       if (TraceMetadataChunkAllocation && Verbose) {
1331         gclog_or_tty->print_cr("Metadata allocation failing for "
1332                                "MetadataAllocationFailALot");
1333       }
1334       init_allocation_fail_alot_count();
1335       return true;
1336     }
1337   }
1338   return false;
1339 }
1340 #endif
1341 
1342 // ChunkList methods
1343 
1344 size_t ChunkList::sum_list_size() {
1345   size_t result = 0;
1346   Metachunk* cur = head();
1347   while (cur != NULL) {
1348     result += cur->word_size();
1349     cur = cur->next();
1350   }
1351   return result;
1352 }
1353 
1354 size_t ChunkList::sum_list_count() {
1355   size_t result = 0;
1356   Metachunk* cur = head();
1357   while (cur != NULL) {
1358     result++;
1359     cur = cur->next();
1360   }
1361   return result;
1362 }
1363 
1364 size_t ChunkList::sum_list_capacity() {
1365   size_t result = 0;
1366   Metachunk* cur = head();
1367   while (cur != NULL) {
1368     result += cur->capacity_word_size();
1369     cur = cur->next();
1370   }
1371   return result;
1372 }
1373 
1374 void ChunkList::add_at_head(Metachunk* head, Metachunk* tail) {
1375   assert_lock_strong(SpaceManager::expand_lock());
1376   assert(tail->next() == NULL, "Not the tail");
1377 
1378   if (TraceMetadataChunkAllocation && Verbose) {
1379     tty->print("ChunkList::add_at_head: ");
1380     Metachunk* cur = head;
1381     while (cur != NULL) {
1382     tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ", cur, cur->word_size());
1383       cur = cur->next();
1384     }
1385     tty->print_cr("");
1386   }
1387 
1388   if (tail != NULL) {
1389     tail->set_next(_head);
1390   }
1391   set_head(head);
1392 }
1393 
1394 void ChunkList::add_at_head(Metachunk* list) {
1395   if (list == NULL) {
1396     // Nothing to add
1397     return;
1398   }
1399   assert_lock_strong(SpaceManager::expand_lock());
1400   Metachunk* head = list;
1401   Metachunk* tail = list;
1402   Metachunk* cur = head->next();
1403   // Search for the tail since it is not passed.
1404   while (cur != NULL) {
1405     tail = cur;
1406     cur = cur->next();
1407   }
1408   add_at_head(head, tail);
1409 }
1410 
1411 // ChunkManager methods
1412 
1413 // Verification of _free_chunks_total and _free_chunks_count does not
1414 // work with the CMS collector because its use of additional locks
1415 // complicate the mutex deadlock detection but it can still be useful
1416 // for detecting errors in the chunk accounting with other collectors.
1417 
1418 size_t ChunkManager::free_chunks_total() {
1419 #ifdef ASSERT
1420   if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1421     MutexLockerEx cl(SpaceManager::expand_lock(),
1422                      Mutex::_no_safepoint_check_flag);
1423     slow_locked_verify_free_chunks_total();
1424   }
1425 #endif
1426   return _free_chunks_total;
1427 }
1428 
1429 size_t ChunkManager::free_chunks_total_in_bytes() {
1430   return free_chunks_total() * BytesPerWord;
1431 }
1432 
1433 size_t ChunkManager::free_chunks_count() {
1434 #ifdef ASSERT
1435   if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1436     MutexLockerEx cl(SpaceManager::expand_lock(),
1437                      Mutex::_no_safepoint_check_flag);
1438     // This lock is only needed in debug because the verification
1439     // of the _free_chunks_totals walks the list of free chunks
1440     slow_locked_verify_free_chunks_count();
1441   }
1442 #endif
1443   return _free_chunks_count;
1444 }
1445 
1446 void ChunkManager::locked_verify_free_chunks_total() {
1447   assert_lock_strong(SpaceManager::expand_lock());
1448   assert(sum_free_chunks() == _free_chunks_total,
1449     err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
1450            " same as sum " SIZE_FORMAT, _free_chunks_total,
1451            sum_free_chunks()));
1452 }
1453 
1454 void ChunkManager::verify_free_chunks_total() {
1455   MutexLockerEx cl(SpaceManager::expand_lock(),
1456                      Mutex::_no_safepoint_check_flag);
1457   locked_verify_free_chunks_total();
1458 }
1459 
1460 void ChunkManager::locked_verify_free_chunks_count() {
1461   assert_lock_strong(SpaceManager::expand_lock());
1462   assert(sum_free_chunks_count() == _free_chunks_count,
1463     err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
1464            " same as sum " SIZE_FORMAT, _free_chunks_count,
1465            sum_free_chunks_count()));
1466 }
1467 
1468 void ChunkManager::verify_free_chunks_count() {
1469 #ifdef ASSERT
1470   MutexLockerEx cl(SpaceManager::expand_lock(),
1471                      Mutex::_no_safepoint_check_flag);
1472   locked_verify_free_chunks_count();
1473 #endif
1474 }
1475 
1476 void ChunkManager::verify() {
1477   MutexLockerEx cl(SpaceManager::expand_lock(),
1478                      Mutex::_no_safepoint_check_flag);
1479   locked_verify();
1480 }
1481 
1482 void ChunkManager::locked_verify() {
1483   locked_verify_free_chunks_count();
1484   locked_verify_free_chunks_total();
1485 }
1486 
1487 void ChunkManager::locked_print_free_chunks(outputStream* st) {
1488   assert_lock_strong(SpaceManager::expand_lock());
1489   st->print_cr("Free chunk total 0x%x  count 0x%x",
1490                 _free_chunks_total, _free_chunks_count);
1491 }
1492 
1493 void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1494   assert_lock_strong(SpaceManager::expand_lock());
1495   st->print_cr("Sum free chunk total 0x%x  count 0x%x",
1496                 sum_free_chunks(), sum_free_chunks_count());
1497 }
1498 ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1499   return &_free_chunks[index];
1500 }
1501 
1502 // These methods that sum the free chunk lists are used in printing
1503 // methods that are used in product builds.
1504 size_t ChunkManager::sum_free_chunks() {
1505   assert_lock_strong(SpaceManager::expand_lock());
1506   size_t result = 0;
1507   for (ChunkIndex i = SmallIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1508     ChunkList* list = free_chunks(i);
1509 
1510     if (list == NULL) {
1511       continue;
1512     }
1513 
1514     result = result + list->sum_list_capacity();
1515   }
1516   result = result + humongous_dictionary()->total_size();
1517   return result;
1518 }
1519 
1520 size_t ChunkManager::sum_free_chunks_count() {
1521   assert_lock_strong(SpaceManager::expand_lock());
1522   size_t count = 0;
1523   for (ChunkIndex i = SmallIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1524     ChunkList* list = free_chunks(i);
1525     if (list == NULL) {
1526       continue;
1527     }
1528     count = count + list->sum_list_count();
1529   }
1530   count = count + humongous_dictionary()->total_free_blocks();
1531   return count;
1532 }
1533 
1534 ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1535   switch (word_size) {
1536   case SpaceManager::SmallChunk :
1537       return &_free_chunks[0];
1538   case SpaceManager::MediumChunk :
1539       return &_free_chunks[1];
1540   default:
1541     assert(word_size > SpaceManager::MediumChunk, "List inconsistency");
1542     return &_free_chunks[2];
1543   }
1544 }
1545 
1546 void ChunkManager::free_chunks_put(Metachunk* chunk) {
1547   assert_lock_strong(SpaceManager::expand_lock());
1548   ChunkList* free_list = find_free_chunks_list(chunk->word_size());
1549   chunk->set_next(free_list->head());
1550   free_list->set_head(chunk);
1551   // chunk is being returned to the chunk free list
1552   inc_free_chunks_total(chunk->capacity_word_size());
1553   slow_locked_verify();
1554 }
1555 
1556 void ChunkManager::chunk_freelist_deallocate(Metachunk* chunk) {
1557   // The deallocation of a chunk originates in the freelist
1558   // manangement code for a Metaspace and does not hold the
1559   // lock.
1560   assert(chunk != NULL, "Deallocating NULL");
1561   assert_lock_strong(SpaceManager::expand_lock());
1562   slow_locked_verify();
1563   if (TraceMetadataChunkAllocation) {
1564     tty->print_cr("ChunkManager::chunk_freelist_deallocate: chunk "
1565                   PTR_FORMAT "  size " SIZE_FORMAT,
1566                   chunk, chunk->word_size());
1567   }
1568   free_chunks_put(chunk);
1569 }
1570 
1571 Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1572   assert_lock_strong(SpaceManager::expand_lock());
1573 
1574   slow_locked_verify();
1575 
1576   Metachunk* chunk = NULL;
1577   if (!SpaceManager::is_humongous(word_size)) {
1578     ChunkList* free_list = find_free_chunks_list(word_size);
1579     assert(free_list != NULL, "Sanity check");
1580 
1581     chunk = free_list->head();
1582     debug_only(Metachunk* debug_head = chunk;)
1583 
1584     if (chunk == NULL) {
1585       return NULL;
1586     }
1587 
1588     // Remove the chunk as the head of the list.
1589     free_list->set_head(chunk->next());
1590     chunk->set_next(NULL);
1591     // Chunk has been removed from the chunks free list.
1592     dec_free_chunks_total(chunk->capacity_word_size());
1593 
1594     if (TraceMetadataChunkAllocation && Verbose) {
1595       tty->print_cr("ChunkManager::free_chunks_get: free_list "
1596                     PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1597                     free_list, chunk, chunk->word_size());
1598     }
1599   } else {
1600     chunk = humongous_dictionary()->get_chunk(
1601       word_size,
1602       FreeBlockDictionary<Metachunk>::atLeast);
1603 
1604     if (chunk != NULL) {
1605       if (TraceMetadataHumongousAllocation) {
1606         size_t waste = chunk->word_size() - word_size;
1607         tty->print_cr("Free list allocate humongous chunk size " SIZE_FORMAT
1608                       " for requested size " SIZE_FORMAT
1609                       " waste " SIZE_FORMAT,
1610                       chunk->word_size(), word_size, waste);
1611       }
1612       // Chunk is being removed from the chunks free list.
1613       dec_free_chunks_total(chunk->capacity_word_size());
1614 #ifdef ASSERT
1615       chunk->set_is_free(false);
1616 #endif
1617     }
1618   }
1619   slow_locked_verify();
1620   return chunk;
1621 }
1622 
1623 Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1624   assert_lock_strong(SpaceManager::expand_lock());
1625   slow_locked_verify();
1626 
1627   // Take from the beginning of the list
1628   Metachunk* chunk = free_chunks_get(word_size);
1629   if (chunk == NULL) {
1630     return NULL;
1631   }
1632 
1633   assert(word_size <= chunk->word_size() ||
1634            SpaceManager::is_humongous(chunk->word_size()),
1635            "Non-humongous variable sized chunk");
1636   if (TraceMetadataChunkAllocation) {
1637     tty->print("ChunkManager::chunk_freelist_allocate: chunk "
1638                PTR_FORMAT "  size " SIZE_FORMAT " ",
1639                chunk, chunk->word_size());
1640     locked_print_free_chunks(tty);
1641   }
1642 
1643   return chunk;
1644 }
1645 
1646 void ChunkManager::print_on(outputStream* out) {
1647   if (PrintFLSStatistics != 0) {
1648     humongous_dictionary()->report_statistics();
1649   }
1650 }
1651 
1652 // SpaceManager methods
1653 
1654 size_t SpaceManager::sum_free_in_chunks_in_use() const {
1655   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1656   size_t free = 0;
1657   for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1658     Metachunk* chunk = chunks_in_use(i);
1659     while (chunk != NULL) {
1660       free += chunk->free_word_size();
1661       chunk = chunk->next();
1662     }
1663   }
1664   return free;
1665 }
1666 
1667 size_t SpaceManager::sum_waste_in_chunks_in_use() const {
1668   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1669   size_t result = 0;
1670   for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1671 
1672 
1673    result += sum_waste_in_chunks_in_use(i);
1674   }
1675 
1676   return result;
1677 }
1678 
1679 size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
1680   size_t result = 0;
1681   size_t count = 0;
1682   Metachunk* chunk = chunks_in_use(index);
1683   // Count the free space in all the chunk but not the
1684   // current chunk from which allocations are still being done.
1685   if (chunk != NULL) {
1686     Metachunk* prev = chunk;
1687     while (chunk != NULL && chunk != current_chunk()) {
1688       result += chunk->free_word_size();
1689       prev = chunk;
1690       chunk = chunk->next();
1691       count++;
1692     }
1693   }
1694   return result;
1695 }
1696 
1697 size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1698   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1699   size_t sum = 0;
1700   for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1701     Metachunk* chunk = chunks_in_use(i);
1702     while (chunk != NULL) {
1703       // Just changed this sum += chunk->capacity_word_size();
1704       // sum += chunk->word_size() - Metachunk::overhead();
1705       sum += chunk->capacity_word_size();
1706       chunk = chunk->next();
1707     }
1708   }
1709   return sum;
1710 }
1711 
1712 size_t SpaceManager::sum_count_in_chunks_in_use() {
1713   size_t count = 0;
1714   for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1715     count = count + sum_count_in_chunks_in_use(i);
1716   }
1717 
1718   return count;
1719 }
1720 
1721 size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
1722   size_t count = 0;
1723   Metachunk* chunk = chunks_in_use(i);
1724   while (chunk != NULL) {
1725     count++;
1726     chunk = chunk->next();
1727   }
1728   return count;
1729 }
1730 
1731 
1732 size_t SpaceManager::sum_used_in_chunks_in_use() const {
1733   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1734   size_t used = 0;
1735   for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1736     Metachunk* chunk = chunks_in_use(i);
1737     while (chunk != NULL) {
1738       used += chunk->used_word_size();
1739       chunk = chunk->next();
1740     }
1741   }
1742   return used;
1743 }
1744 
1745 void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
1746 
1747   Metachunk* small_chunk = chunks_in_use(SmallIndex);
1748   st->print_cr("SpaceManager: small chunk " PTR_FORMAT
1749                " free " SIZE_FORMAT,
1750                small_chunk,
1751                small_chunk->free_word_size());
1752 
1753   Metachunk* medium_chunk = chunks_in_use(MediumIndex);
1754   st->print("medium chunk " PTR_FORMAT, medium_chunk);
1755   Metachunk* tail = current_chunk();
1756   st->print_cr(" current chunk " PTR_FORMAT, tail);
1757 
1758   Metachunk* head = chunks_in_use(HumongousIndex);
1759   st->print_cr("humongous chunk " PTR_FORMAT, head);
1760 
1761   vs_list()->chunk_manager()->locked_print_free_chunks(st);
1762   vs_list()->chunk_manager()->locked_print_sum_free_chunks(st);
1763 }
1764 
1765 size_t SpaceManager::calc_chunk_size(size_t word_size) {
1766 
1767   // Decide between a small chunk and a medium chunk.  Up to
1768   // _small_chunk_limit small chunks can be allocated but
1769   // once a medium chunk has been allocated, no more small
1770   // chunks will be allocated.
1771   size_t chunk_word_size;
1772   if (chunks_in_use(MediumIndex) == NULL &&
1773       (!has_small_chunk_limit() ||
1774        sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit)) {
1775     chunk_word_size = (size_t) SpaceManager::SmallChunk;
1776     if (word_size + Metachunk::overhead() > SpaceManager::SmallChunk) {
1777       chunk_word_size = MediumChunk;
1778     }
1779   } else {
1780     chunk_word_size = MediumChunk;
1781   }
1782 
1783   // Might still need a humongous chunk
1784   chunk_word_size =
1785     MAX2((size_t) chunk_word_size, word_size + Metachunk::overhead());
1786 
1787   if (TraceMetadataHumongousAllocation &&
1788       SpaceManager::is_humongous(word_size)) {
1789     gclog_or_tty->print_cr("Metadata humongous allocation:");
1790     gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
1791     gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
1792                            chunk_word_size);
1793     gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
1794                            Metachunk::overhead());
1795   }
1796   return chunk_word_size;
1797 }
1798 
1799 MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
1800   assert(vs_list()->current_virtual_space() != NULL,
1801          "Should have been set");
1802   assert(current_chunk() == NULL ||
1803          current_chunk()->allocate(word_size) == NULL,
1804          "Don't need to expand");
1805   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
1806 
1807   if (TraceMetadataChunkAllocation && Verbose) {
1808     gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
1809                            " words " SIZE_FORMAT " space left",
1810                             word_size, current_chunk() != NULL ?
1811                               current_chunk()->free_word_size() : 0);
1812   }
1813 
1814   // Get another chunk out of the virtual space
1815   size_t grow_chunks_by_words = calc_chunk_size(word_size);
1816   Metachunk* next = vs_list()->get_new_chunk(word_size, grow_chunks_by_words);
1817 
1818   // If a chunk was available, add it to the in-use chunk list
1819   // and do an allocation from it.
1820   if (next != NULL) {
1821     Metadebug::deallocate_chunk_a_lot(this, grow_chunks_by_words);
1822     // Add to this manager's list of chunks in use.
1823     add_chunk(next, false);
1824     return next->allocate(word_size);
1825   }
1826   return NULL;
1827 }
1828 
1829 void SpaceManager::print_on(outputStream* st) const {
1830 
1831   for (ChunkIndex i = SmallIndex;
1832        i < NumberOfInUseLists ;
1833        i = next_chunk_index(i) ) {
1834     st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
1835                  chunks_in_use(i),
1836                  chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
1837   }
1838   st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
1839                " Humongous " SIZE_FORMAT,
1840                sum_waste_in_chunks_in_use(SmallIndex),
1841                sum_waste_in_chunks_in_use(MediumIndex),
1842                sum_waste_in_chunks_in_use(HumongousIndex));
1843   // block free lists
1844   if (block_freelists() != NULL) {
1845     st->print_cr("total in block free lists " SIZE_FORMAT,
1846       block_freelists()->total_size());
1847   }
1848 }
1849 
1850 SpaceManager::SpaceManager(Mutex* lock, VirtualSpaceList* vs_list) :
1851   _vs_list(vs_list),
1852   _allocation_total(0),
1853   _lock(lock) {
1854   Metadebug::init_allocation_fail_alot_count();
1855   for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1856     _chunks_in_use[i] = NULL;
1857   }
1858   _current_chunk = NULL;
1859   if (TraceMetadataChunkAllocation && Verbose) {
1860     gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
1861   }
1862 }
1863 
1864 SpaceManager::~SpaceManager() {
1865   MutexLockerEx fcl(SpaceManager::expand_lock(),
1866                     Mutex::_no_safepoint_check_flag);
1867 
1868   ChunkManager* chunk_manager = vs_list()->chunk_manager();
1869 
1870   chunk_manager->slow_locked_verify();
1871 
1872   if (TraceMetadataChunkAllocation && Verbose) {
1873     gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
1874     locked_print_chunks_in_use_on(gclog_or_tty);
1875   }
1876 
1877   // Mangle freed memory.
1878   NOT_PRODUCT(mangle_freed_chunks();)
1879 
1880   // Have to update before the chunks_in_use lists are emptied
1881   // below.
1882   chunk_manager->inc_free_chunks_total(sum_capacity_in_chunks_in_use(),
1883                                        sum_count_in_chunks_in_use());
1884 
1885   // Add all the chunks in use by this space manager
1886   // to the global list of free chunks.
1887 
1888   // Small chunks.  There is one _current_chunk for each
1889   // Metaspace.  It could point to a small or medium chunk.
1890   // Rather than determine which it is, follow the list of
1891   // small chunks to add them to the free list
1892   Metachunk* small_chunk = chunks_in_use(SmallIndex);
1893   chunk_manager->free_small_chunks()->add_at_head(small_chunk);
1894   set_chunks_in_use(SmallIndex, NULL);
1895 
1896   // After the small chunk are the medium chunks
1897   Metachunk* medium_chunk = chunks_in_use(MediumIndex);
1898   assert(medium_chunk == NULL ||
1899          medium_chunk->word_size() == MediumChunk,
1900          "Chunk is on the wrong list");
1901 
1902   if (medium_chunk != NULL) {
1903     Metachunk* head = medium_chunk;
1904     // If there is a medium chunk then the _current_chunk can only
1905     // point to the last medium chunk.
1906     Metachunk* tail = current_chunk();
1907     chunk_manager->free_medium_chunks()->add_at_head(head, tail);
1908     set_chunks_in_use(MediumIndex, NULL);
1909   }
1910 
1911   // Humongous chunks
1912   // Humongous chunks are never the current chunk.
1913   Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);
1914 
1915   while (humongous_chunks != NULL) {
1916 #ifdef ASSERT
1917     humongous_chunks->set_is_free(true);
1918 #endif
1919     Metachunk* next_humongous_chunks = humongous_chunks->next();
1920     chunk_manager->humongous_dictionary()->return_chunk(humongous_chunks);
1921     humongous_chunks = next_humongous_chunks;
1922   }
1923   set_chunks_in_use(HumongousIndex, NULL);
1924   chunk_manager->slow_locked_verify();
1925 }
1926 
1927 void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
1928   assert_lock_strong(_lock);
1929   size_t min_size = TreeChunk<Metablock, FreeList>::min_size();
1930   assert(word_size >= min_size,
1931     err_msg("Should not deallocate dark matter " SIZE_FORMAT, word_size));
1932   block_freelists()->return_block(p, word_size);
1933 }
1934 
1935 // Adds a chunk to the list of chunks in use.
1936 void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
1937 
1938   assert(new_chunk != NULL, "Should not be NULL");
1939   assert(new_chunk->next() == NULL, "Should not be on a list");
1940 
1941   new_chunk->reset_empty();
1942 
1943   // Find the correct list and and set the current
1944   // chunk for that list.
1945   switch (new_chunk->word_size()) {
1946   case SpaceManager::SmallChunk :
1947     if (chunks_in_use(SmallIndex) == NULL) {
1948       // First chunk to add to the list
1949       set_chunks_in_use(SmallIndex, new_chunk);
1950     } else {
1951       assert(current_chunk()->word_size() == SpaceManager::SmallChunk,
1952         err_msg( "Incorrect mix of sizes in chunk list "
1953         SIZE_FORMAT " new chunk " SIZE_FORMAT,
1954         current_chunk()->word_size(), new_chunk->word_size()));
1955       current_chunk()->set_next(new_chunk);
1956     }
1957     // Make current chunk
1958     set_current_chunk(new_chunk);
1959     break;
1960   case SpaceManager::MediumChunk :
1961     if (chunks_in_use(MediumIndex) == NULL) {
1962       // About to add the first medium chunk so teminate the
1963       // small chunk list.  In general once medium chunks are
1964       // being added, we're past the need for small chunks.
1965       if (current_chunk() != NULL) {
1966         // Only a small chunk or the initial chunk could be
1967         // the current chunk if this is the first medium chunk.
1968         assert(current_chunk()->word_size() == SpaceManager::SmallChunk ||
1969           chunks_in_use(SmallIndex) == NULL,
1970           err_msg("Should be a small chunk or initial chunk, current chunk "
1971           SIZE_FORMAT " new chunk " SIZE_FORMAT,
1972           current_chunk()->word_size(), new_chunk->word_size()));
1973         current_chunk()->set_next(NULL);
1974       }
1975       // First chunk to add to the list
1976       set_chunks_in_use(MediumIndex, new_chunk);
1977 
1978     } else {
1979       // As a minimum the first medium chunk added would
1980       // have become the _current_chunk
1981       // so the _current_chunk has to be non-NULL here
1982       // (although not necessarily still the first medium chunk).
1983       assert(current_chunk()->word_size() == SpaceManager::MediumChunk,
1984              "A medium chunk should the current chunk");
1985       current_chunk()->set_next(new_chunk);
1986     }
1987     // Make current chunk
1988     set_current_chunk(new_chunk);
1989     break;
1990   default: {
1991     // For null class loader data and DumpSharedSpaces, the first chunk isn't
1992     // small, so small will be null.  Link this first chunk as the current
1993     // chunk.
1994     if (make_current) {
1995       // Set as the current chunk but otherwise treat as a humongous chunk.
1996       set_current_chunk(new_chunk);
1997     }
1998     // Link at head.  The _current_chunk only points to a humongous chunk for
1999     // the null class loader metaspace (class and data virtual space managers)
2000     // any humongous chunks so will not point to the tail
2001     // of the humongous chunks list.
2002     new_chunk->set_next(chunks_in_use(HumongousIndex));
2003     set_chunks_in_use(HumongousIndex, new_chunk);
2004 
2005     assert(new_chunk->word_size() > MediumChunk, "List inconsistency");
2006   }
2007   }
2008 
2009   assert(new_chunk->is_empty(), "Not ready for reuse");
2010   if (TraceMetadataChunkAllocation && Verbose) {
2011     gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
2012                         sum_count_in_chunks_in_use());
2013     new_chunk->print_on(gclog_or_tty);
2014     vs_list()->chunk_manager()->locked_print_free_chunks(tty);
2015   }
2016 }
2017 
2018 MetaWord* SpaceManager::allocate(size_t word_size) {
2019   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2020 
2021   // If only the dictionary is going to be used (i.e., no
2022   // indexed free list), then there is a minimum size requirement.
2023   // MinChunkSize is a placeholder for the real minimum size JJJ
2024   size_t byte_size = word_size * BytesPerWord;
2025 
2026   size_t byte_size_with_overhead = byte_size + Metablock::overhead();
2027 
2028   size_t raw_bytes_size = MAX2(byte_size_with_overhead,
2029                                Metablock::min_block_byte_size());
2030   raw_bytes_size = ARENA_ALIGN(raw_bytes_size);
2031   size_t raw_word_size = raw_bytes_size / BytesPerWord;
2032   assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
2033 
2034   BlockFreelist* fl =  block_freelists();
2035   MetaWord* p = NULL;
2036   // Allocation from the dictionary is expensive in the sense that
2037   // the dictionary has to be searched for a size.  Don't allocate
2038   // from the dictionary until it starts to get fat.  Is this
2039   // a reasonable policy?  Maybe an skinny dictionary is fast enough
2040   // for allocations.  Do some profiling.  JJJ
2041   if (fl->total_size() > allocation_from_dictionary_limit) {
2042     p = fl->get_block(raw_word_size);
2043   }
2044   if (p == NULL) {
2045     p = allocate_work(raw_word_size);
2046   }
2047   Metadebug::deallocate_block_a_lot(this, raw_word_size);
2048 
2049   return p;
2050 }
2051 
2052 // Returns the address of spaced allocated for "word_size".
2053 // This methods does not know about blocks (Metablocks)
2054 MetaWord* SpaceManager::allocate_work(size_t word_size) {
2055   assert_lock_strong(_lock);
2056 #ifdef ASSERT
2057   if (Metadebug::test_metadata_failure()) {
2058     return NULL;
2059   }
2060 #endif
2061   // Is there space in the current chunk?
2062   MetaWord* result = NULL;
2063 
2064   // For DumpSharedSpaces, only allocate out of the current chunk which is
2065   // never null because we gave it the size we wanted.   Caller reports out
2066   // of memory if this returns null.
2067   if (DumpSharedSpaces) {
2068     assert(current_chunk() != NULL, "should never happen");
2069     inc_allocation_total(word_size);
2070     return current_chunk()->allocate(word_size); // caller handles null result
2071   }
2072   if (current_chunk() != NULL) {
2073     result = current_chunk()->allocate(word_size);
2074   }
2075 
2076   if (result == NULL) {
2077     result = grow_and_allocate(word_size);
2078   }
2079   if (result > 0) {
2080     inc_allocation_total(word_size);
2081     assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2082            "Head of the list is being allocated");
2083   }
2084 
2085   return result;
2086 }
2087 
2088 void SpaceManager::verify() {
2089   // If there are blocks in the dictionary, then
2090   // verfication of chunks does not work since
2091   // being in the dictionary alters a chunk.
2092   if (block_freelists()->total_size() == 0) {
2093     // Skip the small chunks because their next link points to
2094     // medium chunks.  This is because the small chunk is the
2095     // current chunk (for allocations) until it is full and the
2096     // the addition of the next chunk does not NULL the next
2097     // like of the small chunk.
2098     for (ChunkIndex i = MediumIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2099       Metachunk* curr = chunks_in_use(i);
2100       while (curr != NULL) {
2101         curr->verify();
2102         verify_chunk_size(curr);
2103         curr = curr->next();
2104       }
2105     }
2106   }
2107 }
2108 
2109 void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2110   assert(is_humongous(chunk->word_size()) ||
2111          chunk->word_size() == MediumChunk ||
2112          chunk->word_size() == SmallChunk,
2113          "Chunk size is wrong");
2114   return;
2115 }
2116 
2117 #ifdef ASSERT
2118 void SpaceManager::verify_allocation_total() {
2119 #if 0
2120   // Verification is only guaranteed at a safepoint.
2121   if (SafepointSynchronize::is_at_safepoint()) {
2122     gclog_or_tty->print_cr("Chunk " PTR_FORMAT " allocation_total " SIZE_FORMAT
2123                            " sum_used_in_chunks_in_use " SIZE_FORMAT,
2124                            this,
2125                            allocation_total(),
2126                            sum_used_in_chunks_in_use());
2127   }
2128   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2129   assert(allocation_total() == sum_used_in_chunks_in_use(),
2130     err_msg("allocation total is not consistent %d vs %d",
2131             allocation_total(), sum_used_in_chunks_in_use()));
2132 #endif
2133 }
2134 
2135 #endif
2136 
2137 void SpaceManager::dump(outputStream* const out) const {
2138   size_t curr_total = 0;
2139   size_t waste = 0;
2140   uint i = 0;
2141   size_t used = 0;
2142   size_t capacity = 0;
2143 
2144   // Add up statistics for all chunks in this SpaceManager.
2145   for (ChunkIndex index = SmallIndex;
2146        index < NumberOfInUseLists;
2147        index = next_chunk_index(index)) {
2148     for (Metachunk* curr = chunks_in_use(index);
2149          curr != NULL;
2150          curr = curr->next()) {
2151       out->print("%d) ", i++);
2152       curr->print_on(out);
2153       if (TraceMetadataChunkAllocation && Verbose) {
2154         block_freelists()->print_on(out);
2155       }
2156       curr_total += curr->word_size();
2157       used += curr->used_word_size();
2158       capacity += curr->capacity_word_size();
2159       waste += curr->free_word_size() + curr->overhead();;
2160     }
2161   }
2162 
2163   size_t free = current_chunk()->free_word_size();
2164   // Free space isn't wasted.
2165   waste -= free;
2166 
2167   out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
2168                 " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2169                 " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2170 }
2171 
2172 #ifndef PRODUCT
2173 void SpaceManager::mangle_freed_chunks() {
2174   for (ChunkIndex index = SmallIndex;
2175        index < NumberOfInUseLists;
2176        index = next_chunk_index(index)) {
2177     for (Metachunk* curr = chunks_in_use(index);
2178          curr != NULL;
2179          curr = curr->next()) {
2180       // Try to detect incorrectly terminated small chunk
2181       // list.
2182       assert(index == MediumIndex || curr != chunks_in_use(MediumIndex),
2183              err_msg("Mangling medium chunks in small chunks? "
2184                      "curr " PTR_FORMAT " medium list " PTR_FORMAT,
2185                      curr, chunks_in_use(MediumIndex)));
2186       curr->mangle();
2187     }
2188   }
2189 }
2190 #endif // PRODUCT
2191 
2192 
2193 // MetaspaceAux
2194 
2195 size_t MetaspaceAux::used_in_bytes(Metaspace::MetadataType mdtype) {
2196   size_t used = 0;
2197   ClassLoaderDataGraphMetaspaceIterator iter;
2198   while (iter.repeat()) {
2199     Metaspace* msp = iter.get_next();
2200     // Sum allocation_total for each metaspace
2201     if (msp != NULL) {
2202       used += msp->used_words(mdtype);
2203     }
2204   }
2205   return used * BytesPerWord;
2206 }
2207 
2208 size_t MetaspaceAux::free_in_bytes(Metaspace::MetadataType mdtype) {
2209   size_t free = 0;
2210   ClassLoaderDataGraphMetaspaceIterator iter;
2211   while (iter.repeat()) {
2212     Metaspace* msp = iter.get_next();
2213     if (msp != NULL) {
2214       free += msp->free_words(mdtype);
2215     }
2216   }
2217   return free * BytesPerWord;
2218 }
2219 
2220 // The total words available for metadata allocation.  This
2221 // uses Metaspace capacity_words() which is the total words
2222 // in chunks allocated for a Metaspace.
2223 size_t MetaspaceAux::capacity_in_bytes(Metaspace::MetadataType mdtype) {
2224   size_t capacity = free_chunks_total(mdtype);
2225   ClassLoaderDataGraphMetaspaceIterator iter;
2226   while (iter.repeat()) {
2227     Metaspace* msp = iter.get_next();
2228     if (msp != NULL) {
2229       capacity += msp->capacity_words(mdtype);
2230     }
2231   }
2232   return capacity * BytesPerWord;
2233 }
2234 
2235 size_t MetaspaceAux::reserved_in_bytes(Metaspace::MetadataType mdtype) {
2236   size_t reserved = (mdtype == Metaspace::ClassType) ?
2237                        Metaspace::class_space_list()->virtual_space_total() :
2238                        Metaspace::space_list()->virtual_space_total();
2239   return reserved * BytesPerWord;
2240 }
2241 
2242 size_t MetaspaceAux::min_chunk_size() { return SpaceManager::MediumChunk; }
2243 
2244 size_t MetaspaceAux::free_chunks_total(Metaspace::MetadataType mdtype) {
2245   ChunkManager* chunk = (mdtype == Metaspace::ClassType) ?
2246                             Metaspace::class_space_list()->chunk_manager() :
2247                             Metaspace::space_list()->chunk_manager();
2248   chunk->slow_verify();
2249   return chunk->free_chunks_total();
2250 }
2251 
2252 size_t MetaspaceAux::free_chunks_total_in_bytes(Metaspace::MetadataType mdtype) {
2253   return free_chunks_total(mdtype) * BytesPerWord;
2254 }
2255 
2256 void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2257   gclog_or_tty->print(", [Metaspace:");
2258   if (PrintGCDetails && Verbose) {
2259     gclog_or_tty->print(" "  SIZE_FORMAT
2260                         "->" SIZE_FORMAT
2261                         "("  SIZE_FORMAT "/" SIZE_FORMAT ")",
2262                         prev_metadata_used,
2263                         used_in_bytes(),
2264                         capacity_in_bytes(),
2265                         reserved_in_bytes());
2266   } else {
2267     gclog_or_tty->print(" "  SIZE_FORMAT "K"
2268                         "->" SIZE_FORMAT "K"
2269                         "("  SIZE_FORMAT "K/" SIZE_FORMAT "K)",
2270                         prev_metadata_used / K,
2271                         used_in_bytes()/ K,
2272                         capacity_in_bytes()/K,
2273                         reserved_in_bytes()/ K);
2274   }
2275 
2276   gclog_or_tty->print("]");
2277 }
2278 
2279 // This is printed when PrintGCDetails
2280 void MetaspaceAux::print_on(outputStream* out) {
2281   Metaspace::MetadataType ct = Metaspace::ClassType;
2282   Metaspace::MetadataType nct = Metaspace::NonClassType;
2283 
2284   out->print_cr(" Metaspace total "
2285                 SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
2286                 " reserved " SIZE_FORMAT "K",
2287                 capacity_in_bytes()/K, used_in_bytes()/K, reserved_in_bytes()/K);
2288   out->print_cr("  data space     "
2289                 SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
2290                 " reserved " SIZE_FORMAT "K",
2291                 capacity_in_bytes(nct)/K, used_in_bytes(nct)/K, reserved_in_bytes(nct)/K);
2292   out->print_cr("  class space    "
2293                 SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
2294                 " reserved " SIZE_FORMAT "K",
2295                 capacity_in_bytes(ct)/K, used_in_bytes(ct)/K, reserved_in_bytes(ct)/K);
2296 }
2297 
2298 // Print information for class space and data space separately.
2299 // This is almost the same as above.
2300 void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2301   size_t free_chunks_capacity_bytes = free_chunks_total_in_bytes(mdtype);
2302   size_t capacity_bytes = capacity_in_bytes(mdtype);
2303   size_t used_bytes = used_in_bytes(mdtype);
2304   size_t free_bytes = free_in_bytes(mdtype);
2305   size_t used_and_free = used_bytes + free_bytes +
2306                            free_chunks_capacity_bytes;
2307   out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
2308              "K + unused in chunks " SIZE_FORMAT "K  + "
2309              " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2310              "K  capacity in allocated chunks " SIZE_FORMAT "K",
2311              used_bytes / K,
2312              free_bytes / K,
2313              free_chunks_capacity_bytes / K,
2314              used_and_free / K,
2315              capacity_bytes / K);
2316   assert(used_and_free == capacity_bytes, "Accounting is wrong");
2317 }
2318 
2319 // Print total fragmentation for class and data metaspaces separately
2320 void MetaspaceAux::print_waste(outputStream* out) {
2321 
2322   size_t small_waste = 0, medium_waste = 0, large_waste = 0;
2323   size_t cls_small_waste = 0, cls_medium_waste = 0, cls_large_waste = 0;
2324 
2325   ClassLoaderDataGraphMetaspaceIterator iter;
2326   while (iter.repeat()) {
2327     Metaspace* msp = iter.get_next();
2328     if (msp != NULL) {
2329       small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2330       medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2331       large_waste += msp->vsm()->sum_waste_in_chunks_in_use(HumongousIndex);
2332 
2333       cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2334       cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2335       cls_large_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(HumongousIndex);
2336     }
2337   }
2338   out->print_cr("Total fragmentation waste (words) doesn't count free space");
2339   out->print("  data: small " SIZE_FORMAT " medium " SIZE_FORMAT,
2340              small_waste, medium_waste);
2341   out->print_cr(" class: small " SIZE_FORMAT, cls_small_waste);
2342 }
2343 
2344 // Dump global metaspace things from the end of ClassLoaderDataGraph
2345 void MetaspaceAux::dump(outputStream* out) {
2346   out->print_cr("All Metaspace:");
2347   out->print("data space: "); print_on(out, Metaspace::NonClassType);
2348   out->print("class space: "); print_on(out, Metaspace::ClassType);
2349   print_waste(out);
2350 }
2351 
2352 void MetaspaceAux::verify_free_chunks() {
2353   Metaspace::space_list()->chunk_manager()->verify();
2354   Metaspace::class_space_list()->chunk_manager()->verify();
2355 }
2356 
2357 // Metaspace methods
2358 
2359 size_t Metaspace::_first_chunk_word_size = 0;
2360 
2361 Metaspace::Metaspace(Mutex* lock, size_t word_size) {
2362   initialize(lock, word_size);
2363 }
2364 
2365 Metaspace::Metaspace(Mutex* lock) {
2366   initialize(lock);
2367 }
2368 
2369 Metaspace::~Metaspace() {
2370   delete _vsm;
2371   delete _class_vsm;
2372 }
2373 
2374 VirtualSpaceList* Metaspace::_space_list = NULL;
2375 VirtualSpaceList* Metaspace::_class_space_list = NULL;
2376 
2377 #define VIRTUALSPACEMULTIPLIER 2
2378 
2379 void Metaspace::global_initialize() {
2380   // Initialize the alignment for shared spaces.
2381   int max_alignment = os::vm_page_size();
2382   MetaspaceShared::set_max_alignment(max_alignment);
2383 
2384   if (DumpSharedSpaces) {
2385     SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment);
2386     SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
2387     SharedMiscDataSize  = align_size_up(SharedMiscDataSize, max_alignment);
2388     SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize, max_alignment);
2389 
2390     // Initialize with the sum of the shared space sizes.  The read-only
2391     // and read write metaspace chunks will be allocated out of this and the
2392     // remainder is the misc code and data chunks.
2393     size_t total = align_size_up(SharedReadOnlySize + SharedReadWriteSize +
2394                                  SharedMiscDataSize + SharedMiscCodeSize,
2395                                  os::vm_allocation_granularity());
2396     size_t word_size = total/wordSize;
2397     _space_list = new VirtualSpaceList(word_size);
2398   } else {
2399     // If using shared space, open the file that contains the shared space
2400     // and map in the memory before initializing the rest of metaspace (so
2401     // the addresses don't conflict)
2402     if (UseSharedSpaces) {
2403       FileMapInfo* mapinfo = new FileMapInfo();
2404       memset(mapinfo, 0, sizeof(FileMapInfo));
2405 
2406       // Open the shared archive file, read and validate the header. If
2407       // initialization fails, shared spaces [UseSharedSpaces] are
2408       // disabled and the file is closed.
2409       // Map in spaces now also
2410       if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
2411         FileMapInfo::set_current_info(mapinfo);
2412       } else {
2413         assert(!mapinfo->is_open() && !UseSharedSpaces,
2414                "archive file not closed or shared spaces not disabled.");
2415       }
2416     }
2417 
2418     // Initialize this before initializing the VirtualSpaceList
2419     _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
2420     // Arbitrarily set the initial virtual space to a multiple
2421     // of the boot class loader size.
2422     size_t word_size = VIRTUALSPACEMULTIPLIER * Metaspace::first_chunk_word_size();
2423     // Initialize the list of virtual spaces.
2424     _space_list = new VirtualSpaceList(word_size);
2425   }
2426 }
2427 
2428 // For UseCompressedKlassPointers the class space is reserved as a piece of the
2429 // Java heap because the compression algorithm is the same for each.  The
2430 // argument passed in is at the top of the compressed space
2431 void Metaspace::initialize_class_space(ReservedSpace rs) {
2432   // The reserved space size may be bigger because of alignment, esp with UseLargePages
2433   assert(rs.size() >= ClassMetaspaceSize, err_msg("%d != %d", rs.size(), ClassMetaspaceSize));
2434   _class_space_list = new VirtualSpaceList(rs);
2435 }
2436 
2437 
2438 void Metaspace::initialize(Mutex* lock, size_t initial_size) {
2439   // Use SmallChunk size if not specified.   If specified, use this size for
2440   // the data metaspace.
2441   size_t word_size;
2442   size_t class_word_size;
2443   if (initial_size == 0) {
2444     word_size = (size_t) SpaceManager::SmallChunk;
2445     class_word_size = (size_t) SpaceManager::SmallChunk;
2446   } else {
2447     word_size = initial_size;
2448     // Make the first class chunk bigger than a medium chunk so it's not put
2449     // on the medium chunk list.   The next chunk will be small and progress
2450     // from there.  This size calculated by -version.
2451     class_word_size = MIN2((size_t)SpaceManager::MediumChunk*5,
2452                            (ClassMetaspaceSize/BytesPerWord)*2);
2453   }
2454 
2455   assert(space_list() != NULL,
2456     "Metadata VirtualSpaceList has not been initialized");
2457 
2458   _vsm = new SpaceManager(lock, space_list());
2459   if (_vsm == NULL) {
2460     return;
2461   }
2462 
2463   assert(class_space_list() != NULL,
2464     "Class VirtualSpaceList has not been initialized");
2465 
2466   // Allocate SpaceManager for classes.
2467   _class_vsm = new SpaceManager(lock, class_space_list());
2468   if (_class_vsm == NULL) {
2469     return;
2470   }
2471 
2472   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2473 
2474   // Allocate chunk for metadata objects
2475   Metachunk* new_chunk =
2476      space_list()->current_virtual_space()->get_chunk_vs_with_expand(word_size);
2477   assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
2478   if (new_chunk != NULL) {
2479     // Add to this manager's list of chunks in use and current_chunk().
2480     vsm()->add_chunk(new_chunk, true);
2481   }
2482 
2483   // Allocate chunk for class metadata objects
2484   Metachunk* class_chunk =
2485      class_space_list()->current_virtual_space()->get_chunk_vs_with_expand(class_word_size);
2486   if (class_chunk != NULL) {
2487     class_vsm()->add_chunk(class_chunk, true);
2488   }
2489 }
2490 
2491 MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
2492   // DumpSharedSpaces doesn't use class metadata area (yet)
2493   if (mdtype == ClassType && !DumpSharedSpaces) {
2494     return  class_vsm()->allocate(word_size);
2495   } else {
2496     return  vsm()->allocate(word_size);
2497   }
2498 }
2499 
2500 MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
2501   MetaWord* result;
2502   MetaspaceGC::set_expand_after_GC(true);
2503   size_t before_inc = MetaspaceGC::capacity_until_GC();
2504   size_t delta_words = MetaspaceGC::delta_capacity_until_GC(word_size);
2505   MetaspaceGC::inc_capacity_until_GC(delta_words);
2506   if (PrintGCDetails && Verbose) {
2507     gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
2508       " to " SIZE_FORMAT, before_inc, MetaspaceGC::capacity_until_GC());
2509   }
2510 
2511   result = allocate(word_size, mdtype);
2512 
2513   return result;
2514 }
2515 
2516 // Space allocated in the Metaspace.  This may
2517 // be across several metadata virtual spaces.
2518 char* Metaspace::bottom() const {
2519   assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
2520   return (char*)vsm()->current_chunk()->bottom();
2521 }
2522 
2523 size_t Metaspace::used_words(MetadataType mdtype) const {
2524   // return vsm()->allocation_total();
2525   return mdtype == ClassType ? class_vsm()->sum_used_in_chunks_in_use() :
2526                                vsm()->sum_used_in_chunks_in_use();  // includes overhead!
2527 }
2528 
2529 size_t Metaspace::free_words(MetadataType mdtype) const {
2530   return mdtype == ClassType ? class_vsm()->sum_free_in_chunks_in_use() :
2531                                vsm()->sum_free_in_chunks_in_use();
2532 }
2533 
2534 // Space capacity in the Metaspace.  It includes
2535 // space in the list of chunks from which allocations
2536 // have been made. Don't include space in the global freelist and
2537 // in the space available in the dictionary which
2538 // is already counted in some chunk.
2539 size_t Metaspace::capacity_words(MetadataType mdtype) const {
2540   return mdtype == ClassType ? class_vsm()->sum_capacity_in_chunks_in_use() :
2541                                vsm()->sum_capacity_in_chunks_in_use();
2542 }
2543 
2544 void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
2545   if (SafepointSynchronize::is_at_safepoint()) {
2546     assert(Thread::current()->is_VM_thread(), "should be the VM thread");
2547     // Don't take Heap_lock
2548     MutexLocker ml(vsm()->lock());
2549     if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
2550       // Dark matter.  Too small for dictionary.
2551 #ifdef ASSERT
2552       Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
2553 #endif
2554       return;
2555     }
2556     if (is_class) {
2557        class_vsm()->deallocate(ptr, word_size);
2558     } else {
2559       vsm()->deallocate(ptr, word_size);
2560     }
2561   } else {
2562     MutexLocker ml(vsm()->lock());
2563 
2564     if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
2565       // Dark matter.  Too small for dictionary.
2566 #ifdef ASSERT
2567       Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
2568 #endif
2569       return;
2570     }
2571     if (is_class) {
2572       class_vsm()->deallocate(ptr, word_size);
2573     } else {
2574       vsm()->deallocate(ptr, word_size);
2575     }
2576   }
2577 }
2578 
2579 Metablock* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
2580                               bool read_only, MetadataType mdtype, TRAPS) {
2581   if (HAS_PENDING_EXCEPTION) {
2582     assert(false, "Should not allocate with exception pending");
2583     return NULL;  // caller does a CHECK_NULL too
2584   }
2585 
2586   // SSS: Should we align the allocations and make sure the sizes are aligned.
2587   MetaWord* result = NULL;
2588 
2589   assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
2590         "ClassLoaderData::the_null_class_loader_data() should have been used.");
2591   // Allocate in metaspaces without taking out a lock, because it deadlocks
2592   // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
2593   // to revisit this for application class data sharing.
2594   if (DumpSharedSpaces) {
2595     if (read_only) {
2596       result = loader_data->ro_metaspace()->allocate(word_size, NonClassType);
2597     } else {
2598       result = loader_data->rw_metaspace()->allocate(word_size, NonClassType);
2599     }
2600     if (result == NULL) {
2601       report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
2602     }
2603     return Metablock::initialize(result, word_size);
2604   }
2605 
2606   result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
2607 
2608   if (result == NULL) {
2609     // Try to clean out some memory and retry.
2610     result =
2611       Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
2612         loader_data, word_size, mdtype);
2613 
2614     // If result is still null, we are out of memory.
2615     if (result == NULL) {
2616       // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
2617       report_java_out_of_memory("Metadata space");
2618 
2619       if (JvmtiExport::should_post_resource_exhausted()) {
2620         JvmtiExport::post_resource_exhausted(
2621             JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
2622             "Metadata space");
2623       }
2624       THROW_OOP_0(Universe::out_of_memory_error_perm_gen());
2625     }
2626   }
2627   return Metablock::initialize(result, word_size);
2628 }
2629 
2630 void Metaspace::print_on(outputStream* out) const {
2631   // Print both class virtual space counts and metaspace.
2632   if (Verbose) {
2633       vsm()->print_on(out);
2634       class_vsm()->print_on(out);
2635   }
2636 }
2637 
2638 bool Metaspace::contains(const void * ptr) {
2639   if (MetaspaceShared::is_in_shared_space(ptr)) {
2640     return true;
2641   }
2642   // This is checked while unlocked.  As long as the virtualspaces are added
2643   // at the end, the pointer will be in one of them.  The virtual spaces
2644   // aren't deleted presently.  When they are, some sort of locking might
2645   // be needed.  Note, locking this can cause inversion problems with the
2646   // caller in MetaspaceObj::is_metadata() function.
2647   return space_list()->contains(ptr) || class_space_list()->contains(ptr);
2648 }
2649 
2650 void Metaspace::verify() {
2651   vsm()->verify();
2652   class_vsm()->verify();
2653 }
2654 
2655 void Metaspace::dump(outputStream* const out) const {
2656   if (UseMallocOnly) {
2657     // Just print usage for now
2658     out->print_cr("usage %d", used_words(Metaspace::NonClassType));
2659   }
2660   out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
2661   vsm()->dump(out);
2662   out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
2663   class_vsm()->dump(out);
2664 }