1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/g1YCTypes.hpp"
  42 #include "gc_implementation/g1/heapRegion.inline.hpp"
  43 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  45 #include "gc_implementation/g1/vm_operations_g1.hpp"
  46 #include "gc_implementation/shared/gcHeapSummary.hpp"
  47 #include "gc_implementation/shared/gcTimer.hpp"
  48 #include "gc_implementation/shared/gcTrace.hpp"
  49 #include "gc_implementation/shared/gcTraceTime.hpp"
  50 #include "gc_implementation/shared/isGCActiveMark.hpp"
  51 #include "memory/gcLocker.inline.hpp"
  52 #include "memory/genOopClosures.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/referenceProcessor.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/oop.pcgc.inline.hpp"
  57 #include "runtime/aprofiler.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0)
 129   {
 130     _g1h = G1CollectedHeap::heap();
 131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0)
 162   {
 163     _g1h = G1CollectedHeap::heap();
 164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 165   }
 166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 168       _calls++;
 169       *card_ptr = 0;
 170     }
 171     return true;
 172   }
 173   int calls() { return _calls; }
 174 };
 175 
 176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 177 public:
 178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 179     *card_ptr = CardTableModRefBS::dirty_card_val();
 180     return true;
 181   }
 182 };
 183 
 184 YoungList::YoungList(G1CollectedHeap* g1h) :
 185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 187   guarantee(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 void YoungList::push_region(HeapRegion *hr) {
 191   assert(!hr->is_young(), "should not already be young");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_head);
 195   _head = hr;
 196 
 197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 198   ++_length;
 199 }
 200 
 201 void YoungList::add_survivor_region(HeapRegion* hr) {
 202   assert(hr->is_survivor(), "should be flagged as survivor region");
 203   assert(hr->get_next_young_region() == NULL, "cause it should!");
 204 
 205   hr->set_next_young_region(_survivor_head);
 206   if (_survivor_head == NULL) {
 207     _survivor_tail = hr;
 208   }
 209   _survivor_head = hr;
 210   ++_survivor_length;
 211 }
 212 
 213 void YoungList::empty_list(HeapRegion* list) {
 214   while (list != NULL) {
 215     HeapRegion* next = list->get_next_young_region();
 216     list->set_next_young_region(NULL);
 217     list->uninstall_surv_rate_group();
 218     list->set_not_young();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // perm gen (or null)
 472      return false;
 473   } else {
 474     return !hr->isHumongous();
 475   }
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.set_closure(&clear);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   clear.print_histo();
 493 
 494   // Now ensure that there's no dirty cards.
 495   CountNonCleanMemRegionClosure count2(this);
 496   ct_bs->mod_card_iterate(&count2);
 497   if (count2.n() != 0) {
 498     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 499                            count2.n(), orig_count);
 500   }
 501   guarantee(count2.n() == 0, "Card table should be clean.");
 502 
 503   RedirtyLoggedCardTableEntryClosure redirty;
 504   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 505   dcqs.apply_closure_to_all_completed_buffers();
 506   dcqs.iterate_closure_all_threads(false);
 507   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 508                          clear.calls(), orig_count);
 509   guarantee(redirty.calls() == clear.calls(),
 510             "Or else mechanism is broken.");
 511 
 512   CountNonCleanMemRegionClosure count3(this);
 513   ct_bs->mod_card_iterate(&count3);
 514   if (count3.n() != orig_count) {
 515     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 516                            orig_count, count3.n());
 517     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 518   }
 519 
 520   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 521 }
 522 
 523 // Private class members.
 524 
 525 G1CollectedHeap* G1CollectedHeap::_g1h;
 526 
 527 // Private methods.
 528 
 529 HeapRegion*
 530 G1CollectedHeap::new_region_try_secondary_free_list() {
 531   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 532   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 533     if (!_secondary_free_list.is_empty()) {
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "secondary_free_list has %u entries",
 537                                _secondary_free_list.length());
 538       }
 539       // It looks as if there are free regions available on the
 540       // secondary_free_list. Let's move them to the free_list and try
 541       // again to allocate from it.
 542       append_secondary_free_list();
 543 
 544       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 545              "empty we should have moved at least one entry to the free_list");
 546       HeapRegion* res = _free_list.remove_head();
 547       if (G1ConcRegionFreeingVerbose) {
 548         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 549                                "allocated "HR_FORMAT" from secondary_free_list",
 550                                HR_FORMAT_PARAMS(res));
 551       }
 552       return res;
 553     }
 554 
 555     // Wait here until we get notified either when (a) there are no
 556     // more free regions coming or (b) some regions have been moved on
 557     // the secondary_free_list.
 558     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 559   }
 560 
 561   if (G1ConcRegionFreeingVerbose) {
 562     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                            "could not allocate from secondary_free_list");
 564   }
 565   return NULL;
 566 }
 567 
 568 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 569   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 570          "the only time we use this to allocate a humongous region is "
 571          "when we are allocating a single humongous region");
 572 
 573   HeapRegion* res;
 574   if (G1StressConcRegionFreeing) {
 575     if (!_secondary_free_list.is_empty()) {
 576       if (G1ConcRegionFreeingVerbose) {
 577         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 578                                "forced to look at the secondary_free_list");
 579       }
 580       res = new_region_try_secondary_free_list();
 581       if (res != NULL) {
 582         return res;
 583       }
 584     }
 585   }
 586   res = _free_list.remove_head_or_null();
 587   if (res == NULL) {
 588     if (G1ConcRegionFreeingVerbose) {
 589       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 590                              "res == NULL, trying the secondary_free_list");
 591     }
 592     res = new_region_try_secondary_free_list();
 593   }
 594   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 595     // Currently, only attempts to allocate GC alloc regions set
 596     // do_expand to true. So, we should only reach here during a
 597     // safepoint. If this assumption changes we might have to
 598     // reconsider the use of _expand_heap_after_alloc_failure.
 599     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 600 
 601     ergo_verbose1(ErgoHeapSizing,
 602                   "attempt heap expansion",
 603                   ergo_format_reason("region allocation request failed")
 604                   ergo_format_byte("allocation request"),
 605                   word_size * HeapWordSize);
 606     if (expand(word_size * HeapWordSize)) {
 607       // Given that expand() succeeded in expanding the heap, and we
 608       // always expand the heap by an amount aligned to the heap
 609       // region size, the free list should in theory not be empty. So
 610       // it would probably be OK to use remove_head(). But the extra
 611       // check for NULL is unlikely to be a performance issue here (we
 612       // just expanded the heap!) so let's just be conservative and
 613       // use remove_head_or_null().
 614       res = _free_list.remove_head_or_null();
 615     } else {
 616       _expand_heap_after_alloc_failure = false;
 617     }
 618   }
 619   return res;
 620 }
 621 
 622 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 623                                                         size_t word_size) {
 624   assert(isHumongous(word_size), "word_size should be humongous");
 625   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 626 
 627   uint first = G1_NULL_HRS_INDEX;
 628   if (num_regions == 1) {
 629     // Only one region to allocate, no need to go through the slower
 630     // path. The caller will attempt the expansion if this fails, so
 631     // let's not try to expand here too.
 632     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 633     if (hr != NULL) {
 634       first = hr->hrs_index();
 635     } else {
 636       first = G1_NULL_HRS_INDEX;
 637     }
 638   } else {
 639     // We can't allocate humongous regions while cleanupComplete() is
 640     // running, since some of the regions we find to be empty might not
 641     // yet be added to the free list and it is not straightforward to
 642     // know which list they are on so that we can remove them. Note
 643     // that we only need to do this if we need to allocate more than
 644     // one region to satisfy the current humongous allocation
 645     // request. If we are only allocating one region we use the common
 646     // region allocation code (see above).
 647     wait_while_free_regions_coming();
 648     append_secondary_free_list_if_not_empty_with_lock();
 649 
 650     if (free_regions() >= num_regions) {
 651       first = _hrs.find_contiguous(num_regions);
 652       if (first != G1_NULL_HRS_INDEX) {
 653         for (uint i = first; i < first + num_regions; ++i) {
 654           HeapRegion* hr = region_at(i);
 655           assert(hr->is_empty(), "sanity");
 656           assert(is_on_master_free_list(hr), "sanity");
 657           hr->set_pending_removal(true);
 658         }
 659         _free_list.remove_all_pending(num_regions);
 660       }
 661     }
 662   }
 663   return first;
 664 }
 665 
 666 HeapWord*
 667 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 668                                                            uint num_regions,
 669                                                            size_t word_size) {
 670   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 671   assert(isHumongous(word_size), "word_size should be humongous");
 672   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 673 
 674   // Index of last region in the series + 1.
 675   uint last = first + num_regions;
 676 
 677   // We need to initialize the region(s) we just discovered. This is
 678   // a bit tricky given that it can happen concurrently with
 679   // refinement threads refining cards on these regions and
 680   // potentially wanting to refine the BOT as they are scanning
 681   // those cards (this can happen shortly after a cleanup; see CR
 682   // 6991377). So we have to set up the region(s) carefully and in
 683   // a specific order.
 684 
 685   // The word size sum of all the regions we will allocate.
 686   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 687   assert(word_size <= word_size_sum, "sanity");
 688 
 689   // This will be the "starts humongous" region.
 690   HeapRegion* first_hr = region_at(first);
 691   // The header of the new object will be placed at the bottom of
 692   // the first region.
 693   HeapWord* new_obj = first_hr->bottom();
 694   // This will be the new end of the first region in the series that
 695   // should also match the end of the last region in the series.
 696   HeapWord* new_end = new_obj + word_size_sum;
 697   // This will be the new top of the first region that will reflect
 698   // this allocation.
 699   HeapWord* new_top = new_obj + word_size;
 700 
 701   // First, we need to zero the header of the space that we will be
 702   // allocating. When we update top further down, some refinement
 703   // threads might try to scan the region. By zeroing the header we
 704   // ensure that any thread that will try to scan the region will
 705   // come across the zero klass word and bail out.
 706   //
 707   // NOTE: It would not have been correct to have used
 708   // CollectedHeap::fill_with_object() and make the space look like
 709   // an int array. The thread that is doing the allocation will
 710   // later update the object header to a potentially different array
 711   // type and, for a very short period of time, the klass and length
 712   // fields will be inconsistent. This could cause a refinement
 713   // thread to calculate the object size incorrectly.
 714   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 715 
 716   // We will set up the first region as "starts humongous". This
 717   // will also update the BOT covering all the regions to reflect
 718   // that there is a single object that starts at the bottom of the
 719   // first region.
 720   first_hr->set_startsHumongous(new_top, new_end);
 721 
 722   // Then, if there are any, we will set up the "continues
 723   // humongous" regions.
 724   HeapRegion* hr = NULL;
 725   for (uint i = first + 1; i < last; ++i) {
 726     hr = region_at(i);
 727     hr->set_continuesHumongous(first_hr);
 728   }
 729   // If we have "continues humongous" regions (hr != NULL), then the
 730   // end of the last one should match new_end.
 731   assert(hr == NULL || hr->end() == new_end, "sanity");
 732 
 733   // Up to this point no concurrent thread would have been able to
 734   // do any scanning on any region in this series. All the top
 735   // fields still point to bottom, so the intersection between
 736   // [bottom,top] and [card_start,card_end] will be empty. Before we
 737   // update the top fields, we'll do a storestore to make sure that
 738   // no thread sees the update to top before the zeroing of the
 739   // object header and the BOT initialization.
 740   OrderAccess::storestore();
 741 
 742   // Now that the BOT and the object header have been initialized,
 743   // we can update top of the "starts humongous" region.
 744   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 745          "new_top should be in this region");
 746   first_hr->set_top(new_top);
 747   if (_hr_printer.is_active()) {
 748     HeapWord* bottom = first_hr->bottom();
 749     HeapWord* end = first_hr->orig_end();
 750     if ((first + 1) == last) {
 751       // the series has a single humongous region
 752       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 753     } else {
 754       // the series has more than one humongous regions
 755       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 756     }
 757   }
 758 
 759   // Now, we will update the top fields of the "continues humongous"
 760   // regions. The reason we need to do this is that, otherwise,
 761   // these regions would look empty and this will confuse parts of
 762   // G1. For example, the code that looks for a consecutive number
 763   // of empty regions will consider them empty and try to
 764   // re-allocate them. We can extend is_empty() to also include
 765   // !continuesHumongous(), but it is easier to just update the top
 766   // fields here. The way we set top for all regions (i.e., top ==
 767   // end for all regions but the last one, top == new_top for the
 768   // last one) is actually used when we will free up the humongous
 769   // region in free_humongous_region().
 770   hr = NULL;
 771   for (uint i = first + 1; i < last; ++i) {
 772     hr = region_at(i);
 773     if ((i + 1) == last) {
 774       // last continues humongous region
 775       assert(hr->bottom() < new_top && new_top <= hr->end(),
 776              "new_top should fall on this region");
 777       hr->set_top(new_top);
 778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 779     } else {
 780       // not last one
 781       assert(new_top > hr->end(), "new_top should be above this region");
 782       hr->set_top(hr->end());
 783       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 784     }
 785   }
 786   // If we have continues humongous regions (hr != NULL), then the
 787   // end of the last one should match new_end and its top should
 788   // match new_top.
 789   assert(hr == NULL ||
 790          (hr->end() == new_end && hr->top() == new_top), "sanity");
 791 
 792   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 793   _summary_bytes_used += first_hr->used();
 794   _humongous_set.add(first_hr);
 795 
 796   return new_obj;
 797 }
 798 
 799 // If could fit into free regions w/o expansion, try.
 800 // Otherwise, if can expand, do so.
 801 // Otherwise, if using ex regions might help, try with ex given back.
 802 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 803   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 804 
 805   verify_region_sets_optional();
 806 
 807   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 808   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 809   uint x_num = expansion_regions();
 810   uint fs = _hrs.free_suffix();
 811   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 812   if (first == G1_NULL_HRS_INDEX) {
 813     // The only thing we can do now is attempt expansion.
 814     if (fs + x_num >= num_regions) {
 815       // If the number of regions we're trying to allocate for this
 816       // object is at most the number of regions in the free suffix,
 817       // then the call to humongous_obj_allocate_find_first() above
 818       // should have succeeded and we wouldn't be here.
 819       //
 820       // We should only be trying to expand when the free suffix is
 821       // not sufficient for the object _and_ we have some expansion
 822       // room available.
 823       assert(num_regions > fs, "earlier allocation should have succeeded");
 824 
 825       ergo_verbose1(ErgoHeapSizing,
 826                     "attempt heap expansion",
 827                     ergo_format_reason("humongous allocation request failed")
 828                     ergo_format_byte("allocation request"),
 829                     word_size * HeapWordSize);
 830       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 831         // Even though the heap was expanded, it might not have
 832         // reached the desired size. So, we cannot assume that the
 833         // allocation will succeed.
 834         first = humongous_obj_allocate_find_first(num_regions, word_size);
 835       }
 836     }
 837   }
 838 
 839   HeapWord* result = NULL;
 840   if (first != G1_NULL_HRS_INDEX) {
 841     result =
 842       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 843     assert(result != NULL, "it should always return a valid result");
 844 
 845     // A successful humongous object allocation changes the used space
 846     // information of the old generation so we need to recalculate the
 847     // sizes and update the jstat counters here.
 848     g1mm()->update_sizes();
 849   }
 850 
 851   verify_region_sets_optional();
 852 
 853   return result;
 854 }
 855 
 856 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 857   assert_heap_not_locked_and_not_at_safepoint();
 858   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 859 
 860   unsigned int dummy_gc_count_before;
 861   return attempt_allocation(word_size, &dummy_gc_count_before);
 862 }
 863 
 864 HeapWord*
 865 G1CollectedHeap::mem_allocate(size_t word_size,
 866                               bool*  gc_overhead_limit_was_exceeded) {
 867   assert_heap_not_locked_and_not_at_safepoint();
 868 
 869   // Loop until the allocation is satisfied, or unsatisfied after GC.
 870   for (int try_count = 1; /* we'll return */; try_count += 1) {
 871     unsigned int gc_count_before;
 872 
 873     HeapWord* result = NULL;
 874     if (!isHumongous(word_size)) {
 875       result = attempt_allocation(word_size, &gc_count_before);
 876     } else {
 877       result = attempt_allocation_humongous(word_size, &gc_count_before);
 878     }
 879     if (result != NULL) {
 880       return result;
 881     }
 882 
 883     // Create the garbage collection operation...
 884     VM_G1CollectForAllocation op(gc_count_before, word_size);
 885     // ...and get the VM thread to execute it.
 886     VMThread::execute(&op);
 887 
 888     if (op.prologue_succeeded() && op.pause_succeeded()) {
 889       // If the operation was successful we'll return the result even
 890       // if it is NULL. If the allocation attempt failed immediately
 891       // after a Full GC, it's unlikely we'll be able to allocate now.
 892       HeapWord* result = op.result();
 893       if (result != NULL && !isHumongous(word_size)) {
 894         // Allocations that take place on VM operations do not do any
 895         // card dirtying and we have to do it here. We only have to do
 896         // this for non-humongous allocations, though.
 897         dirty_young_block(result, word_size);
 898       }
 899       return result;
 900     } else {
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret) {
 918   // Make sure you read the note in attempt_allocation_humongous().
 919 
 920   assert_heap_not_locked_and_not_at_safepoint();
 921   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 922          "be called for humongous allocation requests");
 923 
 924   // We should only get here after the first-level allocation attempt
 925   // (attempt_allocation()) failed to allocate.
 926 
 927   // We will loop until a) we manage to successfully perform the
 928   // allocation or b) we successfully schedule a collection which
 929   // fails to perform the allocation. b) is the only case when we'll
 930   // return NULL.
 931   HeapWord* result = NULL;
 932   for (int try_count = 1; /* we'll return */; try_count += 1) {
 933     bool should_try_gc;
 934     unsigned int gc_count_before;
 935 
 936     {
 937       MutexLockerEx x(Heap_lock);
 938 
 939       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 940                                                       false /* bot_updates */);
 941       if (result != NULL) {
 942         return result;
 943       }
 944 
 945       // If we reach here, attempt_allocation_locked() above failed to
 946       // allocate a new region. So the mutator alloc region should be NULL.
 947       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 948 
 949       if (GC_locker::is_active_and_needs_gc()) {
 950         if (g1_policy()->can_expand_young_list()) {
 951           // No need for an ergo verbose message here,
 952           // can_expand_young_list() does this when it returns true.
 953           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 954                                                       false /* bot_updates */);
 955           if (result != NULL) {
 956             return result;
 957           }
 958         }
 959         should_try_gc = false;
 960       } else {
 961         // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       bool succeeded;
 978       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 979       if (result != NULL) {
 980         assert(succeeded, "only way to get back a non-NULL result");
 981         return result;
 982       }
 983 
 984       if (succeeded) {
 985         // If we get here we successfully scheduled a collection which
 986         // failed to allocate. No point in trying to allocate
 987         // further. We'll just return NULL.
 988         MutexLockerEx x(Heap_lock);
 989         *gc_count_before_ret = total_collections();
 990         return NULL;
 991       }
 992     } else {
 993       // The GCLocker is either active or the GCLocker initiated
 994       // GC has not yet been performed. Stall until it is and
 995       // then retry the allocation.
 996       GC_locker::stall_until_clear();
 997     }
 998 
 999     // We can reach here if we were unsuccessful in scheduling a
1000     // collection (because another thread beat us to it) or if we were
1001     // stalled due to the GC locker. In either can we should retry the
1002     // allocation attempt in case another thread successfully
1003     // performed a collection and reclaimed enough space. We do the
1004     // first attempt (without holding the Heap_lock) here and the
1005     // follow-on attempt will be at the start of the next loop
1006     // iteration (after taking the Heap_lock).
1007     result = _mutator_alloc_region.attempt_allocation(word_size,
1008                                                       false /* bot_updates */);
1009     if (result != NULL) {
1010       return result;
1011     }
1012 
1013     // Give a warning if we seem to be looping forever.
1014     if ((QueuedAllocationWarningCount > 0) &&
1015         (try_count % QueuedAllocationWarningCount == 0)) {
1016       warning("G1CollectedHeap::attempt_allocation_slow() "
1017               "retries %d times", try_count);
1018     }
1019   }
1020 
1021   ShouldNotReachHere();
1022   return NULL;
1023 }
1024 
1025 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1026                                           unsigned int * gc_count_before_ret) {
1027   // The structure of this method has a lot of similarities to
1028   // attempt_allocation_slow(). The reason these two were not merged
1029   // into a single one is that such a method would require several "if
1030   // allocation is not humongous do this, otherwise do that"
1031   // conditional paths which would obscure its flow. In fact, an early
1032   // version of this code did use a unified method which was harder to
1033   // follow and, as a result, it had subtle bugs that were hard to
1034   // track down. So keeping these two methods separate allows each to
1035   // be more readable. It will be good to keep these two in sync as
1036   // much as possible.
1037 
1038   assert_heap_not_locked_and_not_at_safepoint();
1039   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1040          "should only be called for humongous allocations");
1041 
1042   // Humongous objects can exhaust the heap quickly, so we should check if we
1043   // need to start a marking cycle at each humongous object allocation. We do
1044   // the check before we do the actual allocation. The reason for doing it
1045   // before the allocation is that we avoid having to keep track of the newly
1046   // allocated memory while we do a GC.
1047   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1048                                            word_size)) {
1049     collect(GCCause::_g1_humongous_allocation);
1050   }
1051 
1052   // We will loop until a) we manage to successfully perform the
1053   // allocation or b) we successfully schedule a collection which
1054   // fails to perform the allocation. b) is the only case when we'll
1055   // return NULL.
1056   HeapWord* result = NULL;
1057   for (int try_count = 1; /* we'll return */; try_count += 1) {
1058     bool should_try_gc;
1059     unsigned int gc_count_before;
1060 
1061     {
1062       MutexLockerEx x(Heap_lock);
1063 
1064       // Given that humongous objects are not allocated in young
1065       // regions, we'll first try to do the allocation without doing a
1066       // collection hoping that there's enough space in the heap.
1067       result = humongous_obj_allocate(word_size);
1068       if (result != NULL) {
1069         return result;
1070       }
1071 
1072       if (GC_locker::is_active_and_needs_gc()) {
1073         should_try_gc = false;
1074       } else {
1075          // The GCLocker may not be active but the GCLocker initiated
1076         // GC may not yet have been performed (GCLocker::needs_gc()
1077         // returns true). In this case we do not try this GC and
1078         // wait until the GCLocker initiated GC is performed, and
1079         // then retry the allocation.
1080         if (GC_locker::needs_gc()) {
1081           should_try_gc = false;
1082         } else {
1083           // Read the GC count while still holding the Heap_lock.
1084           gc_count_before = total_collections();
1085           should_try_gc = true;
1086         }
1087       }
1088     }
1089 
1090     if (should_try_gc) {
1091       // If we failed to allocate the humongous object, we should try to
1092       // do a collection pause (if we're allowed) in case it reclaims
1093       // enough space for the allocation to succeed after the pause.
1094 
1095       bool succeeded;
1096       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1097       if (result != NULL) {
1098         assert(succeeded, "only way to get back a non-NULL result");
1099         return result;
1100       }
1101 
1102       if (succeeded) {
1103         // If we get here we successfully scheduled a collection which
1104         // failed to allocate. No point in trying to allocate
1105         // further. We'll just return NULL.
1106         MutexLockerEx x(Heap_lock);
1107         *gc_count_before_ret = total_collections();
1108         return NULL;
1109       }
1110     } else {
1111       // The GCLocker is either active or the GCLocker initiated
1112       // GC has not yet been performed. Stall until it is and
1113       // then retry the allocation.
1114       GC_locker::stall_until_clear();
1115     }
1116 
1117     // We can reach here if we were unsuccessful in scheduling a
1118     // collection (because another thread beat us to it) or if we were
1119     // stalled due to the GC locker. In either can we should retry the
1120     // allocation attempt in case another thread successfully
1121     // performed a collection and reclaimed enough space.  Give a
1122     // warning if we seem to be looping forever.
1123 
1124     if ((QueuedAllocationWarningCount > 0) &&
1125         (try_count % QueuedAllocationWarningCount == 0)) {
1126       warning("G1CollectedHeap::attempt_allocation_humongous() "
1127               "retries %d times", try_count);
1128     }
1129   }
1130 
1131   ShouldNotReachHere();
1132   return NULL;
1133 }
1134 
1135 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1136                                        bool expect_null_mutator_alloc_region) {
1137   assert_at_safepoint(true /* should_be_vm_thread */);
1138   assert(_mutator_alloc_region.get() == NULL ||
1139                                              !expect_null_mutator_alloc_region,
1140          "the current alloc region was unexpectedly found to be non-NULL");
1141 
1142   if (!isHumongous(word_size)) {
1143     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1144                                                       false /* bot_updates */);
1145   } else {
1146     HeapWord* result = humongous_obj_allocate(word_size);
1147     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1148       g1_policy()->set_initiate_conc_mark_if_possible();
1149     }
1150     return result;
1151   }
1152 
1153   ShouldNotReachHere();
1154 }
1155 
1156 class PostMCRemSetClearClosure: public HeapRegionClosure {
1157   G1CollectedHeap* _g1h;
1158   ModRefBarrierSet* _mr_bs;
1159 public:
1160   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1161     _g1h(g1h), _mr_bs(mr_bs) { }
1162   bool doHeapRegion(HeapRegion* r) {
1163     if (r->continuesHumongous()) {
1164       return false;
1165     }
1166     _g1h->reset_gc_time_stamps(r);
1167     HeapRegionRemSet* hrrs = r->rem_set();
1168     if (hrrs != NULL) hrrs->clear();
1169     // You might think here that we could clear just the cards
1170     // corresponding to the used region.  But no: if we leave a dirty card
1171     // in a region we might allocate into, then it would prevent that card
1172     // from being enqueued, and cause it to be missed.
1173     // Re: the performance cost: we shouldn't be doing full GC anyway!
1174     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1175     return false;
1176   }
1177 };
1178 
1179 void G1CollectedHeap::clear_rsets_post_compaction() {
1180   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1181   heap_region_iterate(&rs_clear);
1182 }
1183 
1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1185   G1CollectedHeap*   _g1h;
1186   UpdateRSOopClosure _cl;
1187   int                _worker_i;
1188 public:
1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190     _cl(g1->g1_rem_set(), worker_i),
1191     _worker_i(worker_i),
1192     _g1h(g1)
1193   { }
1194 
1195   bool doHeapRegion(HeapRegion* r) {
1196     if (!r->continuesHumongous()) {
1197       _cl.set_from(r);
1198       r->oop_iterate(&_cl);
1199     }
1200     return false;
1201   }
1202 };
1203 
1204 class ParRebuildRSTask: public AbstractGangTask {
1205   G1CollectedHeap* _g1;
1206 public:
1207   ParRebuildRSTask(G1CollectedHeap* g1)
1208     : AbstractGangTask("ParRebuildRSTask"),
1209       _g1(g1)
1210   { }
1211 
1212   void work(uint worker_id) {
1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215                                           _g1->workers()->active_workers(),
1216                                          HeapRegion::RebuildRSClaimValue);
1217   }
1218 };
1219 
1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
1221 private:
1222   G1HRPrinter* _hr_printer;
1223 public:
1224   bool doHeapRegion(HeapRegion* hr) {
1225     assert(!hr->is_young(), "not expecting to find young regions");
1226     // We only generate output for non-empty regions.
1227     if (!hr->is_empty()) {
1228       if (!hr->isHumongous()) {
1229         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1230       } else if (hr->startsHumongous()) {
1231         if (hr->region_num() == 1) {
1232           // single humongous region
1233           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1234         } else {
1235           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1236         }
1237       } else {
1238         assert(hr->continuesHumongous(), "only way to get here");
1239         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1240       }
1241     }
1242     return false;
1243   }
1244 
1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1246     : _hr_printer(hr_printer) { }
1247 };
1248 
1249 void G1CollectedHeap::print_hrs_post_compaction() {
1250   PostCompactionPrinterClosure cl(hr_printer());
1251   heap_region_iterate(&cl);
1252 }
1253 
1254 double G1CollectedHeap::verify(bool guard, const char* msg) {
1255   double verify_time_ms = 0.0;
1256 
1257   if (guard && total_collections() >= VerifyGCStartAt) {
1258     double verify_start = os::elapsedTime();
1259     HandleMark hm;  // Discard invalid handles created during verification
1260     gclog_or_tty->print(msg);
1261     prepare_for_verify();
1262     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1263     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1264   }
1265 
1266   return verify_time_ms;
1267 }
1268 
1269 void G1CollectedHeap::verify_before_gc() {
1270   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1271   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1272 }
1273 
1274 void G1CollectedHeap::verify_after_gc() {
1275   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1276   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1277 }
1278 
1279 bool G1CollectedHeap::do_collection(bool explicit_gc,
1280                                     bool clear_all_soft_refs,
1281                                     size_t word_size) {
1282   assert_at_safepoint(true /* should_be_vm_thread */);
1283 
1284   if (GC_locker::check_active_before_gc()) {
1285     return false;
1286   }
1287 
1288   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1289   gc_timer->register_gc_start(os::elapsed_counter());
1290 
1291   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1292   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1293 
1294   SvcGCMarker sgcm(SvcGCMarker::FULL);
1295   ResourceMark rm;
1296 
1297   print_heap_before_gc();
1298   trace_heap_before_gc(gc_tracer);
1299 
1300   HRSPhaseSetter x(HRSPhaseFullGC);
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1314 
1315     {
1316       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1317       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1318       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1319 
1320       double start = os::elapsedTime();
1321       g1_policy()->record_full_collection_start();
1322 
1323       // Note: When we have a more flexible GC logging framework that
1324       // allows us to add optional attributes to a GC log record we
1325       // could consider timing and reporting how long we wait in the
1326       // following two methods.
1327       wait_while_free_regions_coming();
1328       // If we start the compaction before the CM threads finish
1329       // scanning the root regions we might trip them over as we'll
1330       // be moving objects / updating references. So let's wait until
1331       // they are done. By telling them to abort, they should complete
1332       // early.
1333       _cm->root_regions()->abort();
1334       _cm->root_regions()->wait_until_scan_finished();
1335       append_secondary_free_list_if_not_empty_with_lock();
1336 
1337       gc_prologue(true);
1338       increment_total_collections(true /* full gc */);
1339       increment_old_marking_cycles_started();
1340 
1341       assert(used() == recalculate_used(), "Should be equal");
1342 
1343       verify_before_gc();
1344 
1345       pre_full_gc_dump(gc_timer);
1346 
1347       COMPILER2_PRESENT(DerivedPointerTable::clear());
1348 
1349       // Disable discovery and empty the discovered lists
1350       // for the CM ref processor.
1351       ref_processor_cm()->disable_discovery();
1352       ref_processor_cm()->abandon_partial_discovery();
1353       ref_processor_cm()->verify_no_references_recorded();
1354 
1355       // Abandon current iterations of concurrent marking and concurrent
1356       // refinement, if any are in progress. We have to do this before
1357       // wait_until_scan_finished() below.
1358       concurrent_mark()->abort();
1359 
1360       // Make sure we'll choose a new allocation region afterwards.
1361       release_mutator_alloc_region();
1362       abandon_gc_alloc_regions();
1363       g1_rem_set()->cleanupHRRS();
1364 
1365       // We should call this after we retire any currently active alloc
1366       // regions so that all the ALLOC / RETIRE events are generated
1367       // before the start GC event.
1368       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1369 
1370       // We may have added regions to the current incremental collection
1371       // set between the last GC or pause and now. We need to clear the
1372       // incremental collection set and then start rebuilding it afresh
1373       // after this full GC.
1374       abandon_collection_set(g1_policy()->inc_cset_head());
1375       g1_policy()->clear_incremental_cset();
1376       g1_policy()->stop_incremental_cset_building();
1377 
1378       tear_down_region_sets(false /* free_list_only */);
1379       g1_policy()->set_gcs_are_young(true);
1380 
1381       // See the comments in g1CollectedHeap.hpp and
1382       // G1CollectedHeap::ref_processing_init() about
1383       // how reference processing currently works in G1.
1384 
1385       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1386       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1387 
1388       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1389       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1390 
1391       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1392       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1393 
1394       // Do collection work
1395       {
1396         HandleMark hm;  // Discard invalid handles created during gc
1397         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1398       }
1399 
1400       assert(free_regions() == 0, "we should not have added any free regions");
1401       rebuild_region_sets(false /* free_list_only */);
1402 
1403       // Enqueue any discovered reference objects that have
1404       // not been removed from the discovered lists.
1405       ref_processor_stw()->enqueue_discovered_references();
1406 
1407       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1408 
1409       MemoryService::track_memory_usage();
1410 
1411       verify_after_gc();
1412 
1413       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1414       ref_processor_stw()->verify_no_references_recorded();
1415 
1416       // Note: since we've just done a full GC, concurrent
1417       // marking is no longer active. Therefore we need not
1418       // re-enable reference discovery for the CM ref processor.
1419       // That will be done at the start of the next marking cycle.
1420       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1421       ref_processor_cm()->verify_no_references_recorded();
1422 
1423       reset_gc_time_stamp();
1424       // Since everything potentially moved, we will clear all remembered
1425       // sets, and clear all cards.  Later we will rebuild remembered
1426       // sets. We will also reset the GC time stamps of the regions.
1427       clear_rsets_post_compaction();
1428       check_gc_time_stamps();
1429 
1430       // Resize the heap if necessary.
1431       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1432 
1433       if (_hr_printer.is_active()) {
1434         // We should do this after we potentially resize the heap so
1435         // that all the COMMIT / UNCOMMIT events are generated before
1436         // the end GC event.
1437 
1438         print_hrs_post_compaction();
1439         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1440       }
1441 
1442       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1443       if (hot_card_cache->use_cache()) {
1444         hot_card_cache->reset_card_counts();
1445         hot_card_cache->reset_hot_cache();
1446       }
1447 
1448       // Rebuild remembered sets of all regions.
1449       if (G1CollectedHeap::use_parallel_gc_threads()) {
1450         uint n_workers =
1451           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1452                                                   workers()->active_workers(),
1453                                                   Threads::number_of_non_daemon_threads());
1454         assert(UseDynamicNumberOfGCThreads ||
1455                n_workers == workers()->total_workers(),
1456                "If not dynamic should be using all the  workers");
1457         workers()->set_active_workers(n_workers);
1458         // Set parallel threads in the heap (_n_par_threads) only
1459         // before a parallel phase and always reset it to 0 after
1460         // the phase so that the number of parallel threads does
1461         // no get carried forward to a serial phase where there
1462         // may be code that is "possibly_parallel".
1463         set_par_threads(n_workers);
1464 
1465         ParRebuildRSTask rebuild_rs_task(this);
1466         assert(check_heap_region_claim_values(
1467                HeapRegion::InitialClaimValue), "sanity check");
1468         assert(UseDynamicNumberOfGCThreads ||
1469                workers()->active_workers() == workers()->total_workers(),
1470                "Unless dynamic should use total workers");
1471         // Use the most recent number of  active workers
1472         assert(workers()->active_workers() > 0,
1473                "Active workers not properly set");
1474         set_par_threads(workers()->active_workers());
1475         workers()->run_task(&rebuild_rs_task);
1476         set_par_threads(0);
1477         assert(check_heap_region_claim_values(
1478                HeapRegion::RebuildRSClaimValue), "sanity check");
1479         reset_heap_region_claim_values();
1480       } else {
1481         RebuildRSOutOfRegionClosure rebuild_rs(this);
1482         heap_region_iterate(&rebuild_rs);
1483       }
1484 
1485       if (true) { // FIXME
1486         // Ask the permanent generation to adjust size for full collections
1487         perm()->compute_new_size();
1488       }
1489 
1490 #ifdef TRACESPINNING
1491       ParallelTaskTerminator::print_termination_counts();
1492 #endif
1493 
1494       // Discard all rset updates
1495       JavaThread::dirty_card_queue_set().abandon_logs();
1496       assert(!G1DeferredRSUpdate
1497              || (G1DeferredRSUpdate &&
1498                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1499 
1500       _young_list->reset_sampled_info();
1501       // At this point there should be no regions in the
1502       // entire heap tagged as young.
1503       assert(check_young_list_empty(true /* check_heap */),
1504              "young list should be empty at this point");
1505 
1506       // Update the number of full collections that have been completed.
1507       increment_old_marking_cycles_completed(false /* concurrent */);
1508 
1509       _hrs.verify_optional();
1510       verify_region_sets_optional();
1511 
1512       // Start a new incremental collection set for the next pause
1513       assert(g1_policy()->collection_set() == NULL, "must be");
1514       g1_policy()->start_incremental_cset_building();
1515 
1516       // Clear the _cset_fast_test bitmap in anticipation of adding
1517       // regions to the incremental collection set for the next
1518       // evacuation pause.
1519       clear_cset_fast_test();
1520 
1521       init_mutator_alloc_region();
1522 
1523       double end = os::elapsedTime();
1524       g1_policy()->record_full_collection_end();
1525 
1526       if (G1Log::fine()) {
1527         g1_policy()->print_heap_transition();
1528       }
1529 
1530       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1531       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1532       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1533       // before any GC notifications are raised.
1534       g1mm()->update_sizes();
1535 
1536       gc_epilogue(true);
1537     }
1538 
1539     if (G1Log::finer()) {
1540       g1_policy()->print_detailed_heap_transition();
1541     }
1542 
1543     print_heap_after_gc();
1544     trace_heap_after_gc(gc_tracer);
1545 
1546     post_full_gc_dump(gc_timer);
1547   }
1548 
1549   gc_timer->register_gc_end(os::elapsed_counter());
1550 
1551   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1552 
1553   return true;
1554 }
1555 
1556 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1557   // do_collection() will return whether it succeeded in performing
1558   // the GC. Currently, there is no facility on the
1559   // do_full_collection() API to notify the caller than the collection
1560   // did not succeed (e.g., because it was locked out by the GC
1561   // locker). So, right now, we'll ignore the return value.
1562   bool dummy = do_collection(true,                /* explicit_gc */
1563                              clear_all_soft_refs,
1564                              0                    /* word_size */);
1565 }
1566 
1567 // This code is mostly copied from TenuredGeneration.
1568 void
1569 G1CollectedHeap::
1570 resize_if_necessary_after_full_collection(size_t word_size) {
1571   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1572 
1573   // Include the current allocation, if any, and bytes that will be
1574   // pre-allocated to support collections, as "used".
1575   const size_t used_after_gc = used();
1576   const size_t capacity_after_gc = capacity();
1577   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1578 
1579   // This is enforced in arguments.cpp.
1580   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1581          "otherwise the code below doesn't make sense");
1582 
1583   // We don't have floating point command-line arguments
1584   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1585   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1586   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1587   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1588 
1589   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1590   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1591 
1592   // We have to be careful here as these two calculations can overflow
1593   // 32-bit size_t's.
1594   double used_after_gc_d = (double) used_after_gc;
1595   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1596   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1597 
1598   // Let's make sure that they are both under the max heap size, which
1599   // by default will make them fit into a size_t.
1600   double desired_capacity_upper_bound = (double) max_heap_size;
1601   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1602                                     desired_capacity_upper_bound);
1603   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1604                                     desired_capacity_upper_bound);
1605 
1606   // We can now safely turn them into size_t's.
1607   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1608   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1609 
1610   // This assert only makes sense here, before we adjust them
1611   // with respect to the min and max heap size.
1612   assert(minimum_desired_capacity <= maximum_desired_capacity,
1613          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1614                  "maximum_desired_capacity = "SIZE_FORMAT,
1615                  minimum_desired_capacity, maximum_desired_capacity));
1616 
1617   // Should not be greater than the heap max size. No need to adjust
1618   // it with respect to the heap min size as it's a lower bound (i.e.,
1619   // we'll try to make the capacity larger than it, not smaller).
1620   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1621   // Should not be less than the heap min size. No need to adjust it
1622   // with respect to the heap max size as it's an upper bound (i.e.,
1623   // we'll try to make the capacity smaller than it, not greater).
1624   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1625 
1626   if (capacity_after_gc < minimum_desired_capacity) {
1627     // Don't expand unless it's significant
1628     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1629     ergo_verbose4(ErgoHeapSizing,
1630                   "attempt heap expansion",
1631                   ergo_format_reason("capacity lower than "
1632                                      "min desired capacity after Full GC")
1633                   ergo_format_byte("capacity")
1634                   ergo_format_byte("occupancy")
1635                   ergo_format_byte_perc("min desired capacity"),
1636                   capacity_after_gc, used_after_gc,
1637                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1638     expand(expand_bytes);
1639 
1640     // No expansion, now see if we want to shrink
1641   } else if (capacity_after_gc > maximum_desired_capacity) {
1642     // Capacity too large, compute shrinking size
1643     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1644     ergo_verbose4(ErgoHeapSizing,
1645                   "attempt heap shrinking",
1646                   ergo_format_reason("capacity higher than "
1647                                      "max desired capacity after Full GC")
1648                   ergo_format_byte("capacity")
1649                   ergo_format_byte("occupancy")
1650                   ergo_format_byte_perc("max desired capacity"),
1651                   capacity_after_gc, used_after_gc,
1652                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1653     shrink(shrink_bytes);
1654   }
1655 }
1656 
1657 
1658 HeapWord*
1659 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1660                                            bool* succeeded) {
1661   assert_at_safepoint(true /* should_be_vm_thread */);
1662 
1663   *succeeded = true;
1664   // Let's attempt the allocation first.
1665   HeapWord* result =
1666     attempt_allocation_at_safepoint(word_size,
1667                                  false /* expect_null_mutator_alloc_region */);
1668   if (result != NULL) {
1669     assert(*succeeded, "sanity");
1670     return result;
1671   }
1672 
1673   // In a G1 heap, we're supposed to keep allocation from failing by
1674   // incremental pauses.  Therefore, at least for now, we'll favor
1675   // expansion over collection.  (This might change in the future if we can
1676   // do something smarter than full collection to satisfy a failed alloc.)
1677   result = expand_and_allocate(word_size);
1678   if (result != NULL) {
1679     assert(*succeeded, "sanity");
1680     return result;
1681   }
1682 
1683   // Expansion didn't work, we'll try to do a Full GC.
1684   bool gc_succeeded = do_collection(false, /* explicit_gc */
1685                                     false, /* clear_all_soft_refs */
1686                                     word_size);
1687   if (!gc_succeeded) {
1688     *succeeded = false;
1689     return NULL;
1690   }
1691 
1692   // Retry the allocation
1693   result = attempt_allocation_at_safepoint(word_size,
1694                                   true /* expect_null_mutator_alloc_region */);
1695   if (result != NULL) {
1696     assert(*succeeded, "sanity");
1697     return result;
1698   }
1699 
1700   // Then, try a Full GC that will collect all soft references.
1701   gc_succeeded = do_collection(false, /* explicit_gc */
1702                                true,  /* clear_all_soft_refs */
1703                                word_size);
1704   if (!gc_succeeded) {
1705     *succeeded = false;
1706     return NULL;
1707   }
1708 
1709   // Retry the allocation once more
1710   result = attempt_allocation_at_safepoint(word_size,
1711                                   true /* expect_null_mutator_alloc_region */);
1712   if (result != NULL) {
1713     assert(*succeeded, "sanity");
1714     return result;
1715   }
1716 
1717   assert(!collector_policy()->should_clear_all_soft_refs(),
1718          "Flag should have been handled and cleared prior to this point");
1719 
1720   // What else?  We might try synchronous finalization later.  If the total
1721   // space available is large enough for the allocation, then a more
1722   // complete compaction phase than we've tried so far might be
1723   // appropriate.
1724   assert(*succeeded, "sanity");
1725   return NULL;
1726 }
1727 
1728 // Attempting to expand the heap sufficiently
1729 // to support an allocation of the given "word_size".  If
1730 // successful, perform the allocation and return the address of the
1731 // allocated block, or else "NULL".
1732 
1733 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1734   assert_at_safepoint(true /* should_be_vm_thread */);
1735 
1736   verify_region_sets_optional();
1737 
1738   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1739   ergo_verbose1(ErgoHeapSizing,
1740                 "attempt heap expansion",
1741                 ergo_format_reason("allocation request failed")
1742                 ergo_format_byte("allocation request"),
1743                 word_size * HeapWordSize);
1744   if (expand(expand_bytes)) {
1745     _hrs.verify_optional();
1746     verify_region_sets_optional();
1747     return attempt_allocation_at_safepoint(word_size,
1748                                  false /* expect_null_mutator_alloc_region */);
1749   }
1750   return NULL;
1751 }
1752 
1753 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1754                                              HeapWord* new_end) {
1755   assert(old_end != new_end, "don't call this otherwise");
1756   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1757 
1758   // Update the committed mem region.
1759   _g1_committed.set_end(new_end);
1760   // Tell the card table about the update.
1761   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1762   // Tell the BOT about the update.
1763   _bot_shared->resize(_g1_committed.word_size());
1764   // Tell the hot card cache about the update
1765   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1766 }
1767 
1768 bool G1CollectedHeap::expand(size_t expand_bytes) {
1769   size_t old_mem_size = _g1_storage.committed_size();
1770   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1771   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1772                                        HeapRegion::GrainBytes);
1773   ergo_verbose2(ErgoHeapSizing,
1774                 "expand the heap",
1775                 ergo_format_byte("requested expansion amount")
1776                 ergo_format_byte("attempted expansion amount"),
1777                 expand_bytes, aligned_expand_bytes);
1778 
1779   // First commit the memory.
1780   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1781   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1782   if (successful) {
1783     // Then propagate this update to the necessary data structures.
1784     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1785     update_committed_space(old_end, new_end);
1786 
1787     FreeRegionList expansion_list("Local Expansion List");
1788     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1789     assert(mr.start() == old_end, "post-condition");
1790     // mr might be a smaller region than what was requested if
1791     // expand_by() was unable to allocate the HeapRegion instances
1792     assert(mr.end() <= new_end, "post-condition");
1793 
1794     size_t actual_expand_bytes = mr.byte_size();
1795     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1796     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1797            "post-condition");
1798     if (actual_expand_bytes < aligned_expand_bytes) {
1799       // We could not expand _hrs to the desired size. In this case we
1800       // need to shrink the committed space accordingly.
1801       assert(mr.end() < new_end, "invariant");
1802 
1803       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1804       // First uncommit the memory.
1805       _g1_storage.shrink_by(diff_bytes);
1806       // Then propagate this update to the necessary data structures.
1807       update_committed_space(new_end, mr.end());
1808     }
1809     _free_list.add_as_tail(&expansion_list);
1810 
1811     if (_hr_printer.is_active()) {
1812       HeapWord* curr = mr.start();
1813       while (curr < mr.end()) {
1814         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1815         _hr_printer.commit(curr, curr_end);
1816         curr = curr_end;
1817       }
1818       assert(curr == mr.end(), "post-condition");
1819     }
1820     g1_policy()->record_new_heap_size(n_regions());
1821   } else {
1822     ergo_verbose0(ErgoHeapSizing,
1823                   "did not expand the heap",
1824                   ergo_format_reason("heap expansion operation failed"));
1825     // The expansion of the virtual storage space was unsuccessful.
1826     // Let's see if it was because we ran out of swap.
1827     if (G1ExitOnExpansionFailure &&
1828         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1829       // We had head room...
1830       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1831     }
1832   }
1833   return successful;
1834 }
1835 
1836 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1837   size_t old_mem_size = _g1_storage.committed_size();
1838   size_t aligned_shrink_bytes =
1839     ReservedSpace::page_align_size_down(shrink_bytes);
1840   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1841                                          HeapRegion::GrainBytes);
1842   uint num_regions_deleted = 0;
1843   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1844   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1845   assert(mr.end() == old_end, "post-condition");
1846 
1847   ergo_verbose3(ErgoHeapSizing,
1848                 "shrink the heap",
1849                 ergo_format_byte("requested shrinking amount")
1850                 ergo_format_byte("aligned shrinking amount")
1851                 ergo_format_byte("attempted shrinking amount"),
1852                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1853   if (mr.byte_size() > 0) {
1854     if (_hr_printer.is_active()) {
1855       HeapWord* curr = mr.end();
1856       while (curr > mr.start()) {
1857         HeapWord* curr_end = curr;
1858         curr -= HeapRegion::GrainWords;
1859         _hr_printer.uncommit(curr, curr_end);
1860       }
1861       assert(curr == mr.start(), "post-condition");
1862     }
1863 
1864     _g1_storage.shrink_by(mr.byte_size());
1865     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1866     assert(mr.start() == new_end, "post-condition");
1867 
1868     _expansion_regions += num_regions_deleted;
1869     update_committed_space(old_end, new_end);
1870     HeapRegionRemSet::shrink_heap(n_regions());
1871     g1_policy()->record_new_heap_size(n_regions());
1872   } else {
1873     ergo_verbose0(ErgoHeapSizing,
1874                   "did not shrink the heap",
1875                   ergo_format_reason("heap shrinking operation failed"));
1876   }
1877 }
1878 
1879 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1880   verify_region_sets_optional();
1881 
1882   // We should only reach here at the end of a Full GC which means we
1883   // should not not be holding to any GC alloc regions. The method
1884   // below will make sure of that and do any remaining clean up.
1885   abandon_gc_alloc_regions();
1886 
1887   // Instead of tearing down / rebuilding the free lists here, we
1888   // could instead use the remove_all_pending() method on free_list to
1889   // remove only the ones that we need to remove.
1890   tear_down_region_sets(true /* free_list_only */);
1891   shrink_helper(shrink_bytes);
1892   rebuild_region_sets(true /* free_list_only */);
1893 
1894   _hrs.verify_optional();
1895   verify_region_sets_optional();
1896 }
1897 
1898 // Public methods.
1899 
1900 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1901 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1902 #endif // _MSC_VER
1903 
1904 
1905 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1906   SharedHeap(policy_),
1907   _g1_policy(policy_),
1908   _dirty_card_queue_set(false),
1909   _into_cset_dirty_card_queue_set(false),
1910   _is_alive_closure_cm(this),
1911   _is_alive_closure_stw(this),
1912   _ref_processor_cm(NULL),
1913   _ref_processor_stw(NULL),
1914   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1915   _bot_shared(NULL),
1916   _evac_failure_scan_stack(NULL),
1917   _mark_in_progress(false),
1918   _cg1r(NULL), _summary_bytes_used(0),
1919   _g1mm(NULL),
1920   _refine_cte_cl(NULL),
1921   _full_collection(false),
1922   _free_list("Master Free List"),
1923   _secondary_free_list("Secondary Free List"),
1924   _old_set("Old Set"),
1925   _humongous_set("Master Humongous Set"),
1926   _free_regions_coming(false),
1927   _young_list(new YoungList(this)),
1928   _gc_time_stamp(0),
1929   _retained_old_gc_alloc_region(NULL),
1930   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1931   _old_plab_stats(OldPLABSize, PLABWeight),
1932   _expand_heap_after_alloc_failure(true),
1933   _surviving_young_words(NULL),
1934   _old_marking_cycles_started(0),
1935   _old_marking_cycles_completed(0),
1936   _concurrent_cycle_started(false),
1937   _in_cset_fast_test(NULL),
1938   _in_cset_fast_test_base(NULL),
1939   _dirty_cards_region_list(NULL),
1940   _worker_cset_start_region(NULL),
1941   _worker_cset_start_region_time_stamp(NULL),
1942   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1943   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1944   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1945   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1946 
1947   _g1h = this;
1948   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1949     vm_exit_during_initialization("Failed necessary allocation.");
1950   }
1951 
1952   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1953 
1954   int n_queues = MAX2((int)ParallelGCThreads, 1);
1955   _task_queues = new RefToScanQueueSet(n_queues);
1956 
1957   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1958   assert(n_rem_sets > 0, "Invariant.");
1959 
1960   HeapRegionRemSetIterator** iter_arr = NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1961   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1962   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1963   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1964 
1965   for (int i = 0; i < n_queues; i++) {
1966     RefToScanQueue* q = new RefToScanQueue();
1967     q->initialize();
1968     _task_queues->register_queue(i, q);
1969     iter_arr[i] = new HeapRegionRemSetIterator();
1970     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1971   }
1972   _rem_set_iterator = iter_arr;
1973 
1974   clear_cset_start_regions();
1975 
1976   // Initialize the G1EvacuationFailureALot counters and flags.
1977   NOT_PRODUCT(reset_evacuation_should_fail();)
1978 
1979   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1980 }
1981 
1982 jint G1CollectedHeap::initialize() {
1983   CollectedHeap::pre_initialize();
1984   os::enable_vtime();
1985 
1986   G1Log::init();
1987 
1988   // Necessary to satisfy locking discipline assertions.
1989 
1990   MutexLocker x(Heap_lock);
1991 
1992   // We have to initialize the printer before committing the heap, as
1993   // it will be used then.
1994   _hr_printer.set_active(G1PrintHeapRegions);
1995 
1996   // While there are no constraints in the GC code that HeapWordSize
1997   // be any particular value, there are multiple other areas in the
1998   // system which believe this to be true (e.g. oop->object_size in some
1999   // cases incorrectly returns the size in wordSize units rather than
2000   // HeapWordSize).
2001   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2002 
2003   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2004   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2005 
2006   // Ensure that the sizes are properly aligned.
2007   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2008   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2009 
2010   _cg1r = new ConcurrentG1Refine(this);
2011 
2012   // Reserve the maximum.
2013   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
2014   // Includes the perm-gen.
2015 
2016   // When compressed oops are enabled, the preferred heap base
2017   // is calculated by subtracting the requested size from the
2018   // 32Gb boundary and using the result as the base address for
2019   // heap reservation. If the requested size is not aligned to
2020   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2021   // into the ReservedHeapSpace constructor) then the actual
2022   // base of the reserved heap may end up differing from the
2023   // address that was requested (i.e. the preferred heap base).
2024   // If this happens then we could end up using a non-optimal
2025   // compressed oops mode.
2026 
2027   // Since max_byte_size is aligned to the size of a heap region (checked
2028   // above), we also need to align the perm gen size as it might not be.
2029   size_t total_reserved = 0;
2030 
2031   total_reserved = add_and_check_overflow(total_reserved, max_byte_size);
2032   size_t pg_max_size = (size_t) align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
2033   total_reserved = add_and_check_overflow(total_reserved, pg_max_size);
2034 
2035   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
2036 
2037   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
2038 
2039   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
2040                             UseLargePages, addr);
2041 
2042   if (UseCompressedOops) {
2043     if (addr != NULL && !heap_rs.is_reserved()) {
2044       // Failed to reserve at specified address - the requested memory
2045       // region is taken already, for example, by 'java' launcher.
2046       // Try again to reserver heap higher.
2047       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
2048 
2049       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2050                                  UseLargePages, addr);
2051 
2052       if (addr != NULL && !heap_rs0.is_reserved()) {
2053         // Failed to reserve at specified address again - give up.
2054         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
2055         assert(addr == NULL, "");
2056 
2057         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2058                                    UseLargePages, addr);
2059         heap_rs = heap_rs1;
2060       } else {
2061         heap_rs = heap_rs0;
2062       }
2063     }
2064   }
2065 
2066   if (!heap_rs.is_reserved()) {
2067     vm_exit_during_initialization("Could not reserve enough space for object heap");
2068     return JNI_ENOMEM;
2069   }
2070 
2071   // It is important to do this in a way such that concurrent readers can't
2072   // temporarily think something is in the heap.  (I've actually seen this
2073   // happen in asserts: DLD.)
2074   _reserved.set_word_size(0);
2075   _reserved.set_start((HeapWord*)heap_rs.base());
2076   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2077 
2078   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2079 
2080   // Create the gen rem set (and barrier set) for the entire reserved region.
2081   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2082   set_barrier_set(rem_set()->bs());
2083   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2084     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2085   } else {
2086     vm_exit_during_initialization("G1 requires a mod ref bs.");
2087     return JNI_ENOMEM;
2088   }
2089 
2090   // Also create a G1 rem set.
2091   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2092     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2093   } else {
2094     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2095     return JNI_ENOMEM;
2096   }
2097 
2098   // Carve out the G1 part of the heap.
2099 
2100   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2101   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2102                            g1_rs.size()/HeapWordSize);
2103   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2104 
2105   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2106 
2107   _g1_storage.initialize(g1_rs, 0);
2108   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2109   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2110                   (HeapWord*) _g1_reserved.end(),
2111                   _expansion_regions);
2112 
2113   // Do later initialization work for concurrent refinement.
2114   _cg1r->init();
2115 
2116   // 6843694 - ensure that the maximum region index can fit
2117   // in the remembered set structures.
2118   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2119   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2120 
2121   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2122   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2123   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2124             "too many cards per region");
2125 
2126   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2127 
2128   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2129                                              heap_word_size(init_byte_size));
2130 
2131   _g1h = this;
2132 
2133   _in_cset_fast_test_length = max_regions();
2134   _in_cset_fast_test_base =
2135                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2136 
2137   // We're biasing _in_cset_fast_test to avoid subtracting the
2138   // beginning of the heap every time we want to index; basically
2139   // it's the same with what we do with the card table.
2140   _in_cset_fast_test = _in_cset_fast_test_base -
2141                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2142 
2143   // Clear the _cset_fast_test bitmap in anticipation of adding
2144   // regions to the incremental collection set for the first
2145   // evacuation pause.
2146   clear_cset_fast_test();
2147 
2148   // Create the ConcurrentMark data structure and thread.
2149   // (Must do this late, so that "max_regions" is defined.)
2150   _cm       = new ConcurrentMark(heap_rs, max_regions());
2151   _cmThread = _cm->cmThread();
2152 
2153   // Initialize the from_card cache structure of HeapRegionRemSet.
2154   HeapRegionRemSet::init_heap(max_regions());
2155 
2156   // Now expand into the initial heap size.
2157   if (!expand(init_byte_size)) {
2158     vm_exit_during_initialization("Failed to allocate initial heap.");
2159     return JNI_ENOMEM;
2160   }
2161 
2162   // Perform any initialization actions delegated to the policy.
2163   g1_policy()->init();
2164 
2165   _refine_cte_cl =
2166     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2167                                     g1_rem_set(),
2168                                     concurrent_g1_refine());
2169   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2170 
2171   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2172                                                SATB_Q_FL_lock,
2173                                                G1SATBProcessCompletedThreshold,
2174                                                Shared_SATB_Q_lock);
2175 
2176   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2177                                                 DirtyCardQ_FL_lock,
2178                                                 concurrent_g1_refine()->yellow_zone(),
2179                                                 concurrent_g1_refine()->red_zone(),
2180                                                 Shared_DirtyCardQ_lock);
2181 
2182   if (G1DeferredRSUpdate) {
2183     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2184                                       DirtyCardQ_FL_lock,
2185                                       -1, // never trigger processing
2186                                       -1, // no limit on length
2187                                       Shared_DirtyCardQ_lock,
2188                                       &JavaThread::dirty_card_queue_set());
2189   }
2190 
2191   // Initialize the card queue set used to hold cards containing
2192   // references into the collection set.
2193   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2194                                              DirtyCardQ_FL_lock,
2195                                              -1, // never trigger processing
2196                                              -1, // no limit on length
2197                                              Shared_DirtyCardQ_lock,
2198                                              &JavaThread::dirty_card_queue_set());
2199 
2200   // In case we're keeping closure specialization stats, initialize those
2201   // counts and that mechanism.
2202   SpecializationStats::clear();
2203 
2204   // Here we allocate the dummy full region that is required by the
2205   // G1AllocRegion class. If we don't pass an address in the reserved
2206   // space here, lots of asserts fire.
2207 
2208   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2209                                              _g1_reserved.start());
2210   // We'll re-use the same region whether the alloc region will
2211   // require BOT updates or not and, if it doesn't, then a non-young
2212   // region will complain that it cannot support allocations without
2213   // BOT updates. So we'll tag the dummy region as young to avoid that.
2214   dummy_region->set_young();
2215   // Make sure it's full.
2216   dummy_region->set_top(dummy_region->end());
2217   G1AllocRegion::setup(this, dummy_region);
2218 
2219   init_mutator_alloc_region();
2220 
2221   // Do create of the monitoring and management support so that
2222   // values in the heap have been properly initialized.
2223   _g1mm = new G1MonitoringSupport(this);
2224 
2225   return JNI_OK;
2226 }
2227 
2228 void G1CollectedHeap::ref_processing_init() {
2229   // Reference processing in G1 currently works as follows:
2230   //
2231   // * There are two reference processor instances. One is
2232   //   used to record and process discovered references
2233   //   during concurrent marking; the other is used to
2234   //   record and process references during STW pauses
2235   //   (both full and incremental).
2236   // * Both ref processors need to 'span' the entire heap as
2237   //   the regions in the collection set may be dotted around.
2238   //
2239   // * For the concurrent marking ref processor:
2240   //   * Reference discovery is enabled at initial marking.
2241   //   * Reference discovery is disabled and the discovered
2242   //     references processed etc during remarking.
2243   //   * Reference discovery is MT (see below).
2244   //   * Reference discovery requires a barrier (see below).
2245   //   * Reference processing may or may not be MT
2246   //     (depending on the value of ParallelRefProcEnabled
2247   //     and ParallelGCThreads).
2248   //   * A full GC disables reference discovery by the CM
2249   //     ref processor and abandons any entries on it's
2250   //     discovered lists.
2251   //
2252   // * For the STW processor:
2253   //   * Non MT discovery is enabled at the start of a full GC.
2254   //   * Processing and enqueueing during a full GC is non-MT.
2255   //   * During a full GC, references are processed after marking.
2256   //
2257   //   * Discovery (may or may not be MT) is enabled at the start
2258   //     of an incremental evacuation pause.
2259   //   * References are processed near the end of a STW evacuation pause.
2260   //   * For both types of GC:
2261   //     * Discovery is atomic - i.e. not concurrent.
2262   //     * Reference discovery will not need a barrier.
2263 
2264   SharedHeap::ref_processing_init();
2265   MemRegion mr = reserved_region();
2266 
2267   // Concurrent Mark ref processor
2268   _ref_processor_cm =
2269     new ReferenceProcessor(mr,    // span
2270                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2271                                 // mt processing
2272                            (int) ParallelGCThreads,
2273                                 // degree of mt processing
2274                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2275                                 // mt discovery
2276                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2277                                 // degree of mt discovery
2278                            false,
2279                                 // Reference discovery is not atomic
2280                            &_is_alive_closure_cm,
2281                                 // is alive closure
2282                                 // (for efficiency/performance)
2283                            true);
2284                                 // Setting next fields of discovered
2285                                 // lists requires a barrier.
2286 
2287   // STW ref processor
2288   _ref_processor_stw =
2289     new ReferenceProcessor(mr,    // span
2290                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2291                                 // mt processing
2292                            MAX2((int)ParallelGCThreads, 1),
2293                                 // degree of mt processing
2294                            (ParallelGCThreads > 1),
2295                                 // mt discovery
2296                            MAX2((int)ParallelGCThreads, 1),
2297                                 // degree of mt discovery
2298                            true,
2299                                 // Reference discovery is atomic
2300                            &_is_alive_closure_stw,
2301                                 // is alive closure
2302                                 // (for efficiency/performance)
2303                            false);
2304                                 // Setting next fields of discovered
2305                                 // lists requires a barrier.
2306 }
2307 
2308 size_t G1CollectedHeap::capacity() const {
2309   return _g1_committed.byte_size();
2310 }
2311 
2312 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2313   assert(!hr->continuesHumongous(), "pre-condition");
2314   hr->reset_gc_time_stamp();
2315   if (hr->startsHumongous()) {
2316     uint first_index = hr->hrs_index() + 1;
2317     uint last_index = hr->last_hc_index();
2318     for (uint i = first_index; i < last_index; i += 1) {
2319       HeapRegion* chr = region_at(i);
2320       assert(chr->continuesHumongous(), "sanity");
2321       chr->reset_gc_time_stamp();
2322     }
2323   }
2324 }
2325 
2326 #ifndef PRODUCT
2327 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2328 private:
2329   unsigned _gc_time_stamp;
2330   bool _failures;
2331 
2332 public:
2333   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2334     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2335 
2336   virtual bool doHeapRegion(HeapRegion* hr) {
2337     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2338     if (_gc_time_stamp != region_gc_time_stamp) {
2339       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2340                              "expected %d", HR_FORMAT_PARAMS(hr),
2341                              region_gc_time_stamp, _gc_time_stamp);
2342       _failures = true;
2343     }
2344     return false;
2345   }
2346 
2347   bool failures() { return _failures; }
2348 };
2349 
2350 void G1CollectedHeap::check_gc_time_stamps() {
2351   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2352   heap_region_iterate(&cl);
2353   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2354 }
2355 #endif // PRODUCT
2356 
2357 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2358                                                  DirtyCardQueue* into_cset_dcq,
2359                                                  bool concurrent,
2360                                                  int worker_i) {
2361   // Clean cards in the hot card cache
2362   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2363   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2364 
2365   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2366   int n_completed_buffers = 0;
2367   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2368     n_completed_buffers++;
2369   }
2370   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2371   dcqs.clear_n_completed_buffers();
2372   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2373 }
2374 
2375 
2376 // Computes the sum of the storage used by the various regions.
2377 
2378 size_t G1CollectedHeap::used() const {
2379   assert(Heap_lock->owner() != NULL,
2380          "Should be owned on this thread's behalf.");
2381   size_t result = _summary_bytes_used;
2382   // Read only once in case it is set to NULL concurrently
2383   HeapRegion* hr = _mutator_alloc_region.get();
2384   if (hr != NULL)
2385     result += hr->used();
2386   return result;
2387 }
2388 
2389 size_t G1CollectedHeap::used_unlocked() const {
2390   size_t result = _summary_bytes_used;
2391   return result;
2392 }
2393 
2394 class SumUsedClosure: public HeapRegionClosure {
2395   size_t _used;
2396 public:
2397   SumUsedClosure() : _used(0) {}
2398   bool doHeapRegion(HeapRegion* r) {
2399     if (!r->continuesHumongous()) {
2400       _used += r->used();
2401     }
2402     return false;
2403   }
2404   size_t result() { return _used; }
2405 };
2406 
2407 size_t G1CollectedHeap::recalculate_used() const {
2408   SumUsedClosure blk;
2409   heap_region_iterate(&blk);
2410   return blk.result();
2411 }
2412 
2413 size_t G1CollectedHeap::unsafe_max_alloc() {
2414   if (free_regions() > 0) return HeapRegion::GrainBytes;
2415   // otherwise, is there space in the current allocation region?
2416 
2417   // We need to store the current allocation region in a local variable
2418   // here. The problem is that this method doesn't take any locks and
2419   // there may be other threads which overwrite the current allocation
2420   // region field. attempt_allocation(), for example, sets it to NULL
2421   // and this can happen *after* the NULL check here but before the call
2422   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2423   // to be a problem in the optimized build, since the two loads of the
2424   // current allocation region field are optimized away.
2425   HeapRegion* hr = _mutator_alloc_region.get();
2426   if (hr == NULL) {
2427     return 0;
2428   }
2429   return hr->free();
2430 }
2431 
2432 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2433   switch (cause) {
2434     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2435     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2436     case GCCause::_g1_humongous_allocation: return true;
2437     default:                                return false;
2438   }
2439 }
2440 
2441 #ifndef PRODUCT
2442 void G1CollectedHeap::allocate_dummy_regions() {
2443   // Let's fill up most of the region
2444   size_t word_size = HeapRegion::GrainWords - 1024;
2445   // And as a result the region we'll allocate will be humongous.
2446   guarantee(isHumongous(word_size), "sanity");
2447 
2448   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2449     // Let's use the existing mechanism for the allocation
2450     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2451     if (dummy_obj != NULL) {
2452       MemRegion mr(dummy_obj, word_size);
2453       CollectedHeap::fill_with_object(mr);
2454     } else {
2455       // If we can't allocate once, we probably cannot allocate
2456       // again. Let's get out of the loop.
2457       break;
2458     }
2459   }
2460 }
2461 #endif // !PRODUCT
2462 
2463 void G1CollectedHeap::increment_old_marking_cycles_started() {
2464   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2465     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2466     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2467     _old_marking_cycles_started, _old_marking_cycles_completed));
2468 
2469   _old_marking_cycles_started++;
2470 }
2471 
2472 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2473   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2474 
2475   // We assume that if concurrent == true, then the caller is a
2476   // concurrent thread that was joined the Suspendible Thread
2477   // Set. If there's ever a cheap way to check this, we should add an
2478   // assert here.
2479 
2480   // Given that this method is called at the end of a Full GC or of a
2481   // concurrent cycle, and those can be nested (i.e., a Full GC can
2482   // interrupt a concurrent cycle), the number of full collections
2483   // completed should be either one (in the case where there was no
2484   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2485   // behind the number of full collections started.
2486 
2487   // This is the case for the inner caller, i.e. a Full GC.
2488   assert(concurrent ||
2489          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2490          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2491          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2492                  "is inconsistent with _old_marking_cycles_completed = %u",
2493                  _old_marking_cycles_started, _old_marking_cycles_completed));
2494 
2495   // This is the case for the outer caller, i.e. the concurrent cycle.
2496   assert(!concurrent ||
2497          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2498          err_msg("for outer caller (concurrent cycle): "
2499                  "_old_marking_cycles_started = %u "
2500                  "is inconsistent with _old_marking_cycles_completed = %u",
2501                  _old_marking_cycles_started, _old_marking_cycles_completed));
2502 
2503   _old_marking_cycles_completed += 1;
2504 
2505   // We need to clear the "in_progress" flag in the CM thread before
2506   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2507   // is set) so that if a waiter requests another System.gc() it doesn't
2508   // incorrectly see that a marking cycle is still in progress.
2509   if (concurrent) {
2510     _cmThread->clear_in_progress();
2511   }
2512 
2513   // This notify_all() will ensure that a thread that called
2514   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2515   // and it's waiting for a full GC to finish will be woken up. It is
2516   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2517   FullGCCount_lock->notify_all();
2518 }
2519 
2520 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2521   _concurrent_cycle_started = true;
2522   _gc_timer_cm->register_gc_start(start_time);
2523 
2524   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2525   trace_heap_before_gc(_gc_tracer_cm);
2526 }
2527 
2528 void G1CollectedHeap::register_concurrent_cycle_end() {
2529   if (_concurrent_cycle_started) {
2530     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2531 
2532     if (_cm->has_aborted()) {
2533       _gc_tracer_cm->report_concurrent_mode_failure();
2534     }
2535     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2536 
2537     _concurrent_cycle_started = false;
2538   }
2539 }
2540 
2541 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2542   if (_concurrent_cycle_started) {
2543     trace_heap_after_gc(_gc_tracer_cm);
2544   }
2545 }
2546 
2547 G1YCType G1CollectedHeap::yc_type() {
2548   bool is_young = g1_policy()->gcs_are_young();
2549   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2550   bool is_during_mark = mark_in_progress();
2551 
2552   if (is_initial_mark) {
2553     return InitialMark;
2554   } else if (is_during_mark) {
2555     return DuringMark;
2556   } else if (is_young) {
2557     return Normal;
2558   } else {
2559     return Mixed;
2560   }
2561 }
2562 
2563 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2564   assert_at_safepoint(true /* should_be_vm_thread */);
2565   GCCauseSetter gcs(this, cause);
2566   switch (cause) {
2567     case GCCause::_heap_inspection:
2568     case GCCause::_heap_dump: {
2569       HandleMark hm;
2570       do_full_collection(false);         // don't clear all soft refs
2571       break;
2572     }
2573     default: // XXX FIX ME
2574       ShouldNotReachHere(); // Unexpected use of this function
2575   }
2576 }
2577 
2578 void G1CollectedHeap::collect(GCCause::Cause cause) {
2579   assert_heap_not_locked();
2580 
2581   unsigned int gc_count_before;
2582   unsigned int old_marking_count_before;
2583   bool retry_gc;
2584 
2585   do {
2586     retry_gc = false;
2587 
2588     {
2589       MutexLocker ml(Heap_lock);
2590 
2591       // Read the GC count while holding the Heap_lock
2592       gc_count_before = total_collections();
2593       old_marking_count_before = _old_marking_cycles_started;
2594     }
2595 
2596     if (should_do_concurrent_full_gc(cause)) {
2597       // Schedule an initial-mark evacuation pause that will start a
2598       // concurrent cycle. We're setting word_size to 0 which means that
2599       // we are not requesting a post-GC allocation.
2600       VM_G1IncCollectionPause op(gc_count_before,
2601                                  0,     /* word_size */
2602                                  true,  /* should_initiate_conc_mark */
2603                                  g1_policy()->max_pause_time_ms(),
2604                                  cause);
2605 
2606       VMThread::execute(&op);
2607       if (!op.pause_succeeded()) {
2608         if (old_marking_count_before == _old_marking_cycles_started) {
2609           retry_gc = op.should_retry_gc();
2610         } else {
2611           // A Full GC happened while we were trying to schedule the
2612           // initial-mark GC. No point in starting a new cycle given
2613           // that the whole heap was collected anyway.
2614         }
2615 
2616         if (retry_gc) {
2617           if (GC_locker::is_active_and_needs_gc()) {
2618             GC_locker::stall_until_clear();
2619           }
2620         }
2621       }
2622     } else {
2623       if (cause == GCCause::_gc_locker
2624           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2625 
2626         // Schedule a standard evacuation pause. We're setting word_size
2627         // to 0 which means that we are not requesting a post-GC allocation.
2628         VM_G1IncCollectionPause op(gc_count_before,
2629                                    0,     /* word_size */
2630                                    false, /* should_initiate_conc_mark */
2631                                    g1_policy()->max_pause_time_ms(),
2632                                    cause);
2633         VMThread::execute(&op);
2634       } else {
2635         // Schedule a Full GC.
2636         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2637         VMThread::execute(&op);
2638       }
2639     }
2640   } while (retry_gc);
2641 }
2642 
2643 bool G1CollectedHeap::is_in(const void* p) const {
2644   if (_g1_committed.contains(p)) {
2645     // Given that we know that p is in the committed space,
2646     // heap_region_containing_raw() should successfully
2647     // return the containing region.
2648     HeapRegion* hr = heap_region_containing_raw(p);
2649     return hr->is_in(p);
2650   } else {
2651     return _perm_gen->as_gen()->is_in(p);
2652   }
2653 }
2654 
2655 // Iteration functions.
2656 
2657 // Iterates an OopClosure over all ref-containing fields of objects
2658 // within a HeapRegion.
2659 
2660 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2661   MemRegion _mr;
2662   OopClosure* _cl;
2663 public:
2664   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2665     : _mr(mr), _cl(cl) {}
2666   bool doHeapRegion(HeapRegion* r) {
2667     if (!r->continuesHumongous()) {
2668       r->oop_iterate(_cl);
2669     }
2670     return false;
2671   }
2672 };
2673 
2674 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2675   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2676   heap_region_iterate(&blk);
2677   if (do_perm) {
2678     perm_gen()->oop_iterate(cl);
2679   }
2680 }
2681 
2682 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2683   IterateOopClosureRegionClosure blk(mr, cl);
2684   heap_region_iterate(&blk);
2685   if (do_perm) {
2686     perm_gen()->oop_iterate(cl);
2687   }
2688 }
2689 
2690 // Iterates an ObjectClosure over all objects within a HeapRegion.
2691 
2692 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2693   ObjectClosure* _cl;
2694 public:
2695   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2696   bool doHeapRegion(HeapRegion* r) {
2697     if (! r->continuesHumongous()) {
2698       r->object_iterate(_cl);
2699     }
2700     return false;
2701   }
2702 };
2703 
2704 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2705   IterateObjectClosureRegionClosure blk(cl);
2706   heap_region_iterate(&blk);
2707   if (do_perm) {
2708     perm_gen()->object_iterate(cl);
2709   }
2710 }
2711 
2712 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2713   // FIXME: is this right?
2714   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2715 }
2716 
2717 // Calls a SpaceClosure on a HeapRegion.
2718 
2719 class SpaceClosureRegionClosure: public HeapRegionClosure {
2720   SpaceClosure* _cl;
2721 public:
2722   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2723   bool doHeapRegion(HeapRegion* r) {
2724     _cl->do_space(r);
2725     return false;
2726   }
2727 };
2728 
2729 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2730   SpaceClosureRegionClosure blk(cl);
2731   heap_region_iterate(&blk);
2732 }
2733 
2734 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2735   _hrs.iterate(cl);
2736 }
2737 
2738 void
2739 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2740                                                  uint worker_id,
2741                                                  uint no_of_par_workers,
2742                                                  jint claim_value) {
2743   const uint regions = n_regions();
2744   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2745                              no_of_par_workers :
2746                              1);
2747   assert(UseDynamicNumberOfGCThreads ||
2748          no_of_par_workers == workers()->total_workers(),
2749          "Non dynamic should use fixed number of workers");
2750   // try to spread out the starting points of the workers
2751   const HeapRegion* start_hr =
2752                         start_region_for_worker(worker_id, no_of_par_workers);
2753   const uint start_index = start_hr->hrs_index();
2754 
2755   // each worker will actually look at all regions
2756   for (uint count = 0; count < regions; ++count) {
2757     const uint index = (start_index + count) % regions;
2758     assert(0 <= index && index < regions, "sanity");
2759     HeapRegion* r = region_at(index);
2760     // we'll ignore "continues humongous" regions (we'll process them
2761     // when we come across their corresponding "start humongous"
2762     // region) and regions already claimed
2763     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2764       continue;
2765     }
2766     // OK, try to claim it
2767     if (r->claimHeapRegion(claim_value)) {
2768       // success!
2769       assert(!r->continuesHumongous(), "sanity");
2770       if (r->startsHumongous()) {
2771         // If the region is "starts humongous" we'll iterate over its
2772         // "continues humongous" first; in fact we'll do them
2773         // first. The order is important. In on case, calling the
2774         // closure on the "starts humongous" region might de-allocate
2775         // and clear all its "continues humongous" regions and, as a
2776         // result, we might end up processing them twice. So, we'll do
2777         // them first (notice: most closures will ignore them anyway) and
2778         // then we'll do the "starts humongous" region.
2779         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2780           HeapRegion* chr = region_at(ch_index);
2781 
2782           // if the region has already been claimed or it's not
2783           // "continues humongous" we're done
2784           if (chr->claim_value() == claim_value ||
2785               !chr->continuesHumongous()) {
2786             break;
2787           }
2788 
2789           // Noone should have claimed it directly. We can given
2790           // that we claimed its "starts humongous" region.
2791           assert(chr->claim_value() != claim_value, "sanity");
2792           assert(chr->humongous_start_region() == r, "sanity");
2793 
2794           if (chr->claimHeapRegion(claim_value)) {
2795             // we should always be able to claim it; noone else should
2796             // be trying to claim this region
2797 
2798             bool res2 = cl->doHeapRegion(chr);
2799             assert(!res2, "Should not abort");
2800 
2801             // Right now, this holds (i.e., no closure that actually
2802             // does something with "continues humongous" regions
2803             // clears them). We might have to weaken it in the future,
2804             // but let's leave these two asserts here for extra safety.
2805             assert(chr->continuesHumongous(), "should still be the case");
2806             assert(chr->humongous_start_region() == r, "sanity");
2807           } else {
2808             guarantee(false, "we should not reach here");
2809           }
2810         }
2811       }
2812 
2813       assert(!r->continuesHumongous(), "sanity");
2814       bool res = cl->doHeapRegion(r);
2815       assert(!res, "Should not abort");
2816     }
2817   }
2818 }
2819 
2820 class ResetClaimValuesClosure: public HeapRegionClosure {
2821 public:
2822   bool doHeapRegion(HeapRegion* r) {
2823     r->set_claim_value(HeapRegion::InitialClaimValue);
2824     return false;
2825   }
2826 };
2827 
2828 void G1CollectedHeap::reset_heap_region_claim_values() {
2829   ResetClaimValuesClosure blk;
2830   heap_region_iterate(&blk);
2831 }
2832 
2833 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2834   ResetClaimValuesClosure blk;
2835   collection_set_iterate(&blk);
2836 }
2837 
2838 #ifdef ASSERT
2839 // This checks whether all regions in the heap have the correct claim
2840 // value. I also piggy-backed on this a check to ensure that the
2841 // humongous_start_region() information on "continues humongous"
2842 // regions is correct.
2843 
2844 class CheckClaimValuesClosure : public HeapRegionClosure {
2845 private:
2846   jint _claim_value;
2847   uint _failures;
2848   HeapRegion* _sh_region;
2849 
2850 public:
2851   CheckClaimValuesClosure(jint claim_value) :
2852     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2853   bool doHeapRegion(HeapRegion* r) {
2854     if (r->claim_value() != _claim_value) {
2855       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2856                              "claim value = %d, should be %d",
2857                              HR_FORMAT_PARAMS(r),
2858                              r->claim_value(), _claim_value);
2859       ++_failures;
2860     }
2861     if (!r->isHumongous()) {
2862       _sh_region = NULL;
2863     } else if (r->startsHumongous()) {
2864       _sh_region = r;
2865     } else if (r->continuesHumongous()) {
2866       if (r->humongous_start_region() != _sh_region) {
2867         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2868                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2869                                HR_FORMAT_PARAMS(r),
2870                                r->humongous_start_region(),
2871                                _sh_region);
2872         ++_failures;
2873       }
2874     }
2875     return false;
2876   }
2877   uint failures() { return _failures; }
2878 };
2879 
2880 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2881   CheckClaimValuesClosure cl(claim_value);
2882   heap_region_iterate(&cl);
2883   return cl.failures() == 0;
2884 }
2885 
2886 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2887 private:
2888   jint _claim_value;
2889   uint _failures;
2890 
2891 public:
2892   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2893     _claim_value(claim_value), _failures(0) { }
2894 
2895   uint failures() { return _failures; }
2896 
2897   bool doHeapRegion(HeapRegion* hr) {
2898     assert(hr->in_collection_set(), "how?");
2899     assert(!hr->isHumongous(), "H-region in CSet");
2900     if (hr->claim_value() != _claim_value) {
2901       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2902                              "claim value = %d, should be %d",
2903                              HR_FORMAT_PARAMS(hr),
2904                              hr->claim_value(), _claim_value);
2905       _failures += 1;
2906     }
2907     return false;
2908   }
2909 };
2910 
2911 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2912   CheckClaimValuesInCSetHRClosure cl(claim_value);
2913   collection_set_iterate(&cl);
2914   return cl.failures() == 0;
2915 }
2916 #endif // ASSERT
2917 
2918 // Clear the cached CSet starting regions and (more importantly)
2919 // the time stamps. Called when we reset the GC time stamp.
2920 void G1CollectedHeap::clear_cset_start_regions() {
2921   assert(_worker_cset_start_region != NULL, "sanity");
2922   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2923 
2924   int n_queues = MAX2((int)ParallelGCThreads, 1);
2925   for (int i = 0; i < n_queues; i++) {
2926     _worker_cset_start_region[i] = NULL;
2927     _worker_cset_start_region_time_stamp[i] = 0;
2928   }
2929 }
2930 
2931 // Given the id of a worker, obtain or calculate a suitable
2932 // starting region for iterating over the current collection set.
2933 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2934   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2935 
2936   HeapRegion* result = NULL;
2937   unsigned gc_time_stamp = get_gc_time_stamp();
2938 
2939   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2940     // Cached starting region for current worker was set
2941     // during the current pause - so it's valid.
2942     // Note: the cached starting heap region may be NULL
2943     // (when the collection set is empty).
2944     result = _worker_cset_start_region[worker_i];
2945     assert(result == NULL || result->in_collection_set(), "sanity");
2946     return result;
2947   }
2948 
2949   // The cached entry was not valid so let's calculate
2950   // a suitable starting heap region for this worker.
2951 
2952   // We want the parallel threads to start their collection
2953   // set iteration at different collection set regions to
2954   // avoid contention.
2955   // If we have:
2956   //          n collection set regions
2957   //          p threads
2958   // Then thread t will start at region floor ((t * n) / p)
2959 
2960   result = g1_policy()->collection_set();
2961   if (G1CollectedHeap::use_parallel_gc_threads()) {
2962     uint cs_size = g1_policy()->cset_region_length();
2963     uint active_workers = workers()->active_workers();
2964     assert(UseDynamicNumberOfGCThreads ||
2965              active_workers == workers()->total_workers(),
2966              "Unless dynamic should use total workers");
2967 
2968     uint end_ind   = (cs_size * worker_i) / active_workers;
2969     uint start_ind = 0;
2970 
2971     if (worker_i > 0 &&
2972         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2973       // Previous workers starting region is valid
2974       // so let's iterate from there
2975       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2976       result = _worker_cset_start_region[worker_i - 1];
2977     }
2978 
2979     for (uint i = start_ind; i < end_ind; i++) {
2980       result = result->next_in_collection_set();
2981     }
2982   }
2983 
2984   // Note: the calculated starting heap region may be NULL
2985   // (when the collection set is empty).
2986   assert(result == NULL || result->in_collection_set(), "sanity");
2987   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2988          "should be updated only once per pause");
2989   _worker_cset_start_region[worker_i] = result;
2990   OrderAccess::storestore();
2991   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2992   return result;
2993 }
2994 
2995 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2996                                                      uint no_of_par_workers) {
2997   uint worker_num =
2998            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2999   assert(UseDynamicNumberOfGCThreads ||
3000          no_of_par_workers == workers()->total_workers(),
3001          "Non dynamic should use fixed number of workers");
3002   const uint start_index = n_regions() * worker_i / worker_num;
3003   return region_at(start_index);
3004 }
3005 
3006 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
3007   HeapRegion* r = g1_policy()->collection_set();
3008   while (r != NULL) {
3009     HeapRegion* next = r->next_in_collection_set();
3010     if (cl->doHeapRegion(r)) {
3011       cl->incomplete();
3012       return;
3013     }
3014     r = next;
3015   }
3016 }
3017 
3018 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
3019                                                   HeapRegionClosure *cl) {
3020   if (r == NULL) {
3021     // The CSet is empty so there's nothing to do.
3022     return;
3023   }
3024 
3025   assert(r->in_collection_set(),
3026          "Start region must be a member of the collection set.");
3027   HeapRegion* cur = r;
3028   while (cur != NULL) {
3029     HeapRegion* next = cur->next_in_collection_set();
3030     if (cl->doHeapRegion(cur) && false) {
3031       cl->incomplete();
3032       return;
3033     }
3034     cur = next;
3035   }
3036   cur = g1_policy()->collection_set();
3037   while (cur != r) {
3038     HeapRegion* next = cur->next_in_collection_set();
3039     if (cl->doHeapRegion(cur) && false) {
3040       cl->incomplete();
3041       return;
3042     }
3043     cur = next;
3044   }
3045 }
3046 
3047 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
3048   return n_regions() > 0 ? region_at(0) : NULL;
3049 }
3050 
3051 
3052 Space* G1CollectedHeap::space_containing(const void* addr) const {
3053   Space* res = heap_region_containing(addr);
3054   if (res == NULL)
3055     res = perm_gen()->space_containing(addr);
3056   return res;
3057 }
3058 
3059 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
3060   Space* sp = space_containing(addr);
3061   if (sp != NULL) {
3062     return sp->block_start(addr);
3063   }
3064   return NULL;
3065 }
3066 
3067 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3068   Space* sp = space_containing(addr);
3069   assert(sp != NULL, "block_size of address outside of heap");
3070   return sp->block_size(addr);
3071 }
3072 
3073 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3074   Space* sp = space_containing(addr);
3075   return sp->block_is_obj(addr);
3076 }
3077 
3078 bool G1CollectedHeap::supports_tlab_allocation() const {
3079   return true;
3080 }
3081 
3082 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3083   return HeapRegion::GrainBytes;
3084 }
3085 
3086 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3087   // Return the remaining space in the cur alloc region, but not less than
3088   // the min TLAB size.
3089 
3090   // Also, this value can be at most the humongous object threshold,
3091   // since we can't allow tlabs to grow big enough to accommodate
3092   // humongous objects.
3093 
3094   HeapRegion* hr = _mutator_alloc_region.get();
3095   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3096   if (hr == NULL) {
3097     return max_tlab_size;
3098   } else {
3099     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3100   }
3101 }
3102 
3103 size_t G1CollectedHeap::max_capacity() const {
3104   return _g1_reserved.byte_size();
3105 }
3106 
3107 jlong G1CollectedHeap::millis_since_last_gc() {
3108   // assert(false, "NYI");
3109   return 0;
3110 }
3111 
3112 void G1CollectedHeap::prepare_for_verify() {
3113   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3114     ensure_parsability(false);
3115   }
3116   g1_rem_set()->prepare_for_verify();
3117 }
3118 
3119 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3120                                               VerifyOption vo) {
3121   switch (vo) {
3122   case VerifyOption_G1UsePrevMarking:
3123     return hr->obj_allocated_since_prev_marking(obj);
3124   case VerifyOption_G1UseNextMarking:
3125     return hr->obj_allocated_since_next_marking(obj);
3126   case VerifyOption_G1UseMarkWord:
3127     return false;
3128   default:
3129     ShouldNotReachHere();
3130   }
3131   return false; // keep some compilers happy
3132 }
3133 
3134 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3135   switch (vo) {
3136   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3137   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3138   case VerifyOption_G1UseMarkWord:    return NULL;
3139   default:                            ShouldNotReachHere();
3140   }
3141   return NULL; // keep some compilers happy
3142 }
3143 
3144 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3145   switch (vo) {
3146   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3147   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3148   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3149   default:                            ShouldNotReachHere();
3150   }
3151   return false; // keep some compilers happy
3152 }
3153 
3154 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3155   switch (vo) {
3156   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3157   case VerifyOption_G1UseNextMarking: return "NTAMS";
3158   case VerifyOption_G1UseMarkWord:    return "NONE";
3159   default:                            ShouldNotReachHere();
3160   }
3161   return NULL; // keep some compilers happy
3162 }
3163 
3164 class VerifyLivenessOopClosure: public OopClosure {
3165   G1CollectedHeap* _g1h;
3166   VerifyOption _vo;
3167 public:
3168   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3169     _g1h(g1h), _vo(vo)
3170   { }
3171   void do_oop(narrowOop *p) { do_oop_work(p); }
3172   void do_oop(      oop *p) { do_oop_work(p); }
3173 
3174   template <class T> void do_oop_work(T *p) {
3175     oop obj = oopDesc::load_decode_heap_oop(p);
3176     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3177               "Dead object referenced by a not dead object");
3178   }
3179 };
3180 
3181 class VerifyObjsInRegionClosure: public ObjectClosure {
3182 private:
3183   G1CollectedHeap* _g1h;
3184   size_t _live_bytes;
3185   HeapRegion *_hr;
3186   VerifyOption _vo;
3187 public:
3188   // _vo == UsePrevMarking -> use "prev" marking information,
3189   // _vo == UseNextMarking -> use "next" marking information,
3190   // _vo == UseMarkWord    -> use mark word from object header.
3191   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3192     : _live_bytes(0), _hr(hr), _vo(vo) {
3193     _g1h = G1CollectedHeap::heap();
3194   }
3195   void do_object(oop o) {
3196     VerifyLivenessOopClosure isLive(_g1h, _vo);
3197     assert(o != NULL, "Huh?");
3198     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3199       // If the object is alive according to the mark word,
3200       // then verify that the marking information agrees.
3201       // Note we can't verify the contra-positive of the
3202       // above: if the object is dead (according to the mark
3203       // word), it may not be marked, or may have been marked
3204       // but has since became dead, or may have been allocated
3205       // since the last marking.
3206       if (_vo == VerifyOption_G1UseMarkWord) {
3207         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3208       }
3209 
3210       o->oop_iterate(&isLive);
3211       if (!_hr->obj_allocated_since_prev_marking(o)) {
3212         size_t obj_size = o->size();    // Make sure we don't overflow
3213         _live_bytes += (obj_size * HeapWordSize);
3214       }
3215     }
3216   }
3217   size_t live_bytes() { return _live_bytes; }
3218 };
3219 
3220 class PrintObjsInRegionClosure : public ObjectClosure {
3221   HeapRegion *_hr;
3222   G1CollectedHeap *_g1;
3223 public:
3224   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3225     _g1 = G1CollectedHeap::heap();
3226   };
3227 
3228   void do_object(oop o) {
3229     if (o != NULL) {
3230       HeapWord *start = (HeapWord *) o;
3231       size_t word_sz = o->size();
3232       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3233                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3234                           (void*) o, word_sz,
3235                           _g1->isMarkedPrev(o),
3236                           _g1->isMarkedNext(o),
3237                           _hr->obj_allocated_since_prev_marking(o));
3238       HeapWord *end = start + word_sz;
3239       HeapWord *cur;
3240       int *val;
3241       for (cur = start; cur < end; cur++) {
3242         val = (int *) cur;
3243         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3244       }
3245     }
3246   }
3247 };
3248 
3249 class VerifyRegionClosure: public HeapRegionClosure {
3250 private:
3251   bool             _par;
3252   VerifyOption     _vo;
3253   bool             _failures;
3254 public:
3255   // _vo == UsePrevMarking -> use "prev" marking information,
3256   // _vo == UseNextMarking -> use "next" marking information,
3257   // _vo == UseMarkWord    -> use mark word from object header.
3258   VerifyRegionClosure(bool par, VerifyOption vo)
3259     : _par(par),
3260       _vo(vo),
3261       _failures(false) {}
3262 
3263   bool failures() {
3264     return _failures;
3265   }
3266 
3267   bool doHeapRegion(HeapRegion* r) {
3268     if (!r->continuesHumongous()) {
3269       bool failures = false;
3270       r->verify(_vo, &failures);
3271       if (failures) {
3272         _failures = true;
3273       } else {
3274         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3275         r->object_iterate(&not_dead_yet_cl);
3276         if (_vo != VerifyOption_G1UseNextMarking) {
3277           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3278             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3279                                    "max_live_bytes "SIZE_FORMAT" "
3280                                    "< calculated "SIZE_FORMAT,
3281                                    r->bottom(), r->end(),
3282                                    r->max_live_bytes(),
3283                                  not_dead_yet_cl.live_bytes());
3284             _failures = true;
3285           }
3286         } else {
3287           // When vo == UseNextMarking we cannot currently do a sanity
3288           // check on the live bytes as the calculation has not been
3289           // finalized yet.
3290         }
3291       }
3292     }
3293     return false; // stop the region iteration if we hit a failure
3294   }
3295 };
3296 
3297 class VerifyRootsClosure: public OopsInGenClosure {
3298 private:
3299   G1CollectedHeap* _g1h;
3300   VerifyOption     _vo;
3301   bool             _failures;
3302 public:
3303   // _vo == UsePrevMarking -> use "prev" marking information,
3304   // _vo == UseNextMarking -> use "next" marking information,
3305   // _vo == UseMarkWord    -> use mark word from object header.
3306   VerifyRootsClosure(VerifyOption vo) :
3307     _g1h(G1CollectedHeap::heap()),
3308     _vo(vo),
3309     _failures(false) { }
3310 
3311   bool failures() { return _failures; }
3312 
3313   template <class T> void do_oop_nv(T* p) {
3314     T heap_oop = oopDesc::load_heap_oop(p);
3315     if (!oopDesc::is_null(heap_oop)) {
3316       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3317       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3318         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3319                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3320         if (_vo == VerifyOption_G1UseMarkWord) {
3321           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3322         }
3323         obj->print_on(gclog_or_tty);
3324         _failures = true;
3325       }
3326     }
3327   }
3328 
3329   void do_oop(oop* p)       { do_oop_nv(p); }
3330   void do_oop(narrowOop* p) { do_oop_nv(p); }
3331 };
3332 
3333 // This is the task used for parallel heap verification.
3334 
3335 class G1ParVerifyTask: public AbstractGangTask {
3336 private:
3337   G1CollectedHeap* _g1h;
3338   VerifyOption     _vo;
3339   bool             _failures;
3340 
3341 public:
3342   // _vo == UsePrevMarking -> use "prev" marking information,
3343   // _vo == UseNextMarking -> use "next" marking information,
3344   // _vo == UseMarkWord    -> use mark word from object header.
3345   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3346     AbstractGangTask("Parallel verify task"),
3347     _g1h(g1h),
3348     _vo(vo),
3349     _failures(false) { }
3350 
3351   bool failures() {
3352     return _failures;
3353   }
3354 
3355   void work(uint worker_id) {
3356     HandleMark hm;
3357     VerifyRegionClosure blk(true, _vo);
3358     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3359                                           _g1h->workers()->active_workers(),
3360                                           HeapRegion::ParVerifyClaimValue);
3361     if (blk.failures()) {
3362       _failures = true;
3363     }
3364   }
3365 };
3366 
3367 void G1CollectedHeap::verify(bool silent) {
3368   verify(silent, VerifyOption_G1UsePrevMarking);
3369 }
3370 
3371 void G1CollectedHeap::verify(bool silent,
3372                              VerifyOption vo) {
3373   if (SafepointSynchronize::is_at_safepoint()) {
3374     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3375     VerifyRootsClosure rootsCl(vo);
3376 
3377     assert(Thread::current()->is_VM_thread(),
3378            "Expected to be executed serially by the VM thread at this point");
3379 
3380     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3381 
3382     // We apply the relevant closures to all the oops in the
3383     // system dictionary, the string table and the code cache.
3384     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3385 
3386     process_strong_roots(true,      // activate StrongRootsScope
3387                          true,      // we set "collecting perm gen" to true,
3388                                     // so we don't reset the dirty cards in the perm gen.
3389                          ScanningOption(so),  // roots scanning options
3390                          &rootsCl,
3391                          &blobsCl,
3392                          &rootsCl);
3393 
3394     // If we're verifying after the marking phase of a Full GC then we can't
3395     // treat the perm gen as roots into the G1 heap. Some of the objects in
3396     // the perm gen may be dead and hence not marked. If one of these dead
3397     // objects is considered to be a root then we may end up with a false
3398     // "Root location <x> points to dead ob <y>" failure.
3399     if (vo != VerifyOption_G1UseMarkWord) {
3400       // Since we used "collecting_perm_gen" == true above, we will not have
3401       // checked the refs from perm into the G1-collected heap. We check those
3402       // references explicitly below. Whether the relevant cards are dirty
3403       // is checked further below in the rem set verification.
3404       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3405       perm_gen()->oop_iterate(&rootsCl);
3406     }
3407     bool failures = rootsCl.failures();
3408 
3409     if (vo != VerifyOption_G1UseMarkWord) {
3410       // If we're verifying during a full GC then the region sets
3411       // will have been torn down at the start of the GC. Therefore
3412       // verifying the region sets will fail. So we only verify
3413       // the region sets when not in a full GC.
3414       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3415       verify_region_sets();
3416     }
3417 
3418     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3419     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3420       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3421              "sanity check");
3422 
3423       G1ParVerifyTask task(this, vo);
3424       assert(UseDynamicNumberOfGCThreads ||
3425         workers()->active_workers() == workers()->total_workers(),
3426         "If not dynamic should be using all the workers");
3427       int n_workers = workers()->active_workers();
3428       set_par_threads(n_workers);
3429       workers()->run_task(&task);
3430       set_par_threads(0);
3431       if (task.failures()) {
3432         failures = true;
3433       }
3434 
3435       // Checks that the expected amount of parallel work was done.
3436       // The implication is that n_workers is > 0.
3437       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3438              "sanity check");
3439 
3440       reset_heap_region_claim_values();
3441 
3442       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3443              "sanity check");
3444     } else {
3445       VerifyRegionClosure blk(false, vo);
3446       heap_region_iterate(&blk);
3447       if (blk.failures()) {
3448         failures = true;
3449       }
3450     }
3451     if (!silent) gclog_or_tty->print("RemSet ");
3452     rem_set()->verify();
3453 
3454     if (failures) {
3455       gclog_or_tty->print_cr("Heap:");
3456       // It helps to have the per-region information in the output to
3457       // help us track down what went wrong. This is why we call
3458       // print_extended_on() instead of print_on().
3459       print_extended_on(gclog_or_tty);
3460       gclog_or_tty->print_cr("");
3461 #ifndef PRODUCT
3462       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3463         concurrent_mark()->print_reachable("at-verification-failure",
3464                                            vo, false /* all */);
3465       }
3466 #endif
3467       gclog_or_tty->flush();
3468     }
3469     guarantee(!failures, "there should not have been any failures");
3470   } else {
3471     if (!silent)
3472       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3473   }
3474 }
3475 
3476 class PrintRegionClosure: public HeapRegionClosure {
3477   outputStream* _st;
3478 public:
3479   PrintRegionClosure(outputStream* st) : _st(st) {}
3480   bool doHeapRegion(HeapRegion* r) {
3481     r->print_on(_st);
3482     return false;
3483   }
3484 };
3485 
3486 void G1CollectedHeap::print_on(outputStream* st) const {
3487   st->print(" %-20s", "garbage-first heap");
3488   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3489             capacity()/K, used_unlocked()/K);
3490   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3491             _g1_storage.low_boundary(),
3492             _g1_storage.high(),
3493             _g1_storage.high_boundary());
3494   st->cr();
3495   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3496   uint young_regions = _young_list->length();
3497   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3498             (size_t) young_regions * HeapRegion::GrainBytes / K);
3499   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3500   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3501             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3502   st->cr();
3503   perm()->as_gen()->print_on(st);
3504 }
3505 
3506 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3507   print_on(st);
3508 
3509   // Print the per-region information.
3510   st->cr();
3511   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3512                "HS=humongous(starts), HC=humongous(continues), "
3513                "CS=collection set, F=free, TS=gc time stamp, "
3514                "PTAMS=previous top-at-mark-start, "
3515                "NTAMS=next top-at-mark-start)");
3516   PrintRegionClosure blk(st);
3517   heap_region_iterate(&blk);
3518 }
3519 
3520 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3521   if (G1CollectedHeap::use_parallel_gc_threads()) {
3522     workers()->print_worker_threads_on(st);
3523   }
3524   _cmThread->print_on(st);
3525   st->cr();
3526   _cm->print_worker_threads_on(st);
3527   _cg1r->print_worker_threads_on(st);
3528   st->cr();
3529 }
3530 
3531 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3532   if (G1CollectedHeap::use_parallel_gc_threads()) {
3533     workers()->threads_do(tc);
3534   }
3535   tc->do_thread(_cmThread);
3536   _cg1r->threads_do(tc);
3537 }
3538 
3539 void G1CollectedHeap::print_tracing_info() const {
3540   // We'll overload this to mean "trace GC pause statistics."
3541   if (TraceGen0Time || TraceGen1Time) {
3542     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3543     // to that.
3544     g1_policy()->print_tracing_info();
3545   }
3546   if (G1SummarizeRSetStats) {
3547     g1_rem_set()->print_summary_info();
3548   }
3549   if (G1SummarizeConcMark) {
3550     concurrent_mark()->print_summary_info();
3551   }
3552   g1_policy()->print_yg_surv_rate_info();
3553   SpecializationStats::print();
3554 }
3555 
3556 #ifndef PRODUCT
3557 // Helpful for debugging RSet issues.
3558 
3559 class PrintRSetsClosure : public HeapRegionClosure {
3560 private:
3561   const char* _msg;
3562   size_t _occupied_sum;
3563 
3564 public:
3565   bool doHeapRegion(HeapRegion* r) {
3566     HeapRegionRemSet* hrrs = r->rem_set();
3567     size_t occupied = hrrs->occupied();
3568     _occupied_sum += occupied;
3569 
3570     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3571                            HR_FORMAT_PARAMS(r));
3572     if (occupied == 0) {
3573       gclog_or_tty->print_cr("  RSet is empty");
3574     } else {
3575       hrrs->print();
3576     }
3577     gclog_or_tty->print_cr("----------");
3578     return false;
3579   }
3580 
3581   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3582     gclog_or_tty->cr();
3583     gclog_or_tty->print_cr("========================================");
3584     gclog_or_tty->print_cr(msg);
3585     gclog_or_tty->cr();
3586   }
3587 
3588   ~PrintRSetsClosure() {
3589     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3590     gclog_or_tty->print_cr("========================================");
3591     gclog_or_tty->cr();
3592   }
3593 };
3594 
3595 void G1CollectedHeap::print_cset_rsets() {
3596   PrintRSetsClosure cl("Printing CSet RSets");
3597   collection_set_iterate(&cl);
3598 }
3599 
3600 void G1CollectedHeap::print_all_rsets() {
3601   PrintRSetsClosure cl("Printing All RSets");;
3602   heap_region_iterate(&cl);
3603 }
3604 #endif // PRODUCT
3605 
3606 G1CollectedHeap* G1CollectedHeap::heap() {
3607   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3608          "not a garbage-first heap");
3609   return _g1h;
3610 }
3611 
3612 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3613   // always_do_update_barrier = false;
3614   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3615   // Call allocation profiler
3616   AllocationProfiler::iterate_since_last_gc();
3617   // Fill TLAB's and such
3618   ensure_parsability(true);
3619 }
3620 
3621 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3622   // FIXME: what is this about?
3623   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3624   // is set.
3625   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3626                         "derived pointer present"));
3627   // always_do_update_barrier = true;
3628 
3629   // We have just completed a GC. Update the soft reference
3630   // policy with the new heap occupancy
3631   Universe::update_heap_info_at_gc();
3632 }
3633 
3634 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3635                                                unsigned int gc_count_before,
3636                                                bool* succeeded) {
3637   assert_heap_not_locked_and_not_at_safepoint();
3638   g1_policy()->record_stop_world_start();
3639   VM_G1IncCollectionPause op(gc_count_before,
3640                              word_size,
3641                              false, /* should_initiate_conc_mark */
3642                              g1_policy()->max_pause_time_ms(),
3643                              GCCause::_g1_inc_collection_pause);
3644   VMThread::execute(&op);
3645 
3646   HeapWord* result = op.result();
3647   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3648   assert(result == NULL || ret_succeeded,
3649          "the result should be NULL if the VM did not succeed");
3650   *succeeded = ret_succeeded;
3651 
3652   assert_heap_not_locked();
3653   return result;
3654 }
3655 
3656 void
3657 G1CollectedHeap::doConcurrentMark() {
3658   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3659   if (!_cmThread->in_progress()) {
3660     _cmThread->set_started();
3661     CGC_lock->notify();
3662   }
3663 }
3664 
3665 size_t G1CollectedHeap::pending_card_num() {
3666   size_t extra_cards = 0;
3667   JavaThread *curr = Threads::first();
3668   while (curr != NULL) {
3669     DirtyCardQueue& dcq = curr->dirty_card_queue();
3670     extra_cards += dcq.size();
3671     curr = curr->next();
3672   }
3673   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3674   size_t buffer_size = dcqs.buffer_size();
3675   size_t buffer_num = dcqs.completed_buffers_num();
3676 
3677   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3678   // in bytes - not the number of 'entries'. We need to convert
3679   // into a number of cards.
3680   return (buffer_size * buffer_num + extra_cards) / oopSize;
3681 }
3682 
3683 size_t G1CollectedHeap::cards_scanned() {
3684   return g1_rem_set()->cardsScanned();
3685 }
3686 
3687 void
3688 G1CollectedHeap::setup_surviving_young_words() {
3689   assert(_surviving_young_words == NULL, "pre-condition");
3690   uint array_length = g1_policy()->young_cset_region_length();
3691   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3692   if (_surviving_young_words == NULL) {
3693     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3694                           "Not enough space for young surv words summary.");
3695   }
3696   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3697 #ifdef ASSERT
3698   for (uint i = 0;  i < array_length; ++i) {
3699     assert( _surviving_young_words[i] == 0, "memset above" );
3700   }
3701 #endif // !ASSERT
3702 }
3703 
3704 void
3705 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3706   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3707   uint array_length = g1_policy()->young_cset_region_length();
3708   for (uint i = 0; i < array_length; ++i) {
3709     _surviving_young_words[i] += surv_young_words[i];
3710   }
3711 }
3712 
3713 void
3714 G1CollectedHeap::cleanup_surviving_young_words() {
3715   guarantee( _surviving_young_words != NULL, "pre-condition" );
3716   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3717   _surviving_young_words = NULL;
3718 }
3719 
3720 #ifdef ASSERT
3721 class VerifyCSetClosure: public HeapRegionClosure {
3722 public:
3723   bool doHeapRegion(HeapRegion* hr) {
3724     // Here we check that the CSet region's RSet is ready for parallel
3725     // iteration. The fields that we'll verify are only manipulated
3726     // when the region is part of a CSet and is collected. Afterwards,
3727     // we reset these fields when we clear the region's RSet (when the
3728     // region is freed) so they are ready when the region is
3729     // re-allocated. The only exception to this is if there's an
3730     // evacuation failure and instead of freeing the region we leave
3731     // it in the heap. In that case, we reset these fields during
3732     // evacuation failure handling.
3733     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3734 
3735     // Here's a good place to add any other checks we'd like to
3736     // perform on CSet regions.
3737     return false;
3738   }
3739 };
3740 #endif // ASSERT
3741 
3742 #if TASKQUEUE_STATS
3743 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3744   st->print_raw_cr("GC Task Stats");
3745   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3746   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3747 }
3748 
3749 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3750   print_taskqueue_stats_hdr(st);
3751 
3752   TaskQueueStats totals;
3753   const int n = workers() != NULL ? workers()->total_workers() : 1;
3754   for (int i = 0; i < n; ++i) {
3755     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3756     totals += task_queue(i)->stats;
3757   }
3758   st->print_raw("tot "); totals.print(st); st->cr();
3759 
3760   DEBUG_ONLY(totals.verify());
3761 }
3762 
3763 void G1CollectedHeap::reset_taskqueue_stats() {
3764   const int n = workers() != NULL ? workers()->total_workers() : 1;
3765   for (int i = 0; i < n; ++i) {
3766     task_queue(i)->stats.reset();
3767   }
3768 }
3769 #endif // TASKQUEUE_STATS
3770 
3771 void G1CollectedHeap::log_gc_header() {
3772   if (!G1Log::fine()) {
3773     return;
3774   }
3775 
3776   gclog_or_tty->date_stamp(PrintGCDateStamps);
3777   gclog_or_tty->stamp(PrintGCTimeStamps);
3778 
3779   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3780     .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
3781     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3782 
3783   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3784 }
3785 
3786 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3787   if (!G1Log::fine()) {
3788     return;
3789   }
3790 
3791   if (G1Log::finer()) {
3792     if (evacuation_failed()) {
3793       gclog_or_tty->print(" (to-space exhausted)");
3794     }
3795     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3796     g1_policy()->phase_times()->note_gc_end();
3797     g1_policy()->phase_times()->print(pause_time_sec);
3798     g1_policy()->print_detailed_heap_transition();
3799   } else {
3800     if (evacuation_failed()) {
3801       gclog_or_tty->print("--");
3802     }
3803     g1_policy()->print_heap_transition();
3804     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3805   }
3806   gclog_or_tty->flush();
3807 }
3808 
3809 bool
3810 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3811   assert_at_safepoint(true /* should_be_vm_thread */);
3812   guarantee(!is_gc_active(), "collection is not reentrant");
3813 
3814   if (GC_locker::check_active_before_gc()) {
3815     return false;
3816   }
3817 
3818   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3819 
3820   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3821 
3822   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3823   ResourceMark rm;
3824 
3825   print_heap_before_gc();
3826   trace_heap_before_gc(_gc_tracer_stw);
3827 
3828   HRSPhaseSetter x(HRSPhaseEvacuation);
3829   verify_region_sets_optional();
3830   verify_dirty_young_regions();
3831 
3832   // This call will decide whether this pause is an initial-mark
3833   // pause. If it is, during_initial_mark_pause() will return true
3834   // for the duration of this pause.
3835   g1_policy()->decide_on_conc_mark_initiation();
3836 
3837   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3838   assert(!g1_policy()->during_initial_mark_pause() ||
3839           g1_policy()->gcs_are_young(), "sanity");
3840 
3841   // We also do not allow mixed GCs during marking.
3842   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3843 
3844   // Record whether this pause is an initial mark. When the current
3845   // thread has completed its logging output and it's safe to signal
3846   // the CM thread, the flag's value in the policy has been reset.
3847   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3848 
3849   // Inner scope for scope based logging, timers, and stats collection
3850   {
3851     EvacuationInfo evacuation_info;
3852 
3853     if (g1_policy()->during_initial_mark_pause()) {
3854       // We are about to start a marking cycle, so we increment the
3855       // full collection counter.
3856       increment_old_marking_cycles_started();
3857       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3858     }
3859 
3860     _gc_tracer_stw->report_yc_type(yc_type());
3861 
3862     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3863 
3864     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3865                                 workers()->active_workers() : 1);
3866     double pause_start_sec = os::elapsedTime();
3867     g1_policy()->phase_times()->note_gc_start(active_workers);
3868     log_gc_header();
3869 
3870     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3871     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3872 
3873     // If the secondary_free_list is not empty, append it to the
3874     // free_list. No need to wait for the cleanup operation to finish;
3875     // the region allocation code will check the secondary_free_list
3876     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3877     // set, skip this step so that the region allocation code has to
3878     // get entries from the secondary_free_list.
3879     if (!G1StressConcRegionFreeing) {
3880       append_secondary_free_list_if_not_empty_with_lock();
3881     }
3882 
3883     assert(check_young_list_well_formed(),
3884       "young list should be well formed");
3885 
3886     // Don't dynamically change the number of GC threads this early.  A value of
3887     // 0 is used to indicate serial work.  When parallel work is done,
3888     // it will be set.
3889 
3890     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3891       IsGCActiveMark x;
3892 
3893       gc_prologue(false);
3894       increment_total_collections(false /* full gc */);
3895       increment_gc_time_stamp();
3896 
3897       verify_before_gc();
3898 
3899       COMPILER2_PRESENT(DerivedPointerTable::clear());
3900 
3901       // Please see comment in g1CollectedHeap.hpp and
3902       // G1CollectedHeap::ref_processing_init() to see how
3903       // reference processing currently works in G1.
3904 
3905       // Enable discovery in the STW reference processor
3906       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3907                                             true /*verify_no_refs*/);
3908 
3909       {
3910         // We want to temporarily turn off discovery by the
3911         // CM ref processor, if necessary, and turn it back on
3912         // on again later if we do. Using a scoped
3913         // NoRefDiscovery object will do this.
3914         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3915 
3916         // Forget the current alloc region (we might even choose it to be part
3917         // of the collection set!).
3918         release_mutator_alloc_region();
3919 
3920         // We should call this after we retire the mutator alloc
3921         // region(s) so that all the ALLOC / RETIRE events are generated
3922         // before the start GC event.
3923         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3924 
3925         // This timing is only used by the ergonomics to handle our pause target.
3926         // It is unclear why this should not include the full pause. We will
3927         // investigate this in CR 7178365.
3928         //
3929         // Preserving the old comment here if that helps the investigation:
3930         //
3931         // The elapsed time induced by the start time below deliberately elides
3932         // the possible verification above.
3933         double sample_start_time_sec = os::elapsedTime();
3934 
3935 #if YOUNG_LIST_VERBOSE
3936         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3937         _young_list->print();
3938         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3939 #endif // YOUNG_LIST_VERBOSE
3940 
3941         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3942 
3943         double scan_wait_start = os::elapsedTime();
3944         // We have to wait until the CM threads finish scanning the
3945         // root regions as it's the only way to ensure that all the
3946         // objects on them have been correctly scanned before we start
3947         // moving them during the GC.
3948         bool waited = _cm->root_regions()->wait_until_scan_finished();
3949         double wait_time_ms = 0.0;
3950         if (waited) {
3951           double scan_wait_end = os::elapsedTime();
3952           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3953         }
3954         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3955 
3956 #if YOUNG_LIST_VERBOSE
3957         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3958         _young_list->print();
3959 #endif // YOUNG_LIST_VERBOSE
3960 
3961         if (g1_policy()->during_initial_mark_pause()) {
3962           concurrent_mark()->checkpointRootsInitialPre();
3963         }
3964         perm_gen()->save_marks();
3965 
3966 #if YOUNG_LIST_VERBOSE
3967         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3968         _young_list->print();
3969         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3970 #endif // YOUNG_LIST_VERBOSE
3971 
3972         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3973 
3974         _cm->note_start_of_gc();
3975         // We should not verify the per-thread SATB buffers given that
3976         // we have not filtered them yet (we'll do so during the
3977         // GC). We also call this after finalize_cset() to
3978         // ensure that the CSet has been finalized.
3979         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3980                                  true  /* verify_enqueued_buffers */,
3981                                  false /* verify_thread_buffers */,
3982                                  true  /* verify_fingers */);
3983 
3984         if (_hr_printer.is_active()) {
3985           HeapRegion* hr = g1_policy()->collection_set();
3986           while (hr != NULL) {
3987             G1HRPrinter::RegionType type;
3988             if (!hr->is_young()) {
3989               type = G1HRPrinter::Old;
3990             } else if (hr->is_survivor()) {
3991               type = G1HRPrinter::Survivor;
3992             } else {
3993               type = G1HRPrinter::Eden;
3994             }
3995             _hr_printer.cset(hr);
3996             hr = hr->next_in_collection_set();
3997           }
3998         }
3999 
4000 #ifdef ASSERT
4001         VerifyCSetClosure cl;
4002         collection_set_iterate(&cl);
4003 #endif // ASSERT
4004 
4005         setup_surviving_young_words();
4006 
4007         // Initialize the GC alloc regions.
4008         init_gc_alloc_regions(evacuation_info);
4009 
4010         // Actually do the work...
4011         evacuate_collection_set(evacuation_info);
4012 
4013         // We do this to mainly verify the per-thread SATB buffers
4014         // (which have been filtered by now) since we didn't verify
4015         // them earlier. No point in re-checking the stacks / enqueued
4016         // buffers given that the CSet has not changed since last time
4017         // we checked.
4018         _cm->verify_no_cset_oops(false /* verify_stacks */,
4019                                  false /* verify_enqueued_buffers */,
4020                                  true  /* verify_thread_buffers */,
4021                                  true  /* verify_fingers */);
4022 
4023         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4024         g1_policy()->clear_collection_set();
4025 
4026         cleanup_surviving_young_words();
4027 
4028         // Start a new incremental collection set for the next pause.
4029         g1_policy()->start_incremental_cset_building();
4030 
4031         // Clear the _cset_fast_test bitmap in anticipation of adding
4032         // regions to the incremental collection set for the next
4033         // evacuation pause.
4034         clear_cset_fast_test();
4035 
4036         _young_list->reset_sampled_info();
4037 
4038         // Don't check the whole heap at this point as the
4039         // GC alloc regions from this pause have been tagged
4040         // as survivors and moved on to the survivor list.
4041         // Survivor regions will fail the !is_young() check.
4042         assert(check_young_list_empty(false /* check_heap */),
4043           "young list should be empty");
4044 
4045 #if YOUNG_LIST_VERBOSE
4046         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4047         _young_list->print();
4048 #endif // YOUNG_LIST_VERBOSE
4049 
4050         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4051                                              _young_list->first_survivor_region(),
4052                                              _young_list->last_survivor_region());
4053 
4054         _young_list->reset_auxilary_lists();
4055 
4056         if (evacuation_failed()) {
4057           _summary_bytes_used = recalculate_used();
4058           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4059           for (uint i = 0; i < n_queues; i++) {
4060             if (_evacuation_failed_info_array[i].has_failed()) {
4061               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4062             }
4063           }
4064         } else {
4065           // The "used" of the the collection set have already been subtracted
4066           // when they were freed.  Add in the bytes evacuated.
4067           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4068         }
4069 
4070         if (g1_policy()->during_initial_mark_pause()) {
4071           // We have to do this before we notify the CM threads that
4072           // they can start working to make sure that all the
4073           // appropriate initialization is done on the CM object.
4074           concurrent_mark()->checkpointRootsInitialPost();
4075           set_marking_started();
4076           // Note that we don't actually trigger the CM thread at
4077           // this point. We do that later when we're sure that
4078           // the current thread has completed its logging output.
4079         }
4080 
4081         allocate_dummy_regions();
4082 
4083 #if YOUNG_LIST_VERBOSE
4084         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4085         _young_list->print();
4086         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4087 #endif // YOUNG_LIST_VERBOSE
4088 
4089         init_mutator_alloc_region();
4090 
4091         {
4092           size_t expand_bytes = g1_policy()->expansion_amount();
4093           if (expand_bytes > 0) {
4094             size_t bytes_before = capacity();
4095             // No need for an ergo verbose message here,
4096             // expansion_amount() does this when it returns a value > 0.
4097             if (!expand(expand_bytes)) {
4098               // We failed to expand the heap so let's verify that
4099               // committed/uncommitted amount match the backing store
4100               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4101               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4102             }
4103           }
4104         }
4105 
4106         // We redo the verification but now wrt to the new CSet which
4107         // has just got initialized after the previous CSet was freed.
4108         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4109                                  true  /* verify_enqueued_buffers */,
4110                                  true  /* verify_thread_buffers */,
4111                                  true  /* verify_fingers */);
4112         _cm->note_end_of_gc();
4113 
4114         // This timing is only used by the ergonomics to handle our pause target.
4115         // It is unclear why this should not include the full pause. We will
4116         // investigate this in CR 7178365.
4117         double sample_end_time_sec = os::elapsedTime();
4118         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4119         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4120 
4121         MemoryService::track_memory_usage();
4122 
4123         // In prepare_for_verify() below we'll need to scan the deferred
4124         // update buffers to bring the RSets up-to-date if
4125         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4126         // the update buffers we'll probably need to scan cards on the
4127         // regions we just allocated to (i.e., the GC alloc
4128         // regions). However, during the last GC we called
4129         // set_saved_mark() on all the GC alloc regions, so card
4130         // scanning might skip the [saved_mark_word()...top()] area of
4131         // those regions (i.e., the area we allocated objects into
4132         // during the last GC). But it shouldn't. Given that
4133         // saved_mark_word() is conditional on whether the GC time stamp
4134         // on the region is current or not, by incrementing the GC time
4135         // stamp here we invalidate all the GC time stamps on all the
4136         // regions and saved_mark_word() will simply return top() for
4137         // all the regions. This is a nicer way of ensuring this rather
4138         // than iterating over the regions and fixing them. In fact, the
4139         // GC time stamp increment here also ensures that
4140         // saved_mark_word() will return top() between pauses, i.e.,
4141         // during concurrent refinement. So we don't need the
4142         // is_gc_active() check to decided which top to use when
4143         // scanning cards (see CR 7039627).
4144         increment_gc_time_stamp();
4145 
4146         verify_after_gc();
4147 
4148         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4149         ref_processor_stw()->verify_no_references_recorded();
4150 
4151         // CM reference discovery will be re-enabled if necessary.
4152       }
4153 
4154       // We should do this after we potentially expand the heap so
4155       // that all the COMMIT events are generated before the end GC
4156       // event, and after we retire the GC alloc regions so that all
4157       // RETIRE events are generated before the end GC event.
4158       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4159 
4160       if (mark_in_progress()) {
4161         concurrent_mark()->update_g1_committed();
4162       }
4163 
4164 #ifdef TRACESPINNING
4165       ParallelTaskTerminator::print_termination_counts();
4166 #endif
4167 
4168       gc_epilogue(false);
4169     }
4170 
4171     // Print the remainder of the GC log output.
4172     log_gc_footer(os::elapsedTime() - pause_start_sec);
4173 
4174     // It is not yet to safe to tell the concurrent mark to
4175     // start as we have some optional output below. We don't want the
4176     // output from the concurrent mark thread interfering with this
4177     // logging output either.
4178 
4179     _hrs.verify_optional();
4180     verify_region_sets_optional();
4181 
4182     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4183     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4184 
4185     print_heap_after_gc();
4186     trace_heap_after_gc(_gc_tracer_stw);
4187 
4188     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4189     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4190     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4191     // before any GC notifications are raised.
4192     g1mm()->update_sizes();
4193 
4194     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4195     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4196     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4197     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4198   }
4199 
4200   if (G1SummarizeRSetStats &&
4201       (G1SummarizeRSetStatsPeriod > 0) &&
4202       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4203     g1_rem_set()->print_summary_info();
4204   }
4205   // It should now be safe to tell the concurrent mark thread to start
4206   // without its logging output interfering with the logging output
4207   // that came from the pause.
4208 
4209   if (should_start_conc_mark) {
4210     // CAUTION: after the doConcurrentMark() call below,
4211     // the concurrent marking thread(s) could be running
4212     // concurrently with us. Make sure that anything after
4213     // this point does not assume that we are the only GC thread
4214     // running. Note: of course, the actual marking work will
4215     // not start until the safepoint itself is released in
4216     // ConcurrentGCThread::safepoint_desynchronize().
4217     doConcurrentMark();
4218   }
4219 
4220   return true;
4221 }
4222 
4223 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4224 {
4225   size_t gclab_word_size;
4226   switch (purpose) {
4227     case GCAllocForSurvived:
4228       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4229       break;
4230     case GCAllocForTenured:
4231       gclab_word_size = _old_plab_stats.desired_plab_sz();
4232       break;
4233     default:
4234       assert(false, "unknown GCAllocPurpose");
4235       gclab_word_size = _old_plab_stats.desired_plab_sz();
4236       break;
4237   }
4238 
4239   // Prevent humongous PLAB sizes for two reasons:
4240   // * PLABs are allocated using a similar paths as oops, but should
4241   //   never be in a humongous region
4242   // * Allowing humongous PLABs needlessly churns the region free lists
4243   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4244 }
4245 
4246 void G1CollectedHeap::init_mutator_alloc_region() {
4247   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4248   _mutator_alloc_region.init();
4249 }
4250 
4251 void G1CollectedHeap::release_mutator_alloc_region() {
4252   _mutator_alloc_region.release();
4253   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4254 }
4255 
4256 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4257   assert_at_safepoint(true /* should_be_vm_thread */);
4258 
4259   _survivor_gc_alloc_region.init();
4260   _old_gc_alloc_region.init();
4261   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4262   _retained_old_gc_alloc_region = NULL;
4263 
4264   // We will discard the current GC alloc region if:
4265   // a) it's in the collection set (it can happen!),
4266   // b) it's already full (no point in using it),
4267   // c) it's empty (this means that it was emptied during
4268   // a cleanup and it should be on the free list now), or
4269   // d) it's humongous (this means that it was emptied
4270   // during a cleanup and was added to the free list, but
4271   // has been subsequently used to allocate a humongous
4272   // object that may be less than the region size).
4273   if (retained_region != NULL &&
4274       !retained_region->in_collection_set() &&
4275       !(retained_region->top() == retained_region->end()) &&
4276       !retained_region->is_empty() &&
4277       !retained_region->isHumongous()) {
4278     retained_region->set_saved_mark();
4279     // The retained region was added to the old region set when it was
4280     // retired. We have to remove it now, since we don't allow regions
4281     // we allocate to in the region sets. We'll re-add it later, when
4282     // it's retired again.
4283     _old_set.remove(retained_region);
4284     bool during_im = g1_policy()->during_initial_mark_pause();
4285     retained_region->note_start_of_copying(during_im);
4286     _old_gc_alloc_region.set(retained_region);
4287     _hr_printer.reuse(retained_region);
4288     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4289   }
4290 }
4291 
4292 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4293   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4294                                          _old_gc_alloc_region.count());
4295   _survivor_gc_alloc_region.release();
4296   // If we have an old GC alloc region to release, we'll save it in
4297   // _retained_old_gc_alloc_region. If we don't
4298   // _retained_old_gc_alloc_region will become NULL. This is what we
4299   // want either way so no reason to check explicitly for either
4300   // condition.
4301   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4302 
4303   if (ResizePLAB) {
4304     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4305     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4306   }
4307 }
4308 
4309 void G1CollectedHeap::abandon_gc_alloc_regions() {
4310   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4311   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4312   _retained_old_gc_alloc_region = NULL;
4313 }
4314 
4315 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4316   _drain_in_progress = false;
4317   set_evac_failure_closure(cl);
4318   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4319 }
4320 
4321 void G1CollectedHeap::finalize_for_evac_failure() {
4322   assert(_evac_failure_scan_stack != NULL &&
4323          _evac_failure_scan_stack->length() == 0,
4324          "Postcondition");
4325   assert(!_drain_in_progress, "Postcondition");
4326   delete _evac_failure_scan_stack;
4327   _evac_failure_scan_stack = NULL;
4328 }
4329 
4330 void G1CollectedHeap::remove_self_forwarding_pointers() {
4331   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4332 
4333   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4334 
4335   if (G1CollectedHeap::use_parallel_gc_threads()) {
4336     set_par_threads();
4337     workers()->run_task(&rsfp_task);
4338     set_par_threads(0);
4339   } else {
4340     rsfp_task.work(0);
4341   }
4342 
4343   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4344 
4345   // Reset the claim values in the regions in the collection set.
4346   reset_cset_heap_region_claim_values();
4347 
4348   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4349 
4350   // Now restore saved marks, if any.
4351   assert(_objs_with_preserved_marks.size() ==
4352             _preserved_marks_of_objs.size(), "Both or none.");
4353   while (!_objs_with_preserved_marks.is_empty()) {
4354     oop obj = _objs_with_preserved_marks.pop();
4355     markOop m = _preserved_marks_of_objs.pop();
4356     obj->set_mark(m);
4357   }
4358   _objs_with_preserved_marks.clear(true);
4359   _preserved_marks_of_objs.clear(true);
4360 }
4361 
4362 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4363   _evac_failure_scan_stack->push(obj);
4364 }
4365 
4366 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4367   assert(_evac_failure_scan_stack != NULL, "precondition");
4368 
4369   while (_evac_failure_scan_stack->length() > 0) {
4370      oop obj = _evac_failure_scan_stack->pop();
4371      _evac_failure_closure->set_region(heap_region_containing(obj));
4372      obj->oop_iterate_backwards(_evac_failure_closure);
4373   }
4374 }
4375 
4376 oop
4377 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4378                                                oop old) {
4379   assert(obj_in_cs(old),
4380          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4381                  (HeapWord*) old));
4382   markOop m = old->mark();
4383   oop forward_ptr = old->forward_to_atomic(old);
4384   if (forward_ptr == NULL) {
4385     // Forward-to-self succeeded.
4386     assert(_par_scan_state != NULL, "par scan state");
4387     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4388     uint queue_num = _par_scan_state->queue_num();
4389 
4390     _evacuation_failed = true;
4391     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4392     if (_evac_failure_closure != cl) {
4393       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4394       assert(!_drain_in_progress,
4395              "Should only be true while someone holds the lock.");
4396       // Set the global evac-failure closure to the current thread's.
4397       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4398       set_evac_failure_closure(cl);
4399       // Now do the common part.
4400       handle_evacuation_failure_common(old, m);
4401       // Reset to NULL.
4402       set_evac_failure_closure(NULL);
4403     } else {
4404       // The lock is already held, and this is recursive.
4405       assert(_drain_in_progress, "This should only be the recursive case.");
4406       handle_evacuation_failure_common(old, m);
4407     }
4408     return old;
4409   } else {
4410     // Forward-to-self failed. Either someone else managed to allocate
4411     // space for this object (old != forward_ptr) or they beat us in
4412     // self-forwarding it (old == forward_ptr).
4413     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4414            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4415                    "should not be in the CSet",
4416                    (HeapWord*) old, (HeapWord*) forward_ptr));
4417     return forward_ptr;
4418   }
4419 }
4420 
4421 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4422   preserve_mark_if_necessary(old, m);
4423 
4424   HeapRegion* r = heap_region_containing(old);
4425   if (!r->evacuation_failed()) {
4426     r->set_evacuation_failed(true);
4427     _hr_printer.evac_failure(r);
4428   }
4429 
4430   push_on_evac_failure_scan_stack(old);
4431 
4432   if (!_drain_in_progress) {
4433     // prevent recursion in copy_to_survivor_space()
4434     _drain_in_progress = true;
4435     drain_evac_failure_scan_stack();
4436     _drain_in_progress = false;
4437   }
4438 }
4439 
4440 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4441   assert(evacuation_failed(), "Oversaving!");
4442   // We want to call the "for_promotion_failure" version only in the
4443   // case of a promotion failure.
4444   if (m->must_be_preserved_for_promotion_failure(obj)) {
4445     _objs_with_preserved_marks.push(obj);
4446     _preserved_marks_of_objs.push(m);
4447   }
4448 }
4449 
4450 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4451                                                   size_t word_size) {
4452   if (purpose == GCAllocForSurvived) {
4453     HeapWord* result = survivor_attempt_allocation(word_size);
4454     if (result != NULL) {
4455       return result;
4456     } else {
4457       // Let's try to allocate in the old gen in case we can fit the
4458       // object there.
4459       return old_attempt_allocation(word_size);
4460     }
4461   } else {
4462     assert(purpose ==  GCAllocForTenured, "sanity");
4463     HeapWord* result = old_attempt_allocation(word_size);
4464     if (result != NULL) {
4465       return result;
4466     } else {
4467       // Let's try to allocate in the survivors in case we can fit the
4468       // object there.
4469       return survivor_attempt_allocation(word_size);
4470     }
4471   }
4472 
4473   ShouldNotReachHere();
4474   // Trying to keep some compilers happy.
4475   return NULL;
4476 }
4477 
4478 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4479   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4480 
4481 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4482   : _g1h(g1h),
4483     _refs(g1h->task_queue(queue_num)),
4484     _dcq(&g1h->dirty_card_queue_set()),
4485     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4486     _g1_rem(g1h->g1_rem_set()),
4487     _hash_seed(17), _queue_num(queue_num),
4488     _term_attempts(0),
4489     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4490     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4491     _age_table(false),
4492     _strong_roots_time(0), _term_time(0),
4493     _alloc_buffer_waste(0), _undo_waste(0) {
4494   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4495   // we "sacrifice" entry 0 to keep track of surviving bytes for
4496   // non-young regions (where the age is -1)
4497   // We also add a few elements at the beginning and at the end in
4498   // an attempt to eliminate cache contention
4499   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4500   uint array_length = PADDING_ELEM_NUM +
4501                       real_length +
4502                       PADDING_ELEM_NUM;
4503   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4504   if (_surviving_young_words_base == NULL)
4505     vm_exit_out_of_memory(array_length * sizeof(size_t),
4506                           "Not enough space for young surv histo.");
4507   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4508   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4509 
4510   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4511   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4512 
4513   _start = os::elapsedTime();
4514 }
4515 
4516 void
4517 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4518 {
4519   st->print_raw_cr("GC Termination Stats");
4520   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4521                    " ------waste (KiB)------");
4522   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4523                    "  total   alloc    undo");
4524   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4525                    " ------- ------- -------");
4526 }
4527 
4528 void
4529 G1ParScanThreadState::print_termination_stats(int i,
4530                                               outputStream* const st) const
4531 {
4532   const double elapsed_ms = elapsed_time() * 1000.0;
4533   const double s_roots_ms = strong_roots_time() * 1000.0;
4534   const double term_ms    = term_time() * 1000.0;
4535   st->print_cr("%3d %9.2f %9.2f %6.2f "
4536                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4537                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4538                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4539                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4540                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4541                alloc_buffer_waste() * HeapWordSize / K,
4542                undo_waste() * HeapWordSize / K);
4543 }
4544 
4545 #ifdef ASSERT
4546 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4547   assert(ref != NULL, "invariant");
4548   assert(UseCompressedOops, "sanity");
4549   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4550   oop p = oopDesc::load_decode_heap_oop(ref);
4551   assert(_g1h->is_in_g1_reserved(p),
4552          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4553   return true;
4554 }
4555 
4556 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4557   assert(ref != NULL, "invariant");
4558   if (has_partial_array_mask(ref)) {
4559     // Must be in the collection set--it's already been copied.
4560     oop p = clear_partial_array_mask(ref);
4561     assert(_g1h->obj_in_cs(p),
4562            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4563   } else {
4564     oop p = oopDesc::load_decode_heap_oop(ref);
4565     assert(_g1h->is_in_g1_reserved(p),
4566            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4567   }
4568   return true;
4569 }
4570 
4571 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4572   if (ref.is_narrow()) {
4573     return verify_ref((narrowOop*) ref);
4574   } else {
4575     return verify_ref((oop*) ref);
4576   }
4577 }
4578 #endif // ASSERT
4579 
4580 void G1ParScanThreadState::trim_queue() {
4581   assert(_evac_cl != NULL, "not set");
4582   assert(_evac_failure_cl != NULL, "not set");
4583   assert(_partial_scan_cl != NULL, "not set");
4584 
4585   StarTask ref;
4586   do {
4587     // Drain the overflow stack first, so other threads can steal.
4588     while (refs()->pop_overflow(ref)) {
4589       deal_with_reference(ref);
4590     }
4591 
4592     while (refs()->pop_local(ref)) {
4593       deal_with_reference(ref);
4594     }
4595   } while (!refs()->is_empty());
4596 }
4597 
4598 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4599                                      G1ParScanThreadState* par_scan_state) :
4600   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4601   _par_scan_state(par_scan_state),
4602   _worker_id(par_scan_state->queue_num()),
4603   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4604   _mark_in_progress(_g1->mark_in_progress()) { }
4605 
4606 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4607 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4608 #ifdef ASSERT
4609   HeapRegion* hr = _g1->heap_region_containing(obj);
4610   assert(hr != NULL, "sanity");
4611   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4612 #endif // ASSERT
4613 
4614   // We know that the object is not moving so it's safe to read its size.
4615   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4616 }
4617 
4618 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4619 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4620   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4621 #ifdef ASSERT
4622   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4623   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4624   assert(from_obj != to_obj, "should not be self-forwarded");
4625 
4626   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4627   assert(from_hr != NULL, "sanity");
4628   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4629 
4630   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4631   assert(to_hr != NULL, "sanity");
4632   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4633 #endif // ASSERT
4634 
4635   // The object might be in the process of being copied by another
4636   // worker so we cannot trust that its to-space image is
4637   // well-formed. So we have to read its size from its from-space
4638   // image which we know should not be changing.
4639   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4640 }
4641 
4642 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4643 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4644   ::copy_to_survivor_space(oop old) {
4645   size_t word_sz = old->size();
4646   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4647   // +1 to make the -1 indexes valid...
4648   int       young_index = from_region->young_index_in_cset()+1;
4649   assert( (from_region->is_young() && young_index >  0) ||
4650          (!from_region->is_young() && young_index == 0), "invariant" );
4651   G1CollectorPolicy* g1p = _g1->g1_policy();
4652   markOop m = old->mark();
4653   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4654                                            : m->age();
4655   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4656                                                              word_sz);
4657   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4658 #ifndef PRODUCT
4659   // Should this evacuation fail?
4660   if (_g1->evacuation_should_fail()) {
4661     if (obj_ptr != NULL) {
4662       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4663       obj_ptr = NULL;
4664     }
4665   }
4666 #endif // !PRODUCT
4667 
4668   if (obj_ptr == NULL) {
4669     // This will either forward-to-self, or detect that someone else has
4670     // installed a forwarding pointer.
4671     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4672   }
4673 
4674   oop obj = oop(obj_ptr);
4675 
4676   // We're going to allocate linearly, so might as well prefetch ahead.
4677   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4678 
4679   oop forward_ptr = old->forward_to_atomic(obj);
4680   if (forward_ptr == NULL) {
4681     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4682     if (g1p->track_object_age(alloc_purpose)) {
4683       // We could simply do obj->incr_age(). However, this causes a
4684       // performance issue. obj->incr_age() will first check whether
4685       // the object has a displaced mark by checking its mark word;
4686       // getting the mark word from the new location of the object
4687       // stalls. So, given that we already have the mark word and we
4688       // are about to install it anyway, it's better to increase the
4689       // age on the mark word, when the object does not have a
4690       // displaced mark word. We're not expecting many objects to have
4691       // a displaced marked word, so that case is not optimized
4692       // further (it could be...) and we simply call obj->incr_age().
4693 
4694       if (m->has_displaced_mark_helper()) {
4695         // in this case, we have to install the mark word first,
4696         // otherwise obj looks to be forwarded (the old mark word,
4697         // which contains the forward pointer, was copied)
4698         obj->set_mark(m);
4699         obj->incr_age();
4700       } else {
4701         m = m->incr_age();
4702         obj->set_mark(m);
4703       }
4704       _par_scan_state->age_table()->add(obj, word_sz);
4705     } else {
4706       obj->set_mark(m);
4707     }
4708 
4709     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4710     surv_young_words[young_index] += word_sz;
4711 
4712     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4713       // We keep track of the next start index in the length field of
4714       // the to-space object. The actual length can be found in the
4715       // length field of the from-space object.
4716       arrayOop(obj)->set_length(0);
4717       oop* old_p = set_partial_array_mask(old);
4718       _par_scan_state->push_on_queue(old_p);
4719     } else {
4720       // No point in using the slower heap_region_containing() method,
4721       // given that we know obj is in the heap.
4722       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4723       obj->oop_iterate_backwards(&_scanner);
4724     }
4725   } else {
4726     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4727     obj = forward_ptr;
4728   }
4729   return obj;
4730 }
4731 
4732 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4733 template <class T>
4734 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4735 ::do_oop_work(T* p) {
4736   oop obj = oopDesc::load_decode_heap_oop(p);
4737   assert(barrier != G1BarrierRS || obj != NULL,
4738          "Precondition: G1BarrierRS implies obj is non-NULL");
4739 
4740   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4741 
4742   // here the null check is implicit in the cset_fast_test() test
4743   if (_g1->in_cset_fast_test(obj)) {
4744     oop forwardee;
4745     if (obj->is_forwarded()) {
4746       forwardee = obj->forwardee();
4747     } else {
4748       forwardee = copy_to_survivor_space(obj);
4749     }
4750     assert(forwardee != NULL, "forwardee should not be NULL");
4751     oopDesc::encode_store_heap_oop(p, forwardee);
4752     if (do_mark_object && forwardee != obj) {
4753       // If the object is self-forwarded we don't need to explicitly
4754       // mark it, the evacuation failure protocol will do so.
4755       mark_forwarded_object(obj, forwardee);
4756     }
4757 
4758     // When scanning the RS, we only care about objs in CS.
4759     if (barrier == G1BarrierRS) {
4760       _par_scan_state->update_rs(_from, p, _worker_id);
4761     }
4762   } else {
4763     // The object is not in collection set. If we're a root scanning
4764     // closure during an initial mark pause (i.e. do_mark_object will
4765     // be true) then attempt to mark the object.
4766     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4767       mark_object(obj);
4768     }
4769   }
4770 
4771   if (barrier == G1BarrierEvac && obj != NULL) {
4772     _par_scan_state->update_rs(_from, p, _worker_id);
4773   }
4774 
4775   if (do_gen_barrier && obj != NULL) {
4776     par_do_barrier(p);
4777   }
4778 }
4779 
4780 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4781 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4782 
4783 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4784   assert(has_partial_array_mask(p), "invariant");
4785   oop from_obj = clear_partial_array_mask(p);
4786 
4787   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4788   assert(from_obj->is_objArray(), "must be obj array");
4789   objArrayOop from_obj_array = objArrayOop(from_obj);
4790   // The from-space object contains the real length.
4791   int length                 = from_obj_array->length();
4792 
4793   assert(from_obj->is_forwarded(), "must be forwarded");
4794   oop to_obj                 = from_obj->forwardee();
4795   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4796   objArrayOop to_obj_array   = objArrayOop(to_obj);
4797   // We keep track of the next start index in the length field of the
4798   // to-space object.
4799   int next_index             = to_obj_array->length();
4800   assert(0 <= next_index && next_index < length,
4801          err_msg("invariant, next index: %d, length: %d", next_index, length));
4802 
4803   int start                  = next_index;
4804   int end                    = length;
4805   int remainder              = end - start;
4806   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4807   if (remainder > 2 * ParGCArrayScanChunk) {
4808     end = start + ParGCArrayScanChunk;
4809     to_obj_array->set_length(end);
4810     // Push the remainder before we process the range in case another
4811     // worker has run out of things to do and can steal it.
4812     oop* from_obj_p = set_partial_array_mask(from_obj);
4813     _par_scan_state->push_on_queue(from_obj_p);
4814   } else {
4815     assert(length == end, "sanity");
4816     // We'll process the final range for this object. Restore the length
4817     // so that the heap remains parsable in case of evacuation failure.
4818     to_obj_array->set_length(end);
4819   }
4820   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4821   // Process indexes [start,end). It will also process the header
4822   // along with the first chunk (i.e., the chunk with start == 0).
4823   // Note that at this point the length field of to_obj_array is not
4824   // correct given that we are using it to keep track of the next
4825   // start index. oop_iterate_range() (thankfully!) ignores the length
4826   // field and only relies on the start / end parameters.  It does
4827   // however return the size of the object which will be incorrect. So
4828   // we have to ignore it even if we wanted to use it.
4829   to_obj_array->oop_iterate_range(&_scanner, start, end);
4830 }
4831 
4832 class G1ParEvacuateFollowersClosure : public VoidClosure {
4833 protected:
4834   G1CollectedHeap*              _g1h;
4835   G1ParScanThreadState*         _par_scan_state;
4836   RefToScanQueueSet*            _queues;
4837   ParallelTaskTerminator*       _terminator;
4838 
4839   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4840   RefToScanQueueSet*      queues()         { return _queues; }
4841   ParallelTaskTerminator* terminator()     { return _terminator; }
4842 
4843 public:
4844   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4845                                 G1ParScanThreadState* par_scan_state,
4846                                 RefToScanQueueSet* queues,
4847                                 ParallelTaskTerminator* terminator)
4848     : _g1h(g1h), _par_scan_state(par_scan_state),
4849       _queues(queues), _terminator(terminator) {}
4850 
4851   void do_void();
4852 
4853 private:
4854   inline bool offer_termination();
4855 };
4856 
4857 bool G1ParEvacuateFollowersClosure::offer_termination() {
4858   G1ParScanThreadState* const pss = par_scan_state();
4859   pss->start_term_time();
4860   const bool res = terminator()->offer_termination();
4861   pss->end_term_time();
4862   return res;
4863 }
4864 
4865 void G1ParEvacuateFollowersClosure::do_void() {
4866   StarTask stolen_task;
4867   G1ParScanThreadState* const pss = par_scan_state();
4868   pss->trim_queue();
4869 
4870   do {
4871     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4872       assert(pss->verify_task(stolen_task), "sanity");
4873       if (stolen_task.is_narrow()) {
4874         pss->deal_with_reference((narrowOop*) stolen_task);
4875       } else {
4876         pss->deal_with_reference((oop*) stolen_task);
4877       }
4878 
4879       // We've just processed a reference and we might have made
4880       // available new entries on the queues. So we have to make sure
4881       // we drain the queues as necessary.
4882       pss->trim_queue();
4883     }
4884   } while (!offer_termination());
4885 
4886   pss->retire_alloc_buffers();
4887 }
4888 
4889 class G1ParTask : public AbstractGangTask {
4890 protected:
4891   G1CollectedHeap*       _g1h;
4892   RefToScanQueueSet      *_queues;
4893   ParallelTaskTerminator _terminator;
4894   uint _n_workers;
4895 
4896   Mutex _stats_lock;
4897   Mutex* stats_lock() { return &_stats_lock; }
4898 
4899   size_t getNCards() {
4900     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4901       / G1BlockOffsetSharedArray::N_bytes;
4902   }
4903 
4904 public:
4905   G1ParTask(G1CollectedHeap* g1h,
4906             RefToScanQueueSet *task_queues)
4907     : AbstractGangTask("G1 collection"),
4908       _g1h(g1h),
4909       _queues(task_queues),
4910       _terminator(0, _queues),
4911       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4912   {}
4913 
4914   RefToScanQueueSet* queues() { return _queues; }
4915 
4916   RefToScanQueue *work_queue(int i) {
4917     return queues()->queue(i);
4918   }
4919 
4920   ParallelTaskTerminator* terminator() { return &_terminator; }
4921 
4922   virtual void set_for_termination(int active_workers) {
4923     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4924     // in the young space (_par_seq_tasks) in the G1 heap
4925     // for SequentialSubTasksDone.
4926     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4927     // both of which need setting by set_n_termination().
4928     _g1h->SharedHeap::set_n_termination(active_workers);
4929     _g1h->set_n_termination(active_workers);
4930     terminator()->reset_for_reuse(active_workers);
4931     _n_workers = active_workers;
4932   }
4933 
4934   void work(uint worker_id) {
4935     if (worker_id >= _n_workers) return;  // no work needed this round
4936 
4937     double start_time_ms = os::elapsedTime() * 1000.0;
4938     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4939 
4940     {
4941       ResourceMark rm;
4942       HandleMark   hm;
4943 
4944       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4945 
4946       G1ParScanThreadState            pss(_g1h, worker_id);
4947       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4948       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4949       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4950 
4951       pss.set_evac_closure(&scan_evac_cl);
4952       pss.set_evac_failure_closure(&evac_failure_cl);
4953       pss.set_partial_scan_closure(&partial_scan_cl);
4954 
4955       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4956       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4957 
4958       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4959       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4960 
4961       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4962       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4963 
4964       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4965         // We also need to mark copied objects.
4966         scan_root_cl = &scan_mark_root_cl;
4967         scan_perm_cl = &scan_mark_perm_cl;
4968       }
4969 
4970       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4971 
4972       pss.start_strong_roots();
4973       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4974                                     SharedHeap::SO_AllClasses,
4975                                     scan_root_cl,
4976                                     &push_heap_rs_cl,
4977                                     scan_perm_cl,
4978                                     worker_id);
4979       pss.end_strong_roots();
4980 
4981       {
4982         double start = os::elapsedTime();
4983         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4984         evac.do_void();
4985         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4986         double term_ms = pss.term_time()*1000.0;
4987         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4988         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4989       }
4990       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4991       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4992 
4993       if (ParallelGCVerbose) {
4994         MutexLocker x(stats_lock());
4995         pss.print_termination_stats(worker_id);
4996       }
4997 
4998       assert(pss.refs()->is_empty(), "should be empty");
4999 
5000       // Close the inner scope so that the ResourceMark and HandleMark
5001       // destructors are executed here and are included as part of the
5002       // "GC Worker Time".
5003     }
5004 
5005     double end_time_ms = os::elapsedTime() * 1000.0;
5006     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5007   }
5008 };
5009 
5010 // *** Common G1 Evacuation Stuff
5011 
5012 // Closures that support the filtering of CodeBlobs scanned during
5013 // external root scanning.
5014 
5015 // Closure applied to reference fields in code blobs (specifically nmethods)
5016 // to determine whether an nmethod contains references that point into
5017 // the collection set. Used as a predicate when walking code roots so
5018 // that only nmethods that point into the collection set are added to the
5019 // 'marked' list.
5020 
5021 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
5022 
5023   class G1PointsIntoCSOopClosure : public OopClosure {
5024     G1CollectedHeap* _g1;
5025     bool _points_into_cs;
5026   public:
5027     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
5028       _g1(g1), _points_into_cs(false) { }
5029 
5030     bool points_into_cs() const { return _points_into_cs; }
5031 
5032     template <class T>
5033     void do_oop_nv(T* p) {
5034       if (!_points_into_cs) {
5035         T heap_oop = oopDesc::load_heap_oop(p);
5036         if (!oopDesc::is_null(heap_oop) &&
5037             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
5038           _points_into_cs = true;
5039         }
5040       }
5041     }
5042 
5043     virtual void do_oop(oop* p)        { do_oop_nv(p); }
5044     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
5045   };
5046 
5047   G1CollectedHeap* _g1;
5048 
5049 public:
5050   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
5051     CodeBlobToOopClosure(cl, true), _g1(g1) { }
5052 
5053   virtual void do_code_blob(CodeBlob* cb) {
5054     nmethod* nm = cb->as_nmethod_or_null();
5055     if (nm != NULL && !(nm->test_oops_do_mark())) {
5056       G1PointsIntoCSOopClosure predicate_cl(_g1);
5057       nm->oops_do(&predicate_cl);
5058 
5059       if (predicate_cl.points_into_cs()) {
5060         // At least one of the reference fields or the oop relocations
5061         // in the nmethod points into the collection set. We have to
5062         // 'mark' this nmethod.
5063         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5064         // or MarkingCodeBlobClosure::do_code_blob() change.
5065         if (!nm->test_set_oops_do_mark()) {
5066           do_newly_marked_nmethod(nm);
5067         }
5068       }
5069     }
5070   }
5071 };
5072 
5073 // This method is run in a GC worker.
5074 
5075 void
5076 G1CollectedHeap::
5077 g1_process_strong_roots(bool collecting_perm_gen,
5078                         ScanningOption so,
5079                         OopClosure* scan_non_heap_roots,
5080                         OopsInHeapRegionClosure* scan_rs,
5081                         OopsInGenClosure* scan_perm,
5082                         int worker_i) {
5083 
5084   // First scan the strong roots, including the perm gen.
5085   double ext_roots_start = os::elapsedTime();
5086   double closure_app_time_sec = 0.0;
5087 
5088   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5089   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
5090   buf_scan_perm.set_generation(perm_gen());
5091 
5092   // Walk the code cache w/o buffering, because StarTask cannot handle
5093   // unaligned oop locations.
5094   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5095 
5096   process_strong_roots(false, // no scoping; this is parallel code
5097                        collecting_perm_gen, so,
5098                        &buf_scan_non_heap_roots,
5099                        &eager_scan_code_roots,
5100                        &buf_scan_perm);
5101 
5102   // Now the CM ref_processor roots.
5103   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5104     // We need to treat the discovered reference lists of the
5105     // concurrent mark ref processor as roots and keep entries
5106     // (which are added by the marking threads) on them live
5107     // until they can be processed at the end of marking.
5108     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5109   }
5110 
5111   // Finish up any enqueued closure apps (attributed as object copy time).
5112   buf_scan_non_heap_roots.done();
5113   buf_scan_perm.done();
5114 
5115   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
5116                                 buf_scan_non_heap_roots.closure_app_seconds();
5117   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5118 
5119   double ext_root_time_ms =
5120     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5121 
5122   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5123 
5124   // During conc marking we have to filter the per-thread SATB buffers
5125   // to make sure we remove any oops into the CSet (which will show up
5126   // as implicitly live).
5127   double satb_filtering_ms = 0.0;
5128   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5129     if (mark_in_progress()) {
5130       double satb_filter_start = os::elapsedTime();
5131 
5132       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5133 
5134       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5135     }
5136   }
5137   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5138 
5139   // Now scan the complement of the collection set.
5140   if (scan_rs != NULL) {
5141     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5142   }
5143 
5144   _process_strong_tasks->all_tasks_completed();
5145 }
5146 
5147 void
5148 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5149                                        OopClosure* non_root_closure) {
5150   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5151   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5152 }
5153 
5154 // Weak Reference Processing support
5155 
5156 // An always "is_alive" closure that is used to preserve referents.
5157 // If the object is non-null then it's alive.  Used in the preservation
5158 // of referent objects that are pointed to by reference objects
5159 // discovered by the CM ref processor.
5160 class G1AlwaysAliveClosure: public BoolObjectClosure {
5161   G1CollectedHeap* _g1;
5162 public:
5163   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5164   void do_object(oop p) { assert(false, "Do not call."); }
5165   bool do_object_b(oop p) {
5166     if (p != NULL) {
5167       return true;
5168     }
5169     return false;
5170   }
5171 };
5172 
5173 bool G1STWIsAliveClosure::do_object_b(oop p) {
5174   // An object is reachable if it is outside the collection set,
5175   // or is inside and copied.
5176   return !_g1->obj_in_cs(p) || p->is_forwarded();
5177 }
5178 
5179 // Non Copying Keep Alive closure
5180 class G1KeepAliveClosure: public OopClosure {
5181   G1CollectedHeap* _g1;
5182 public:
5183   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5184   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5185   void do_oop(      oop* p) {
5186     oop obj = *p;
5187 
5188     if (_g1->obj_in_cs(obj)) {
5189       assert( obj->is_forwarded(), "invariant" );
5190       *p = obj->forwardee();
5191     }
5192   }
5193 };
5194 
5195 // Copying Keep Alive closure - can be called from both
5196 // serial and parallel code as long as different worker
5197 // threads utilize different G1ParScanThreadState instances
5198 // and different queues.
5199 
5200 class G1CopyingKeepAliveClosure: public OopClosure {
5201   G1CollectedHeap*         _g1h;
5202   OopClosure*              _copy_non_heap_obj_cl;
5203   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5204   G1ParScanThreadState*    _par_scan_state;
5205 
5206 public:
5207   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5208                             OopClosure* non_heap_obj_cl,
5209                             OopsInHeapRegionClosure* perm_obj_cl,
5210                             G1ParScanThreadState* pss):
5211     _g1h(g1h),
5212     _copy_non_heap_obj_cl(non_heap_obj_cl),
5213     _copy_perm_obj_cl(perm_obj_cl),
5214     _par_scan_state(pss)
5215   {}
5216 
5217   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5218   virtual void do_oop(      oop* p) { do_oop_work(p); }
5219 
5220   template <class T> void do_oop_work(T* p) {
5221     oop obj = oopDesc::load_decode_heap_oop(p);
5222 
5223     if (_g1h->obj_in_cs(obj)) {
5224       // If the referent object has been forwarded (either copied
5225       // to a new location or to itself in the event of an
5226       // evacuation failure) then we need to update the reference
5227       // field and, if both reference and referent are in the G1
5228       // heap, update the RSet for the referent.
5229       //
5230       // If the referent has not been forwarded then we have to keep
5231       // it alive by policy. Therefore we have copy the referent.
5232       //
5233       // If the reference field is in the G1 heap then we can push
5234       // on the PSS queue. When the queue is drained (after each
5235       // phase of reference processing) the object and it's followers
5236       // will be copied, the reference field set to point to the
5237       // new location, and the RSet updated. Otherwise we need to
5238       // use the the non-heap or perm closures directly to copy
5239       // the referent object and update the pointer, while avoiding
5240       // updating the RSet.
5241 
5242       if (_g1h->is_in_g1_reserved(p)) {
5243         _par_scan_state->push_on_queue(p);
5244       } else {
5245         // The reference field is not in the G1 heap.
5246         if (_g1h->perm_gen()->is_in(p)) {
5247           _copy_perm_obj_cl->do_oop(p);
5248         } else {
5249           _copy_non_heap_obj_cl->do_oop(p);
5250         }
5251       }
5252     }
5253   }
5254 };
5255 
5256 // Serial drain queue closure. Called as the 'complete_gc'
5257 // closure for each discovered list in some of the
5258 // reference processing phases.
5259 
5260 class G1STWDrainQueueClosure: public VoidClosure {
5261 protected:
5262   G1CollectedHeap* _g1h;
5263   G1ParScanThreadState* _par_scan_state;
5264 
5265   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5266 
5267 public:
5268   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5269     _g1h(g1h),
5270     _par_scan_state(pss)
5271   { }
5272 
5273   void do_void() {
5274     G1ParScanThreadState* const pss = par_scan_state();
5275     pss->trim_queue();
5276   }
5277 };
5278 
5279 // Parallel Reference Processing closures
5280 
5281 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5282 // processing during G1 evacuation pauses.
5283 
5284 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5285 private:
5286   G1CollectedHeap*   _g1h;
5287   RefToScanQueueSet* _queues;
5288   FlexibleWorkGang*  _workers;
5289   int                _active_workers;
5290 
5291 public:
5292   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5293                         FlexibleWorkGang* workers,
5294                         RefToScanQueueSet *task_queues,
5295                         int n_workers) :
5296     _g1h(g1h),
5297     _queues(task_queues),
5298     _workers(workers),
5299     _active_workers(n_workers)
5300   {
5301     assert(n_workers > 0, "shouldn't call this otherwise");
5302   }
5303 
5304   // Executes the given task using concurrent marking worker threads.
5305   virtual void execute(ProcessTask& task);
5306   virtual void execute(EnqueueTask& task);
5307 };
5308 
5309 // Gang task for possibly parallel reference processing
5310 
5311 class G1STWRefProcTaskProxy: public AbstractGangTask {
5312   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5313   ProcessTask&     _proc_task;
5314   G1CollectedHeap* _g1h;
5315   RefToScanQueueSet *_task_queues;
5316   ParallelTaskTerminator* _terminator;
5317 
5318 public:
5319   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5320                      G1CollectedHeap* g1h,
5321                      RefToScanQueueSet *task_queues,
5322                      ParallelTaskTerminator* terminator) :
5323     AbstractGangTask("Process reference objects in parallel"),
5324     _proc_task(proc_task),
5325     _g1h(g1h),
5326     _task_queues(task_queues),
5327     _terminator(terminator)
5328   {}
5329 
5330   virtual void work(uint worker_id) {
5331     // The reference processing task executed by a single worker.
5332     ResourceMark rm;
5333     HandleMark   hm;
5334 
5335     G1STWIsAliveClosure is_alive(_g1h);
5336 
5337     G1ParScanThreadState pss(_g1h, worker_id);
5338 
5339     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5340     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5341     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5342 
5343     pss.set_evac_closure(&scan_evac_cl);
5344     pss.set_evac_failure_closure(&evac_failure_cl);
5345     pss.set_partial_scan_closure(&partial_scan_cl);
5346 
5347     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5348     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5349 
5350     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5351     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5352 
5353     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5354     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5355 
5356     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5357       // We also need to mark copied objects.
5358       copy_non_heap_cl = &copy_mark_non_heap_cl;
5359       copy_perm_cl = &copy_mark_perm_cl;
5360     }
5361 
5362     // Keep alive closure.
5363     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5364 
5365     // Complete GC closure
5366     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5367 
5368     // Call the reference processing task's work routine.
5369     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5370 
5371     // Note we cannot assert that the refs array is empty here as not all
5372     // of the processing tasks (specifically phase2 - pp2_work) execute
5373     // the complete_gc closure (which ordinarily would drain the queue) so
5374     // the queue may not be empty.
5375   }
5376 };
5377 
5378 // Driver routine for parallel reference processing.
5379 // Creates an instance of the ref processing gang
5380 // task and has the worker threads execute it.
5381 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5382   assert(_workers != NULL, "Need parallel worker threads.");
5383 
5384   ParallelTaskTerminator terminator(_active_workers, _queues);
5385   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5386 
5387   _g1h->set_par_threads(_active_workers);
5388   _workers->run_task(&proc_task_proxy);
5389   _g1h->set_par_threads(0);
5390 }
5391 
5392 // Gang task for parallel reference enqueueing.
5393 
5394 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5395   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5396   EnqueueTask& _enq_task;
5397 
5398 public:
5399   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5400     AbstractGangTask("Enqueue reference objects in parallel"),
5401     _enq_task(enq_task)
5402   { }
5403 
5404   virtual void work(uint worker_id) {
5405     _enq_task.work(worker_id);
5406   }
5407 };
5408 
5409 // Driver routine for parallel reference enqueueing.
5410 // Creates an instance of the ref enqueueing gang
5411 // task and has the worker threads execute it.
5412 
5413 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5414   assert(_workers != NULL, "Need parallel worker threads.");
5415 
5416   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5417 
5418   _g1h->set_par_threads(_active_workers);
5419   _workers->run_task(&enq_task_proxy);
5420   _g1h->set_par_threads(0);
5421 }
5422 
5423 // End of weak reference support closures
5424 
5425 // Abstract task used to preserve (i.e. copy) any referent objects
5426 // that are in the collection set and are pointed to by reference
5427 // objects discovered by the CM ref processor.
5428 
5429 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5430 protected:
5431   G1CollectedHeap* _g1h;
5432   RefToScanQueueSet      *_queues;
5433   ParallelTaskTerminator _terminator;
5434   uint _n_workers;
5435 
5436 public:
5437   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5438     AbstractGangTask("ParPreserveCMReferents"),
5439     _g1h(g1h),
5440     _queues(task_queues),
5441     _terminator(workers, _queues),
5442     _n_workers(workers)
5443   { }
5444 
5445   void work(uint worker_id) {
5446     ResourceMark rm;
5447     HandleMark   hm;
5448 
5449     G1ParScanThreadState            pss(_g1h, worker_id);
5450     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5451     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5452     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5453 
5454     pss.set_evac_closure(&scan_evac_cl);
5455     pss.set_evac_failure_closure(&evac_failure_cl);
5456     pss.set_partial_scan_closure(&partial_scan_cl);
5457 
5458     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5459 
5460 
5461     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5462     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5463 
5464     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5465     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5466 
5467     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5468     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5469 
5470     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5471       // We also need to mark copied objects.
5472       copy_non_heap_cl = &copy_mark_non_heap_cl;
5473       copy_perm_cl = &copy_mark_perm_cl;
5474     }
5475 
5476     // Is alive closure
5477     G1AlwaysAliveClosure always_alive(_g1h);
5478 
5479     // Copying keep alive closure. Applied to referent objects that need
5480     // to be copied.
5481     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5482 
5483     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5484 
5485     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5486     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5487 
5488     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5489     // So this must be true - but assert just in case someone decides to
5490     // change the worker ids.
5491     assert(0 <= worker_id && worker_id < limit, "sanity");
5492     assert(!rp->discovery_is_atomic(), "check this code");
5493 
5494     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5495     for (uint idx = worker_id; idx < limit; idx += stride) {
5496       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5497 
5498       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5499       while (iter.has_next()) {
5500         // Since discovery is not atomic for the CM ref processor, we
5501         // can see some null referent objects.
5502         iter.load_ptrs(DEBUG_ONLY(true));
5503         oop ref = iter.obj();
5504 
5505         // This will filter nulls.
5506         if (iter.is_referent_alive()) {
5507           iter.make_referent_alive();
5508         }
5509         iter.move_to_next();
5510       }
5511     }
5512 
5513     // Drain the queue - which may cause stealing
5514     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5515     drain_queue.do_void();
5516     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5517     assert(pss.refs()->is_empty(), "should be");
5518   }
5519 };
5520 
5521 // Weak Reference processing during an evacuation pause (part 1).
5522 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5523   double ref_proc_start = os::elapsedTime();
5524 
5525   ReferenceProcessor* rp = _ref_processor_stw;
5526   assert(rp->discovery_enabled(), "should have been enabled");
5527 
5528   // Any reference objects, in the collection set, that were 'discovered'
5529   // by the CM ref processor should have already been copied (either by
5530   // applying the external root copy closure to the discovered lists, or
5531   // by following an RSet entry).
5532   //
5533   // But some of the referents, that are in the collection set, that these
5534   // reference objects point to may not have been copied: the STW ref
5535   // processor would have seen that the reference object had already
5536   // been 'discovered' and would have skipped discovering the reference,
5537   // but would not have treated the reference object as a regular oop.
5538   // As a result the copy closure would not have been applied to the
5539   // referent object.
5540   //
5541   // We need to explicitly copy these referent objects - the references
5542   // will be processed at the end of remarking.
5543   //
5544   // We also need to do this copying before we process the reference
5545   // objects discovered by the STW ref processor in case one of these
5546   // referents points to another object which is also referenced by an
5547   // object discovered by the STW ref processor.
5548 
5549   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5550            no_of_gc_workers == workers()->active_workers(),
5551            "Need to reset active GC workers");
5552 
5553   set_par_threads(no_of_gc_workers);
5554   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5555                                                  no_of_gc_workers,
5556                                                  _task_queues);
5557 
5558   if (G1CollectedHeap::use_parallel_gc_threads()) {
5559     workers()->run_task(&keep_cm_referents);
5560   } else {
5561     keep_cm_referents.work(0);
5562   }
5563 
5564   set_par_threads(0);
5565 
5566   // Closure to test whether a referent is alive.
5567   G1STWIsAliveClosure is_alive(this);
5568 
5569   // Even when parallel reference processing is enabled, the processing
5570   // of JNI refs is serial and performed serially by the current thread
5571   // rather than by a worker. The following PSS will be used for processing
5572   // JNI refs.
5573 
5574   // Use only a single queue for this PSS.
5575   G1ParScanThreadState pss(this, 0);
5576 
5577   // We do not embed a reference processor in the copying/scanning
5578   // closures while we're actually processing the discovered
5579   // reference objects.
5580   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5581   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5582   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5583 
5584   pss.set_evac_closure(&scan_evac_cl);
5585   pss.set_evac_failure_closure(&evac_failure_cl);
5586   pss.set_partial_scan_closure(&partial_scan_cl);
5587 
5588   assert(pss.refs()->is_empty(), "pre-condition");
5589 
5590   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5591   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5592 
5593   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5594   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5595 
5596   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5597   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5598 
5599   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5600     // We also need to mark copied objects.
5601     copy_non_heap_cl = &copy_mark_non_heap_cl;
5602     copy_perm_cl = &copy_mark_perm_cl;
5603   }
5604 
5605   // Keep alive closure.
5606   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5607 
5608   // Serial Complete GC closure
5609   G1STWDrainQueueClosure drain_queue(this, &pss);
5610 
5611   // Setup the soft refs policy...
5612   rp->setup_policy(false);
5613 
5614   ReferenceProcessorStats stats;
5615   if (!rp->processing_is_mt()) {
5616     // Serial reference processing...
5617     stats = rp->process_discovered_references(&is_alive,
5618                                               &keep_alive,
5619                                               &drain_queue,
5620                                               NULL,
5621                                               _gc_timer_stw);
5622   } else {
5623     // Parallel reference processing
5624     assert(rp->num_q() == no_of_gc_workers, "sanity");
5625     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5626 
5627     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5628     stats = rp->process_discovered_references(&is_alive,
5629                                               &keep_alive,
5630                                               &drain_queue,
5631                                               &par_task_executor,
5632                                               _gc_timer_stw);
5633   }
5634 
5635   _gc_tracer_stw->report_gc_reference_stats(stats);
5636   // We have completed copying any necessary live referent objects
5637   // (that were not copied during the actual pause) so we can
5638   // retire any active alloc buffers
5639   pss.retire_alloc_buffers();
5640   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5641 
5642   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5643   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5644 }
5645 
5646 // Weak Reference processing during an evacuation pause (part 2).
5647 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5648   double ref_enq_start = os::elapsedTime();
5649 
5650   ReferenceProcessor* rp = _ref_processor_stw;
5651   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5652 
5653   // Now enqueue any remaining on the discovered lists on to
5654   // the pending list.
5655   if (!rp->processing_is_mt()) {
5656     // Serial reference processing...
5657     rp->enqueue_discovered_references();
5658   } else {
5659     // Parallel reference enqueueing
5660 
5661     assert(no_of_gc_workers == workers()->active_workers(),
5662            "Need to reset active workers");
5663     assert(rp->num_q() == no_of_gc_workers, "sanity");
5664     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5665 
5666     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5667     rp->enqueue_discovered_references(&par_task_executor);
5668   }
5669 
5670   rp->verify_no_references_recorded();
5671   assert(!rp->discovery_enabled(), "should have been disabled");
5672 
5673   // FIXME
5674   // CM's reference processing also cleans up the string and symbol tables.
5675   // Should we do that here also? We could, but it is a serial operation
5676   // and could significantly increase the pause time.
5677 
5678   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5679   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5680 }
5681 
5682 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5683   _expand_heap_after_alloc_failure = true;
5684   _evacuation_failed = false;
5685 
5686   // Should G1EvacuationFailureALot be in effect for this GC?
5687   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5688 
5689   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5690 
5691   // Disable the hot card cache.
5692   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5693   hot_card_cache->reset_hot_cache_claimed_index();
5694   hot_card_cache->set_use_cache(false);
5695 
5696   uint n_workers;
5697   if (G1CollectedHeap::use_parallel_gc_threads()) {
5698     n_workers =
5699       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5700                                      workers()->active_workers(),
5701                                      Threads::number_of_non_daemon_threads());
5702     assert(UseDynamicNumberOfGCThreads ||
5703            n_workers == workers()->total_workers(),
5704            "If not dynamic should be using all the  workers");
5705     workers()->set_active_workers(n_workers);
5706     set_par_threads(n_workers);
5707   } else {
5708     assert(n_par_threads() == 0,
5709            "Should be the original non-parallel value");
5710     n_workers = 1;
5711   }
5712 
5713   G1ParTask g1_par_task(this, _task_queues);
5714 
5715   init_for_evac_failure(NULL);
5716 
5717   rem_set()->prepare_for_younger_refs_iterate(true);
5718 
5719   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5720   double start_par_time_sec = os::elapsedTime();
5721   double end_par_time_sec;
5722 
5723   {
5724     StrongRootsScope srs(this);
5725 
5726     if (G1CollectedHeap::use_parallel_gc_threads()) {
5727       // The individual threads will set their evac-failure closures.
5728       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5729       // These tasks use ShareHeap::_process_strong_tasks
5730       assert(UseDynamicNumberOfGCThreads ||
5731              workers()->active_workers() == workers()->total_workers(),
5732              "If not dynamic should be using all the  workers");
5733       workers()->run_task(&g1_par_task);
5734     } else {
5735       g1_par_task.set_for_termination(n_workers);
5736       g1_par_task.work(0);
5737     }
5738     end_par_time_sec = os::elapsedTime();
5739 
5740     // Closing the inner scope will execute the destructor
5741     // for the StrongRootsScope object. We record the current
5742     // elapsed time before closing the scope so that time
5743     // taken for the SRS destructor is NOT included in the
5744     // reported parallel time.
5745   }
5746 
5747   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5748   g1_policy()->phase_times()->record_par_time(par_time_ms);
5749 
5750   double code_root_fixup_time_ms =
5751         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5752   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5753 
5754   set_par_threads(0);
5755 
5756   // Process any discovered reference objects - we have
5757   // to do this _before_ we retire the GC alloc regions
5758   // as we may have to copy some 'reachable' referent
5759   // objects (and their reachable sub-graphs) that were
5760   // not copied during the pause.
5761   process_discovered_references(n_workers);
5762 
5763   // Weak root processing.
5764   // Note: when JSR 292 is enabled and code blobs can contain
5765   // non-perm oops then we will need to process the code blobs
5766   // here too.
5767   {
5768     G1STWIsAliveClosure is_alive(this);
5769     G1KeepAliveClosure keep_alive(this);
5770     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5771   }
5772 
5773   release_gc_alloc_regions(n_workers, evacuation_info);
5774   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5775 
5776   // Reset and re-enable the hot card cache.
5777   // Note the counts for the cards in the regions in the
5778   // collection set are reset when the collection set is freed.
5779   hot_card_cache->reset_hot_cache();
5780   hot_card_cache->set_use_cache(true);
5781 
5782   finalize_for_evac_failure();
5783 
5784   if (evacuation_failed()) {
5785     remove_self_forwarding_pointers();
5786 
5787     // Reset the G1EvacuationFailureALot counters and flags
5788     // Note: the values are reset only when an actual
5789     // evacuation failure occurs.
5790     NOT_PRODUCT(reset_evacuation_should_fail();)
5791   }
5792 
5793   // Enqueue any remaining references remaining on the STW
5794   // reference processor's discovered lists. We need to do
5795   // this after the card table is cleaned (and verified) as
5796   // the act of enqueueing entries on to the pending list
5797   // will log these updates (and dirty their associated
5798   // cards). We need these updates logged to update any
5799   // RSets.
5800   enqueue_discovered_references(n_workers);
5801 
5802   if (G1DeferredRSUpdate) {
5803     RedirtyLoggedCardTableEntryFastClosure redirty;
5804     dirty_card_queue_set().set_closure(&redirty);
5805     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5806 
5807     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5808     dcq.merge_bufferlists(&dirty_card_queue_set());
5809     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5810   }
5811   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5812 }
5813 
5814 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5815                                      size_t* pre_used,
5816                                      FreeRegionList* free_list,
5817                                      OldRegionSet* old_proxy_set,
5818                                      HumongousRegionSet* humongous_proxy_set,
5819                                      HRRSCleanupTask* hrrs_cleanup_task,
5820                                      bool par) {
5821   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5822     if (hr->isHumongous()) {
5823       assert(hr->startsHumongous(), "we should only see starts humongous");
5824       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5825     } else {
5826       _old_set.remove_with_proxy(hr, old_proxy_set);
5827       free_region(hr, pre_used, free_list, par);
5828     }
5829   } else {
5830     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5831   }
5832 }
5833 
5834 void G1CollectedHeap::free_region(HeapRegion* hr,
5835                                   size_t* pre_used,
5836                                   FreeRegionList* free_list,
5837                                   bool par) {
5838   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5839   assert(!hr->is_empty(), "the region should not be empty");
5840   assert(free_list != NULL, "pre-condition");
5841 
5842   // Clear the card counts for this region.
5843   // Note: we only need to do this if the region is not young
5844   // (since we don't refine cards in young regions).
5845   if (!hr->is_young()) {
5846     _cg1r->hot_card_cache()->reset_card_counts(hr);
5847   }
5848   *pre_used += hr->used();
5849   hr->hr_clear(par, true /* clear_space */);
5850   free_list->add_as_head(hr);
5851 }
5852 
5853 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5854                                      size_t* pre_used,
5855                                      FreeRegionList* free_list,
5856                                      HumongousRegionSet* humongous_proxy_set,
5857                                      bool par) {
5858   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5859   assert(free_list != NULL, "pre-condition");
5860   assert(humongous_proxy_set != NULL, "pre-condition");
5861 
5862   size_t hr_used = hr->used();
5863   size_t hr_capacity = hr->capacity();
5864   size_t hr_pre_used = 0;
5865   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5866   // We need to read this before we make the region non-humongous,
5867   // otherwise the information will be gone.
5868   uint last_index = hr->last_hc_index();
5869   hr->set_notHumongous();
5870   free_region(hr, &hr_pre_used, free_list, par);
5871 
5872   uint i = hr->hrs_index() + 1;
5873   while (i < last_index) {
5874     HeapRegion* curr_hr = region_at(i);
5875     assert(curr_hr->continuesHumongous(), "invariant");
5876     curr_hr->set_notHumongous();
5877     free_region(curr_hr, &hr_pre_used, free_list, par);
5878     i += 1;
5879   }
5880   assert(hr_pre_used == hr_used,
5881          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5882                  "should be the same", hr_pre_used, hr_used));
5883   *pre_used += hr_pre_used;
5884 }
5885 
5886 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5887                                        FreeRegionList* free_list,
5888                                        OldRegionSet* old_proxy_set,
5889                                        HumongousRegionSet* humongous_proxy_set,
5890                                        bool par) {
5891   if (pre_used > 0) {
5892     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5893     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5894     assert(_summary_bytes_used >= pre_used,
5895            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5896                    "should be >= pre_used: "SIZE_FORMAT,
5897                    _summary_bytes_used, pre_used));
5898     _summary_bytes_used -= pre_used;
5899   }
5900   if (free_list != NULL && !free_list->is_empty()) {
5901     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5902     _free_list.add_as_head(free_list);
5903   }
5904   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5905     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5906     _old_set.update_from_proxy(old_proxy_set);
5907   }
5908   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5909     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5910     _humongous_set.update_from_proxy(humongous_proxy_set);
5911   }
5912 }
5913 
5914 class G1ParCleanupCTTask : public AbstractGangTask {
5915   CardTableModRefBS* _ct_bs;
5916   G1CollectedHeap* _g1h;
5917   HeapRegion* volatile _su_head;
5918 public:
5919   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5920                      G1CollectedHeap* g1h) :
5921     AbstractGangTask("G1 Par Cleanup CT Task"),
5922     _ct_bs(ct_bs), _g1h(g1h) { }
5923 
5924   void work(uint worker_id) {
5925     HeapRegion* r;
5926     while (r = _g1h->pop_dirty_cards_region()) {
5927       clear_cards(r);
5928     }
5929   }
5930 
5931   void clear_cards(HeapRegion* r) {
5932     // Cards of the survivors should have already been dirtied.
5933     if (!r->is_survivor()) {
5934       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5935     }
5936   }
5937 };
5938 
5939 #ifndef PRODUCT
5940 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5941   G1CollectedHeap* _g1h;
5942   CardTableModRefBS* _ct_bs;
5943 public:
5944   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5945     : _g1h(g1h), _ct_bs(ct_bs) { }
5946   virtual bool doHeapRegion(HeapRegion* r) {
5947     if (r->is_survivor()) {
5948       _g1h->verify_dirty_region(r);
5949     } else {
5950       _g1h->verify_not_dirty_region(r);
5951     }
5952     return false;
5953   }
5954 };
5955 
5956 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5957   // All of the region should be clean.
5958   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5959   MemRegion mr(hr->bottom(), hr->end());
5960   ct_bs->verify_not_dirty_region(mr);
5961 }
5962 
5963 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5964   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5965   // dirty allocated blocks as they allocate them. The thread that
5966   // retires each region and replaces it with a new one will do a
5967   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5968   // not dirty that area (one less thing to have to do while holding
5969   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5970   // is dirty.
5971   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5972   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5973   ct_bs->verify_dirty_region(mr);
5974 }
5975 
5976 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5977   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5978   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5979     verify_dirty_region(hr);
5980   }
5981 }
5982 
5983 void G1CollectedHeap::verify_dirty_young_regions() {
5984   verify_dirty_young_list(_young_list->first_region());
5985 }
5986 #endif
5987 
5988 void G1CollectedHeap::cleanUpCardTable() {
5989   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5990   double start = os::elapsedTime();
5991 
5992   {
5993     // Iterate over the dirty cards region list.
5994     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5995 
5996     if (G1CollectedHeap::use_parallel_gc_threads()) {
5997       set_par_threads();
5998       workers()->run_task(&cleanup_task);
5999       set_par_threads(0);
6000     } else {
6001       while (_dirty_cards_region_list) {
6002         HeapRegion* r = _dirty_cards_region_list;
6003         cleanup_task.clear_cards(r);
6004         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6005         if (_dirty_cards_region_list == r) {
6006           // The last region.
6007           _dirty_cards_region_list = NULL;
6008         }
6009         r->set_next_dirty_cards_region(NULL);
6010       }
6011     }
6012 #ifndef PRODUCT
6013     if (G1VerifyCTCleanup || VerifyAfterGC) {
6014       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6015       heap_region_iterate(&cleanup_verifier);
6016     }
6017 #endif
6018   }
6019 
6020   double elapsed = os::elapsedTime() - start;
6021   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6022 }
6023 
6024 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6025   size_t pre_used = 0;
6026   FreeRegionList local_free_list("Local List for CSet Freeing");
6027 
6028   double young_time_ms     = 0.0;
6029   double non_young_time_ms = 0.0;
6030 
6031   // Since the collection set is a superset of the the young list,
6032   // all we need to do to clear the young list is clear its
6033   // head and length, and unlink any young regions in the code below
6034   _young_list->clear();
6035 
6036   G1CollectorPolicy* policy = g1_policy();
6037 
6038   double start_sec = os::elapsedTime();
6039   bool non_young = true;
6040 
6041   HeapRegion* cur = cs_head;
6042   int age_bound = -1;
6043   size_t rs_lengths = 0;
6044 
6045   while (cur != NULL) {
6046     assert(!is_on_master_free_list(cur), "sanity");
6047     if (non_young) {
6048       if (cur->is_young()) {
6049         double end_sec = os::elapsedTime();
6050         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6051         non_young_time_ms += elapsed_ms;
6052 
6053         start_sec = os::elapsedTime();
6054         non_young = false;
6055       }
6056     } else {
6057       if (!cur->is_young()) {
6058         double end_sec = os::elapsedTime();
6059         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6060         young_time_ms += elapsed_ms;
6061 
6062         start_sec = os::elapsedTime();
6063         non_young = true;
6064       }
6065     }
6066 
6067     rs_lengths += cur->rem_set()->occupied();
6068 
6069     HeapRegion* next = cur->next_in_collection_set();
6070     assert(cur->in_collection_set(), "bad CS");
6071     cur->set_next_in_collection_set(NULL);
6072     cur->set_in_collection_set(false);
6073 
6074     if (cur->is_young()) {
6075       int index = cur->young_index_in_cset();
6076       assert(index != -1, "invariant");
6077       assert((uint) index < policy->young_cset_region_length(), "invariant");
6078       size_t words_survived = _surviving_young_words[index];
6079       cur->record_surv_words_in_group(words_survived);
6080 
6081       // At this point the we have 'popped' cur from the collection set
6082       // (linked via next_in_collection_set()) but it is still in the
6083       // young list (linked via next_young_region()). Clear the
6084       // _next_young_region field.
6085       cur->set_next_young_region(NULL);
6086     } else {
6087       int index = cur->young_index_in_cset();
6088       assert(index == -1, "invariant");
6089     }
6090 
6091     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6092             (!cur->is_young() && cur->young_index_in_cset() == -1),
6093             "invariant" );
6094 
6095     if (!cur->evacuation_failed()) {
6096       MemRegion used_mr = cur->used_region();
6097 
6098       // And the region is empty.
6099       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6100       free_region(cur, &pre_used, &local_free_list, false /* par */);
6101     } else {
6102       cur->uninstall_surv_rate_group();
6103       if (cur->is_young()) {
6104         cur->set_young_index_in_cset(-1);
6105       }
6106       cur->set_not_young();
6107       cur->set_evacuation_failed(false);
6108       // The region is now considered to be old.
6109       _old_set.add(cur);
6110       evacuation_info.increment_collectionset_used_after(cur->used());
6111     }
6112     cur = next;
6113   }
6114 
6115   evacuation_info.set_regions_freed(local_free_list.length());
6116   policy->record_max_rs_lengths(rs_lengths);
6117   policy->cset_regions_freed();
6118 
6119   double end_sec = os::elapsedTime();
6120   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6121 
6122   if (non_young) {
6123     non_young_time_ms += elapsed_ms;
6124   } else {
6125     young_time_ms += elapsed_ms;
6126   }
6127 
6128   update_sets_after_freeing_regions(pre_used, &local_free_list,
6129                                     NULL /* old_proxy_set */,
6130                                     NULL /* humongous_proxy_set */,
6131                                     false /* par */);
6132   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6133   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6134 }
6135 
6136 // This routine is similar to the above but does not record
6137 // any policy statistics or update free lists; we are abandoning
6138 // the current incremental collection set in preparation of a
6139 // full collection. After the full GC we will start to build up
6140 // the incremental collection set again.
6141 // This is only called when we're doing a full collection
6142 // and is immediately followed by the tearing down of the young list.
6143 
6144 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6145   HeapRegion* cur = cs_head;
6146 
6147   while (cur != NULL) {
6148     HeapRegion* next = cur->next_in_collection_set();
6149     assert(cur->in_collection_set(), "bad CS");
6150     cur->set_next_in_collection_set(NULL);
6151     cur->set_in_collection_set(false);
6152     cur->set_young_index_in_cset(-1);
6153     cur = next;
6154   }
6155 }
6156 
6157 void G1CollectedHeap::set_free_regions_coming() {
6158   if (G1ConcRegionFreeingVerbose) {
6159     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6160                            "setting free regions coming");
6161   }
6162 
6163   assert(!free_regions_coming(), "pre-condition");
6164   _free_regions_coming = true;
6165 }
6166 
6167 void G1CollectedHeap::reset_free_regions_coming() {
6168   assert(free_regions_coming(), "pre-condition");
6169 
6170   {
6171     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6172     _free_regions_coming = false;
6173     SecondaryFreeList_lock->notify_all();
6174   }
6175 
6176   if (G1ConcRegionFreeingVerbose) {
6177     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6178                            "reset free regions coming");
6179   }
6180 }
6181 
6182 void G1CollectedHeap::wait_while_free_regions_coming() {
6183   // Most of the time we won't have to wait, so let's do a quick test
6184   // first before we take the lock.
6185   if (!free_regions_coming()) {
6186     return;
6187   }
6188 
6189   if (G1ConcRegionFreeingVerbose) {
6190     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6191                            "waiting for free regions");
6192   }
6193 
6194   {
6195     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6196     while (free_regions_coming()) {
6197       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6198     }
6199   }
6200 
6201   if (G1ConcRegionFreeingVerbose) {
6202     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6203                            "done waiting for free regions");
6204   }
6205 }
6206 
6207 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6208   assert(heap_lock_held_for_gc(),
6209               "the heap lock should already be held by or for this thread");
6210   _young_list->push_region(hr);
6211 }
6212 
6213 class NoYoungRegionsClosure: public HeapRegionClosure {
6214 private:
6215   bool _success;
6216 public:
6217   NoYoungRegionsClosure() : _success(true) { }
6218   bool doHeapRegion(HeapRegion* r) {
6219     if (r->is_young()) {
6220       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6221                              r->bottom(), r->end());
6222       _success = false;
6223     }
6224     return false;
6225   }
6226   bool success() { return _success; }
6227 };
6228 
6229 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6230   bool ret = _young_list->check_list_empty(check_sample);
6231 
6232   if (check_heap) {
6233     NoYoungRegionsClosure closure;
6234     heap_region_iterate(&closure);
6235     ret = ret && closure.success();
6236   }
6237 
6238   return ret;
6239 }
6240 
6241 class TearDownRegionSetsClosure : public HeapRegionClosure {
6242 private:
6243   OldRegionSet *_old_set;
6244 
6245 public:
6246   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6247 
6248   bool doHeapRegion(HeapRegion* r) {
6249     if (r->is_empty()) {
6250       // We ignore empty regions, we'll empty the free list afterwards
6251     } else if (r->is_young()) {
6252       // We ignore young regions, we'll empty the young list afterwards
6253     } else if (r->isHumongous()) {
6254       // We ignore humongous regions, we're not tearing down the
6255       // humongous region set
6256     } else {
6257       // The rest should be old
6258       _old_set->remove(r);
6259     }
6260     return false;
6261   }
6262 
6263   ~TearDownRegionSetsClosure() {
6264     assert(_old_set->is_empty(), "post-condition");
6265   }
6266 };
6267 
6268 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6269   assert_at_safepoint(true /* should_be_vm_thread */);
6270 
6271   if (!free_list_only) {
6272     TearDownRegionSetsClosure cl(&_old_set);
6273     heap_region_iterate(&cl);
6274 
6275     // Need to do this after the heap iteration to be able to
6276     // recognize the young regions and ignore them during the iteration.
6277     _young_list->empty_list();
6278   }
6279   _free_list.remove_all();
6280 }
6281 
6282 class RebuildRegionSetsClosure : public HeapRegionClosure {
6283 private:
6284   bool            _free_list_only;
6285   OldRegionSet*   _old_set;
6286   FreeRegionList* _free_list;
6287   size_t          _total_used;
6288 
6289 public:
6290   RebuildRegionSetsClosure(bool free_list_only,
6291                            OldRegionSet* old_set, FreeRegionList* free_list) :
6292     _free_list_only(free_list_only),
6293     _old_set(old_set), _free_list(free_list), _total_used(0) {
6294     assert(_free_list->is_empty(), "pre-condition");
6295     if (!free_list_only) {
6296       assert(_old_set->is_empty(), "pre-condition");
6297     }
6298   }
6299 
6300   bool doHeapRegion(HeapRegion* r) {
6301     if (r->continuesHumongous()) {
6302       return false;
6303     }
6304 
6305     if (r->is_empty()) {
6306       // Add free regions to the free list
6307       _free_list->add_as_tail(r);
6308     } else if (!_free_list_only) {
6309       assert(!r->is_young(), "we should not come across young regions");
6310 
6311       if (r->isHumongous()) {
6312         // We ignore humongous regions, we left the humongous set unchanged
6313       } else {
6314         // The rest should be old, add them to the old set
6315         _old_set->add(r);
6316       }
6317       _total_used += r->used();
6318     }
6319 
6320     return false;
6321   }
6322 
6323   size_t total_used() {
6324     return _total_used;
6325   }
6326 };
6327 
6328 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6329   assert_at_safepoint(true /* should_be_vm_thread */);
6330 
6331   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6332   heap_region_iterate(&cl);
6333 
6334   if (!free_list_only) {
6335     _summary_bytes_used = cl.total_used();
6336   }
6337   assert(_summary_bytes_used == recalculate_used(),
6338          err_msg("inconsistent _summary_bytes_used, "
6339                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6340                  _summary_bytes_used, recalculate_used()));
6341 }
6342 
6343 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6344   _refine_cte_cl->set_concurrent(concurrent);
6345 }
6346 
6347 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6348   HeapRegion* hr = heap_region_containing(p);
6349   if (hr == NULL) {
6350     return is_in_permanent(p);
6351   } else {
6352     return hr->is_in(p);
6353   }
6354 }
6355 
6356 // Methods for the mutator alloc region
6357 
6358 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6359                                                       bool force) {
6360   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6361   assert(!force || g1_policy()->can_expand_young_list(),
6362          "if force is true we should be able to expand the young list");
6363   bool young_list_full = g1_policy()->is_young_list_full();
6364   if (force || !young_list_full) {
6365     HeapRegion* new_alloc_region = new_region(word_size,
6366                                               false /* do_expand */);
6367     if (new_alloc_region != NULL) {
6368       set_region_short_lived_locked(new_alloc_region);
6369       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6370       return new_alloc_region;
6371     }
6372   }
6373   return NULL;
6374 }
6375 
6376 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6377                                                   size_t allocated_bytes) {
6378   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6379   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6380 
6381   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6382   _summary_bytes_used += allocated_bytes;
6383   _hr_printer.retire(alloc_region);
6384   // We update the eden sizes here, when the region is retired,
6385   // instead of when it's allocated, since this is the point that its
6386   // used space has been recored in _summary_bytes_used.
6387   g1mm()->update_eden_size();
6388 }
6389 
6390 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6391                                                     bool force) {
6392   return _g1h->new_mutator_alloc_region(word_size, force);
6393 }
6394 
6395 void G1CollectedHeap::set_par_threads() {
6396   // Don't change the number of workers.  Use the value previously set
6397   // in the workgroup.
6398   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6399   uint n_workers = workers()->active_workers();
6400   assert(UseDynamicNumberOfGCThreads ||
6401            n_workers == workers()->total_workers(),
6402       "Otherwise should be using the total number of workers");
6403   if (n_workers == 0) {
6404     assert(false, "Should have been set in prior evacuation pause.");
6405     n_workers = ParallelGCThreads;
6406     workers()->set_active_workers(n_workers);
6407   }
6408   set_par_threads(n_workers);
6409 }
6410 
6411 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6412                                        size_t allocated_bytes) {
6413   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6414 }
6415 
6416 // Methods for the GC alloc regions
6417 
6418 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6419                                                  uint count,
6420                                                  GCAllocPurpose ap) {
6421   assert(FreeList_lock->owned_by_self(), "pre-condition");
6422 
6423   if (count < g1_policy()->max_regions(ap)) {
6424     HeapRegion* new_alloc_region = new_region(word_size,
6425                                               true /* do_expand */);
6426     if (new_alloc_region != NULL) {
6427       // We really only need to do this for old regions given that we
6428       // should never scan survivors. But it doesn't hurt to do it
6429       // for survivors too.
6430       new_alloc_region->set_saved_mark();
6431       if (ap == GCAllocForSurvived) {
6432         new_alloc_region->set_survivor();
6433         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6434       } else {
6435         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6436       }
6437       bool during_im = g1_policy()->during_initial_mark_pause();
6438       new_alloc_region->note_start_of_copying(during_im);
6439       return new_alloc_region;
6440     } else {
6441       g1_policy()->note_alloc_region_limit_reached(ap);
6442     }
6443   }
6444   return NULL;
6445 }
6446 
6447 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6448                                              size_t allocated_bytes,
6449                                              GCAllocPurpose ap) {
6450   bool during_im = g1_policy()->during_initial_mark_pause();
6451   alloc_region->note_end_of_copying(during_im);
6452   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6453   if (ap == GCAllocForSurvived) {
6454     young_list()->add_survivor_region(alloc_region);
6455   } else {
6456     _old_set.add(alloc_region);
6457   }
6458   _hr_printer.retire(alloc_region);
6459 }
6460 
6461 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6462                                                        bool force) {
6463   assert(!force, "not supported for GC alloc regions");
6464   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6465 }
6466 
6467 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6468                                           size_t allocated_bytes) {
6469   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6470                                GCAllocForSurvived);
6471 }
6472 
6473 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6474                                                   bool force) {
6475   assert(!force, "not supported for GC alloc regions");
6476   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6477 }
6478 
6479 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6480                                      size_t allocated_bytes) {
6481   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6482                                GCAllocForTenured);
6483 }
6484 // Heap region set verification
6485 
6486 class VerifyRegionListsClosure : public HeapRegionClosure {
6487 private:
6488   FreeRegionList*     _free_list;
6489   OldRegionSet*       _old_set;
6490   HumongousRegionSet* _humongous_set;
6491   uint                _region_count;
6492 
6493 public:
6494   VerifyRegionListsClosure(OldRegionSet* old_set,
6495                            HumongousRegionSet* humongous_set,
6496                            FreeRegionList* free_list) :
6497     _old_set(old_set), _humongous_set(humongous_set),
6498     _free_list(free_list), _region_count(0) { }
6499 
6500   uint region_count() { return _region_count; }
6501 
6502   bool doHeapRegion(HeapRegion* hr) {
6503     _region_count += 1;
6504 
6505     if (hr->continuesHumongous()) {
6506       return false;
6507     }
6508 
6509     if (hr->is_young()) {
6510       // TODO
6511     } else if (hr->startsHumongous()) {
6512       _humongous_set->verify_next_region(hr);
6513     } else if (hr->is_empty()) {
6514       _free_list->verify_next_region(hr);
6515     } else {
6516       _old_set->verify_next_region(hr);
6517     }
6518     return false;
6519   }
6520 };
6521 
6522 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6523                                              HeapWord* bottom) {
6524   HeapWord* end = bottom + HeapRegion::GrainWords;
6525   MemRegion mr(bottom, end);
6526   assert(_g1_reserved.contains(mr), "invariant");
6527   // This might return NULL if the allocation fails
6528   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6529 }
6530 
6531 void G1CollectedHeap::verify_region_sets() {
6532   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6533 
6534   // First, check the explicit lists.
6535   _free_list.verify();
6536   {
6537     // Given that a concurrent operation might be adding regions to
6538     // the secondary free list we have to take the lock before
6539     // verifying it.
6540     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6541     _secondary_free_list.verify();
6542   }
6543   _old_set.verify();
6544   _humongous_set.verify();
6545 
6546   // If a concurrent region freeing operation is in progress it will
6547   // be difficult to correctly attributed any free regions we come
6548   // across to the correct free list given that they might belong to
6549   // one of several (free_list, secondary_free_list, any local lists,
6550   // etc.). So, if that's the case we will skip the rest of the
6551   // verification operation. Alternatively, waiting for the concurrent
6552   // operation to complete will have a non-trivial effect on the GC's
6553   // operation (no concurrent operation will last longer than the
6554   // interval between two calls to verification) and it might hide
6555   // any issues that we would like to catch during testing.
6556   if (free_regions_coming()) {
6557     return;
6558   }
6559 
6560   // Make sure we append the secondary_free_list on the free_list so
6561   // that all free regions we will come across can be safely
6562   // attributed to the free_list.
6563   append_secondary_free_list_if_not_empty_with_lock();
6564 
6565   // Finally, make sure that the region accounting in the lists is
6566   // consistent with what we see in the heap.
6567   _old_set.verify_start();
6568   _humongous_set.verify_start();
6569   _free_list.verify_start();
6570 
6571   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6572   heap_region_iterate(&cl);
6573 
6574   _old_set.verify_end();
6575   _humongous_set.verify_end();
6576   _free_list.verify_end();
6577 }