1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/g1YCTypes.hpp"
  42 #include "gc_implementation/g1/heapRegion.inline.hpp"
  43 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  45 #include "gc_implementation/g1/vm_operations_g1.hpp"
  46 #include "gc_implementation/shared/gcHeapSummary.hpp"
  47 #include "gc_implementation/shared/gcTimer.hpp"
  48 #include "gc_implementation/shared/gcTrace.hpp"
  49 #include "gc_implementation/shared/gcTraceTime.hpp"
  50 #include "gc_implementation/shared/isGCActiveMark.hpp"
  51 #include "memory/gcLocker.inline.hpp"
  52 #include "memory/genOopClosures.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/referenceProcessor.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/oop.pcgc.inline.hpp"
  57 #include "runtime/aprofiler.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0)
 129   {
 130     _g1h = G1CollectedHeap::heap();
 131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0)
 162   {
 163     _g1h = G1CollectedHeap::heap();
 164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 165   }
 166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 168       _calls++;
 169       *card_ptr = 0;
 170     }
 171     return true;
 172   }
 173   int calls() { return _calls; }
 174 };
 175 
 176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 177 public:
 178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 179     *card_ptr = CardTableModRefBS::dirty_card_val();
 180     return true;
 181   }
 182 };
 183 
 184 YoungList::YoungList(G1CollectedHeap* g1h) :
 185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 187   guarantee(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 void YoungList::push_region(HeapRegion *hr) {
 191   assert(!hr->is_young(), "should not already be young");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_head);
 195   _head = hr;
 196 
 197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 198   ++_length;
 199 }
 200 
 201 void YoungList::add_survivor_region(HeapRegion* hr) {
 202   assert(hr->is_survivor(), "should be flagged as survivor region");
 203   assert(hr->get_next_young_region() == NULL, "cause it should!");
 204 
 205   hr->set_next_young_region(_survivor_head);
 206   if (_survivor_head == NULL) {
 207     _survivor_tail = hr;
 208   }
 209   _survivor_head = hr;
 210   ++_survivor_length;
 211 }
 212 
 213 void YoungList::empty_list(HeapRegion* list) {
 214   while (list != NULL) {
 215     HeapRegion* next = list->get_next_young_region();
 216     list->set_next_young_region(NULL);
 217     list->uninstall_surv_rate_group();
 218     list->set_not_young();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // perm gen (or null)
 472      return false;
 473   } else {
 474     return !hr->isHumongous();
 475   }
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.set_closure(&clear);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   clear.print_histo();
 493 
 494   // Now ensure that there's no dirty cards.
 495   CountNonCleanMemRegionClosure count2(this);
 496   ct_bs->mod_card_iterate(&count2);
 497   if (count2.n() != 0) {
 498     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 499                            count2.n(), orig_count);
 500   }
 501   guarantee(count2.n() == 0, "Card table should be clean.");
 502 
 503   RedirtyLoggedCardTableEntryClosure redirty;
 504   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 505   dcqs.apply_closure_to_all_completed_buffers();
 506   dcqs.iterate_closure_all_threads(false);
 507   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 508                          clear.calls(), orig_count);
 509   guarantee(redirty.calls() == clear.calls(),
 510             "Or else mechanism is broken.");
 511 
 512   CountNonCleanMemRegionClosure count3(this);
 513   ct_bs->mod_card_iterate(&count3);
 514   if (count3.n() != orig_count) {
 515     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 516                            orig_count, count3.n());
 517     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 518   }
 519 
 520   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 521 }
 522 
 523 // Private class members.
 524 
 525 G1CollectedHeap* G1CollectedHeap::_g1h;
 526 
 527 // Private methods.
 528 
 529 HeapRegion*
 530 G1CollectedHeap::new_region_try_secondary_free_list() {
 531   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 532   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 533     if (!_secondary_free_list.is_empty()) {
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "secondary_free_list has %u entries",
 537                                _secondary_free_list.length());
 538       }
 539       // It looks as if there are free regions available on the
 540       // secondary_free_list. Let's move them to the free_list and try
 541       // again to allocate from it.
 542       append_secondary_free_list();
 543 
 544       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 545              "empty we should have moved at least one entry to the free_list");
 546       HeapRegion* res = _free_list.remove_head();
 547       if (G1ConcRegionFreeingVerbose) {
 548         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 549                                "allocated "HR_FORMAT" from secondary_free_list",
 550                                HR_FORMAT_PARAMS(res));
 551       }
 552       return res;
 553     }
 554 
 555     // Wait here until we get notified either when (a) there are no
 556     // more free regions coming or (b) some regions have been moved on
 557     // the secondary_free_list.
 558     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 559   }
 560 
 561   if (G1ConcRegionFreeingVerbose) {
 562     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                            "could not allocate from secondary_free_list");
 564   }
 565   return NULL;
 566 }
 567 
 568 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 569   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 570          "the only time we use this to allocate a humongous region is "
 571          "when we are allocating a single humongous region");
 572 
 573   HeapRegion* res;
 574   if (G1StressConcRegionFreeing) {
 575     if (!_secondary_free_list.is_empty()) {
 576       if (G1ConcRegionFreeingVerbose) {
 577         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 578                                "forced to look at the secondary_free_list");
 579       }
 580       res = new_region_try_secondary_free_list();
 581       if (res != NULL) {
 582         return res;
 583       }
 584     }
 585   }
 586   res = _free_list.remove_head_or_null();
 587   if (res == NULL) {
 588     if (G1ConcRegionFreeingVerbose) {
 589       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 590                              "res == NULL, trying the secondary_free_list");
 591     }
 592     res = new_region_try_secondary_free_list();
 593   }
 594   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 595     // Currently, only attempts to allocate GC alloc regions set
 596     // do_expand to true. So, we should only reach here during a
 597     // safepoint. If this assumption changes we might have to
 598     // reconsider the use of _expand_heap_after_alloc_failure.
 599     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 600 
 601     ergo_verbose1(ErgoHeapSizing,
 602                   "attempt heap expansion",
 603                   ergo_format_reason("region allocation request failed")
 604                   ergo_format_byte("allocation request"),
 605                   word_size * HeapWordSize);
 606     if (expand(word_size * HeapWordSize)) {
 607       // Given that expand() succeeded in expanding the heap, and we
 608       // always expand the heap by an amount aligned to the heap
 609       // region size, the free list should in theory not be empty. So
 610       // it would probably be OK to use remove_head(). But the extra
 611       // check for NULL is unlikely to be a performance issue here (we
 612       // just expanded the heap!) so let's just be conservative and
 613       // use remove_head_or_null().
 614       res = _free_list.remove_head_or_null();
 615     } else {
 616       _expand_heap_after_alloc_failure = false;
 617     }
 618   }
 619   return res;
 620 }
 621 
 622 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 623                                                         size_t word_size) {
 624   assert(isHumongous(word_size), "word_size should be humongous");
 625   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 626 
 627   uint first = G1_NULL_HRS_INDEX;
 628   if (num_regions == 1) {
 629     // Only one region to allocate, no need to go through the slower
 630     // path. The caller will attempt the expansion if this fails, so
 631     // let's not try to expand here too.
 632     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 633     if (hr != NULL) {
 634       first = hr->hrs_index();
 635     } else {
 636       first = G1_NULL_HRS_INDEX;
 637     }
 638   } else {
 639     // We can't allocate humongous regions while cleanupComplete() is
 640     // running, since some of the regions we find to be empty might not
 641     // yet be added to the free list and it is not straightforward to
 642     // know which list they are on so that we can remove them. Note
 643     // that we only need to do this if we need to allocate more than
 644     // one region to satisfy the current humongous allocation
 645     // request. If we are only allocating one region we use the common
 646     // region allocation code (see above).
 647     wait_while_free_regions_coming();
 648     append_secondary_free_list_if_not_empty_with_lock();
 649 
 650     if (free_regions() >= num_regions) {
 651       first = _hrs.find_contiguous(num_regions);
 652       if (first != G1_NULL_HRS_INDEX) {
 653         for (uint i = first; i < first + num_regions; ++i) {
 654           HeapRegion* hr = region_at(i);
 655           assert(hr->is_empty(), "sanity");
 656           assert(is_on_master_free_list(hr), "sanity");
 657           hr->set_pending_removal(true);
 658         }
 659         _free_list.remove_all_pending(num_regions);
 660       }
 661     }
 662   }
 663   return first;
 664 }
 665 
 666 HeapWord*
 667 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 668                                                            uint num_regions,
 669                                                            size_t word_size) {
 670   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 671   assert(isHumongous(word_size), "word_size should be humongous");
 672   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 673 
 674   // Index of last region in the series + 1.
 675   uint last = first + num_regions;
 676 
 677   // We need to initialize the region(s) we just discovered. This is
 678   // a bit tricky given that it can happen concurrently with
 679   // refinement threads refining cards on these regions and
 680   // potentially wanting to refine the BOT as they are scanning
 681   // those cards (this can happen shortly after a cleanup; see CR
 682   // 6991377). So we have to set up the region(s) carefully and in
 683   // a specific order.
 684 
 685   // The word size sum of all the regions we will allocate.
 686   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 687   assert(word_size <= word_size_sum, "sanity");
 688 
 689   // This will be the "starts humongous" region.
 690   HeapRegion* first_hr = region_at(first);
 691   // The header of the new object will be placed at the bottom of
 692   // the first region.
 693   HeapWord* new_obj = first_hr->bottom();
 694   // This will be the new end of the first region in the series that
 695   // should also match the end of the last region in the series.
 696   HeapWord* new_end = new_obj + word_size_sum;
 697   // This will be the new top of the first region that will reflect
 698   // this allocation.
 699   HeapWord* new_top = new_obj + word_size;
 700 
 701   // First, we need to zero the header of the space that we will be
 702   // allocating. When we update top further down, some refinement
 703   // threads might try to scan the region. By zeroing the header we
 704   // ensure that any thread that will try to scan the region will
 705   // come across the zero klass word and bail out.
 706   //
 707   // NOTE: It would not have been correct to have used
 708   // CollectedHeap::fill_with_object() and make the space look like
 709   // an int array. The thread that is doing the allocation will
 710   // later update the object header to a potentially different array
 711   // type and, for a very short period of time, the klass and length
 712   // fields will be inconsistent. This could cause a refinement
 713   // thread to calculate the object size incorrectly.
 714   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 715 
 716   // We will set up the first region as "starts humongous". This
 717   // will also update the BOT covering all the regions to reflect
 718   // that there is a single object that starts at the bottom of the
 719   // first region.
 720   first_hr->set_startsHumongous(new_top, new_end);
 721 
 722   // Then, if there are any, we will set up the "continues
 723   // humongous" regions.
 724   HeapRegion* hr = NULL;
 725   for (uint i = first + 1; i < last; ++i) {
 726     hr = region_at(i);
 727     hr->set_continuesHumongous(first_hr);
 728   }
 729   // If we have "continues humongous" regions (hr != NULL), then the
 730   // end of the last one should match new_end.
 731   assert(hr == NULL || hr->end() == new_end, "sanity");
 732 
 733   // Up to this point no concurrent thread would have been able to
 734   // do any scanning on any region in this series. All the top
 735   // fields still point to bottom, so the intersection between
 736   // [bottom,top] and [card_start,card_end] will be empty. Before we
 737   // update the top fields, we'll do a storestore to make sure that
 738   // no thread sees the update to top before the zeroing of the
 739   // object header and the BOT initialization.
 740   OrderAccess::storestore();
 741 
 742   // Now that the BOT and the object header have been initialized,
 743   // we can update top of the "starts humongous" region.
 744   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 745          "new_top should be in this region");
 746   first_hr->set_top(new_top);
 747   if (_hr_printer.is_active()) {
 748     HeapWord* bottom = first_hr->bottom();
 749     HeapWord* end = first_hr->orig_end();
 750     if ((first + 1) == last) {
 751       // the series has a single humongous region
 752       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 753     } else {
 754       // the series has more than one humongous regions
 755       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 756     }
 757   }
 758 
 759   // Now, we will update the top fields of the "continues humongous"
 760   // regions. The reason we need to do this is that, otherwise,
 761   // these regions would look empty and this will confuse parts of
 762   // G1. For example, the code that looks for a consecutive number
 763   // of empty regions will consider them empty and try to
 764   // re-allocate them. We can extend is_empty() to also include
 765   // !continuesHumongous(), but it is easier to just update the top
 766   // fields here. The way we set top for all regions (i.e., top ==
 767   // end for all regions but the last one, top == new_top for the
 768   // last one) is actually used when we will free up the humongous
 769   // region in free_humongous_region().
 770   hr = NULL;
 771   for (uint i = first + 1; i < last; ++i) {
 772     hr = region_at(i);
 773     if ((i + 1) == last) {
 774       // last continues humongous region
 775       assert(hr->bottom() < new_top && new_top <= hr->end(),
 776              "new_top should fall on this region");
 777       hr->set_top(new_top);
 778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 779     } else {
 780       // not last one
 781       assert(new_top > hr->end(), "new_top should be above this region");
 782       hr->set_top(hr->end());
 783       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 784     }
 785   }
 786   // If we have continues humongous regions (hr != NULL), then the
 787   // end of the last one should match new_end and its top should
 788   // match new_top.
 789   assert(hr == NULL ||
 790          (hr->end() == new_end && hr->top() == new_top), "sanity");
 791 
 792   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 793   _summary_bytes_used += first_hr->used();
 794   _humongous_set.add(first_hr);
 795 
 796   return new_obj;
 797 }
 798 
 799 // If could fit into free regions w/o expansion, try.
 800 // Otherwise, if can expand, do so.
 801 // Otherwise, if using ex regions might help, try with ex given back.
 802 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 803   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 804 
 805   verify_region_sets_optional();
 806 
 807   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 808   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 809   uint x_num = expansion_regions();
 810   uint fs = _hrs.free_suffix();
 811   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 812   if (first == G1_NULL_HRS_INDEX) {
 813     // The only thing we can do now is attempt expansion.
 814     if (fs + x_num >= num_regions) {
 815       // If the number of regions we're trying to allocate for this
 816       // object is at most the number of regions in the free suffix,
 817       // then the call to humongous_obj_allocate_find_first() above
 818       // should have succeeded and we wouldn't be here.
 819       //
 820       // We should only be trying to expand when the free suffix is
 821       // not sufficient for the object _and_ we have some expansion
 822       // room available.
 823       assert(num_regions > fs, "earlier allocation should have succeeded");
 824 
 825       ergo_verbose1(ErgoHeapSizing,
 826                     "attempt heap expansion",
 827                     ergo_format_reason("humongous allocation request failed")
 828                     ergo_format_byte("allocation request"),
 829                     word_size * HeapWordSize);
 830       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 831         // Even though the heap was expanded, it might not have
 832         // reached the desired size. So, we cannot assume that the
 833         // allocation will succeed.
 834         first = humongous_obj_allocate_find_first(num_regions, word_size);
 835       }
 836     }
 837   }
 838 
 839   HeapWord* result = NULL;
 840   if (first != G1_NULL_HRS_INDEX) {
 841     result =
 842       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 843     assert(result != NULL, "it should always return a valid result");
 844 
 845     // A successful humongous object allocation changes the used space
 846     // information of the old generation so we need to recalculate the
 847     // sizes and update the jstat counters here.
 848     g1mm()->update_sizes();
 849   }
 850 
 851   verify_region_sets_optional();
 852 
 853   return result;
 854 }
 855 
 856 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 857   assert_heap_not_locked_and_not_at_safepoint();
 858   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 859 
 860   unsigned int dummy_gc_count_before;
 861   return attempt_allocation(word_size, &dummy_gc_count_before);
 862 }
 863 
 864 HeapWord*
 865 G1CollectedHeap::mem_allocate(size_t word_size,
 866                               bool*  gc_overhead_limit_was_exceeded) {
 867   assert_heap_not_locked_and_not_at_safepoint();
 868 
 869   // Loop until the allocation is satisfied, or unsatisfied after GC.
 870   for (int try_count = 1; /* we'll return */; try_count += 1) {
 871     unsigned int gc_count_before;
 872 
 873     HeapWord* result = NULL;
 874     if (!isHumongous(word_size)) {
 875       result = attempt_allocation(word_size, &gc_count_before);
 876     } else {
 877       result = attempt_allocation_humongous(word_size, &gc_count_before);
 878     }
 879     if (result != NULL) {
 880       return result;
 881     }
 882 
 883     // Create the garbage collection operation...
 884     VM_G1CollectForAllocation op(gc_count_before, word_size);
 885     // ...and get the VM thread to execute it.
 886     VMThread::execute(&op);
 887 
 888     if (op.prologue_succeeded() && op.pause_succeeded()) {
 889       // If the operation was successful we'll return the result even
 890       // if it is NULL. If the allocation attempt failed immediately
 891       // after a Full GC, it's unlikely we'll be able to allocate now.
 892       HeapWord* result = op.result();
 893       if (result != NULL && !isHumongous(word_size)) {
 894         // Allocations that take place on VM operations do not do any
 895         // card dirtying and we have to do it here. We only have to do
 896         // this for non-humongous allocations, though.
 897         dirty_young_block(result, word_size);
 898       }
 899       return result;
 900     } else {
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret) {
 918   // Make sure you read the note in attempt_allocation_humongous().
 919 
 920   assert_heap_not_locked_and_not_at_safepoint();
 921   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 922          "be called for humongous allocation requests");
 923 
 924   // We should only get here after the first-level allocation attempt
 925   // (attempt_allocation()) failed to allocate.
 926 
 927   // We will loop until a) we manage to successfully perform the
 928   // allocation or b) we successfully schedule a collection which
 929   // fails to perform the allocation. b) is the only case when we'll
 930   // return NULL.
 931   HeapWord* result = NULL;
 932   for (int try_count = 1; /* we'll return */; try_count += 1) {
 933     bool should_try_gc;
 934     unsigned int gc_count_before;
 935 
 936     {
 937       MutexLockerEx x(Heap_lock);
 938 
 939       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 940                                                       false /* bot_updates */);
 941       if (result != NULL) {
 942         return result;
 943       }
 944 
 945       // If we reach here, attempt_allocation_locked() above failed to
 946       // allocate a new region. So the mutator alloc region should be NULL.
 947       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 948 
 949       if (GC_locker::is_active_and_needs_gc()) {
 950         if (g1_policy()->can_expand_young_list()) {
 951           // No need for an ergo verbose message here,
 952           // can_expand_young_list() does this when it returns true.
 953           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 954                                                       false /* bot_updates */);
 955           if (result != NULL) {
 956             return result;
 957           }
 958         }
 959         should_try_gc = false;
 960       } else {
 961         // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       bool succeeded;
 978       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 979       if (result != NULL) {
 980         assert(succeeded, "only way to get back a non-NULL result");
 981         return result;
 982       }
 983 
 984       if (succeeded) {
 985         // If we get here we successfully scheduled a collection which
 986         // failed to allocate. No point in trying to allocate
 987         // further. We'll just return NULL.
 988         MutexLockerEx x(Heap_lock);
 989         *gc_count_before_ret = total_collections();
 990         return NULL;
 991       }
 992     } else {
 993       // The GCLocker is either active or the GCLocker initiated
 994       // GC has not yet been performed. Stall until it is and
 995       // then retry the allocation.
 996       GC_locker::stall_until_clear();
 997     }
 998 
 999     // We can reach here if we were unsuccessful in scheduling a
1000     // collection (because another thread beat us to it) or if we were
1001     // stalled due to the GC locker. In either can we should retry the
1002     // allocation attempt in case another thread successfully
1003     // performed a collection and reclaimed enough space. We do the
1004     // first attempt (without holding the Heap_lock) here and the
1005     // follow-on attempt will be at the start of the next loop
1006     // iteration (after taking the Heap_lock).
1007     result = _mutator_alloc_region.attempt_allocation(word_size,
1008                                                       false /* bot_updates */);
1009     if (result != NULL) {
1010       return result;
1011     }
1012 
1013     // Give a warning if we seem to be looping forever.
1014     if ((QueuedAllocationWarningCount > 0) &&
1015         (try_count % QueuedAllocationWarningCount == 0)) {
1016       warning("G1CollectedHeap::attempt_allocation_slow() "
1017               "retries %d times", try_count);
1018     }
1019   }
1020 
1021   ShouldNotReachHere();
1022   return NULL;
1023 }
1024 
1025 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1026                                           unsigned int * gc_count_before_ret) {
1027   // The structure of this method has a lot of similarities to
1028   // attempt_allocation_slow(). The reason these two were not merged
1029   // into a single one is that such a method would require several "if
1030   // allocation is not humongous do this, otherwise do that"
1031   // conditional paths which would obscure its flow. In fact, an early
1032   // version of this code did use a unified method which was harder to
1033   // follow and, as a result, it had subtle bugs that were hard to
1034   // track down. So keeping these two methods separate allows each to
1035   // be more readable. It will be good to keep these two in sync as
1036   // much as possible.
1037 
1038   assert_heap_not_locked_and_not_at_safepoint();
1039   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1040          "should only be called for humongous allocations");
1041 
1042   // Humongous objects can exhaust the heap quickly, so we should check if we
1043   // need to start a marking cycle at each humongous object allocation. We do
1044   // the check before we do the actual allocation. The reason for doing it
1045   // before the allocation is that we avoid having to keep track of the newly
1046   // allocated memory while we do a GC.
1047   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1048                                            word_size)) {
1049     collect(GCCause::_g1_humongous_allocation);
1050   }
1051 
1052   // We will loop until a) we manage to successfully perform the
1053   // allocation or b) we successfully schedule a collection which
1054   // fails to perform the allocation. b) is the only case when we'll
1055   // return NULL.
1056   HeapWord* result = NULL;
1057   for (int try_count = 1; /* we'll return */; try_count += 1) {
1058     bool should_try_gc;
1059     unsigned int gc_count_before;
1060 
1061     {
1062       MutexLockerEx x(Heap_lock);
1063 
1064       // Given that humongous objects are not allocated in young
1065       // regions, we'll first try to do the allocation without doing a
1066       // collection hoping that there's enough space in the heap.
1067       result = humongous_obj_allocate(word_size);
1068       if (result != NULL) {
1069         return result;
1070       }
1071 
1072       if (GC_locker::is_active_and_needs_gc()) {
1073         should_try_gc = false;
1074       } else {
1075          // The GCLocker may not be active but the GCLocker initiated
1076         // GC may not yet have been performed (GCLocker::needs_gc()
1077         // returns true). In this case we do not try this GC and
1078         // wait until the GCLocker initiated GC is performed, and
1079         // then retry the allocation.
1080         if (GC_locker::needs_gc()) {
1081           should_try_gc = false;
1082         } else {
1083           // Read the GC count while still holding the Heap_lock.
1084           gc_count_before = total_collections();
1085           should_try_gc = true;
1086         }
1087       }
1088     }
1089 
1090     if (should_try_gc) {
1091       // If we failed to allocate the humongous object, we should try to
1092       // do a collection pause (if we're allowed) in case it reclaims
1093       // enough space for the allocation to succeed after the pause.
1094 
1095       bool succeeded;
1096       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1097       if (result != NULL) {
1098         assert(succeeded, "only way to get back a non-NULL result");
1099         return result;
1100       }
1101 
1102       if (succeeded) {
1103         // If we get here we successfully scheduled a collection which
1104         // failed to allocate. No point in trying to allocate
1105         // further. We'll just return NULL.
1106         MutexLockerEx x(Heap_lock);
1107         *gc_count_before_ret = total_collections();
1108         return NULL;
1109       }
1110     } else {
1111       // The GCLocker is either active or the GCLocker initiated
1112       // GC has not yet been performed. Stall until it is and
1113       // then retry the allocation.
1114       GC_locker::stall_until_clear();
1115     }
1116 
1117     // We can reach here if we were unsuccessful in scheduling a
1118     // collection (because another thread beat us to it) or if we were
1119     // stalled due to the GC locker. In either can we should retry the
1120     // allocation attempt in case another thread successfully
1121     // performed a collection and reclaimed enough space.  Give a
1122     // warning if we seem to be looping forever.
1123 
1124     if ((QueuedAllocationWarningCount > 0) &&
1125         (try_count % QueuedAllocationWarningCount == 0)) {
1126       warning("G1CollectedHeap::attempt_allocation_humongous() "
1127               "retries %d times", try_count);
1128     }
1129   }
1130 
1131   ShouldNotReachHere();
1132   return NULL;
1133 }
1134 
1135 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1136                                        bool expect_null_mutator_alloc_region) {
1137   assert_at_safepoint(true /* should_be_vm_thread */);
1138   assert(_mutator_alloc_region.get() == NULL ||
1139                                              !expect_null_mutator_alloc_region,
1140          "the current alloc region was unexpectedly found to be non-NULL");
1141 
1142   if (!isHumongous(word_size)) {
1143     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1144                                                       false /* bot_updates */);
1145   } else {
1146     HeapWord* result = humongous_obj_allocate(word_size);
1147     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1148       g1_policy()->set_initiate_conc_mark_if_possible();
1149     }
1150     return result;
1151   }
1152 
1153   ShouldNotReachHere();
1154 }
1155 
1156 class PostMCRemSetClearClosure: public HeapRegionClosure {
1157   G1CollectedHeap* _g1h;
1158   ModRefBarrierSet* _mr_bs;
1159 public:
1160   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1161     _g1h(g1h), _mr_bs(mr_bs) { }
1162   bool doHeapRegion(HeapRegion* r) {
1163     if (r->continuesHumongous()) {
1164       return false;
1165     }
1166     _g1h->reset_gc_time_stamps(r);
1167     HeapRegionRemSet* hrrs = r->rem_set();
1168     if (hrrs != NULL) hrrs->clear();
1169     // You might think here that we could clear just the cards
1170     // corresponding to the used region.  But no: if we leave a dirty card
1171     // in a region we might allocate into, then it would prevent that card
1172     // from being enqueued, and cause it to be missed.
1173     // Re: the performance cost: we shouldn't be doing full GC anyway!
1174     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1175     return false;
1176   }
1177 };
1178 
1179 void G1CollectedHeap::clear_rsets_post_compaction() {
1180   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1181   heap_region_iterate(&rs_clear);
1182 }
1183 
1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1185   G1CollectedHeap*   _g1h;
1186   UpdateRSOopClosure _cl;
1187   int                _worker_i;
1188 public:
1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190     _cl(g1->g1_rem_set(), worker_i),
1191     _worker_i(worker_i),
1192     _g1h(g1)
1193   { }
1194 
1195   bool doHeapRegion(HeapRegion* r) {
1196     if (!r->continuesHumongous()) {
1197       _cl.set_from(r);
1198       r->oop_iterate(&_cl);
1199     }
1200     return false;
1201   }
1202 };
1203 
1204 class ParRebuildRSTask: public AbstractGangTask {
1205   G1CollectedHeap* _g1;
1206 public:
1207   ParRebuildRSTask(G1CollectedHeap* g1)
1208     : AbstractGangTask("ParRebuildRSTask"),
1209       _g1(g1)
1210   { }
1211 
1212   void work(uint worker_id) {
1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215                                           _g1->workers()->active_workers(),
1216                                          HeapRegion::RebuildRSClaimValue);
1217   }
1218 };
1219 
1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
1221 private:
1222   G1HRPrinter* _hr_printer;
1223 public:
1224   bool doHeapRegion(HeapRegion* hr) {
1225     assert(!hr->is_young(), "not expecting to find young regions");
1226     // We only generate output for non-empty regions.
1227     if (!hr->is_empty()) {
1228       if (!hr->isHumongous()) {
1229         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1230       } else if (hr->startsHumongous()) {
1231         if (hr->region_num() == 1) {
1232           // single humongous region
1233           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1234         } else {
1235           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1236         }
1237       } else {
1238         assert(hr->continuesHumongous(), "only way to get here");
1239         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1240       }
1241     }
1242     return false;
1243   }
1244 
1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1246     : _hr_printer(hr_printer) { }
1247 };
1248 
1249 void G1CollectedHeap::print_hrs_post_compaction() {
1250   PostCompactionPrinterClosure cl(hr_printer());
1251   heap_region_iterate(&cl);
1252 }
1253 
1254 double G1CollectedHeap::verify(bool guard, const char* msg) {
1255   double verify_time_ms = 0.0;
1256 
1257   if (guard && total_collections() >= VerifyGCStartAt) {
1258     double verify_start = os::elapsedTime();
1259     HandleMark hm;  // Discard invalid handles created during verification
1260     gclog_or_tty->print(msg);
1261     prepare_for_verify();
1262     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1263     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1264   }
1265 
1266   return verify_time_ms;
1267 }
1268 
1269 void G1CollectedHeap::verify_before_gc() {
1270   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1271   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1272 }
1273 
1274 void G1CollectedHeap::verify_after_gc() {
1275   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1276   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1277 }
1278 
1279 bool G1CollectedHeap::do_collection(bool explicit_gc,
1280                                     bool clear_all_soft_refs,
1281                                     size_t word_size) {
1282   assert_at_safepoint(true /* should_be_vm_thread */);
1283 
1284   if (GC_locker::check_active_before_gc()) {
1285     return false;
1286   }
1287 
1288   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1289   gc_timer->register_gc_start(os::elapsed_counter());
1290 
1291   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1292   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1293 
1294   SvcGCMarker sgcm(SvcGCMarker::FULL);
1295   ResourceMark rm;
1296 
1297   print_heap_before_gc();
1298   trace_heap_before_gc(gc_tracer);
1299 
1300   HRSPhaseSetter x(HRSPhaseFullGC);
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1314 
1315     {
1316       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1317       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1318       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1319 
1320       double start = os::elapsedTime();
1321       g1_policy()->record_full_collection_start();
1322 
1323       // Note: When we have a more flexible GC logging framework that
1324       // allows us to add optional attributes to a GC log record we
1325       // could consider timing and reporting how long we wait in the
1326       // following two methods.
1327       wait_while_free_regions_coming();
1328       // If we start the compaction before the CM threads finish
1329       // scanning the root regions we might trip them over as we'll
1330       // be moving objects / updating references. So let's wait until
1331       // they are done. By telling them to abort, they should complete
1332       // early.
1333       _cm->root_regions()->abort();
1334       _cm->root_regions()->wait_until_scan_finished();
1335       append_secondary_free_list_if_not_empty_with_lock();
1336 
1337       gc_prologue(true);
1338       increment_total_collections(true /* full gc */);
1339       increment_old_marking_cycles_started();
1340 
1341       assert(used() == recalculate_used(), "Should be equal");
1342 
1343       verify_before_gc();
1344 
1345       pre_full_gc_dump(gc_timer);
1346 
1347       COMPILER2_PRESENT(DerivedPointerTable::clear());
1348 
1349       // Disable discovery and empty the discovered lists
1350       // for the CM ref processor.
1351       ref_processor_cm()->disable_discovery();
1352       ref_processor_cm()->abandon_partial_discovery();
1353       ref_processor_cm()->verify_no_references_recorded();
1354 
1355       // Abandon current iterations of concurrent marking and concurrent
1356       // refinement, if any are in progress. We have to do this before
1357       // wait_until_scan_finished() below.
1358       concurrent_mark()->abort();
1359 
1360       // Make sure we'll choose a new allocation region afterwards.
1361       release_mutator_alloc_region();
1362       abandon_gc_alloc_regions();
1363       g1_rem_set()->cleanupHRRS();
1364 
1365       // We should call this after we retire any currently active alloc
1366       // regions so that all the ALLOC / RETIRE events are generated
1367       // before the start GC event.
1368       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1369 
1370       // We may have added regions to the current incremental collection
1371       // set between the last GC or pause and now. We need to clear the
1372       // incremental collection set and then start rebuilding it afresh
1373       // after this full GC.
1374       abandon_collection_set(g1_policy()->inc_cset_head());
1375       g1_policy()->clear_incremental_cset();
1376       g1_policy()->stop_incremental_cset_building();
1377 
1378       tear_down_region_sets(false /* free_list_only */);
1379       g1_policy()->set_gcs_are_young(true);
1380 
1381       // See the comments in g1CollectedHeap.hpp and
1382       // G1CollectedHeap::ref_processing_init() about
1383       // how reference processing currently works in G1.
1384 
1385       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1386       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1387 
1388       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1389       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1390 
1391       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1392       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1393 
1394       // Do collection work
1395       {
1396         HandleMark hm;  // Discard invalid handles created during gc
1397         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1398       }
1399 
1400       assert(free_regions() == 0, "we should not have added any free regions");
1401       rebuild_region_sets(false /* free_list_only */);
1402 
1403       // Enqueue any discovered reference objects that have
1404       // not been removed from the discovered lists.
1405       ref_processor_stw()->enqueue_discovered_references();
1406 
1407       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1408 
1409       MemoryService::track_memory_usage();
1410 
1411       verify_after_gc();
1412 
1413       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1414       ref_processor_stw()->verify_no_references_recorded();
1415 
1416       // Note: since we've just done a full GC, concurrent
1417       // marking is no longer active. Therefore we need not
1418       // re-enable reference discovery for the CM ref processor.
1419       // That will be done at the start of the next marking cycle.
1420       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1421       ref_processor_cm()->verify_no_references_recorded();
1422 
1423       reset_gc_time_stamp();
1424       // Since everything potentially moved, we will clear all remembered
1425       // sets, and clear all cards.  Later we will rebuild remembered
1426       // sets. We will also reset the GC time stamps of the regions.
1427       clear_rsets_post_compaction();
1428       check_gc_time_stamps();
1429 
1430       // Resize the heap if necessary.
1431       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1432 
1433       if (_hr_printer.is_active()) {
1434         // We should do this after we potentially resize the heap so
1435         // that all the COMMIT / UNCOMMIT events are generated before
1436         // the end GC event.
1437 
1438         print_hrs_post_compaction();
1439         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1440       }
1441 
1442       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1443       if (hot_card_cache->use_cache()) {
1444         hot_card_cache->reset_card_counts();
1445         hot_card_cache->reset_hot_cache();
1446       }
1447 
1448       // Rebuild remembered sets of all regions.
1449       if (G1CollectedHeap::use_parallel_gc_threads()) {
1450         uint n_workers =
1451           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1452                                                   workers()->active_workers(),
1453                                                   Threads::number_of_non_daemon_threads());
1454         assert(UseDynamicNumberOfGCThreads ||
1455                n_workers == workers()->total_workers(),
1456                "If not dynamic should be using all the  workers");
1457         workers()->set_active_workers(n_workers);
1458         // Set parallel threads in the heap (_n_par_threads) only
1459         // before a parallel phase and always reset it to 0 after
1460         // the phase so that the number of parallel threads does
1461         // no get carried forward to a serial phase where there
1462         // may be code that is "possibly_parallel".
1463         set_par_threads(n_workers);
1464 
1465         ParRebuildRSTask rebuild_rs_task(this);
1466         assert(check_heap_region_claim_values(
1467                HeapRegion::InitialClaimValue), "sanity check");
1468         assert(UseDynamicNumberOfGCThreads ||
1469                workers()->active_workers() == workers()->total_workers(),
1470                "Unless dynamic should use total workers");
1471         // Use the most recent number of  active workers
1472         assert(workers()->active_workers() > 0,
1473                "Active workers not properly set");
1474         set_par_threads(workers()->active_workers());
1475         workers()->run_task(&rebuild_rs_task);
1476         set_par_threads(0);
1477         assert(check_heap_region_claim_values(
1478                HeapRegion::RebuildRSClaimValue), "sanity check");
1479         reset_heap_region_claim_values();
1480       } else {
1481         RebuildRSOutOfRegionClosure rebuild_rs(this);
1482         heap_region_iterate(&rebuild_rs);
1483       }
1484 
1485       if (true) { // FIXME
1486         // Ask the permanent generation to adjust size for full collections
1487         perm()->compute_new_size();
1488       }
1489 
1490 #ifdef TRACESPINNING
1491       ParallelTaskTerminator::print_termination_counts();
1492 #endif
1493 
1494       // Discard all rset updates
1495       JavaThread::dirty_card_queue_set().abandon_logs();
1496       assert(!G1DeferredRSUpdate
1497              || (G1DeferredRSUpdate &&
1498                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1499 
1500       _young_list->reset_sampled_info();
1501       // At this point there should be no regions in the
1502       // entire heap tagged as young.
1503       assert(check_young_list_empty(true /* check_heap */),
1504              "young list should be empty at this point");
1505 
1506       // Update the number of full collections that have been completed.
1507       increment_old_marking_cycles_completed(false /* concurrent */);
1508 
1509       _hrs.verify_optional();
1510       verify_region_sets_optional();
1511 
1512       // Start a new incremental collection set for the next pause
1513       assert(g1_policy()->collection_set() == NULL, "must be");
1514       g1_policy()->start_incremental_cset_building();
1515 
1516       // Clear the _cset_fast_test bitmap in anticipation of adding
1517       // regions to the incremental collection set for the next
1518       // evacuation pause.
1519       clear_cset_fast_test();
1520 
1521       init_mutator_alloc_region();
1522 
1523       double end = os::elapsedTime();
1524       g1_policy()->record_full_collection_end();
1525 
1526       if (G1Log::fine()) {
1527         g1_policy()->print_heap_transition();
1528       }
1529 
1530       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1531       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1532       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1533       // before any GC notifications are raised.
1534       g1mm()->update_sizes();
1535 
1536       gc_epilogue(true);
1537     }
1538 
1539     if (G1Log::finer()) {
1540       g1_policy()->print_detailed_heap_transition();
1541     }
1542 
1543     print_heap_after_gc();
1544     trace_heap_after_gc(gc_tracer);
1545 
1546     post_full_gc_dump(gc_timer);
1547   }
1548 
1549   gc_timer->register_gc_end(os::elapsed_counter());
1550 
1551   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1552 
1553   return true;
1554 }
1555 
1556 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1557   // do_collection() will return whether it succeeded in performing
1558   // the GC. Currently, there is no facility on the
1559   // do_full_collection() API to notify the caller than the collection
1560   // did not succeed (e.g., because it was locked out by the GC
1561   // locker). So, right now, we'll ignore the return value.
1562   bool dummy = do_collection(true,                /* explicit_gc */
1563                              clear_all_soft_refs,
1564                              0                    /* word_size */);
1565 }
1566 
1567 // This code is mostly copied from TenuredGeneration.
1568 void
1569 G1CollectedHeap::
1570 resize_if_necessary_after_full_collection(size_t word_size) {
1571   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1572 
1573   // Include the current allocation, if any, and bytes that will be
1574   // pre-allocated to support collections, as "used".
1575   const size_t used_after_gc = used();
1576   const size_t capacity_after_gc = capacity();
1577   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1578 
1579   // This is enforced in arguments.cpp.
1580   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1581          "otherwise the code below doesn't make sense");
1582 
1583   // We don't have floating point command-line arguments
1584   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1585   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1586   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1587   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1588 
1589   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1590   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1591 
1592   // We have to be careful here as these two calculations can overflow
1593   // 32-bit size_t's.
1594   double used_after_gc_d = (double) used_after_gc;
1595   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1596   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1597 
1598   // Let's make sure that they are both under the max heap size, which
1599   // by default will make them fit into a size_t.
1600   double desired_capacity_upper_bound = (double) max_heap_size;
1601   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1602                                     desired_capacity_upper_bound);
1603   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1604                                     desired_capacity_upper_bound);
1605 
1606   // We can now safely turn them into size_t's.
1607   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1608   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1609 
1610   // This assert only makes sense here, before we adjust them
1611   // with respect to the min and max heap size.
1612   assert(minimum_desired_capacity <= maximum_desired_capacity,
1613          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1614                  "maximum_desired_capacity = "SIZE_FORMAT,
1615                  minimum_desired_capacity, maximum_desired_capacity));
1616 
1617   // Should not be greater than the heap max size. No need to adjust
1618   // it with respect to the heap min size as it's a lower bound (i.e.,
1619   // we'll try to make the capacity larger than it, not smaller).
1620   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1621   // Should not be less than the heap min size. No need to adjust it
1622   // with respect to the heap max size as it's an upper bound (i.e.,
1623   // we'll try to make the capacity smaller than it, not greater).
1624   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1625 
1626   if (capacity_after_gc < minimum_desired_capacity) {
1627     // Don't expand unless it's significant
1628     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1629     ergo_verbose4(ErgoHeapSizing,
1630                   "attempt heap expansion",
1631                   ergo_format_reason("capacity lower than "
1632                                      "min desired capacity after Full GC")
1633                   ergo_format_byte("capacity")
1634                   ergo_format_byte("occupancy")
1635                   ergo_format_byte_perc("min desired capacity"),
1636                   capacity_after_gc, used_after_gc,
1637                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1638     expand(expand_bytes);
1639 
1640     // No expansion, now see if we want to shrink
1641   } else if (capacity_after_gc > maximum_desired_capacity) {
1642     // Capacity too large, compute shrinking size
1643     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1644     ergo_verbose4(ErgoHeapSizing,
1645                   "attempt heap shrinking",
1646                   ergo_format_reason("capacity higher than "
1647                                      "max desired capacity after Full GC")
1648                   ergo_format_byte("capacity")
1649                   ergo_format_byte("occupancy")
1650                   ergo_format_byte_perc("max desired capacity"),
1651                   capacity_after_gc, used_after_gc,
1652                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1653     shrink(shrink_bytes);
1654   }
1655 }
1656 
1657 
1658 HeapWord*
1659 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1660                                            bool* succeeded) {
1661   assert_at_safepoint(true /* should_be_vm_thread */);
1662 
1663   *succeeded = true;
1664   // Let's attempt the allocation first.
1665   HeapWord* result =
1666     attempt_allocation_at_safepoint(word_size,
1667                                  false /* expect_null_mutator_alloc_region */);
1668   if (result != NULL) {
1669     assert(*succeeded, "sanity");
1670     return result;
1671   }
1672 
1673   // In a G1 heap, we're supposed to keep allocation from failing by
1674   // incremental pauses.  Therefore, at least for now, we'll favor
1675   // expansion over collection.  (This might change in the future if we can
1676   // do something smarter than full collection to satisfy a failed alloc.)
1677   result = expand_and_allocate(word_size);
1678   if (result != NULL) {
1679     assert(*succeeded, "sanity");
1680     return result;
1681   }
1682 
1683   // Expansion didn't work, we'll try to do a Full GC.
1684   bool gc_succeeded = do_collection(false, /* explicit_gc */
1685                                     false, /* clear_all_soft_refs */
1686                                     word_size);
1687   if (!gc_succeeded) {
1688     *succeeded = false;
1689     return NULL;
1690   }
1691 
1692   // Retry the allocation
1693   result = attempt_allocation_at_safepoint(word_size,
1694                                   true /* expect_null_mutator_alloc_region */);
1695   if (result != NULL) {
1696     assert(*succeeded, "sanity");
1697     return result;
1698   }
1699 
1700   // Then, try a Full GC that will collect all soft references.
1701   gc_succeeded = do_collection(false, /* explicit_gc */
1702                                true,  /* clear_all_soft_refs */
1703                                word_size);
1704   if (!gc_succeeded) {
1705     *succeeded = false;
1706     return NULL;
1707   }
1708 
1709   // Retry the allocation once more
1710   result = attempt_allocation_at_safepoint(word_size,
1711                                   true /* expect_null_mutator_alloc_region */);
1712   if (result != NULL) {
1713     assert(*succeeded, "sanity");
1714     return result;
1715   }
1716 
1717   assert(!collector_policy()->should_clear_all_soft_refs(),
1718          "Flag should have been handled and cleared prior to this point");
1719 
1720   // What else?  We might try synchronous finalization later.  If the total
1721   // space available is large enough for the allocation, then a more
1722   // complete compaction phase than we've tried so far might be
1723   // appropriate.
1724   assert(*succeeded, "sanity");
1725   return NULL;
1726 }
1727 
1728 // Attempting to expand the heap sufficiently
1729 // to support an allocation of the given "word_size".  If
1730 // successful, perform the allocation and return the address of the
1731 // allocated block, or else "NULL".
1732 
1733 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1734   assert_at_safepoint(true /* should_be_vm_thread */);
1735 
1736   verify_region_sets_optional();
1737 
1738   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1739   ergo_verbose1(ErgoHeapSizing,
1740                 "attempt heap expansion",
1741                 ergo_format_reason("allocation request failed")
1742                 ergo_format_byte("allocation request"),
1743                 word_size * HeapWordSize);
1744   if (expand(expand_bytes)) {
1745     _hrs.verify_optional();
1746     verify_region_sets_optional();
1747     return attempt_allocation_at_safepoint(word_size,
1748                                  false /* expect_null_mutator_alloc_region */);
1749   }
1750   return NULL;
1751 }
1752 
1753 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1754                                              HeapWord* new_end) {
1755   assert(old_end != new_end, "don't call this otherwise");
1756   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1757 
1758   // Update the committed mem region.
1759   _g1_committed.set_end(new_end);
1760   // Tell the card table about the update.
1761   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1762   // Tell the BOT about the update.
1763   _bot_shared->resize(_g1_committed.word_size());
1764   // Tell the hot card cache about the update
1765   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1766 }
1767 
1768 bool G1CollectedHeap::expand(size_t expand_bytes) {
1769   size_t old_mem_size = _g1_storage.committed_size();
1770   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1771   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1772                                        HeapRegion::GrainBytes);
1773   ergo_verbose2(ErgoHeapSizing,
1774                 "expand the heap",
1775                 ergo_format_byte("requested expansion amount")
1776                 ergo_format_byte("attempted expansion amount"),
1777                 expand_bytes, aligned_expand_bytes);
1778 
1779   // First commit the memory.
1780   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1781   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1782   if (successful) {
1783     // Then propagate this update to the necessary data structures.
1784     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1785     update_committed_space(old_end, new_end);
1786 
1787     FreeRegionList expansion_list("Local Expansion List");
1788     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1789     assert(mr.start() == old_end, "post-condition");
1790     // mr might be a smaller region than what was requested if
1791     // expand_by() was unable to allocate the HeapRegion instances
1792     assert(mr.end() <= new_end, "post-condition");
1793 
1794     size_t actual_expand_bytes = mr.byte_size();
1795     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1796     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1797            "post-condition");
1798     if (actual_expand_bytes < aligned_expand_bytes) {
1799       // We could not expand _hrs to the desired size. In this case we
1800       // need to shrink the committed space accordingly.
1801       assert(mr.end() < new_end, "invariant");
1802 
1803       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1804       // First uncommit the memory.
1805       _g1_storage.shrink_by(diff_bytes);
1806       // Then propagate this update to the necessary data structures.
1807       update_committed_space(new_end, mr.end());
1808     }
1809     _free_list.add_as_tail(&expansion_list);
1810 
1811     if (_hr_printer.is_active()) {
1812       HeapWord* curr = mr.start();
1813       while (curr < mr.end()) {
1814         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1815         _hr_printer.commit(curr, curr_end);
1816         curr = curr_end;
1817       }
1818       assert(curr == mr.end(), "post-condition");
1819     }
1820     g1_policy()->record_new_heap_size(n_regions());
1821   } else {
1822     ergo_verbose0(ErgoHeapSizing,
1823                   "did not expand the heap",
1824                   ergo_format_reason("heap expansion operation failed"));
1825     // The expansion of the virtual storage space was unsuccessful.
1826     // Let's see if it was because we ran out of swap.
1827     if (G1ExitOnExpansionFailure &&
1828         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1829       // We had head room...
1830       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1831     }
1832   }
1833   return successful;
1834 }
1835 
1836 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1837   size_t old_mem_size = _g1_storage.committed_size();
1838   size_t aligned_shrink_bytes =
1839     ReservedSpace::page_align_size_down(shrink_bytes);
1840   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1841                                          HeapRegion::GrainBytes);
1842   uint num_regions_deleted = 0;
1843   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1844   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1845   assert(mr.end() == old_end, "post-condition");
1846 
1847   ergo_verbose3(ErgoHeapSizing,
1848                 "shrink the heap",
1849                 ergo_format_byte("requested shrinking amount")
1850                 ergo_format_byte("aligned shrinking amount")
1851                 ergo_format_byte("attempted shrinking amount"),
1852                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1853   if (mr.byte_size() > 0) {
1854     if (_hr_printer.is_active()) {
1855       HeapWord* curr = mr.end();
1856       while (curr > mr.start()) {
1857         HeapWord* curr_end = curr;
1858         curr -= HeapRegion::GrainWords;
1859         _hr_printer.uncommit(curr, curr_end);
1860       }
1861       assert(curr == mr.start(), "post-condition");
1862     }
1863 
1864     _g1_storage.shrink_by(mr.byte_size());
1865     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1866     assert(mr.start() == new_end, "post-condition");
1867 
1868     _expansion_regions += num_regions_deleted;
1869     update_committed_space(old_end, new_end);
1870     HeapRegionRemSet::shrink_heap(n_regions());
1871     g1_policy()->record_new_heap_size(n_regions());
1872   } else {
1873     ergo_verbose0(ErgoHeapSizing,
1874                   "did not shrink the heap",
1875                   ergo_format_reason("heap shrinking operation failed"));
1876   }
1877 }
1878 
1879 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1880   verify_region_sets_optional();
1881 
1882   // We should only reach here at the end of a Full GC which means we
1883   // should not not be holding to any GC alloc regions. The method
1884   // below will make sure of that and do any remaining clean up.
1885   abandon_gc_alloc_regions();
1886 
1887   // Instead of tearing down / rebuilding the free lists here, we
1888   // could instead use the remove_all_pending() method on free_list to
1889   // remove only the ones that we need to remove.
1890   tear_down_region_sets(true /* free_list_only */);
1891   shrink_helper(shrink_bytes);
1892   rebuild_region_sets(true /* free_list_only */);
1893 
1894   _hrs.verify_optional();
1895   verify_region_sets_optional();
1896 }
1897 
1898 // Public methods.
1899 
1900 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1901 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1902 #endif // _MSC_VER
1903 
1904 
1905 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1906   SharedHeap(policy_),
1907   _g1_policy(policy_),
1908   _dirty_card_queue_set(false),
1909   _into_cset_dirty_card_queue_set(false),
1910   _is_alive_closure_cm(this),
1911   _is_alive_closure_stw(this),
1912   _ref_processor_cm(NULL),
1913   _ref_processor_stw(NULL),
1914   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1915   _bot_shared(NULL),
1916   _evac_failure_scan_stack(NULL),
1917   _mark_in_progress(false),
1918   _cg1r(NULL), _summary_bytes_used(0),
1919   _g1mm(NULL),
1920   _refine_cte_cl(NULL),
1921   _full_collection(false),
1922   _free_list("Master Free List"),
1923   _secondary_free_list("Secondary Free List"),
1924   _old_set("Old Set"),
1925   _humongous_set("Master Humongous Set"),
1926   _free_regions_coming(false),
1927   _young_list(new YoungList(this)),
1928   _gc_time_stamp(0),
1929   _retained_old_gc_alloc_region(NULL),
1930   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1931   _old_plab_stats(OldPLABSize, PLABWeight),
1932   _expand_heap_after_alloc_failure(true),
1933   _surviving_young_words(NULL),
1934   _old_marking_cycles_started(0),
1935   _old_marking_cycles_completed(0),
1936   _concurrent_cycle_started(false),
1937   _in_cset_fast_test(NULL),
1938   _in_cset_fast_test_base(NULL),
1939   _dirty_cards_region_list(NULL),
1940   _worker_cset_start_region(NULL),
1941   _worker_cset_start_region_time_stamp(NULL),
1942   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1943   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1944   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1945   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1946 
1947   _g1h = this;
1948   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1949     vm_exit_during_initialization("Failed necessary allocation.");
1950   }
1951 
1952   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1953 
1954   int n_queues = MAX2((int)ParallelGCThreads, 1);
1955   _task_queues = new RefToScanQueueSet(n_queues);
1956 
1957   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1958   assert(n_rem_sets > 0, "Invariant.");
1959 
1960   HeapRegionRemSetIterator** iter_arr = NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1961   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1962   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1963   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1964 
1965   for (int i = 0; i < n_queues; i++) {
1966     RefToScanQueue* q = new RefToScanQueue();
1967     q->initialize();
1968     _task_queues->register_queue(i, q);
1969     iter_arr[i] = new HeapRegionRemSetIterator();
1970     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1971   }
1972   _rem_set_iterator = iter_arr;
1973 
1974   clear_cset_start_regions();
1975 
1976   // Initialize the G1EvacuationFailureALot counters and flags.
1977   NOT_PRODUCT(reset_evacuation_should_fail();)
1978 
1979   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1980 }
1981 
1982 jint G1CollectedHeap::initialize() {
1983   CollectedHeap::pre_initialize();
1984   os::enable_vtime();
1985 
1986   G1Log::init();
1987 
1988   // Necessary to satisfy locking discipline assertions.
1989 
1990   MutexLocker x(Heap_lock);
1991 
1992   // We have to initialize the printer before committing the heap, as
1993   // it will be used then.
1994   _hr_printer.set_active(G1PrintHeapRegions);
1995 
1996   // While there are no constraints in the GC code that HeapWordSize
1997   // be any particular value, there are multiple other areas in the
1998   // system which believe this to be true (e.g. oop->object_size in some
1999   // cases incorrectly returns the size in wordSize units rather than
2000   // HeapWordSize).
2001   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2002 
2003   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2004   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2005   size_t heap_alignment = collector_policy()->max_alignment();
2006 
2007   // Ensure that the sizes are properly aligned.
2008   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2009   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2010 
2011   _cg1r = new ConcurrentG1Refine(this);
2012 
2013   // Reserve the maximum.
2014   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
2015   // Includes the perm-gen.
2016 
2017   // When compressed oops are enabled, the preferred heap base
2018   // is calculated by subtracting the requested size from the
2019   // 32Gb boundary and using the result as the base address for
2020   // heap reservation. If the requested size is not aligned to
2021   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2022   // into the ReservedHeapSpace constructor) then the actual
2023   // base of the reserved heap may end up differing from the
2024   // address that was requested (i.e. the preferred heap base).
2025   // If this happens then we could end up using a non-optimal
2026   // compressed oops mode.
2027 
2028   // Since max_byte_size is aligned to the size of a heap region (checked
2029   // above), we also need to align the perm gen size as it might not be.
2030   size_t total_reserved = 0;
2031 
2032   total_reserved = add_and_check_overflow(total_reserved, max_byte_size);
2033   size_t pg_max_size = (size_t) align_size_up(pgs->max_size(), heap_alignment);
2034   total_reserved = add_and_check_overflow(total_reserved, pg_max_size);
2035 
2036   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
2037 
2038   char* addr = Universe::preferred_heap_base(total_reserved, heap_alignment, Universe::UnscaledNarrowOop);
2039 
2040   ReservedHeapSpace heap_rs(total_reserved, heap_alignment,
2041                             UseLargePages, addr);
2042 
2043   if (UseCompressedOops) {
2044     if (addr != NULL && !heap_rs.is_reserved()) {
2045       // Failed to reserve at specified address - the requested memory
2046       // region is taken already, for example, by 'java' launcher.
2047       // Try again to reserver heap higher.
2048       addr = Universe::preferred_heap_base(total_reserved, heap_alignment, Universe::ZeroBasedNarrowOop);
2049 
2050       ReservedHeapSpace heap_rs0(total_reserved, heap_alignment,
2051                                  UseLargePages, addr);
2052 
2053       if (addr != NULL && !heap_rs0.is_reserved()) {
2054         // Failed to reserve at specified address again - give up.
2055         addr = Universe::preferred_heap_base(total_reserved, heap_alignment, Universe::HeapBasedNarrowOop);
2056         assert(addr == NULL, "");
2057 
2058         ReservedHeapSpace heap_rs1(total_reserved, heap_alignment,
2059                                    UseLargePages, addr);
2060         heap_rs = heap_rs1;
2061       } else {
2062         heap_rs = heap_rs0;
2063       }
2064     }
2065   }
2066 
2067   if (!heap_rs.is_reserved()) {
2068     vm_exit_during_initialization("Could not reserve enough space for object heap");
2069     return JNI_ENOMEM;
2070   }
2071 
2072   // It is important to do this in a way such that concurrent readers can't
2073   // temporarily think something is in the heap.  (I've actually seen this
2074   // happen in asserts: DLD.)
2075   _reserved.set_word_size(0);
2076   _reserved.set_start((HeapWord*)heap_rs.base());
2077   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2078 
2079   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2080 
2081   // Create the gen rem set (and barrier set) for the entire reserved region.
2082   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2083   set_barrier_set(rem_set()->bs());
2084   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2085     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2086   } else {
2087     vm_exit_during_initialization("G1 requires a mod ref bs.");
2088     return JNI_ENOMEM;
2089   }
2090 
2091   // Also create a G1 rem set.
2092   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2093     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2094   } else {
2095     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2096     return JNI_ENOMEM;
2097   }
2098 
2099   // Carve out the G1 part of the heap.
2100 
2101   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2102   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2103                            g1_rs.size()/HeapWordSize);
2104   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2105 
2106   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2107 
2108   _g1_storage.initialize(g1_rs, 0);
2109   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2110   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2111                   (HeapWord*) _g1_reserved.end(),
2112                   _expansion_regions);
2113 
2114   // Do later initialization work for concurrent refinement.
2115   _cg1r->init();
2116 
2117   // 6843694 - ensure that the maximum region index can fit
2118   // in the remembered set structures.
2119   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2120   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2121 
2122   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2123   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2124   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2125             "too many cards per region");
2126 
2127   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2128 
2129   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2130                                              heap_word_size(init_byte_size));
2131 
2132   _g1h = this;
2133 
2134   _in_cset_fast_test_length = max_regions();
2135   _in_cset_fast_test_base =
2136                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2137 
2138   // We're biasing _in_cset_fast_test to avoid subtracting the
2139   // beginning of the heap every time we want to index; basically
2140   // it's the same with what we do with the card table.
2141   _in_cset_fast_test = _in_cset_fast_test_base -
2142                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2143 
2144   // Clear the _cset_fast_test bitmap in anticipation of adding
2145   // regions to the incremental collection set for the first
2146   // evacuation pause.
2147   clear_cset_fast_test();
2148 
2149   // Create the ConcurrentMark data structure and thread.
2150   // (Must do this late, so that "max_regions" is defined.)
2151   _cm       = new ConcurrentMark(heap_rs, max_regions());
2152   _cmThread = _cm->cmThread();
2153 
2154   // Initialize the from_card cache structure of HeapRegionRemSet.
2155   HeapRegionRemSet::init_heap(max_regions());
2156 
2157   // Now expand into the initial heap size.
2158   if (!expand(init_byte_size)) {
2159     vm_exit_during_initialization("Failed to allocate initial heap.");
2160     return JNI_ENOMEM;
2161   }
2162 
2163   // Perform any initialization actions delegated to the policy.
2164   g1_policy()->init();
2165 
2166   _refine_cte_cl =
2167     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2168                                     g1_rem_set(),
2169                                     concurrent_g1_refine());
2170   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2171 
2172   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2173                                                SATB_Q_FL_lock,
2174                                                G1SATBProcessCompletedThreshold,
2175                                                Shared_SATB_Q_lock);
2176 
2177   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2178                                                 DirtyCardQ_FL_lock,
2179                                                 concurrent_g1_refine()->yellow_zone(),
2180                                                 concurrent_g1_refine()->red_zone(),
2181                                                 Shared_DirtyCardQ_lock);
2182 
2183   if (G1DeferredRSUpdate) {
2184     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2185                                       DirtyCardQ_FL_lock,
2186                                       -1, // never trigger processing
2187                                       -1, // no limit on length
2188                                       Shared_DirtyCardQ_lock,
2189                                       &JavaThread::dirty_card_queue_set());
2190   }
2191 
2192   // Initialize the card queue set used to hold cards containing
2193   // references into the collection set.
2194   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2195                                              DirtyCardQ_FL_lock,
2196                                              -1, // never trigger processing
2197                                              -1, // no limit on length
2198                                              Shared_DirtyCardQ_lock,
2199                                              &JavaThread::dirty_card_queue_set());
2200 
2201   // In case we're keeping closure specialization stats, initialize those
2202   // counts and that mechanism.
2203   SpecializationStats::clear();
2204 
2205   // Here we allocate the dummy full region that is required by the
2206   // G1AllocRegion class. If we don't pass an address in the reserved
2207   // space here, lots of asserts fire.
2208 
2209   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2210                                              _g1_reserved.start());
2211   // We'll re-use the same region whether the alloc region will
2212   // require BOT updates or not and, if it doesn't, then a non-young
2213   // region will complain that it cannot support allocations without
2214   // BOT updates. So we'll tag the dummy region as young to avoid that.
2215   dummy_region->set_young();
2216   // Make sure it's full.
2217   dummy_region->set_top(dummy_region->end());
2218   G1AllocRegion::setup(this, dummy_region);
2219 
2220   init_mutator_alloc_region();
2221 
2222   // Do create of the monitoring and management support so that
2223   // values in the heap have been properly initialized.
2224   _g1mm = new G1MonitoringSupport(this);
2225 
2226   return JNI_OK;
2227 }
2228 
2229 void G1CollectedHeap::ref_processing_init() {
2230   // Reference processing in G1 currently works as follows:
2231   //
2232   // * There are two reference processor instances. One is
2233   //   used to record and process discovered references
2234   //   during concurrent marking; the other is used to
2235   //   record and process references during STW pauses
2236   //   (both full and incremental).
2237   // * Both ref processors need to 'span' the entire heap as
2238   //   the regions in the collection set may be dotted around.
2239   //
2240   // * For the concurrent marking ref processor:
2241   //   * Reference discovery is enabled at initial marking.
2242   //   * Reference discovery is disabled and the discovered
2243   //     references processed etc during remarking.
2244   //   * Reference discovery is MT (see below).
2245   //   * Reference discovery requires a barrier (see below).
2246   //   * Reference processing may or may not be MT
2247   //     (depending on the value of ParallelRefProcEnabled
2248   //     and ParallelGCThreads).
2249   //   * A full GC disables reference discovery by the CM
2250   //     ref processor and abandons any entries on it's
2251   //     discovered lists.
2252   //
2253   // * For the STW processor:
2254   //   * Non MT discovery is enabled at the start of a full GC.
2255   //   * Processing and enqueueing during a full GC is non-MT.
2256   //   * During a full GC, references are processed after marking.
2257   //
2258   //   * Discovery (may or may not be MT) is enabled at the start
2259   //     of an incremental evacuation pause.
2260   //   * References are processed near the end of a STW evacuation pause.
2261   //   * For both types of GC:
2262   //     * Discovery is atomic - i.e. not concurrent.
2263   //     * Reference discovery will not need a barrier.
2264 
2265   SharedHeap::ref_processing_init();
2266   MemRegion mr = reserved_region();
2267 
2268   // Concurrent Mark ref processor
2269   _ref_processor_cm =
2270     new ReferenceProcessor(mr,    // span
2271                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2272                                 // mt processing
2273                            (int) ParallelGCThreads,
2274                                 // degree of mt processing
2275                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2276                                 // mt discovery
2277                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2278                                 // degree of mt discovery
2279                            false,
2280                                 // Reference discovery is not atomic
2281                            &_is_alive_closure_cm,
2282                                 // is alive closure
2283                                 // (for efficiency/performance)
2284                            true);
2285                                 // Setting next fields of discovered
2286                                 // lists requires a barrier.
2287 
2288   // STW ref processor
2289   _ref_processor_stw =
2290     new ReferenceProcessor(mr,    // span
2291                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2292                                 // mt processing
2293                            MAX2((int)ParallelGCThreads, 1),
2294                                 // degree of mt processing
2295                            (ParallelGCThreads > 1),
2296                                 // mt discovery
2297                            MAX2((int)ParallelGCThreads, 1),
2298                                 // degree of mt discovery
2299                            true,
2300                                 // Reference discovery is atomic
2301                            &_is_alive_closure_stw,
2302                                 // is alive closure
2303                                 // (for efficiency/performance)
2304                            false);
2305                                 // Setting next fields of discovered
2306                                 // lists requires a barrier.
2307 }
2308 
2309 size_t G1CollectedHeap::capacity() const {
2310   return _g1_committed.byte_size();
2311 }
2312 
2313 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2314   assert(!hr->continuesHumongous(), "pre-condition");
2315   hr->reset_gc_time_stamp();
2316   if (hr->startsHumongous()) {
2317     uint first_index = hr->hrs_index() + 1;
2318     uint last_index = hr->last_hc_index();
2319     for (uint i = first_index; i < last_index; i += 1) {
2320       HeapRegion* chr = region_at(i);
2321       assert(chr->continuesHumongous(), "sanity");
2322       chr->reset_gc_time_stamp();
2323     }
2324   }
2325 }
2326 
2327 #ifndef PRODUCT
2328 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2329 private:
2330   unsigned _gc_time_stamp;
2331   bool _failures;
2332 
2333 public:
2334   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2335     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2336 
2337   virtual bool doHeapRegion(HeapRegion* hr) {
2338     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2339     if (_gc_time_stamp != region_gc_time_stamp) {
2340       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2341                              "expected %d", HR_FORMAT_PARAMS(hr),
2342                              region_gc_time_stamp, _gc_time_stamp);
2343       _failures = true;
2344     }
2345     return false;
2346   }
2347 
2348   bool failures() { return _failures; }
2349 };
2350 
2351 void G1CollectedHeap::check_gc_time_stamps() {
2352   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2353   heap_region_iterate(&cl);
2354   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2355 }
2356 #endif // PRODUCT
2357 
2358 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2359                                                  DirtyCardQueue* into_cset_dcq,
2360                                                  bool concurrent,
2361                                                  int worker_i) {
2362   // Clean cards in the hot card cache
2363   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2364   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2365 
2366   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2367   int n_completed_buffers = 0;
2368   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2369     n_completed_buffers++;
2370   }
2371   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2372   dcqs.clear_n_completed_buffers();
2373   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2374 }
2375 
2376 
2377 // Computes the sum of the storage used by the various regions.
2378 
2379 size_t G1CollectedHeap::used() const {
2380   assert(Heap_lock->owner() != NULL,
2381          "Should be owned on this thread's behalf.");
2382   size_t result = _summary_bytes_used;
2383   // Read only once in case it is set to NULL concurrently
2384   HeapRegion* hr = _mutator_alloc_region.get();
2385   if (hr != NULL)
2386     result += hr->used();
2387   return result;
2388 }
2389 
2390 size_t G1CollectedHeap::used_unlocked() const {
2391   size_t result = _summary_bytes_used;
2392   return result;
2393 }
2394 
2395 class SumUsedClosure: public HeapRegionClosure {
2396   size_t _used;
2397 public:
2398   SumUsedClosure() : _used(0) {}
2399   bool doHeapRegion(HeapRegion* r) {
2400     if (!r->continuesHumongous()) {
2401       _used += r->used();
2402     }
2403     return false;
2404   }
2405   size_t result() { return _used; }
2406 };
2407 
2408 size_t G1CollectedHeap::recalculate_used() const {
2409   SumUsedClosure blk;
2410   heap_region_iterate(&blk);
2411   return blk.result();
2412 }
2413 
2414 size_t G1CollectedHeap::unsafe_max_alloc() {
2415   if (free_regions() > 0) return HeapRegion::GrainBytes;
2416   // otherwise, is there space in the current allocation region?
2417 
2418   // We need to store the current allocation region in a local variable
2419   // here. The problem is that this method doesn't take any locks and
2420   // there may be other threads which overwrite the current allocation
2421   // region field. attempt_allocation(), for example, sets it to NULL
2422   // and this can happen *after* the NULL check here but before the call
2423   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2424   // to be a problem in the optimized build, since the two loads of the
2425   // current allocation region field are optimized away.
2426   HeapRegion* hr = _mutator_alloc_region.get();
2427   if (hr == NULL) {
2428     return 0;
2429   }
2430   return hr->free();
2431 }
2432 
2433 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2434   switch (cause) {
2435     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2436     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2437     case GCCause::_g1_humongous_allocation: return true;
2438     default:                                return false;
2439   }
2440 }
2441 
2442 #ifndef PRODUCT
2443 void G1CollectedHeap::allocate_dummy_regions() {
2444   // Let's fill up most of the region
2445   size_t word_size = HeapRegion::GrainWords - 1024;
2446   // And as a result the region we'll allocate will be humongous.
2447   guarantee(isHumongous(word_size), "sanity");
2448 
2449   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2450     // Let's use the existing mechanism for the allocation
2451     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2452     if (dummy_obj != NULL) {
2453       MemRegion mr(dummy_obj, word_size);
2454       CollectedHeap::fill_with_object(mr);
2455     } else {
2456       // If we can't allocate once, we probably cannot allocate
2457       // again. Let's get out of the loop.
2458       break;
2459     }
2460   }
2461 }
2462 #endif // !PRODUCT
2463 
2464 void G1CollectedHeap::increment_old_marking_cycles_started() {
2465   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2466     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2467     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2468     _old_marking_cycles_started, _old_marking_cycles_completed));
2469 
2470   _old_marking_cycles_started++;
2471 }
2472 
2473 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2474   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2475 
2476   // We assume that if concurrent == true, then the caller is a
2477   // concurrent thread that was joined the Suspendible Thread
2478   // Set. If there's ever a cheap way to check this, we should add an
2479   // assert here.
2480 
2481   // Given that this method is called at the end of a Full GC or of a
2482   // concurrent cycle, and those can be nested (i.e., a Full GC can
2483   // interrupt a concurrent cycle), the number of full collections
2484   // completed should be either one (in the case where there was no
2485   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2486   // behind the number of full collections started.
2487 
2488   // This is the case for the inner caller, i.e. a Full GC.
2489   assert(concurrent ||
2490          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2491          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2492          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2493                  "is inconsistent with _old_marking_cycles_completed = %u",
2494                  _old_marking_cycles_started, _old_marking_cycles_completed));
2495 
2496   // This is the case for the outer caller, i.e. the concurrent cycle.
2497   assert(!concurrent ||
2498          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2499          err_msg("for outer caller (concurrent cycle): "
2500                  "_old_marking_cycles_started = %u "
2501                  "is inconsistent with _old_marking_cycles_completed = %u",
2502                  _old_marking_cycles_started, _old_marking_cycles_completed));
2503 
2504   _old_marking_cycles_completed += 1;
2505 
2506   // We need to clear the "in_progress" flag in the CM thread before
2507   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2508   // is set) so that if a waiter requests another System.gc() it doesn't
2509   // incorrectly see that a marking cycle is still in progress.
2510   if (concurrent) {
2511     _cmThread->clear_in_progress();
2512   }
2513 
2514   // This notify_all() will ensure that a thread that called
2515   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2516   // and it's waiting for a full GC to finish will be woken up. It is
2517   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2518   FullGCCount_lock->notify_all();
2519 }
2520 
2521 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2522   _concurrent_cycle_started = true;
2523   _gc_timer_cm->register_gc_start(start_time);
2524 
2525   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2526   trace_heap_before_gc(_gc_tracer_cm);
2527 }
2528 
2529 void G1CollectedHeap::register_concurrent_cycle_end() {
2530   if (_concurrent_cycle_started) {
2531     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2532 
2533     if (_cm->has_aborted()) {
2534       _gc_tracer_cm->report_concurrent_mode_failure();
2535     }
2536     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2537 
2538     _concurrent_cycle_started = false;
2539   }
2540 }
2541 
2542 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2543   if (_concurrent_cycle_started) {
2544     trace_heap_after_gc(_gc_tracer_cm);
2545   }
2546 }
2547 
2548 G1YCType G1CollectedHeap::yc_type() {
2549   bool is_young = g1_policy()->gcs_are_young();
2550   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2551   bool is_during_mark = mark_in_progress();
2552 
2553   if (is_initial_mark) {
2554     return InitialMark;
2555   } else if (is_during_mark) {
2556     return DuringMark;
2557   } else if (is_young) {
2558     return Normal;
2559   } else {
2560     return Mixed;
2561   }
2562 }
2563 
2564 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2565   assert_at_safepoint(true /* should_be_vm_thread */);
2566   GCCauseSetter gcs(this, cause);
2567   switch (cause) {
2568     case GCCause::_heap_inspection:
2569     case GCCause::_heap_dump: {
2570       HandleMark hm;
2571       do_full_collection(false);         // don't clear all soft refs
2572       break;
2573     }
2574     default: // XXX FIX ME
2575       ShouldNotReachHere(); // Unexpected use of this function
2576   }
2577 }
2578 
2579 void G1CollectedHeap::collect(GCCause::Cause cause) {
2580   assert_heap_not_locked();
2581 
2582   unsigned int gc_count_before;
2583   unsigned int old_marking_count_before;
2584   bool retry_gc;
2585 
2586   do {
2587     retry_gc = false;
2588 
2589     {
2590       MutexLocker ml(Heap_lock);
2591 
2592       // Read the GC count while holding the Heap_lock
2593       gc_count_before = total_collections();
2594       old_marking_count_before = _old_marking_cycles_started;
2595     }
2596 
2597     if (should_do_concurrent_full_gc(cause)) {
2598       // Schedule an initial-mark evacuation pause that will start a
2599       // concurrent cycle. We're setting word_size to 0 which means that
2600       // we are not requesting a post-GC allocation.
2601       VM_G1IncCollectionPause op(gc_count_before,
2602                                  0,     /* word_size */
2603                                  true,  /* should_initiate_conc_mark */
2604                                  g1_policy()->max_pause_time_ms(),
2605                                  cause);
2606 
2607       VMThread::execute(&op);
2608       if (!op.pause_succeeded()) {
2609         if (old_marking_count_before == _old_marking_cycles_started) {
2610           retry_gc = op.should_retry_gc();
2611         } else {
2612           // A Full GC happened while we were trying to schedule the
2613           // initial-mark GC. No point in starting a new cycle given
2614           // that the whole heap was collected anyway.
2615         }
2616 
2617         if (retry_gc) {
2618           if (GC_locker::is_active_and_needs_gc()) {
2619             GC_locker::stall_until_clear();
2620           }
2621         }
2622       }
2623     } else {
2624       if (cause == GCCause::_gc_locker
2625           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2626 
2627         // Schedule a standard evacuation pause. We're setting word_size
2628         // to 0 which means that we are not requesting a post-GC allocation.
2629         VM_G1IncCollectionPause op(gc_count_before,
2630                                    0,     /* word_size */
2631                                    false, /* should_initiate_conc_mark */
2632                                    g1_policy()->max_pause_time_ms(),
2633                                    cause);
2634         VMThread::execute(&op);
2635       } else {
2636         // Schedule a Full GC.
2637         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2638         VMThread::execute(&op);
2639       }
2640     }
2641   } while (retry_gc);
2642 }
2643 
2644 bool G1CollectedHeap::is_in(const void* p) const {
2645   if (_g1_committed.contains(p)) {
2646     // Given that we know that p is in the committed space,
2647     // heap_region_containing_raw() should successfully
2648     // return the containing region.
2649     HeapRegion* hr = heap_region_containing_raw(p);
2650     return hr->is_in(p);
2651   } else {
2652     return _perm_gen->as_gen()->is_in(p);
2653   }
2654 }
2655 
2656 // Iteration functions.
2657 
2658 // Iterates an OopClosure over all ref-containing fields of objects
2659 // within a HeapRegion.
2660 
2661 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2662   MemRegion _mr;
2663   OopClosure* _cl;
2664 public:
2665   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2666     : _mr(mr), _cl(cl) {}
2667   bool doHeapRegion(HeapRegion* r) {
2668     if (!r->continuesHumongous()) {
2669       r->oop_iterate(_cl);
2670     }
2671     return false;
2672   }
2673 };
2674 
2675 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2676   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2677   heap_region_iterate(&blk);
2678   if (do_perm) {
2679     perm_gen()->oop_iterate(cl);
2680   }
2681 }
2682 
2683 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2684   IterateOopClosureRegionClosure blk(mr, cl);
2685   heap_region_iterate(&blk);
2686   if (do_perm) {
2687     perm_gen()->oop_iterate(cl);
2688   }
2689 }
2690 
2691 // Iterates an ObjectClosure over all objects within a HeapRegion.
2692 
2693 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2694   ObjectClosure* _cl;
2695 public:
2696   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2697   bool doHeapRegion(HeapRegion* r) {
2698     if (! r->continuesHumongous()) {
2699       r->object_iterate(_cl);
2700     }
2701     return false;
2702   }
2703 };
2704 
2705 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2706   IterateObjectClosureRegionClosure blk(cl);
2707   heap_region_iterate(&blk);
2708   if (do_perm) {
2709     perm_gen()->object_iterate(cl);
2710   }
2711 }
2712 
2713 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2714   // FIXME: is this right?
2715   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2716 }
2717 
2718 // Calls a SpaceClosure on a HeapRegion.
2719 
2720 class SpaceClosureRegionClosure: public HeapRegionClosure {
2721   SpaceClosure* _cl;
2722 public:
2723   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2724   bool doHeapRegion(HeapRegion* r) {
2725     _cl->do_space(r);
2726     return false;
2727   }
2728 };
2729 
2730 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2731   SpaceClosureRegionClosure blk(cl);
2732   heap_region_iterate(&blk);
2733 }
2734 
2735 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2736   _hrs.iterate(cl);
2737 }
2738 
2739 void
2740 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2741                                                  uint worker_id,
2742                                                  uint no_of_par_workers,
2743                                                  jint claim_value) {
2744   const uint regions = n_regions();
2745   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2746                              no_of_par_workers :
2747                              1);
2748   assert(UseDynamicNumberOfGCThreads ||
2749          no_of_par_workers == workers()->total_workers(),
2750          "Non dynamic should use fixed number of workers");
2751   // try to spread out the starting points of the workers
2752   const HeapRegion* start_hr =
2753                         start_region_for_worker(worker_id, no_of_par_workers);
2754   const uint start_index = start_hr->hrs_index();
2755 
2756   // each worker will actually look at all regions
2757   for (uint count = 0; count < regions; ++count) {
2758     const uint index = (start_index + count) % regions;
2759     assert(0 <= index && index < regions, "sanity");
2760     HeapRegion* r = region_at(index);
2761     // we'll ignore "continues humongous" regions (we'll process them
2762     // when we come across their corresponding "start humongous"
2763     // region) and regions already claimed
2764     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2765       continue;
2766     }
2767     // OK, try to claim it
2768     if (r->claimHeapRegion(claim_value)) {
2769       // success!
2770       assert(!r->continuesHumongous(), "sanity");
2771       if (r->startsHumongous()) {
2772         // If the region is "starts humongous" we'll iterate over its
2773         // "continues humongous" first; in fact we'll do them
2774         // first. The order is important. In on case, calling the
2775         // closure on the "starts humongous" region might de-allocate
2776         // and clear all its "continues humongous" regions and, as a
2777         // result, we might end up processing them twice. So, we'll do
2778         // them first (notice: most closures will ignore them anyway) and
2779         // then we'll do the "starts humongous" region.
2780         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2781           HeapRegion* chr = region_at(ch_index);
2782 
2783           // if the region has already been claimed or it's not
2784           // "continues humongous" we're done
2785           if (chr->claim_value() == claim_value ||
2786               !chr->continuesHumongous()) {
2787             break;
2788           }
2789 
2790           // Noone should have claimed it directly. We can given
2791           // that we claimed its "starts humongous" region.
2792           assert(chr->claim_value() != claim_value, "sanity");
2793           assert(chr->humongous_start_region() == r, "sanity");
2794 
2795           if (chr->claimHeapRegion(claim_value)) {
2796             // we should always be able to claim it; noone else should
2797             // be trying to claim this region
2798 
2799             bool res2 = cl->doHeapRegion(chr);
2800             assert(!res2, "Should not abort");
2801 
2802             // Right now, this holds (i.e., no closure that actually
2803             // does something with "continues humongous" regions
2804             // clears them). We might have to weaken it in the future,
2805             // but let's leave these two asserts here for extra safety.
2806             assert(chr->continuesHumongous(), "should still be the case");
2807             assert(chr->humongous_start_region() == r, "sanity");
2808           } else {
2809             guarantee(false, "we should not reach here");
2810           }
2811         }
2812       }
2813 
2814       assert(!r->continuesHumongous(), "sanity");
2815       bool res = cl->doHeapRegion(r);
2816       assert(!res, "Should not abort");
2817     }
2818   }
2819 }
2820 
2821 class ResetClaimValuesClosure: public HeapRegionClosure {
2822 public:
2823   bool doHeapRegion(HeapRegion* r) {
2824     r->set_claim_value(HeapRegion::InitialClaimValue);
2825     return false;
2826   }
2827 };
2828 
2829 void G1CollectedHeap::reset_heap_region_claim_values() {
2830   ResetClaimValuesClosure blk;
2831   heap_region_iterate(&blk);
2832 }
2833 
2834 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2835   ResetClaimValuesClosure blk;
2836   collection_set_iterate(&blk);
2837 }
2838 
2839 #ifdef ASSERT
2840 // This checks whether all regions in the heap have the correct claim
2841 // value. I also piggy-backed on this a check to ensure that the
2842 // humongous_start_region() information on "continues humongous"
2843 // regions is correct.
2844 
2845 class CheckClaimValuesClosure : public HeapRegionClosure {
2846 private:
2847   jint _claim_value;
2848   uint _failures;
2849   HeapRegion* _sh_region;
2850 
2851 public:
2852   CheckClaimValuesClosure(jint claim_value) :
2853     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2854   bool doHeapRegion(HeapRegion* r) {
2855     if (r->claim_value() != _claim_value) {
2856       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2857                              "claim value = %d, should be %d",
2858                              HR_FORMAT_PARAMS(r),
2859                              r->claim_value(), _claim_value);
2860       ++_failures;
2861     }
2862     if (!r->isHumongous()) {
2863       _sh_region = NULL;
2864     } else if (r->startsHumongous()) {
2865       _sh_region = r;
2866     } else if (r->continuesHumongous()) {
2867       if (r->humongous_start_region() != _sh_region) {
2868         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2869                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2870                                HR_FORMAT_PARAMS(r),
2871                                r->humongous_start_region(),
2872                                _sh_region);
2873         ++_failures;
2874       }
2875     }
2876     return false;
2877   }
2878   uint failures() { return _failures; }
2879 };
2880 
2881 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2882   CheckClaimValuesClosure cl(claim_value);
2883   heap_region_iterate(&cl);
2884   return cl.failures() == 0;
2885 }
2886 
2887 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2888 private:
2889   jint _claim_value;
2890   uint _failures;
2891 
2892 public:
2893   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2894     _claim_value(claim_value), _failures(0) { }
2895 
2896   uint failures() { return _failures; }
2897 
2898   bool doHeapRegion(HeapRegion* hr) {
2899     assert(hr->in_collection_set(), "how?");
2900     assert(!hr->isHumongous(), "H-region in CSet");
2901     if (hr->claim_value() != _claim_value) {
2902       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2903                              "claim value = %d, should be %d",
2904                              HR_FORMAT_PARAMS(hr),
2905                              hr->claim_value(), _claim_value);
2906       _failures += 1;
2907     }
2908     return false;
2909   }
2910 };
2911 
2912 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2913   CheckClaimValuesInCSetHRClosure cl(claim_value);
2914   collection_set_iterate(&cl);
2915   return cl.failures() == 0;
2916 }
2917 #endif // ASSERT
2918 
2919 // Clear the cached CSet starting regions and (more importantly)
2920 // the time stamps. Called when we reset the GC time stamp.
2921 void G1CollectedHeap::clear_cset_start_regions() {
2922   assert(_worker_cset_start_region != NULL, "sanity");
2923   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2924 
2925   int n_queues = MAX2((int)ParallelGCThreads, 1);
2926   for (int i = 0; i < n_queues; i++) {
2927     _worker_cset_start_region[i] = NULL;
2928     _worker_cset_start_region_time_stamp[i] = 0;
2929   }
2930 }
2931 
2932 // Given the id of a worker, obtain or calculate a suitable
2933 // starting region for iterating over the current collection set.
2934 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2935   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2936 
2937   HeapRegion* result = NULL;
2938   unsigned gc_time_stamp = get_gc_time_stamp();
2939 
2940   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2941     // Cached starting region for current worker was set
2942     // during the current pause - so it's valid.
2943     // Note: the cached starting heap region may be NULL
2944     // (when the collection set is empty).
2945     result = _worker_cset_start_region[worker_i];
2946     assert(result == NULL || result->in_collection_set(), "sanity");
2947     return result;
2948   }
2949 
2950   // The cached entry was not valid so let's calculate
2951   // a suitable starting heap region for this worker.
2952 
2953   // We want the parallel threads to start their collection
2954   // set iteration at different collection set regions to
2955   // avoid contention.
2956   // If we have:
2957   //          n collection set regions
2958   //          p threads
2959   // Then thread t will start at region floor ((t * n) / p)
2960 
2961   result = g1_policy()->collection_set();
2962   if (G1CollectedHeap::use_parallel_gc_threads()) {
2963     uint cs_size = g1_policy()->cset_region_length();
2964     uint active_workers = workers()->active_workers();
2965     assert(UseDynamicNumberOfGCThreads ||
2966              active_workers == workers()->total_workers(),
2967              "Unless dynamic should use total workers");
2968 
2969     uint end_ind   = (cs_size * worker_i) / active_workers;
2970     uint start_ind = 0;
2971 
2972     if (worker_i > 0 &&
2973         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2974       // Previous workers starting region is valid
2975       // so let's iterate from there
2976       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2977       result = _worker_cset_start_region[worker_i - 1];
2978     }
2979 
2980     for (uint i = start_ind; i < end_ind; i++) {
2981       result = result->next_in_collection_set();
2982     }
2983   }
2984 
2985   // Note: the calculated starting heap region may be NULL
2986   // (when the collection set is empty).
2987   assert(result == NULL || result->in_collection_set(), "sanity");
2988   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2989          "should be updated only once per pause");
2990   _worker_cset_start_region[worker_i] = result;
2991   OrderAccess::storestore();
2992   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2993   return result;
2994 }
2995 
2996 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2997                                                      uint no_of_par_workers) {
2998   uint worker_num =
2999            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
3000   assert(UseDynamicNumberOfGCThreads ||
3001          no_of_par_workers == workers()->total_workers(),
3002          "Non dynamic should use fixed number of workers");
3003   const uint start_index = n_regions() * worker_i / worker_num;
3004   return region_at(start_index);
3005 }
3006 
3007 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
3008   HeapRegion* r = g1_policy()->collection_set();
3009   while (r != NULL) {
3010     HeapRegion* next = r->next_in_collection_set();
3011     if (cl->doHeapRegion(r)) {
3012       cl->incomplete();
3013       return;
3014     }
3015     r = next;
3016   }
3017 }
3018 
3019 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
3020                                                   HeapRegionClosure *cl) {
3021   if (r == NULL) {
3022     // The CSet is empty so there's nothing to do.
3023     return;
3024   }
3025 
3026   assert(r->in_collection_set(),
3027          "Start region must be a member of the collection set.");
3028   HeapRegion* cur = r;
3029   while (cur != NULL) {
3030     HeapRegion* next = cur->next_in_collection_set();
3031     if (cl->doHeapRegion(cur) && false) {
3032       cl->incomplete();
3033       return;
3034     }
3035     cur = next;
3036   }
3037   cur = g1_policy()->collection_set();
3038   while (cur != r) {
3039     HeapRegion* next = cur->next_in_collection_set();
3040     if (cl->doHeapRegion(cur) && false) {
3041       cl->incomplete();
3042       return;
3043     }
3044     cur = next;
3045   }
3046 }
3047 
3048 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
3049   return n_regions() > 0 ? region_at(0) : NULL;
3050 }
3051 
3052 
3053 Space* G1CollectedHeap::space_containing(const void* addr) const {
3054   Space* res = heap_region_containing(addr);
3055   if (res == NULL)
3056     res = perm_gen()->space_containing(addr);
3057   return res;
3058 }
3059 
3060 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
3061   Space* sp = space_containing(addr);
3062   if (sp != NULL) {
3063     return sp->block_start(addr);
3064   }
3065   return NULL;
3066 }
3067 
3068 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3069   Space* sp = space_containing(addr);
3070   assert(sp != NULL, "block_size of address outside of heap");
3071   return sp->block_size(addr);
3072 }
3073 
3074 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3075   Space* sp = space_containing(addr);
3076   return sp->block_is_obj(addr);
3077 }
3078 
3079 bool G1CollectedHeap::supports_tlab_allocation() const {
3080   return true;
3081 }
3082 
3083 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3084   return HeapRegion::GrainBytes;
3085 }
3086 
3087 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3088   // Return the remaining space in the cur alloc region, but not less than
3089   // the min TLAB size.
3090 
3091   // Also, this value can be at most the humongous object threshold,
3092   // since we can't allow tlabs to grow big enough to accommodate
3093   // humongous objects.
3094 
3095   HeapRegion* hr = _mutator_alloc_region.get();
3096   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3097   if (hr == NULL) {
3098     return max_tlab_size;
3099   } else {
3100     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3101   }
3102 }
3103 
3104 size_t G1CollectedHeap::max_capacity() const {
3105   return _g1_reserved.byte_size();
3106 }
3107 
3108 jlong G1CollectedHeap::millis_since_last_gc() {
3109   // assert(false, "NYI");
3110   return 0;
3111 }
3112 
3113 void G1CollectedHeap::prepare_for_verify() {
3114   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3115     ensure_parsability(false);
3116   }
3117   g1_rem_set()->prepare_for_verify();
3118 }
3119 
3120 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3121                                               VerifyOption vo) {
3122   switch (vo) {
3123   case VerifyOption_G1UsePrevMarking:
3124     return hr->obj_allocated_since_prev_marking(obj);
3125   case VerifyOption_G1UseNextMarking:
3126     return hr->obj_allocated_since_next_marking(obj);
3127   case VerifyOption_G1UseMarkWord:
3128     return false;
3129   default:
3130     ShouldNotReachHere();
3131   }
3132   return false; // keep some compilers happy
3133 }
3134 
3135 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3136   switch (vo) {
3137   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3138   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3139   case VerifyOption_G1UseMarkWord:    return NULL;
3140   default:                            ShouldNotReachHere();
3141   }
3142   return NULL; // keep some compilers happy
3143 }
3144 
3145 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3146   switch (vo) {
3147   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3148   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3149   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3150   default:                            ShouldNotReachHere();
3151   }
3152   return false; // keep some compilers happy
3153 }
3154 
3155 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3156   switch (vo) {
3157   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3158   case VerifyOption_G1UseNextMarking: return "NTAMS";
3159   case VerifyOption_G1UseMarkWord:    return "NONE";
3160   default:                            ShouldNotReachHere();
3161   }
3162   return NULL; // keep some compilers happy
3163 }
3164 
3165 class VerifyLivenessOopClosure: public OopClosure {
3166   G1CollectedHeap* _g1h;
3167   VerifyOption _vo;
3168 public:
3169   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3170     _g1h(g1h), _vo(vo)
3171   { }
3172   void do_oop(narrowOop *p) { do_oop_work(p); }
3173   void do_oop(      oop *p) { do_oop_work(p); }
3174 
3175   template <class T> void do_oop_work(T *p) {
3176     oop obj = oopDesc::load_decode_heap_oop(p);
3177     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3178               "Dead object referenced by a not dead object");
3179   }
3180 };
3181 
3182 class VerifyObjsInRegionClosure: public ObjectClosure {
3183 private:
3184   G1CollectedHeap* _g1h;
3185   size_t _live_bytes;
3186   HeapRegion *_hr;
3187   VerifyOption _vo;
3188 public:
3189   // _vo == UsePrevMarking -> use "prev" marking information,
3190   // _vo == UseNextMarking -> use "next" marking information,
3191   // _vo == UseMarkWord    -> use mark word from object header.
3192   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3193     : _live_bytes(0), _hr(hr), _vo(vo) {
3194     _g1h = G1CollectedHeap::heap();
3195   }
3196   void do_object(oop o) {
3197     VerifyLivenessOopClosure isLive(_g1h, _vo);
3198     assert(o != NULL, "Huh?");
3199     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3200       // If the object is alive according to the mark word,
3201       // then verify that the marking information agrees.
3202       // Note we can't verify the contra-positive of the
3203       // above: if the object is dead (according to the mark
3204       // word), it may not be marked, or may have been marked
3205       // but has since became dead, or may have been allocated
3206       // since the last marking.
3207       if (_vo == VerifyOption_G1UseMarkWord) {
3208         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3209       }
3210 
3211       o->oop_iterate(&isLive);
3212       if (!_hr->obj_allocated_since_prev_marking(o)) {
3213         size_t obj_size = o->size();    // Make sure we don't overflow
3214         _live_bytes += (obj_size * HeapWordSize);
3215       }
3216     }
3217   }
3218   size_t live_bytes() { return _live_bytes; }
3219 };
3220 
3221 class PrintObjsInRegionClosure : public ObjectClosure {
3222   HeapRegion *_hr;
3223   G1CollectedHeap *_g1;
3224 public:
3225   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3226     _g1 = G1CollectedHeap::heap();
3227   };
3228 
3229   void do_object(oop o) {
3230     if (o != NULL) {
3231       HeapWord *start = (HeapWord *) o;
3232       size_t word_sz = o->size();
3233       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3234                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3235                           (void*) o, word_sz,
3236                           _g1->isMarkedPrev(o),
3237                           _g1->isMarkedNext(o),
3238                           _hr->obj_allocated_since_prev_marking(o));
3239       HeapWord *end = start + word_sz;
3240       HeapWord *cur;
3241       int *val;
3242       for (cur = start; cur < end; cur++) {
3243         val = (int *) cur;
3244         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3245       }
3246     }
3247   }
3248 };
3249 
3250 class VerifyRegionClosure: public HeapRegionClosure {
3251 private:
3252   bool             _par;
3253   VerifyOption     _vo;
3254   bool             _failures;
3255 public:
3256   // _vo == UsePrevMarking -> use "prev" marking information,
3257   // _vo == UseNextMarking -> use "next" marking information,
3258   // _vo == UseMarkWord    -> use mark word from object header.
3259   VerifyRegionClosure(bool par, VerifyOption vo)
3260     : _par(par),
3261       _vo(vo),
3262       _failures(false) {}
3263 
3264   bool failures() {
3265     return _failures;
3266   }
3267 
3268   bool doHeapRegion(HeapRegion* r) {
3269     if (!r->continuesHumongous()) {
3270       bool failures = false;
3271       r->verify(_vo, &failures);
3272       if (failures) {
3273         _failures = true;
3274       } else {
3275         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3276         r->object_iterate(&not_dead_yet_cl);
3277         if (_vo != VerifyOption_G1UseNextMarking) {
3278           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3279             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3280                                    "max_live_bytes "SIZE_FORMAT" "
3281                                    "< calculated "SIZE_FORMAT,
3282                                    r->bottom(), r->end(),
3283                                    r->max_live_bytes(),
3284                                  not_dead_yet_cl.live_bytes());
3285             _failures = true;
3286           }
3287         } else {
3288           // When vo == UseNextMarking we cannot currently do a sanity
3289           // check on the live bytes as the calculation has not been
3290           // finalized yet.
3291         }
3292       }
3293     }
3294     return false; // stop the region iteration if we hit a failure
3295   }
3296 };
3297 
3298 class VerifyRootsClosure: public OopsInGenClosure {
3299 private:
3300   G1CollectedHeap* _g1h;
3301   VerifyOption     _vo;
3302   bool             _failures;
3303 public:
3304   // _vo == UsePrevMarking -> use "prev" marking information,
3305   // _vo == UseNextMarking -> use "next" marking information,
3306   // _vo == UseMarkWord    -> use mark word from object header.
3307   VerifyRootsClosure(VerifyOption vo) :
3308     _g1h(G1CollectedHeap::heap()),
3309     _vo(vo),
3310     _failures(false) { }
3311 
3312   bool failures() { return _failures; }
3313 
3314   template <class T> void do_oop_nv(T* p) {
3315     T heap_oop = oopDesc::load_heap_oop(p);
3316     if (!oopDesc::is_null(heap_oop)) {
3317       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3318       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3319         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3320                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3321         if (_vo == VerifyOption_G1UseMarkWord) {
3322           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3323         }
3324         obj->print_on(gclog_or_tty);
3325         _failures = true;
3326       }
3327     }
3328   }
3329 
3330   void do_oop(oop* p)       { do_oop_nv(p); }
3331   void do_oop(narrowOop* p) { do_oop_nv(p); }
3332 };
3333 
3334 // This is the task used for parallel heap verification.
3335 
3336 class G1ParVerifyTask: public AbstractGangTask {
3337 private:
3338   G1CollectedHeap* _g1h;
3339   VerifyOption     _vo;
3340   bool             _failures;
3341 
3342 public:
3343   // _vo == UsePrevMarking -> use "prev" marking information,
3344   // _vo == UseNextMarking -> use "next" marking information,
3345   // _vo == UseMarkWord    -> use mark word from object header.
3346   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3347     AbstractGangTask("Parallel verify task"),
3348     _g1h(g1h),
3349     _vo(vo),
3350     _failures(false) { }
3351 
3352   bool failures() {
3353     return _failures;
3354   }
3355 
3356   void work(uint worker_id) {
3357     HandleMark hm;
3358     VerifyRegionClosure blk(true, _vo);
3359     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3360                                           _g1h->workers()->active_workers(),
3361                                           HeapRegion::ParVerifyClaimValue);
3362     if (blk.failures()) {
3363       _failures = true;
3364     }
3365   }
3366 };
3367 
3368 void G1CollectedHeap::verify(bool silent) {
3369   verify(silent, VerifyOption_G1UsePrevMarking);
3370 }
3371 
3372 void G1CollectedHeap::verify(bool silent,
3373                              VerifyOption vo) {
3374   if (SafepointSynchronize::is_at_safepoint()) {
3375     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3376     VerifyRootsClosure rootsCl(vo);
3377 
3378     assert(Thread::current()->is_VM_thread(),
3379            "Expected to be executed serially by the VM thread at this point");
3380 
3381     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3382 
3383     // We apply the relevant closures to all the oops in the
3384     // system dictionary, the string table and the code cache.
3385     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3386 
3387     process_strong_roots(true,      // activate StrongRootsScope
3388                          true,      // we set "collecting perm gen" to true,
3389                                     // so we don't reset the dirty cards in the perm gen.
3390                          ScanningOption(so),  // roots scanning options
3391                          &rootsCl,
3392                          &blobsCl,
3393                          &rootsCl);
3394 
3395     // If we're verifying after the marking phase of a Full GC then we can't
3396     // treat the perm gen as roots into the G1 heap. Some of the objects in
3397     // the perm gen may be dead and hence not marked. If one of these dead
3398     // objects is considered to be a root then we may end up with a false
3399     // "Root location <x> points to dead ob <y>" failure.
3400     if (vo != VerifyOption_G1UseMarkWord) {
3401       // Since we used "collecting_perm_gen" == true above, we will not have
3402       // checked the refs from perm into the G1-collected heap. We check those
3403       // references explicitly below. Whether the relevant cards are dirty
3404       // is checked further below in the rem set verification.
3405       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3406       perm_gen()->oop_iterate(&rootsCl);
3407     }
3408     bool failures = rootsCl.failures();
3409 
3410     if (vo != VerifyOption_G1UseMarkWord) {
3411       // If we're verifying during a full GC then the region sets
3412       // will have been torn down at the start of the GC. Therefore
3413       // verifying the region sets will fail. So we only verify
3414       // the region sets when not in a full GC.
3415       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3416       verify_region_sets();
3417     }
3418 
3419     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3420     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3421       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3422              "sanity check");
3423 
3424       G1ParVerifyTask task(this, vo);
3425       assert(UseDynamicNumberOfGCThreads ||
3426         workers()->active_workers() == workers()->total_workers(),
3427         "If not dynamic should be using all the workers");
3428       int n_workers = workers()->active_workers();
3429       set_par_threads(n_workers);
3430       workers()->run_task(&task);
3431       set_par_threads(0);
3432       if (task.failures()) {
3433         failures = true;
3434       }
3435 
3436       // Checks that the expected amount of parallel work was done.
3437       // The implication is that n_workers is > 0.
3438       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3439              "sanity check");
3440 
3441       reset_heap_region_claim_values();
3442 
3443       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3444              "sanity check");
3445     } else {
3446       VerifyRegionClosure blk(false, vo);
3447       heap_region_iterate(&blk);
3448       if (blk.failures()) {
3449         failures = true;
3450       }
3451     }
3452     if (!silent) gclog_or_tty->print("RemSet ");
3453     rem_set()->verify();
3454 
3455     if (failures) {
3456       gclog_or_tty->print_cr("Heap:");
3457       // It helps to have the per-region information in the output to
3458       // help us track down what went wrong. This is why we call
3459       // print_extended_on() instead of print_on().
3460       print_extended_on(gclog_or_tty);
3461       gclog_or_tty->print_cr("");
3462 #ifndef PRODUCT
3463       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3464         concurrent_mark()->print_reachable("at-verification-failure",
3465                                            vo, false /* all */);
3466       }
3467 #endif
3468       gclog_or_tty->flush();
3469     }
3470     guarantee(!failures, "there should not have been any failures");
3471   } else {
3472     if (!silent)
3473       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3474   }
3475 }
3476 
3477 class PrintRegionClosure: public HeapRegionClosure {
3478   outputStream* _st;
3479 public:
3480   PrintRegionClosure(outputStream* st) : _st(st) {}
3481   bool doHeapRegion(HeapRegion* r) {
3482     r->print_on(_st);
3483     return false;
3484   }
3485 };
3486 
3487 void G1CollectedHeap::print_on(outputStream* st) const {
3488   st->print(" %-20s", "garbage-first heap");
3489   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3490             capacity()/K, used_unlocked()/K);
3491   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3492             _g1_storage.low_boundary(),
3493             _g1_storage.high(),
3494             _g1_storage.high_boundary());
3495   st->cr();
3496   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3497   uint young_regions = _young_list->length();
3498   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3499             (size_t) young_regions * HeapRegion::GrainBytes / K);
3500   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3501   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3502             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3503   st->cr();
3504   perm()->as_gen()->print_on(st);
3505 }
3506 
3507 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3508   print_on(st);
3509 
3510   // Print the per-region information.
3511   st->cr();
3512   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3513                "HS=humongous(starts), HC=humongous(continues), "
3514                "CS=collection set, F=free, TS=gc time stamp, "
3515                "PTAMS=previous top-at-mark-start, "
3516                "NTAMS=next top-at-mark-start)");
3517   PrintRegionClosure blk(st);
3518   heap_region_iterate(&blk);
3519 }
3520 
3521 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3522   if (G1CollectedHeap::use_parallel_gc_threads()) {
3523     workers()->print_worker_threads_on(st);
3524   }
3525   _cmThread->print_on(st);
3526   st->cr();
3527   _cm->print_worker_threads_on(st);
3528   _cg1r->print_worker_threads_on(st);
3529   st->cr();
3530 }
3531 
3532 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3533   if (G1CollectedHeap::use_parallel_gc_threads()) {
3534     workers()->threads_do(tc);
3535   }
3536   tc->do_thread(_cmThread);
3537   _cg1r->threads_do(tc);
3538 }
3539 
3540 void G1CollectedHeap::print_tracing_info() const {
3541   // We'll overload this to mean "trace GC pause statistics."
3542   if (TraceGen0Time || TraceGen1Time) {
3543     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3544     // to that.
3545     g1_policy()->print_tracing_info();
3546   }
3547   if (G1SummarizeRSetStats) {
3548     g1_rem_set()->print_summary_info();
3549   }
3550   if (G1SummarizeConcMark) {
3551     concurrent_mark()->print_summary_info();
3552   }
3553   g1_policy()->print_yg_surv_rate_info();
3554   SpecializationStats::print();
3555 }
3556 
3557 #ifndef PRODUCT
3558 // Helpful for debugging RSet issues.
3559 
3560 class PrintRSetsClosure : public HeapRegionClosure {
3561 private:
3562   const char* _msg;
3563   size_t _occupied_sum;
3564 
3565 public:
3566   bool doHeapRegion(HeapRegion* r) {
3567     HeapRegionRemSet* hrrs = r->rem_set();
3568     size_t occupied = hrrs->occupied();
3569     _occupied_sum += occupied;
3570 
3571     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3572                            HR_FORMAT_PARAMS(r));
3573     if (occupied == 0) {
3574       gclog_or_tty->print_cr("  RSet is empty");
3575     } else {
3576       hrrs->print();
3577     }
3578     gclog_or_tty->print_cr("----------");
3579     return false;
3580   }
3581 
3582   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3583     gclog_or_tty->cr();
3584     gclog_or_tty->print_cr("========================================");
3585     gclog_or_tty->print_cr(msg);
3586     gclog_or_tty->cr();
3587   }
3588 
3589   ~PrintRSetsClosure() {
3590     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3591     gclog_or_tty->print_cr("========================================");
3592     gclog_or_tty->cr();
3593   }
3594 };
3595 
3596 void G1CollectedHeap::print_cset_rsets() {
3597   PrintRSetsClosure cl("Printing CSet RSets");
3598   collection_set_iterate(&cl);
3599 }
3600 
3601 void G1CollectedHeap::print_all_rsets() {
3602   PrintRSetsClosure cl("Printing All RSets");;
3603   heap_region_iterate(&cl);
3604 }
3605 #endif // PRODUCT
3606 
3607 G1CollectedHeap* G1CollectedHeap::heap() {
3608   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3609          "not a garbage-first heap");
3610   return _g1h;
3611 }
3612 
3613 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3614   // always_do_update_barrier = false;
3615   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3616   // Call allocation profiler
3617   AllocationProfiler::iterate_since_last_gc();
3618   // Fill TLAB's and such
3619   ensure_parsability(true);
3620 }
3621 
3622 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3623   // FIXME: what is this about?
3624   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3625   // is set.
3626   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3627                         "derived pointer present"));
3628   // always_do_update_barrier = true;
3629 
3630   // We have just completed a GC. Update the soft reference
3631   // policy with the new heap occupancy
3632   Universe::update_heap_info_at_gc();
3633 }
3634 
3635 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3636                                                unsigned int gc_count_before,
3637                                                bool* succeeded) {
3638   assert_heap_not_locked_and_not_at_safepoint();
3639   g1_policy()->record_stop_world_start();
3640   VM_G1IncCollectionPause op(gc_count_before,
3641                              word_size,
3642                              false, /* should_initiate_conc_mark */
3643                              g1_policy()->max_pause_time_ms(),
3644                              GCCause::_g1_inc_collection_pause);
3645   VMThread::execute(&op);
3646 
3647   HeapWord* result = op.result();
3648   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3649   assert(result == NULL || ret_succeeded,
3650          "the result should be NULL if the VM did not succeed");
3651   *succeeded = ret_succeeded;
3652 
3653   assert_heap_not_locked();
3654   return result;
3655 }
3656 
3657 void
3658 G1CollectedHeap::doConcurrentMark() {
3659   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3660   if (!_cmThread->in_progress()) {
3661     _cmThread->set_started();
3662     CGC_lock->notify();
3663   }
3664 }
3665 
3666 size_t G1CollectedHeap::pending_card_num() {
3667   size_t extra_cards = 0;
3668   JavaThread *curr = Threads::first();
3669   while (curr != NULL) {
3670     DirtyCardQueue& dcq = curr->dirty_card_queue();
3671     extra_cards += dcq.size();
3672     curr = curr->next();
3673   }
3674   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3675   size_t buffer_size = dcqs.buffer_size();
3676   size_t buffer_num = dcqs.completed_buffers_num();
3677 
3678   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3679   // in bytes - not the number of 'entries'. We need to convert
3680   // into a number of cards.
3681   return (buffer_size * buffer_num + extra_cards) / oopSize;
3682 }
3683 
3684 size_t G1CollectedHeap::cards_scanned() {
3685   return g1_rem_set()->cardsScanned();
3686 }
3687 
3688 void
3689 G1CollectedHeap::setup_surviving_young_words() {
3690   assert(_surviving_young_words == NULL, "pre-condition");
3691   uint array_length = g1_policy()->young_cset_region_length();
3692   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3693   if (_surviving_young_words == NULL) {
3694     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3695                           "Not enough space for young surv words summary.");
3696   }
3697   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3698 #ifdef ASSERT
3699   for (uint i = 0;  i < array_length; ++i) {
3700     assert( _surviving_young_words[i] == 0, "memset above" );
3701   }
3702 #endif // !ASSERT
3703 }
3704 
3705 void
3706 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3707   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3708   uint array_length = g1_policy()->young_cset_region_length();
3709   for (uint i = 0; i < array_length; ++i) {
3710     _surviving_young_words[i] += surv_young_words[i];
3711   }
3712 }
3713 
3714 void
3715 G1CollectedHeap::cleanup_surviving_young_words() {
3716   guarantee( _surviving_young_words != NULL, "pre-condition" );
3717   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3718   _surviving_young_words = NULL;
3719 }
3720 
3721 #ifdef ASSERT
3722 class VerifyCSetClosure: public HeapRegionClosure {
3723 public:
3724   bool doHeapRegion(HeapRegion* hr) {
3725     // Here we check that the CSet region's RSet is ready for parallel
3726     // iteration. The fields that we'll verify are only manipulated
3727     // when the region is part of a CSet and is collected. Afterwards,
3728     // we reset these fields when we clear the region's RSet (when the
3729     // region is freed) so they are ready when the region is
3730     // re-allocated. The only exception to this is if there's an
3731     // evacuation failure and instead of freeing the region we leave
3732     // it in the heap. In that case, we reset these fields during
3733     // evacuation failure handling.
3734     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3735 
3736     // Here's a good place to add any other checks we'd like to
3737     // perform on CSet regions.
3738     return false;
3739   }
3740 };
3741 #endif // ASSERT
3742 
3743 #if TASKQUEUE_STATS
3744 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3745   st->print_raw_cr("GC Task Stats");
3746   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3747   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3748 }
3749 
3750 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3751   print_taskqueue_stats_hdr(st);
3752 
3753   TaskQueueStats totals;
3754   const int n = workers() != NULL ? workers()->total_workers() : 1;
3755   for (int i = 0; i < n; ++i) {
3756     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3757     totals += task_queue(i)->stats;
3758   }
3759   st->print_raw("tot "); totals.print(st); st->cr();
3760 
3761   DEBUG_ONLY(totals.verify());
3762 }
3763 
3764 void G1CollectedHeap::reset_taskqueue_stats() {
3765   const int n = workers() != NULL ? workers()->total_workers() : 1;
3766   for (int i = 0; i < n; ++i) {
3767     task_queue(i)->stats.reset();
3768   }
3769 }
3770 #endif // TASKQUEUE_STATS
3771 
3772 void G1CollectedHeap::log_gc_header() {
3773   if (!G1Log::fine()) {
3774     return;
3775   }
3776 
3777   gclog_or_tty->date_stamp(PrintGCDateStamps);
3778   gclog_or_tty->stamp(PrintGCTimeStamps);
3779 
3780   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3781     .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
3782     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3783 
3784   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3785 }
3786 
3787 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3788   if (!G1Log::fine()) {
3789     return;
3790   }
3791 
3792   if (G1Log::finer()) {
3793     if (evacuation_failed()) {
3794       gclog_or_tty->print(" (to-space exhausted)");
3795     }
3796     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3797     g1_policy()->phase_times()->note_gc_end();
3798     g1_policy()->phase_times()->print(pause_time_sec);
3799     g1_policy()->print_detailed_heap_transition();
3800   } else {
3801     if (evacuation_failed()) {
3802       gclog_or_tty->print("--");
3803     }
3804     g1_policy()->print_heap_transition();
3805     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3806   }
3807   gclog_or_tty->flush();
3808 }
3809 
3810 bool
3811 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3812   assert_at_safepoint(true /* should_be_vm_thread */);
3813   guarantee(!is_gc_active(), "collection is not reentrant");
3814 
3815   if (GC_locker::check_active_before_gc()) {
3816     return false;
3817   }
3818 
3819   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3820 
3821   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3822 
3823   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3824   ResourceMark rm;
3825 
3826   print_heap_before_gc();
3827   trace_heap_before_gc(_gc_tracer_stw);
3828 
3829   HRSPhaseSetter x(HRSPhaseEvacuation);
3830   verify_region_sets_optional();
3831   verify_dirty_young_regions();
3832 
3833   // This call will decide whether this pause is an initial-mark
3834   // pause. If it is, during_initial_mark_pause() will return true
3835   // for the duration of this pause.
3836   g1_policy()->decide_on_conc_mark_initiation();
3837 
3838   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3839   assert(!g1_policy()->during_initial_mark_pause() ||
3840           g1_policy()->gcs_are_young(), "sanity");
3841 
3842   // We also do not allow mixed GCs during marking.
3843   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3844 
3845   // Record whether this pause is an initial mark. When the current
3846   // thread has completed its logging output and it's safe to signal
3847   // the CM thread, the flag's value in the policy has been reset.
3848   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3849 
3850   // Inner scope for scope based logging, timers, and stats collection
3851   {
3852     EvacuationInfo evacuation_info;
3853 
3854     if (g1_policy()->during_initial_mark_pause()) {
3855       // We are about to start a marking cycle, so we increment the
3856       // full collection counter.
3857       increment_old_marking_cycles_started();
3858       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3859     }
3860 
3861     _gc_tracer_stw->report_yc_type(yc_type());
3862 
3863     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3864 
3865     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3866                                 workers()->active_workers() : 1);
3867     double pause_start_sec = os::elapsedTime();
3868     g1_policy()->phase_times()->note_gc_start(active_workers);
3869     log_gc_header();
3870 
3871     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3872     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3873 
3874     // If the secondary_free_list is not empty, append it to the
3875     // free_list. No need to wait for the cleanup operation to finish;
3876     // the region allocation code will check the secondary_free_list
3877     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3878     // set, skip this step so that the region allocation code has to
3879     // get entries from the secondary_free_list.
3880     if (!G1StressConcRegionFreeing) {
3881       append_secondary_free_list_if_not_empty_with_lock();
3882     }
3883 
3884     assert(check_young_list_well_formed(),
3885       "young list should be well formed");
3886 
3887     // Don't dynamically change the number of GC threads this early.  A value of
3888     // 0 is used to indicate serial work.  When parallel work is done,
3889     // it will be set.
3890 
3891     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3892       IsGCActiveMark x;
3893 
3894       gc_prologue(false);
3895       increment_total_collections(false /* full gc */);
3896       increment_gc_time_stamp();
3897 
3898       verify_before_gc();
3899 
3900       COMPILER2_PRESENT(DerivedPointerTable::clear());
3901 
3902       // Please see comment in g1CollectedHeap.hpp and
3903       // G1CollectedHeap::ref_processing_init() to see how
3904       // reference processing currently works in G1.
3905 
3906       // Enable discovery in the STW reference processor
3907       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3908                                             true /*verify_no_refs*/);
3909 
3910       {
3911         // We want to temporarily turn off discovery by the
3912         // CM ref processor, if necessary, and turn it back on
3913         // on again later if we do. Using a scoped
3914         // NoRefDiscovery object will do this.
3915         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3916 
3917         // Forget the current alloc region (we might even choose it to be part
3918         // of the collection set!).
3919         release_mutator_alloc_region();
3920 
3921         // We should call this after we retire the mutator alloc
3922         // region(s) so that all the ALLOC / RETIRE events are generated
3923         // before the start GC event.
3924         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3925 
3926         // This timing is only used by the ergonomics to handle our pause target.
3927         // It is unclear why this should not include the full pause. We will
3928         // investigate this in CR 7178365.
3929         //
3930         // Preserving the old comment here if that helps the investigation:
3931         //
3932         // The elapsed time induced by the start time below deliberately elides
3933         // the possible verification above.
3934         double sample_start_time_sec = os::elapsedTime();
3935 
3936 #if YOUNG_LIST_VERBOSE
3937         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3938         _young_list->print();
3939         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3940 #endif // YOUNG_LIST_VERBOSE
3941 
3942         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3943 
3944         double scan_wait_start = os::elapsedTime();
3945         // We have to wait until the CM threads finish scanning the
3946         // root regions as it's the only way to ensure that all the
3947         // objects on them have been correctly scanned before we start
3948         // moving them during the GC.
3949         bool waited = _cm->root_regions()->wait_until_scan_finished();
3950         double wait_time_ms = 0.0;
3951         if (waited) {
3952           double scan_wait_end = os::elapsedTime();
3953           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3954         }
3955         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3956 
3957 #if YOUNG_LIST_VERBOSE
3958         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3959         _young_list->print();
3960 #endif // YOUNG_LIST_VERBOSE
3961 
3962         if (g1_policy()->during_initial_mark_pause()) {
3963           concurrent_mark()->checkpointRootsInitialPre();
3964         }
3965         perm_gen()->save_marks();
3966 
3967 #if YOUNG_LIST_VERBOSE
3968         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3969         _young_list->print();
3970         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3971 #endif // YOUNG_LIST_VERBOSE
3972 
3973         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3974 
3975         _cm->note_start_of_gc();
3976         // We should not verify the per-thread SATB buffers given that
3977         // we have not filtered them yet (we'll do so during the
3978         // GC). We also call this after finalize_cset() to
3979         // ensure that the CSet has been finalized.
3980         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3981                                  true  /* verify_enqueued_buffers */,
3982                                  false /* verify_thread_buffers */,
3983                                  true  /* verify_fingers */);
3984 
3985         if (_hr_printer.is_active()) {
3986           HeapRegion* hr = g1_policy()->collection_set();
3987           while (hr != NULL) {
3988             G1HRPrinter::RegionType type;
3989             if (!hr->is_young()) {
3990               type = G1HRPrinter::Old;
3991             } else if (hr->is_survivor()) {
3992               type = G1HRPrinter::Survivor;
3993             } else {
3994               type = G1HRPrinter::Eden;
3995             }
3996             _hr_printer.cset(hr);
3997             hr = hr->next_in_collection_set();
3998           }
3999         }
4000 
4001 #ifdef ASSERT
4002         VerifyCSetClosure cl;
4003         collection_set_iterate(&cl);
4004 #endif // ASSERT
4005 
4006         setup_surviving_young_words();
4007 
4008         // Initialize the GC alloc regions.
4009         init_gc_alloc_regions(evacuation_info);
4010 
4011         // Actually do the work...
4012         evacuate_collection_set(evacuation_info);
4013 
4014         // We do this to mainly verify the per-thread SATB buffers
4015         // (which have been filtered by now) since we didn't verify
4016         // them earlier. No point in re-checking the stacks / enqueued
4017         // buffers given that the CSet has not changed since last time
4018         // we checked.
4019         _cm->verify_no_cset_oops(false /* verify_stacks */,
4020                                  false /* verify_enqueued_buffers */,
4021                                  true  /* verify_thread_buffers */,
4022                                  true  /* verify_fingers */);
4023 
4024         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4025         g1_policy()->clear_collection_set();
4026 
4027         cleanup_surviving_young_words();
4028 
4029         // Start a new incremental collection set for the next pause.
4030         g1_policy()->start_incremental_cset_building();
4031 
4032         // Clear the _cset_fast_test bitmap in anticipation of adding
4033         // regions to the incremental collection set for the next
4034         // evacuation pause.
4035         clear_cset_fast_test();
4036 
4037         _young_list->reset_sampled_info();
4038 
4039         // Don't check the whole heap at this point as the
4040         // GC alloc regions from this pause have been tagged
4041         // as survivors and moved on to the survivor list.
4042         // Survivor regions will fail the !is_young() check.
4043         assert(check_young_list_empty(false /* check_heap */),
4044           "young list should be empty");
4045 
4046 #if YOUNG_LIST_VERBOSE
4047         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4048         _young_list->print();
4049 #endif // YOUNG_LIST_VERBOSE
4050 
4051         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4052                                              _young_list->first_survivor_region(),
4053                                              _young_list->last_survivor_region());
4054 
4055         _young_list->reset_auxilary_lists();
4056 
4057         if (evacuation_failed()) {
4058           _summary_bytes_used = recalculate_used();
4059           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4060           for (uint i = 0; i < n_queues; i++) {
4061             if (_evacuation_failed_info_array[i].has_failed()) {
4062               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4063             }
4064           }
4065         } else {
4066           // The "used" of the the collection set have already been subtracted
4067           // when they were freed.  Add in the bytes evacuated.
4068           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4069         }
4070 
4071         if (g1_policy()->during_initial_mark_pause()) {
4072           // We have to do this before we notify the CM threads that
4073           // they can start working to make sure that all the
4074           // appropriate initialization is done on the CM object.
4075           concurrent_mark()->checkpointRootsInitialPost();
4076           set_marking_started();
4077           // Note that we don't actually trigger the CM thread at
4078           // this point. We do that later when we're sure that
4079           // the current thread has completed its logging output.
4080         }
4081 
4082         allocate_dummy_regions();
4083 
4084 #if YOUNG_LIST_VERBOSE
4085         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4086         _young_list->print();
4087         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4088 #endif // YOUNG_LIST_VERBOSE
4089 
4090         init_mutator_alloc_region();
4091 
4092         {
4093           size_t expand_bytes = g1_policy()->expansion_amount();
4094           if (expand_bytes > 0) {
4095             size_t bytes_before = capacity();
4096             // No need for an ergo verbose message here,
4097             // expansion_amount() does this when it returns a value > 0.
4098             if (!expand(expand_bytes)) {
4099               // We failed to expand the heap so let's verify that
4100               // committed/uncommitted amount match the backing store
4101               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4102               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4103             }
4104           }
4105         }
4106 
4107         // We redo the verification but now wrt to the new CSet which
4108         // has just got initialized after the previous CSet was freed.
4109         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4110                                  true  /* verify_enqueued_buffers */,
4111                                  true  /* verify_thread_buffers */,
4112                                  true  /* verify_fingers */);
4113         _cm->note_end_of_gc();
4114 
4115         // This timing is only used by the ergonomics to handle our pause target.
4116         // It is unclear why this should not include the full pause. We will
4117         // investigate this in CR 7178365.
4118         double sample_end_time_sec = os::elapsedTime();
4119         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4120         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4121 
4122         MemoryService::track_memory_usage();
4123 
4124         // In prepare_for_verify() below we'll need to scan the deferred
4125         // update buffers to bring the RSets up-to-date if
4126         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4127         // the update buffers we'll probably need to scan cards on the
4128         // regions we just allocated to (i.e., the GC alloc
4129         // regions). However, during the last GC we called
4130         // set_saved_mark() on all the GC alloc regions, so card
4131         // scanning might skip the [saved_mark_word()...top()] area of
4132         // those regions (i.e., the area we allocated objects into
4133         // during the last GC). But it shouldn't. Given that
4134         // saved_mark_word() is conditional on whether the GC time stamp
4135         // on the region is current or not, by incrementing the GC time
4136         // stamp here we invalidate all the GC time stamps on all the
4137         // regions and saved_mark_word() will simply return top() for
4138         // all the regions. This is a nicer way of ensuring this rather
4139         // than iterating over the regions and fixing them. In fact, the
4140         // GC time stamp increment here also ensures that
4141         // saved_mark_word() will return top() between pauses, i.e.,
4142         // during concurrent refinement. So we don't need the
4143         // is_gc_active() check to decided which top to use when
4144         // scanning cards (see CR 7039627).
4145         increment_gc_time_stamp();
4146 
4147         verify_after_gc();
4148 
4149         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4150         ref_processor_stw()->verify_no_references_recorded();
4151 
4152         // CM reference discovery will be re-enabled if necessary.
4153       }
4154 
4155       // We should do this after we potentially expand the heap so
4156       // that all the COMMIT events are generated before the end GC
4157       // event, and after we retire the GC alloc regions so that all
4158       // RETIRE events are generated before the end GC event.
4159       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4160 
4161       if (mark_in_progress()) {
4162         concurrent_mark()->update_g1_committed();
4163       }
4164 
4165 #ifdef TRACESPINNING
4166       ParallelTaskTerminator::print_termination_counts();
4167 #endif
4168 
4169       gc_epilogue(false);
4170     }
4171 
4172     // Print the remainder of the GC log output.
4173     log_gc_footer(os::elapsedTime() - pause_start_sec);
4174 
4175     // It is not yet to safe to tell the concurrent mark to
4176     // start as we have some optional output below. We don't want the
4177     // output from the concurrent mark thread interfering with this
4178     // logging output either.
4179 
4180     _hrs.verify_optional();
4181     verify_region_sets_optional();
4182 
4183     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4184     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4185 
4186     print_heap_after_gc();
4187     trace_heap_after_gc(_gc_tracer_stw);
4188 
4189     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4190     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4191     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4192     // before any GC notifications are raised.
4193     g1mm()->update_sizes();
4194 
4195     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4196     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4197     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4198     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4199   }
4200 
4201   if (G1SummarizeRSetStats &&
4202       (G1SummarizeRSetStatsPeriod > 0) &&
4203       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4204     g1_rem_set()->print_summary_info();
4205   }
4206   // It should now be safe to tell the concurrent mark thread to start
4207   // without its logging output interfering with the logging output
4208   // that came from the pause.
4209 
4210   if (should_start_conc_mark) {
4211     // CAUTION: after the doConcurrentMark() call below,
4212     // the concurrent marking thread(s) could be running
4213     // concurrently with us. Make sure that anything after
4214     // this point does not assume that we are the only GC thread
4215     // running. Note: of course, the actual marking work will
4216     // not start until the safepoint itself is released in
4217     // ConcurrentGCThread::safepoint_desynchronize().
4218     doConcurrentMark();
4219   }
4220 
4221   return true;
4222 }
4223 
4224 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4225 {
4226   size_t gclab_word_size;
4227   switch (purpose) {
4228     case GCAllocForSurvived:
4229       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4230       break;
4231     case GCAllocForTenured:
4232       gclab_word_size = _old_plab_stats.desired_plab_sz();
4233       break;
4234     default:
4235       assert(false, "unknown GCAllocPurpose");
4236       gclab_word_size = _old_plab_stats.desired_plab_sz();
4237       break;
4238   }
4239 
4240   // Prevent humongous PLAB sizes for two reasons:
4241   // * PLABs are allocated using a similar paths as oops, but should
4242   //   never be in a humongous region
4243   // * Allowing humongous PLABs needlessly churns the region free lists
4244   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4245 }
4246 
4247 void G1CollectedHeap::init_mutator_alloc_region() {
4248   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4249   _mutator_alloc_region.init();
4250 }
4251 
4252 void G1CollectedHeap::release_mutator_alloc_region() {
4253   _mutator_alloc_region.release();
4254   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4255 }
4256 
4257 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4258   assert_at_safepoint(true /* should_be_vm_thread */);
4259 
4260   _survivor_gc_alloc_region.init();
4261   _old_gc_alloc_region.init();
4262   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4263   _retained_old_gc_alloc_region = NULL;
4264 
4265   // We will discard the current GC alloc region if:
4266   // a) it's in the collection set (it can happen!),
4267   // b) it's already full (no point in using it),
4268   // c) it's empty (this means that it was emptied during
4269   // a cleanup and it should be on the free list now), or
4270   // d) it's humongous (this means that it was emptied
4271   // during a cleanup and was added to the free list, but
4272   // has been subsequently used to allocate a humongous
4273   // object that may be less than the region size).
4274   if (retained_region != NULL &&
4275       !retained_region->in_collection_set() &&
4276       !(retained_region->top() == retained_region->end()) &&
4277       !retained_region->is_empty() &&
4278       !retained_region->isHumongous()) {
4279     retained_region->set_saved_mark();
4280     // The retained region was added to the old region set when it was
4281     // retired. We have to remove it now, since we don't allow regions
4282     // we allocate to in the region sets. We'll re-add it later, when
4283     // it's retired again.
4284     _old_set.remove(retained_region);
4285     bool during_im = g1_policy()->during_initial_mark_pause();
4286     retained_region->note_start_of_copying(during_im);
4287     _old_gc_alloc_region.set(retained_region);
4288     _hr_printer.reuse(retained_region);
4289     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4290   }
4291 }
4292 
4293 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4294   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4295                                          _old_gc_alloc_region.count());
4296   _survivor_gc_alloc_region.release();
4297   // If we have an old GC alloc region to release, we'll save it in
4298   // _retained_old_gc_alloc_region. If we don't
4299   // _retained_old_gc_alloc_region will become NULL. This is what we
4300   // want either way so no reason to check explicitly for either
4301   // condition.
4302   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4303 
4304   if (ResizePLAB) {
4305     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4306     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4307   }
4308 }
4309 
4310 void G1CollectedHeap::abandon_gc_alloc_regions() {
4311   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4312   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4313   _retained_old_gc_alloc_region = NULL;
4314 }
4315 
4316 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4317   _drain_in_progress = false;
4318   set_evac_failure_closure(cl);
4319   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4320 }
4321 
4322 void G1CollectedHeap::finalize_for_evac_failure() {
4323   assert(_evac_failure_scan_stack != NULL &&
4324          _evac_failure_scan_stack->length() == 0,
4325          "Postcondition");
4326   assert(!_drain_in_progress, "Postcondition");
4327   delete _evac_failure_scan_stack;
4328   _evac_failure_scan_stack = NULL;
4329 }
4330 
4331 void G1CollectedHeap::remove_self_forwarding_pointers() {
4332   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4333 
4334   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4335 
4336   if (G1CollectedHeap::use_parallel_gc_threads()) {
4337     set_par_threads();
4338     workers()->run_task(&rsfp_task);
4339     set_par_threads(0);
4340   } else {
4341     rsfp_task.work(0);
4342   }
4343 
4344   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4345 
4346   // Reset the claim values in the regions in the collection set.
4347   reset_cset_heap_region_claim_values();
4348 
4349   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4350 
4351   // Now restore saved marks, if any.
4352   assert(_objs_with_preserved_marks.size() ==
4353             _preserved_marks_of_objs.size(), "Both or none.");
4354   while (!_objs_with_preserved_marks.is_empty()) {
4355     oop obj = _objs_with_preserved_marks.pop();
4356     markOop m = _preserved_marks_of_objs.pop();
4357     obj->set_mark(m);
4358   }
4359   _objs_with_preserved_marks.clear(true);
4360   _preserved_marks_of_objs.clear(true);
4361 }
4362 
4363 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4364   _evac_failure_scan_stack->push(obj);
4365 }
4366 
4367 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4368   assert(_evac_failure_scan_stack != NULL, "precondition");
4369 
4370   while (_evac_failure_scan_stack->length() > 0) {
4371      oop obj = _evac_failure_scan_stack->pop();
4372      _evac_failure_closure->set_region(heap_region_containing(obj));
4373      obj->oop_iterate_backwards(_evac_failure_closure);
4374   }
4375 }
4376 
4377 oop
4378 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4379                                                oop old) {
4380   assert(obj_in_cs(old),
4381          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4382                  (HeapWord*) old));
4383   markOop m = old->mark();
4384   oop forward_ptr = old->forward_to_atomic(old);
4385   if (forward_ptr == NULL) {
4386     // Forward-to-self succeeded.
4387     assert(_par_scan_state != NULL, "par scan state");
4388     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4389     uint queue_num = _par_scan_state->queue_num();
4390 
4391     _evacuation_failed = true;
4392     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4393     if (_evac_failure_closure != cl) {
4394       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4395       assert(!_drain_in_progress,
4396              "Should only be true while someone holds the lock.");
4397       // Set the global evac-failure closure to the current thread's.
4398       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4399       set_evac_failure_closure(cl);
4400       // Now do the common part.
4401       handle_evacuation_failure_common(old, m);
4402       // Reset to NULL.
4403       set_evac_failure_closure(NULL);
4404     } else {
4405       // The lock is already held, and this is recursive.
4406       assert(_drain_in_progress, "This should only be the recursive case.");
4407       handle_evacuation_failure_common(old, m);
4408     }
4409     return old;
4410   } else {
4411     // Forward-to-self failed. Either someone else managed to allocate
4412     // space for this object (old != forward_ptr) or they beat us in
4413     // self-forwarding it (old == forward_ptr).
4414     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4415            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4416                    "should not be in the CSet",
4417                    (HeapWord*) old, (HeapWord*) forward_ptr));
4418     return forward_ptr;
4419   }
4420 }
4421 
4422 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4423   preserve_mark_if_necessary(old, m);
4424 
4425   HeapRegion* r = heap_region_containing(old);
4426   if (!r->evacuation_failed()) {
4427     r->set_evacuation_failed(true);
4428     _hr_printer.evac_failure(r);
4429   }
4430 
4431   push_on_evac_failure_scan_stack(old);
4432 
4433   if (!_drain_in_progress) {
4434     // prevent recursion in copy_to_survivor_space()
4435     _drain_in_progress = true;
4436     drain_evac_failure_scan_stack();
4437     _drain_in_progress = false;
4438   }
4439 }
4440 
4441 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4442   assert(evacuation_failed(), "Oversaving!");
4443   // We want to call the "for_promotion_failure" version only in the
4444   // case of a promotion failure.
4445   if (m->must_be_preserved_for_promotion_failure(obj)) {
4446     _objs_with_preserved_marks.push(obj);
4447     _preserved_marks_of_objs.push(m);
4448   }
4449 }
4450 
4451 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4452                                                   size_t word_size) {
4453   if (purpose == GCAllocForSurvived) {
4454     HeapWord* result = survivor_attempt_allocation(word_size);
4455     if (result != NULL) {
4456       return result;
4457     } else {
4458       // Let's try to allocate in the old gen in case we can fit the
4459       // object there.
4460       return old_attempt_allocation(word_size);
4461     }
4462   } else {
4463     assert(purpose ==  GCAllocForTenured, "sanity");
4464     HeapWord* result = old_attempt_allocation(word_size);
4465     if (result != NULL) {
4466       return result;
4467     } else {
4468       // Let's try to allocate in the survivors in case we can fit the
4469       // object there.
4470       return survivor_attempt_allocation(word_size);
4471     }
4472   }
4473 
4474   ShouldNotReachHere();
4475   // Trying to keep some compilers happy.
4476   return NULL;
4477 }
4478 
4479 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4480   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4481 
4482 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4483   : _g1h(g1h),
4484     _refs(g1h->task_queue(queue_num)),
4485     _dcq(&g1h->dirty_card_queue_set()),
4486     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4487     _g1_rem(g1h->g1_rem_set()),
4488     _hash_seed(17), _queue_num(queue_num),
4489     _term_attempts(0),
4490     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4491     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4492     _age_table(false),
4493     _strong_roots_time(0), _term_time(0),
4494     _alloc_buffer_waste(0), _undo_waste(0) {
4495   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4496   // we "sacrifice" entry 0 to keep track of surviving bytes for
4497   // non-young regions (where the age is -1)
4498   // We also add a few elements at the beginning and at the end in
4499   // an attempt to eliminate cache contention
4500   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4501   uint array_length = PADDING_ELEM_NUM +
4502                       real_length +
4503                       PADDING_ELEM_NUM;
4504   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4505   if (_surviving_young_words_base == NULL)
4506     vm_exit_out_of_memory(array_length * sizeof(size_t),
4507                           "Not enough space for young surv histo.");
4508   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4509   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4510 
4511   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4512   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4513 
4514   _start = os::elapsedTime();
4515 }
4516 
4517 void
4518 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4519 {
4520   st->print_raw_cr("GC Termination Stats");
4521   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4522                    " ------waste (KiB)------");
4523   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4524                    "  total   alloc    undo");
4525   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4526                    " ------- ------- -------");
4527 }
4528 
4529 void
4530 G1ParScanThreadState::print_termination_stats(int i,
4531                                               outputStream* const st) const
4532 {
4533   const double elapsed_ms = elapsed_time() * 1000.0;
4534   const double s_roots_ms = strong_roots_time() * 1000.0;
4535   const double term_ms    = term_time() * 1000.0;
4536   st->print_cr("%3d %9.2f %9.2f %6.2f "
4537                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4538                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4539                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4540                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4541                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4542                alloc_buffer_waste() * HeapWordSize / K,
4543                undo_waste() * HeapWordSize / K);
4544 }
4545 
4546 #ifdef ASSERT
4547 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4548   assert(ref != NULL, "invariant");
4549   assert(UseCompressedOops, "sanity");
4550   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4551   oop p = oopDesc::load_decode_heap_oop(ref);
4552   assert(_g1h->is_in_g1_reserved(p),
4553          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4554   return true;
4555 }
4556 
4557 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4558   assert(ref != NULL, "invariant");
4559   if (has_partial_array_mask(ref)) {
4560     // Must be in the collection set--it's already been copied.
4561     oop p = clear_partial_array_mask(ref);
4562     assert(_g1h->obj_in_cs(p),
4563            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4564   } else {
4565     oop p = oopDesc::load_decode_heap_oop(ref);
4566     assert(_g1h->is_in_g1_reserved(p),
4567            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4568   }
4569   return true;
4570 }
4571 
4572 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4573   if (ref.is_narrow()) {
4574     return verify_ref((narrowOop*) ref);
4575   } else {
4576     return verify_ref((oop*) ref);
4577   }
4578 }
4579 #endif // ASSERT
4580 
4581 void G1ParScanThreadState::trim_queue() {
4582   assert(_evac_cl != NULL, "not set");
4583   assert(_evac_failure_cl != NULL, "not set");
4584   assert(_partial_scan_cl != NULL, "not set");
4585 
4586   StarTask ref;
4587   do {
4588     // Drain the overflow stack first, so other threads can steal.
4589     while (refs()->pop_overflow(ref)) {
4590       deal_with_reference(ref);
4591     }
4592 
4593     while (refs()->pop_local(ref)) {
4594       deal_with_reference(ref);
4595     }
4596   } while (!refs()->is_empty());
4597 }
4598 
4599 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4600                                      G1ParScanThreadState* par_scan_state) :
4601   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4602   _par_scan_state(par_scan_state),
4603   _worker_id(par_scan_state->queue_num()),
4604   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4605   _mark_in_progress(_g1->mark_in_progress()) { }
4606 
4607 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4608 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4609 #ifdef ASSERT
4610   HeapRegion* hr = _g1->heap_region_containing(obj);
4611   assert(hr != NULL, "sanity");
4612   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4613 #endif // ASSERT
4614 
4615   // We know that the object is not moving so it's safe to read its size.
4616   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4617 }
4618 
4619 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4620 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4621   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4622 #ifdef ASSERT
4623   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4624   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4625   assert(from_obj != to_obj, "should not be self-forwarded");
4626 
4627   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4628   assert(from_hr != NULL, "sanity");
4629   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4630 
4631   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4632   assert(to_hr != NULL, "sanity");
4633   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4634 #endif // ASSERT
4635 
4636   // The object might be in the process of being copied by another
4637   // worker so we cannot trust that its to-space image is
4638   // well-formed. So we have to read its size from its from-space
4639   // image which we know should not be changing.
4640   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4641 }
4642 
4643 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4644 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4645   ::copy_to_survivor_space(oop old) {
4646   size_t word_sz = old->size();
4647   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4648   // +1 to make the -1 indexes valid...
4649   int       young_index = from_region->young_index_in_cset()+1;
4650   assert( (from_region->is_young() && young_index >  0) ||
4651          (!from_region->is_young() && young_index == 0), "invariant" );
4652   G1CollectorPolicy* g1p = _g1->g1_policy();
4653   markOop m = old->mark();
4654   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4655                                            : m->age();
4656   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4657                                                              word_sz);
4658   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4659 #ifndef PRODUCT
4660   // Should this evacuation fail?
4661   if (_g1->evacuation_should_fail()) {
4662     if (obj_ptr != NULL) {
4663       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4664       obj_ptr = NULL;
4665     }
4666   }
4667 #endif // !PRODUCT
4668 
4669   if (obj_ptr == NULL) {
4670     // This will either forward-to-self, or detect that someone else has
4671     // installed a forwarding pointer.
4672     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4673   }
4674 
4675   oop obj = oop(obj_ptr);
4676 
4677   // We're going to allocate linearly, so might as well prefetch ahead.
4678   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4679 
4680   oop forward_ptr = old->forward_to_atomic(obj);
4681   if (forward_ptr == NULL) {
4682     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4683     if (g1p->track_object_age(alloc_purpose)) {
4684       // We could simply do obj->incr_age(). However, this causes a
4685       // performance issue. obj->incr_age() will first check whether
4686       // the object has a displaced mark by checking its mark word;
4687       // getting the mark word from the new location of the object
4688       // stalls. So, given that we already have the mark word and we
4689       // are about to install it anyway, it's better to increase the
4690       // age on the mark word, when the object does not have a
4691       // displaced mark word. We're not expecting many objects to have
4692       // a displaced marked word, so that case is not optimized
4693       // further (it could be...) and we simply call obj->incr_age().
4694 
4695       if (m->has_displaced_mark_helper()) {
4696         // in this case, we have to install the mark word first,
4697         // otherwise obj looks to be forwarded (the old mark word,
4698         // which contains the forward pointer, was copied)
4699         obj->set_mark(m);
4700         obj->incr_age();
4701       } else {
4702         m = m->incr_age();
4703         obj->set_mark(m);
4704       }
4705       _par_scan_state->age_table()->add(obj, word_sz);
4706     } else {
4707       obj->set_mark(m);
4708     }
4709 
4710     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4711     surv_young_words[young_index] += word_sz;
4712 
4713     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4714       // We keep track of the next start index in the length field of
4715       // the to-space object. The actual length can be found in the
4716       // length field of the from-space object.
4717       arrayOop(obj)->set_length(0);
4718       oop* old_p = set_partial_array_mask(old);
4719       _par_scan_state->push_on_queue(old_p);
4720     } else {
4721       // No point in using the slower heap_region_containing() method,
4722       // given that we know obj is in the heap.
4723       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4724       obj->oop_iterate_backwards(&_scanner);
4725     }
4726   } else {
4727     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4728     obj = forward_ptr;
4729   }
4730   return obj;
4731 }
4732 
4733 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4734 template <class T>
4735 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4736 ::do_oop_work(T* p) {
4737   oop obj = oopDesc::load_decode_heap_oop(p);
4738   assert(barrier != G1BarrierRS || obj != NULL,
4739          "Precondition: G1BarrierRS implies obj is non-NULL");
4740 
4741   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4742 
4743   // here the null check is implicit in the cset_fast_test() test
4744   if (_g1->in_cset_fast_test(obj)) {
4745     oop forwardee;
4746     if (obj->is_forwarded()) {
4747       forwardee = obj->forwardee();
4748     } else {
4749       forwardee = copy_to_survivor_space(obj);
4750     }
4751     assert(forwardee != NULL, "forwardee should not be NULL");
4752     oopDesc::encode_store_heap_oop(p, forwardee);
4753     if (do_mark_object && forwardee != obj) {
4754       // If the object is self-forwarded we don't need to explicitly
4755       // mark it, the evacuation failure protocol will do so.
4756       mark_forwarded_object(obj, forwardee);
4757     }
4758 
4759     // When scanning the RS, we only care about objs in CS.
4760     if (barrier == G1BarrierRS) {
4761       _par_scan_state->update_rs(_from, p, _worker_id);
4762     }
4763   } else {
4764     // The object is not in collection set. If we're a root scanning
4765     // closure during an initial mark pause (i.e. do_mark_object will
4766     // be true) then attempt to mark the object.
4767     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4768       mark_object(obj);
4769     }
4770   }
4771 
4772   if (barrier == G1BarrierEvac && obj != NULL) {
4773     _par_scan_state->update_rs(_from, p, _worker_id);
4774   }
4775 
4776   if (do_gen_barrier && obj != NULL) {
4777     par_do_barrier(p);
4778   }
4779 }
4780 
4781 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4782 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4783 
4784 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4785   assert(has_partial_array_mask(p), "invariant");
4786   oop from_obj = clear_partial_array_mask(p);
4787 
4788   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4789   assert(from_obj->is_objArray(), "must be obj array");
4790   objArrayOop from_obj_array = objArrayOop(from_obj);
4791   // The from-space object contains the real length.
4792   int length                 = from_obj_array->length();
4793 
4794   assert(from_obj->is_forwarded(), "must be forwarded");
4795   oop to_obj                 = from_obj->forwardee();
4796   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4797   objArrayOop to_obj_array   = objArrayOop(to_obj);
4798   // We keep track of the next start index in the length field of the
4799   // to-space object.
4800   int next_index             = to_obj_array->length();
4801   assert(0 <= next_index && next_index < length,
4802          err_msg("invariant, next index: %d, length: %d", next_index, length));
4803 
4804   int start                  = next_index;
4805   int end                    = length;
4806   int remainder              = end - start;
4807   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4808   if (remainder > 2 * ParGCArrayScanChunk) {
4809     end = start + ParGCArrayScanChunk;
4810     to_obj_array->set_length(end);
4811     // Push the remainder before we process the range in case another
4812     // worker has run out of things to do and can steal it.
4813     oop* from_obj_p = set_partial_array_mask(from_obj);
4814     _par_scan_state->push_on_queue(from_obj_p);
4815   } else {
4816     assert(length == end, "sanity");
4817     // We'll process the final range for this object. Restore the length
4818     // so that the heap remains parsable in case of evacuation failure.
4819     to_obj_array->set_length(end);
4820   }
4821   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4822   // Process indexes [start,end). It will also process the header
4823   // along with the first chunk (i.e., the chunk with start == 0).
4824   // Note that at this point the length field of to_obj_array is not
4825   // correct given that we are using it to keep track of the next
4826   // start index. oop_iterate_range() (thankfully!) ignores the length
4827   // field and only relies on the start / end parameters.  It does
4828   // however return the size of the object which will be incorrect. So
4829   // we have to ignore it even if we wanted to use it.
4830   to_obj_array->oop_iterate_range(&_scanner, start, end);
4831 }
4832 
4833 class G1ParEvacuateFollowersClosure : public VoidClosure {
4834 protected:
4835   G1CollectedHeap*              _g1h;
4836   G1ParScanThreadState*         _par_scan_state;
4837   RefToScanQueueSet*            _queues;
4838   ParallelTaskTerminator*       _terminator;
4839 
4840   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4841   RefToScanQueueSet*      queues()         { return _queues; }
4842   ParallelTaskTerminator* terminator()     { return _terminator; }
4843 
4844 public:
4845   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4846                                 G1ParScanThreadState* par_scan_state,
4847                                 RefToScanQueueSet* queues,
4848                                 ParallelTaskTerminator* terminator)
4849     : _g1h(g1h), _par_scan_state(par_scan_state),
4850       _queues(queues), _terminator(terminator) {}
4851 
4852   void do_void();
4853 
4854 private:
4855   inline bool offer_termination();
4856 };
4857 
4858 bool G1ParEvacuateFollowersClosure::offer_termination() {
4859   G1ParScanThreadState* const pss = par_scan_state();
4860   pss->start_term_time();
4861   const bool res = terminator()->offer_termination();
4862   pss->end_term_time();
4863   return res;
4864 }
4865 
4866 void G1ParEvacuateFollowersClosure::do_void() {
4867   StarTask stolen_task;
4868   G1ParScanThreadState* const pss = par_scan_state();
4869   pss->trim_queue();
4870 
4871   do {
4872     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4873       assert(pss->verify_task(stolen_task), "sanity");
4874       if (stolen_task.is_narrow()) {
4875         pss->deal_with_reference((narrowOop*) stolen_task);
4876       } else {
4877         pss->deal_with_reference((oop*) stolen_task);
4878       }
4879 
4880       // We've just processed a reference and we might have made
4881       // available new entries on the queues. So we have to make sure
4882       // we drain the queues as necessary.
4883       pss->trim_queue();
4884     }
4885   } while (!offer_termination());
4886 
4887   pss->retire_alloc_buffers();
4888 }
4889 
4890 class G1ParTask : public AbstractGangTask {
4891 protected:
4892   G1CollectedHeap*       _g1h;
4893   RefToScanQueueSet      *_queues;
4894   ParallelTaskTerminator _terminator;
4895   uint _n_workers;
4896 
4897   Mutex _stats_lock;
4898   Mutex* stats_lock() { return &_stats_lock; }
4899 
4900   size_t getNCards() {
4901     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4902       / G1BlockOffsetSharedArray::N_bytes;
4903   }
4904 
4905 public:
4906   G1ParTask(G1CollectedHeap* g1h,
4907             RefToScanQueueSet *task_queues)
4908     : AbstractGangTask("G1 collection"),
4909       _g1h(g1h),
4910       _queues(task_queues),
4911       _terminator(0, _queues),
4912       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4913   {}
4914 
4915   RefToScanQueueSet* queues() { return _queues; }
4916 
4917   RefToScanQueue *work_queue(int i) {
4918     return queues()->queue(i);
4919   }
4920 
4921   ParallelTaskTerminator* terminator() { return &_terminator; }
4922 
4923   virtual void set_for_termination(int active_workers) {
4924     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4925     // in the young space (_par_seq_tasks) in the G1 heap
4926     // for SequentialSubTasksDone.
4927     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4928     // both of which need setting by set_n_termination().
4929     _g1h->SharedHeap::set_n_termination(active_workers);
4930     _g1h->set_n_termination(active_workers);
4931     terminator()->reset_for_reuse(active_workers);
4932     _n_workers = active_workers;
4933   }
4934 
4935   void work(uint worker_id) {
4936     if (worker_id >= _n_workers) return;  // no work needed this round
4937 
4938     double start_time_ms = os::elapsedTime() * 1000.0;
4939     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4940 
4941     {
4942       ResourceMark rm;
4943       HandleMark   hm;
4944 
4945       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4946 
4947       G1ParScanThreadState            pss(_g1h, worker_id);
4948       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4949       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4950       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4951 
4952       pss.set_evac_closure(&scan_evac_cl);
4953       pss.set_evac_failure_closure(&evac_failure_cl);
4954       pss.set_partial_scan_closure(&partial_scan_cl);
4955 
4956       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4957       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4958 
4959       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4960       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4961 
4962       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4963       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4964 
4965       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4966         // We also need to mark copied objects.
4967         scan_root_cl = &scan_mark_root_cl;
4968         scan_perm_cl = &scan_mark_perm_cl;
4969       }
4970 
4971       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4972 
4973       pss.start_strong_roots();
4974       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4975                                     SharedHeap::SO_AllClasses,
4976                                     scan_root_cl,
4977                                     &push_heap_rs_cl,
4978                                     scan_perm_cl,
4979                                     worker_id);
4980       pss.end_strong_roots();
4981 
4982       {
4983         double start = os::elapsedTime();
4984         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4985         evac.do_void();
4986         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4987         double term_ms = pss.term_time()*1000.0;
4988         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4989         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4990       }
4991       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4992       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4993 
4994       if (ParallelGCVerbose) {
4995         MutexLocker x(stats_lock());
4996         pss.print_termination_stats(worker_id);
4997       }
4998 
4999       assert(pss.refs()->is_empty(), "should be empty");
5000 
5001       // Close the inner scope so that the ResourceMark and HandleMark
5002       // destructors are executed here and are included as part of the
5003       // "GC Worker Time".
5004     }
5005 
5006     double end_time_ms = os::elapsedTime() * 1000.0;
5007     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5008   }
5009 };
5010 
5011 // *** Common G1 Evacuation Stuff
5012 
5013 // Closures that support the filtering of CodeBlobs scanned during
5014 // external root scanning.
5015 
5016 // Closure applied to reference fields in code blobs (specifically nmethods)
5017 // to determine whether an nmethod contains references that point into
5018 // the collection set. Used as a predicate when walking code roots so
5019 // that only nmethods that point into the collection set are added to the
5020 // 'marked' list.
5021 
5022 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
5023 
5024   class G1PointsIntoCSOopClosure : public OopClosure {
5025     G1CollectedHeap* _g1;
5026     bool _points_into_cs;
5027   public:
5028     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
5029       _g1(g1), _points_into_cs(false) { }
5030 
5031     bool points_into_cs() const { return _points_into_cs; }
5032 
5033     template <class T>
5034     void do_oop_nv(T* p) {
5035       if (!_points_into_cs) {
5036         T heap_oop = oopDesc::load_heap_oop(p);
5037         if (!oopDesc::is_null(heap_oop) &&
5038             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
5039           _points_into_cs = true;
5040         }
5041       }
5042     }
5043 
5044     virtual void do_oop(oop* p)        { do_oop_nv(p); }
5045     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
5046   };
5047 
5048   G1CollectedHeap* _g1;
5049 
5050 public:
5051   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
5052     CodeBlobToOopClosure(cl, true), _g1(g1) { }
5053 
5054   virtual void do_code_blob(CodeBlob* cb) {
5055     nmethod* nm = cb->as_nmethod_or_null();
5056     if (nm != NULL && !(nm->test_oops_do_mark())) {
5057       G1PointsIntoCSOopClosure predicate_cl(_g1);
5058       nm->oops_do(&predicate_cl);
5059 
5060       if (predicate_cl.points_into_cs()) {
5061         // At least one of the reference fields or the oop relocations
5062         // in the nmethod points into the collection set. We have to
5063         // 'mark' this nmethod.
5064         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5065         // or MarkingCodeBlobClosure::do_code_blob() change.
5066         if (!nm->test_set_oops_do_mark()) {
5067           do_newly_marked_nmethod(nm);
5068         }
5069       }
5070     }
5071   }
5072 };
5073 
5074 // This method is run in a GC worker.
5075 
5076 void
5077 G1CollectedHeap::
5078 g1_process_strong_roots(bool collecting_perm_gen,
5079                         ScanningOption so,
5080                         OopClosure* scan_non_heap_roots,
5081                         OopsInHeapRegionClosure* scan_rs,
5082                         OopsInGenClosure* scan_perm,
5083                         int worker_i) {
5084 
5085   // First scan the strong roots, including the perm gen.
5086   double ext_roots_start = os::elapsedTime();
5087   double closure_app_time_sec = 0.0;
5088 
5089   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5090   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
5091   buf_scan_perm.set_generation(perm_gen());
5092 
5093   // Walk the code cache w/o buffering, because StarTask cannot handle
5094   // unaligned oop locations.
5095   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5096 
5097   process_strong_roots(false, // no scoping; this is parallel code
5098                        collecting_perm_gen, so,
5099                        &buf_scan_non_heap_roots,
5100                        &eager_scan_code_roots,
5101                        &buf_scan_perm);
5102 
5103   // Now the CM ref_processor roots.
5104   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5105     // We need to treat the discovered reference lists of the
5106     // concurrent mark ref processor as roots and keep entries
5107     // (which are added by the marking threads) on them live
5108     // until they can be processed at the end of marking.
5109     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5110   }
5111 
5112   // Finish up any enqueued closure apps (attributed as object copy time).
5113   buf_scan_non_heap_roots.done();
5114   buf_scan_perm.done();
5115 
5116   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
5117                                 buf_scan_non_heap_roots.closure_app_seconds();
5118   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5119 
5120   double ext_root_time_ms =
5121     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5122 
5123   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5124 
5125   // During conc marking we have to filter the per-thread SATB buffers
5126   // to make sure we remove any oops into the CSet (which will show up
5127   // as implicitly live).
5128   double satb_filtering_ms = 0.0;
5129   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5130     if (mark_in_progress()) {
5131       double satb_filter_start = os::elapsedTime();
5132 
5133       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5134 
5135       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5136     }
5137   }
5138   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5139 
5140   // Now scan the complement of the collection set.
5141   if (scan_rs != NULL) {
5142     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5143   }
5144 
5145   _process_strong_tasks->all_tasks_completed();
5146 }
5147 
5148 void
5149 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5150                                        OopClosure* non_root_closure) {
5151   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5152   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5153 }
5154 
5155 // Weak Reference Processing support
5156 
5157 // An always "is_alive" closure that is used to preserve referents.
5158 // If the object is non-null then it's alive.  Used in the preservation
5159 // of referent objects that are pointed to by reference objects
5160 // discovered by the CM ref processor.
5161 class G1AlwaysAliveClosure: public BoolObjectClosure {
5162   G1CollectedHeap* _g1;
5163 public:
5164   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5165   void do_object(oop p) { assert(false, "Do not call."); }
5166   bool do_object_b(oop p) {
5167     if (p != NULL) {
5168       return true;
5169     }
5170     return false;
5171   }
5172 };
5173 
5174 bool G1STWIsAliveClosure::do_object_b(oop p) {
5175   // An object is reachable if it is outside the collection set,
5176   // or is inside and copied.
5177   return !_g1->obj_in_cs(p) || p->is_forwarded();
5178 }
5179 
5180 // Non Copying Keep Alive closure
5181 class G1KeepAliveClosure: public OopClosure {
5182   G1CollectedHeap* _g1;
5183 public:
5184   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5185   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5186   void do_oop(      oop* p) {
5187     oop obj = *p;
5188 
5189     if (_g1->obj_in_cs(obj)) {
5190       assert( obj->is_forwarded(), "invariant" );
5191       *p = obj->forwardee();
5192     }
5193   }
5194 };
5195 
5196 // Copying Keep Alive closure - can be called from both
5197 // serial and parallel code as long as different worker
5198 // threads utilize different G1ParScanThreadState instances
5199 // and different queues.
5200 
5201 class G1CopyingKeepAliveClosure: public OopClosure {
5202   G1CollectedHeap*         _g1h;
5203   OopClosure*              _copy_non_heap_obj_cl;
5204   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5205   G1ParScanThreadState*    _par_scan_state;
5206 
5207 public:
5208   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5209                             OopClosure* non_heap_obj_cl,
5210                             OopsInHeapRegionClosure* perm_obj_cl,
5211                             G1ParScanThreadState* pss):
5212     _g1h(g1h),
5213     _copy_non_heap_obj_cl(non_heap_obj_cl),
5214     _copy_perm_obj_cl(perm_obj_cl),
5215     _par_scan_state(pss)
5216   {}
5217 
5218   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5219   virtual void do_oop(      oop* p) { do_oop_work(p); }
5220 
5221   template <class T> void do_oop_work(T* p) {
5222     oop obj = oopDesc::load_decode_heap_oop(p);
5223 
5224     if (_g1h->obj_in_cs(obj)) {
5225       // If the referent object has been forwarded (either copied
5226       // to a new location or to itself in the event of an
5227       // evacuation failure) then we need to update the reference
5228       // field and, if both reference and referent are in the G1
5229       // heap, update the RSet for the referent.
5230       //
5231       // If the referent has not been forwarded then we have to keep
5232       // it alive by policy. Therefore we have copy the referent.
5233       //
5234       // If the reference field is in the G1 heap then we can push
5235       // on the PSS queue. When the queue is drained (after each
5236       // phase of reference processing) the object and it's followers
5237       // will be copied, the reference field set to point to the
5238       // new location, and the RSet updated. Otherwise we need to
5239       // use the the non-heap or perm closures directly to copy
5240       // the referent object and update the pointer, while avoiding
5241       // updating the RSet.
5242 
5243       if (_g1h->is_in_g1_reserved(p)) {
5244         _par_scan_state->push_on_queue(p);
5245       } else {
5246         // The reference field is not in the G1 heap.
5247         if (_g1h->perm_gen()->is_in(p)) {
5248           _copy_perm_obj_cl->do_oop(p);
5249         } else {
5250           _copy_non_heap_obj_cl->do_oop(p);
5251         }
5252       }
5253     }
5254   }
5255 };
5256 
5257 // Serial drain queue closure. Called as the 'complete_gc'
5258 // closure for each discovered list in some of the
5259 // reference processing phases.
5260 
5261 class G1STWDrainQueueClosure: public VoidClosure {
5262 protected:
5263   G1CollectedHeap* _g1h;
5264   G1ParScanThreadState* _par_scan_state;
5265 
5266   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5267 
5268 public:
5269   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5270     _g1h(g1h),
5271     _par_scan_state(pss)
5272   { }
5273 
5274   void do_void() {
5275     G1ParScanThreadState* const pss = par_scan_state();
5276     pss->trim_queue();
5277   }
5278 };
5279 
5280 // Parallel Reference Processing closures
5281 
5282 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5283 // processing during G1 evacuation pauses.
5284 
5285 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5286 private:
5287   G1CollectedHeap*   _g1h;
5288   RefToScanQueueSet* _queues;
5289   FlexibleWorkGang*  _workers;
5290   int                _active_workers;
5291 
5292 public:
5293   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5294                         FlexibleWorkGang* workers,
5295                         RefToScanQueueSet *task_queues,
5296                         int n_workers) :
5297     _g1h(g1h),
5298     _queues(task_queues),
5299     _workers(workers),
5300     _active_workers(n_workers)
5301   {
5302     assert(n_workers > 0, "shouldn't call this otherwise");
5303   }
5304 
5305   // Executes the given task using concurrent marking worker threads.
5306   virtual void execute(ProcessTask& task);
5307   virtual void execute(EnqueueTask& task);
5308 };
5309 
5310 // Gang task for possibly parallel reference processing
5311 
5312 class G1STWRefProcTaskProxy: public AbstractGangTask {
5313   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5314   ProcessTask&     _proc_task;
5315   G1CollectedHeap* _g1h;
5316   RefToScanQueueSet *_task_queues;
5317   ParallelTaskTerminator* _terminator;
5318 
5319 public:
5320   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5321                      G1CollectedHeap* g1h,
5322                      RefToScanQueueSet *task_queues,
5323                      ParallelTaskTerminator* terminator) :
5324     AbstractGangTask("Process reference objects in parallel"),
5325     _proc_task(proc_task),
5326     _g1h(g1h),
5327     _task_queues(task_queues),
5328     _terminator(terminator)
5329   {}
5330 
5331   virtual void work(uint worker_id) {
5332     // The reference processing task executed by a single worker.
5333     ResourceMark rm;
5334     HandleMark   hm;
5335 
5336     G1STWIsAliveClosure is_alive(_g1h);
5337 
5338     G1ParScanThreadState pss(_g1h, worker_id);
5339 
5340     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5341     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5342     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5343 
5344     pss.set_evac_closure(&scan_evac_cl);
5345     pss.set_evac_failure_closure(&evac_failure_cl);
5346     pss.set_partial_scan_closure(&partial_scan_cl);
5347 
5348     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5349     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5350 
5351     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5352     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5353 
5354     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5355     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5356 
5357     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5358       // We also need to mark copied objects.
5359       copy_non_heap_cl = &copy_mark_non_heap_cl;
5360       copy_perm_cl = &copy_mark_perm_cl;
5361     }
5362 
5363     // Keep alive closure.
5364     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5365 
5366     // Complete GC closure
5367     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5368 
5369     // Call the reference processing task's work routine.
5370     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5371 
5372     // Note we cannot assert that the refs array is empty here as not all
5373     // of the processing tasks (specifically phase2 - pp2_work) execute
5374     // the complete_gc closure (which ordinarily would drain the queue) so
5375     // the queue may not be empty.
5376   }
5377 };
5378 
5379 // Driver routine for parallel reference processing.
5380 // Creates an instance of the ref processing gang
5381 // task and has the worker threads execute it.
5382 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5383   assert(_workers != NULL, "Need parallel worker threads.");
5384 
5385   ParallelTaskTerminator terminator(_active_workers, _queues);
5386   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5387 
5388   _g1h->set_par_threads(_active_workers);
5389   _workers->run_task(&proc_task_proxy);
5390   _g1h->set_par_threads(0);
5391 }
5392 
5393 // Gang task for parallel reference enqueueing.
5394 
5395 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5396   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5397   EnqueueTask& _enq_task;
5398 
5399 public:
5400   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5401     AbstractGangTask("Enqueue reference objects in parallel"),
5402     _enq_task(enq_task)
5403   { }
5404 
5405   virtual void work(uint worker_id) {
5406     _enq_task.work(worker_id);
5407   }
5408 };
5409 
5410 // Driver routine for parallel reference enqueueing.
5411 // Creates an instance of the ref enqueueing gang
5412 // task and has the worker threads execute it.
5413 
5414 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5415   assert(_workers != NULL, "Need parallel worker threads.");
5416 
5417   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5418 
5419   _g1h->set_par_threads(_active_workers);
5420   _workers->run_task(&enq_task_proxy);
5421   _g1h->set_par_threads(0);
5422 }
5423 
5424 // End of weak reference support closures
5425 
5426 // Abstract task used to preserve (i.e. copy) any referent objects
5427 // that are in the collection set and are pointed to by reference
5428 // objects discovered by the CM ref processor.
5429 
5430 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5431 protected:
5432   G1CollectedHeap* _g1h;
5433   RefToScanQueueSet      *_queues;
5434   ParallelTaskTerminator _terminator;
5435   uint _n_workers;
5436 
5437 public:
5438   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5439     AbstractGangTask("ParPreserveCMReferents"),
5440     _g1h(g1h),
5441     _queues(task_queues),
5442     _terminator(workers, _queues),
5443     _n_workers(workers)
5444   { }
5445 
5446   void work(uint worker_id) {
5447     ResourceMark rm;
5448     HandleMark   hm;
5449 
5450     G1ParScanThreadState            pss(_g1h, worker_id);
5451     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5452     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5453     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5454 
5455     pss.set_evac_closure(&scan_evac_cl);
5456     pss.set_evac_failure_closure(&evac_failure_cl);
5457     pss.set_partial_scan_closure(&partial_scan_cl);
5458 
5459     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5460 
5461 
5462     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5463     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5464 
5465     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5466     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5467 
5468     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5469     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5470 
5471     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5472       // We also need to mark copied objects.
5473       copy_non_heap_cl = &copy_mark_non_heap_cl;
5474       copy_perm_cl = &copy_mark_perm_cl;
5475     }
5476 
5477     // Is alive closure
5478     G1AlwaysAliveClosure always_alive(_g1h);
5479 
5480     // Copying keep alive closure. Applied to referent objects that need
5481     // to be copied.
5482     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5483 
5484     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5485 
5486     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5487     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5488 
5489     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5490     // So this must be true - but assert just in case someone decides to
5491     // change the worker ids.
5492     assert(0 <= worker_id && worker_id < limit, "sanity");
5493     assert(!rp->discovery_is_atomic(), "check this code");
5494 
5495     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5496     for (uint idx = worker_id; idx < limit; idx += stride) {
5497       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5498 
5499       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5500       while (iter.has_next()) {
5501         // Since discovery is not atomic for the CM ref processor, we
5502         // can see some null referent objects.
5503         iter.load_ptrs(DEBUG_ONLY(true));
5504         oop ref = iter.obj();
5505 
5506         // This will filter nulls.
5507         if (iter.is_referent_alive()) {
5508           iter.make_referent_alive();
5509         }
5510         iter.move_to_next();
5511       }
5512     }
5513 
5514     // Drain the queue - which may cause stealing
5515     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5516     drain_queue.do_void();
5517     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5518     assert(pss.refs()->is_empty(), "should be");
5519   }
5520 };
5521 
5522 // Weak Reference processing during an evacuation pause (part 1).
5523 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5524   double ref_proc_start = os::elapsedTime();
5525 
5526   ReferenceProcessor* rp = _ref_processor_stw;
5527   assert(rp->discovery_enabled(), "should have been enabled");
5528 
5529   // Any reference objects, in the collection set, that were 'discovered'
5530   // by the CM ref processor should have already been copied (either by
5531   // applying the external root copy closure to the discovered lists, or
5532   // by following an RSet entry).
5533   //
5534   // But some of the referents, that are in the collection set, that these
5535   // reference objects point to may not have been copied: the STW ref
5536   // processor would have seen that the reference object had already
5537   // been 'discovered' and would have skipped discovering the reference,
5538   // but would not have treated the reference object as a regular oop.
5539   // As a result the copy closure would not have been applied to the
5540   // referent object.
5541   //
5542   // We need to explicitly copy these referent objects - the references
5543   // will be processed at the end of remarking.
5544   //
5545   // We also need to do this copying before we process the reference
5546   // objects discovered by the STW ref processor in case one of these
5547   // referents points to another object which is also referenced by an
5548   // object discovered by the STW ref processor.
5549 
5550   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5551            no_of_gc_workers == workers()->active_workers(),
5552            "Need to reset active GC workers");
5553 
5554   set_par_threads(no_of_gc_workers);
5555   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5556                                                  no_of_gc_workers,
5557                                                  _task_queues);
5558 
5559   if (G1CollectedHeap::use_parallel_gc_threads()) {
5560     workers()->run_task(&keep_cm_referents);
5561   } else {
5562     keep_cm_referents.work(0);
5563   }
5564 
5565   set_par_threads(0);
5566 
5567   // Closure to test whether a referent is alive.
5568   G1STWIsAliveClosure is_alive(this);
5569 
5570   // Even when parallel reference processing is enabled, the processing
5571   // of JNI refs is serial and performed serially by the current thread
5572   // rather than by a worker. The following PSS will be used for processing
5573   // JNI refs.
5574 
5575   // Use only a single queue for this PSS.
5576   G1ParScanThreadState pss(this, 0);
5577 
5578   // We do not embed a reference processor in the copying/scanning
5579   // closures while we're actually processing the discovered
5580   // reference objects.
5581   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5582   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5583   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5584 
5585   pss.set_evac_closure(&scan_evac_cl);
5586   pss.set_evac_failure_closure(&evac_failure_cl);
5587   pss.set_partial_scan_closure(&partial_scan_cl);
5588 
5589   assert(pss.refs()->is_empty(), "pre-condition");
5590 
5591   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5592   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5593 
5594   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5595   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5596 
5597   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5598   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5599 
5600   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5601     // We also need to mark copied objects.
5602     copy_non_heap_cl = &copy_mark_non_heap_cl;
5603     copy_perm_cl = &copy_mark_perm_cl;
5604   }
5605 
5606   // Keep alive closure.
5607   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5608 
5609   // Serial Complete GC closure
5610   G1STWDrainQueueClosure drain_queue(this, &pss);
5611 
5612   // Setup the soft refs policy...
5613   rp->setup_policy(false);
5614 
5615   ReferenceProcessorStats stats;
5616   if (!rp->processing_is_mt()) {
5617     // Serial reference processing...
5618     stats = rp->process_discovered_references(&is_alive,
5619                                               &keep_alive,
5620                                               &drain_queue,
5621                                               NULL,
5622                                               _gc_timer_stw);
5623   } else {
5624     // Parallel reference processing
5625     assert(rp->num_q() == no_of_gc_workers, "sanity");
5626     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5627 
5628     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5629     stats = rp->process_discovered_references(&is_alive,
5630                                               &keep_alive,
5631                                               &drain_queue,
5632                                               &par_task_executor,
5633                                               _gc_timer_stw);
5634   }
5635 
5636   _gc_tracer_stw->report_gc_reference_stats(stats);
5637   // We have completed copying any necessary live referent objects
5638   // (that were not copied during the actual pause) so we can
5639   // retire any active alloc buffers
5640   pss.retire_alloc_buffers();
5641   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5642 
5643   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5644   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5645 }
5646 
5647 // Weak Reference processing during an evacuation pause (part 2).
5648 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5649   double ref_enq_start = os::elapsedTime();
5650 
5651   ReferenceProcessor* rp = _ref_processor_stw;
5652   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5653 
5654   // Now enqueue any remaining on the discovered lists on to
5655   // the pending list.
5656   if (!rp->processing_is_mt()) {
5657     // Serial reference processing...
5658     rp->enqueue_discovered_references();
5659   } else {
5660     // Parallel reference enqueueing
5661 
5662     assert(no_of_gc_workers == workers()->active_workers(),
5663            "Need to reset active workers");
5664     assert(rp->num_q() == no_of_gc_workers, "sanity");
5665     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5666 
5667     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5668     rp->enqueue_discovered_references(&par_task_executor);
5669   }
5670 
5671   rp->verify_no_references_recorded();
5672   assert(!rp->discovery_enabled(), "should have been disabled");
5673 
5674   // FIXME
5675   // CM's reference processing also cleans up the string and symbol tables.
5676   // Should we do that here also? We could, but it is a serial operation
5677   // and could significantly increase the pause time.
5678 
5679   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5680   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5681 }
5682 
5683 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5684   _expand_heap_after_alloc_failure = true;
5685   _evacuation_failed = false;
5686 
5687   // Should G1EvacuationFailureALot be in effect for this GC?
5688   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5689 
5690   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5691 
5692   // Disable the hot card cache.
5693   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5694   hot_card_cache->reset_hot_cache_claimed_index();
5695   hot_card_cache->set_use_cache(false);
5696 
5697   uint n_workers;
5698   if (G1CollectedHeap::use_parallel_gc_threads()) {
5699     n_workers =
5700       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5701                                      workers()->active_workers(),
5702                                      Threads::number_of_non_daemon_threads());
5703     assert(UseDynamicNumberOfGCThreads ||
5704            n_workers == workers()->total_workers(),
5705            "If not dynamic should be using all the  workers");
5706     workers()->set_active_workers(n_workers);
5707     set_par_threads(n_workers);
5708   } else {
5709     assert(n_par_threads() == 0,
5710            "Should be the original non-parallel value");
5711     n_workers = 1;
5712   }
5713 
5714   G1ParTask g1_par_task(this, _task_queues);
5715 
5716   init_for_evac_failure(NULL);
5717 
5718   rem_set()->prepare_for_younger_refs_iterate(true);
5719 
5720   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5721   double start_par_time_sec = os::elapsedTime();
5722   double end_par_time_sec;
5723 
5724   {
5725     StrongRootsScope srs(this);
5726 
5727     if (G1CollectedHeap::use_parallel_gc_threads()) {
5728       // The individual threads will set their evac-failure closures.
5729       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5730       // These tasks use ShareHeap::_process_strong_tasks
5731       assert(UseDynamicNumberOfGCThreads ||
5732              workers()->active_workers() == workers()->total_workers(),
5733              "If not dynamic should be using all the  workers");
5734       workers()->run_task(&g1_par_task);
5735     } else {
5736       g1_par_task.set_for_termination(n_workers);
5737       g1_par_task.work(0);
5738     }
5739     end_par_time_sec = os::elapsedTime();
5740 
5741     // Closing the inner scope will execute the destructor
5742     // for the StrongRootsScope object. We record the current
5743     // elapsed time before closing the scope so that time
5744     // taken for the SRS destructor is NOT included in the
5745     // reported parallel time.
5746   }
5747 
5748   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5749   g1_policy()->phase_times()->record_par_time(par_time_ms);
5750 
5751   double code_root_fixup_time_ms =
5752         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5753   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5754 
5755   set_par_threads(0);
5756 
5757   // Process any discovered reference objects - we have
5758   // to do this _before_ we retire the GC alloc regions
5759   // as we may have to copy some 'reachable' referent
5760   // objects (and their reachable sub-graphs) that were
5761   // not copied during the pause.
5762   process_discovered_references(n_workers);
5763 
5764   // Weak root processing.
5765   // Note: when JSR 292 is enabled and code blobs can contain
5766   // non-perm oops then we will need to process the code blobs
5767   // here too.
5768   {
5769     G1STWIsAliveClosure is_alive(this);
5770     G1KeepAliveClosure keep_alive(this);
5771     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5772   }
5773 
5774   release_gc_alloc_regions(n_workers, evacuation_info);
5775   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5776 
5777   // Reset and re-enable the hot card cache.
5778   // Note the counts for the cards in the regions in the
5779   // collection set are reset when the collection set is freed.
5780   hot_card_cache->reset_hot_cache();
5781   hot_card_cache->set_use_cache(true);
5782 
5783   finalize_for_evac_failure();
5784 
5785   if (evacuation_failed()) {
5786     remove_self_forwarding_pointers();
5787 
5788     // Reset the G1EvacuationFailureALot counters and flags
5789     // Note: the values are reset only when an actual
5790     // evacuation failure occurs.
5791     NOT_PRODUCT(reset_evacuation_should_fail();)
5792   }
5793 
5794   // Enqueue any remaining references remaining on the STW
5795   // reference processor's discovered lists. We need to do
5796   // this after the card table is cleaned (and verified) as
5797   // the act of enqueueing entries on to the pending list
5798   // will log these updates (and dirty their associated
5799   // cards). We need these updates logged to update any
5800   // RSets.
5801   enqueue_discovered_references(n_workers);
5802 
5803   if (G1DeferredRSUpdate) {
5804     RedirtyLoggedCardTableEntryFastClosure redirty;
5805     dirty_card_queue_set().set_closure(&redirty);
5806     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5807 
5808     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5809     dcq.merge_bufferlists(&dirty_card_queue_set());
5810     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5811   }
5812   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5813 }
5814 
5815 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5816                                      size_t* pre_used,
5817                                      FreeRegionList* free_list,
5818                                      OldRegionSet* old_proxy_set,
5819                                      HumongousRegionSet* humongous_proxy_set,
5820                                      HRRSCleanupTask* hrrs_cleanup_task,
5821                                      bool par) {
5822   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5823     if (hr->isHumongous()) {
5824       assert(hr->startsHumongous(), "we should only see starts humongous");
5825       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5826     } else {
5827       _old_set.remove_with_proxy(hr, old_proxy_set);
5828       free_region(hr, pre_used, free_list, par);
5829     }
5830   } else {
5831     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5832   }
5833 }
5834 
5835 void G1CollectedHeap::free_region(HeapRegion* hr,
5836                                   size_t* pre_used,
5837                                   FreeRegionList* free_list,
5838                                   bool par) {
5839   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5840   assert(!hr->is_empty(), "the region should not be empty");
5841   assert(free_list != NULL, "pre-condition");
5842 
5843   // Clear the card counts for this region.
5844   // Note: we only need to do this if the region is not young
5845   // (since we don't refine cards in young regions).
5846   if (!hr->is_young()) {
5847     _cg1r->hot_card_cache()->reset_card_counts(hr);
5848   }
5849   *pre_used += hr->used();
5850   hr->hr_clear(par, true /* clear_space */);
5851   free_list->add_as_head(hr);
5852 }
5853 
5854 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5855                                      size_t* pre_used,
5856                                      FreeRegionList* free_list,
5857                                      HumongousRegionSet* humongous_proxy_set,
5858                                      bool par) {
5859   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5860   assert(free_list != NULL, "pre-condition");
5861   assert(humongous_proxy_set != NULL, "pre-condition");
5862 
5863   size_t hr_used = hr->used();
5864   size_t hr_capacity = hr->capacity();
5865   size_t hr_pre_used = 0;
5866   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5867   // We need to read this before we make the region non-humongous,
5868   // otherwise the information will be gone.
5869   uint last_index = hr->last_hc_index();
5870   hr->set_notHumongous();
5871   free_region(hr, &hr_pre_used, free_list, par);
5872 
5873   uint i = hr->hrs_index() + 1;
5874   while (i < last_index) {
5875     HeapRegion* curr_hr = region_at(i);
5876     assert(curr_hr->continuesHumongous(), "invariant");
5877     curr_hr->set_notHumongous();
5878     free_region(curr_hr, &hr_pre_used, free_list, par);
5879     i += 1;
5880   }
5881   assert(hr_pre_used == hr_used,
5882          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5883                  "should be the same", hr_pre_used, hr_used));
5884   *pre_used += hr_pre_used;
5885 }
5886 
5887 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5888                                        FreeRegionList* free_list,
5889                                        OldRegionSet* old_proxy_set,
5890                                        HumongousRegionSet* humongous_proxy_set,
5891                                        bool par) {
5892   if (pre_used > 0) {
5893     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5894     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5895     assert(_summary_bytes_used >= pre_used,
5896            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5897                    "should be >= pre_used: "SIZE_FORMAT,
5898                    _summary_bytes_used, pre_used));
5899     _summary_bytes_used -= pre_used;
5900   }
5901   if (free_list != NULL && !free_list->is_empty()) {
5902     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5903     _free_list.add_as_head(free_list);
5904   }
5905   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5906     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5907     _old_set.update_from_proxy(old_proxy_set);
5908   }
5909   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5910     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5911     _humongous_set.update_from_proxy(humongous_proxy_set);
5912   }
5913 }
5914 
5915 class G1ParCleanupCTTask : public AbstractGangTask {
5916   CardTableModRefBS* _ct_bs;
5917   G1CollectedHeap* _g1h;
5918   HeapRegion* volatile _su_head;
5919 public:
5920   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5921                      G1CollectedHeap* g1h) :
5922     AbstractGangTask("G1 Par Cleanup CT Task"),
5923     _ct_bs(ct_bs), _g1h(g1h) { }
5924 
5925   void work(uint worker_id) {
5926     HeapRegion* r;
5927     while (r = _g1h->pop_dirty_cards_region()) {
5928       clear_cards(r);
5929     }
5930   }
5931 
5932   void clear_cards(HeapRegion* r) {
5933     // Cards of the survivors should have already been dirtied.
5934     if (!r->is_survivor()) {
5935       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5936     }
5937   }
5938 };
5939 
5940 #ifndef PRODUCT
5941 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5942   G1CollectedHeap* _g1h;
5943   CardTableModRefBS* _ct_bs;
5944 public:
5945   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5946     : _g1h(g1h), _ct_bs(ct_bs) { }
5947   virtual bool doHeapRegion(HeapRegion* r) {
5948     if (r->is_survivor()) {
5949       _g1h->verify_dirty_region(r);
5950     } else {
5951       _g1h->verify_not_dirty_region(r);
5952     }
5953     return false;
5954   }
5955 };
5956 
5957 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5958   // All of the region should be clean.
5959   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5960   MemRegion mr(hr->bottom(), hr->end());
5961   ct_bs->verify_not_dirty_region(mr);
5962 }
5963 
5964 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5965   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5966   // dirty allocated blocks as they allocate them. The thread that
5967   // retires each region and replaces it with a new one will do a
5968   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5969   // not dirty that area (one less thing to have to do while holding
5970   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5971   // is dirty.
5972   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5973   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5974   ct_bs->verify_dirty_region(mr);
5975 }
5976 
5977 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5978   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5979   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5980     verify_dirty_region(hr);
5981   }
5982 }
5983 
5984 void G1CollectedHeap::verify_dirty_young_regions() {
5985   verify_dirty_young_list(_young_list->first_region());
5986 }
5987 #endif
5988 
5989 void G1CollectedHeap::cleanUpCardTable() {
5990   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5991   double start = os::elapsedTime();
5992 
5993   {
5994     // Iterate over the dirty cards region list.
5995     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5996 
5997     if (G1CollectedHeap::use_parallel_gc_threads()) {
5998       set_par_threads();
5999       workers()->run_task(&cleanup_task);
6000       set_par_threads(0);
6001     } else {
6002       while (_dirty_cards_region_list) {
6003         HeapRegion* r = _dirty_cards_region_list;
6004         cleanup_task.clear_cards(r);
6005         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6006         if (_dirty_cards_region_list == r) {
6007           // The last region.
6008           _dirty_cards_region_list = NULL;
6009         }
6010         r->set_next_dirty_cards_region(NULL);
6011       }
6012     }
6013 #ifndef PRODUCT
6014     if (G1VerifyCTCleanup || VerifyAfterGC) {
6015       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6016       heap_region_iterate(&cleanup_verifier);
6017     }
6018 #endif
6019   }
6020 
6021   double elapsed = os::elapsedTime() - start;
6022   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6023 }
6024 
6025 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6026   size_t pre_used = 0;
6027   FreeRegionList local_free_list("Local List for CSet Freeing");
6028 
6029   double young_time_ms     = 0.0;
6030   double non_young_time_ms = 0.0;
6031 
6032   // Since the collection set is a superset of the the young list,
6033   // all we need to do to clear the young list is clear its
6034   // head and length, and unlink any young regions in the code below
6035   _young_list->clear();
6036 
6037   G1CollectorPolicy* policy = g1_policy();
6038 
6039   double start_sec = os::elapsedTime();
6040   bool non_young = true;
6041 
6042   HeapRegion* cur = cs_head;
6043   int age_bound = -1;
6044   size_t rs_lengths = 0;
6045 
6046   while (cur != NULL) {
6047     assert(!is_on_master_free_list(cur), "sanity");
6048     if (non_young) {
6049       if (cur->is_young()) {
6050         double end_sec = os::elapsedTime();
6051         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6052         non_young_time_ms += elapsed_ms;
6053 
6054         start_sec = os::elapsedTime();
6055         non_young = false;
6056       }
6057     } else {
6058       if (!cur->is_young()) {
6059         double end_sec = os::elapsedTime();
6060         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6061         young_time_ms += elapsed_ms;
6062 
6063         start_sec = os::elapsedTime();
6064         non_young = true;
6065       }
6066     }
6067 
6068     rs_lengths += cur->rem_set()->occupied();
6069 
6070     HeapRegion* next = cur->next_in_collection_set();
6071     assert(cur->in_collection_set(), "bad CS");
6072     cur->set_next_in_collection_set(NULL);
6073     cur->set_in_collection_set(false);
6074 
6075     if (cur->is_young()) {
6076       int index = cur->young_index_in_cset();
6077       assert(index != -1, "invariant");
6078       assert((uint) index < policy->young_cset_region_length(), "invariant");
6079       size_t words_survived = _surviving_young_words[index];
6080       cur->record_surv_words_in_group(words_survived);
6081 
6082       // At this point the we have 'popped' cur from the collection set
6083       // (linked via next_in_collection_set()) but it is still in the
6084       // young list (linked via next_young_region()). Clear the
6085       // _next_young_region field.
6086       cur->set_next_young_region(NULL);
6087     } else {
6088       int index = cur->young_index_in_cset();
6089       assert(index == -1, "invariant");
6090     }
6091 
6092     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6093             (!cur->is_young() && cur->young_index_in_cset() == -1),
6094             "invariant" );
6095 
6096     if (!cur->evacuation_failed()) {
6097       MemRegion used_mr = cur->used_region();
6098 
6099       // And the region is empty.
6100       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6101       free_region(cur, &pre_used, &local_free_list, false /* par */);
6102     } else {
6103       cur->uninstall_surv_rate_group();
6104       if (cur->is_young()) {
6105         cur->set_young_index_in_cset(-1);
6106       }
6107       cur->set_not_young();
6108       cur->set_evacuation_failed(false);
6109       // The region is now considered to be old.
6110       _old_set.add(cur);
6111       evacuation_info.increment_collectionset_used_after(cur->used());
6112     }
6113     cur = next;
6114   }
6115 
6116   evacuation_info.set_regions_freed(local_free_list.length());
6117   policy->record_max_rs_lengths(rs_lengths);
6118   policy->cset_regions_freed();
6119 
6120   double end_sec = os::elapsedTime();
6121   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6122 
6123   if (non_young) {
6124     non_young_time_ms += elapsed_ms;
6125   } else {
6126     young_time_ms += elapsed_ms;
6127   }
6128 
6129   update_sets_after_freeing_regions(pre_used, &local_free_list,
6130                                     NULL /* old_proxy_set */,
6131                                     NULL /* humongous_proxy_set */,
6132                                     false /* par */);
6133   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6134   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6135 }
6136 
6137 // This routine is similar to the above but does not record
6138 // any policy statistics or update free lists; we are abandoning
6139 // the current incremental collection set in preparation of a
6140 // full collection. After the full GC we will start to build up
6141 // the incremental collection set again.
6142 // This is only called when we're doing a full collection
6143 // and is immediately followed by the tearing down of the young list.
6144 
6145 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6146   HeapRegion* cur = cs_head;
6147 
6148   while (cur != NULL) {
6149     HeapRegion* next = cur->next_in_collection_set();
6150     assert(cur->in_collection_set(), "bad CS");
6151     cur->set_next_in_collection_set(NULL);
6152     cur->set_in_collection_set(false);
6153     cur->set_young_index_in_cset(-1);
6154     cur = next;
6155   }
6156 }
6157 
6158 void G1CollectedHeap::set_free_regions_coming() {
6159   if (G1ConcRegionFreeingVerbose) {
6160     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6161                            "setting free regions coming");
6162   }
6163 
6164   assert(!free_regions_coming(), "pre-condition");
6165   _free_regions_coming = true;
6166 }
6167 
6168 void G1CollectedHeap::reset_free_regions_coming() {
6169   assert(free_regions_coming(), "pre-condition");
6170 
6171   {
6172     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6173     _free_regions_coming = false;
6174     SecondaryFreeList_lock->notify_all();
6175   }
6176 
6177   if (G1ConcRegionFreeingVerbose) {
6178     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6179                            "reset free regions coming");
6180   }
6181 }
6182 
6183 void G1CollectedHeap::wait_while_free_regions_coming() {
6184   // Most of the time we won't have to wait, so let's do a quick test
6185   // first before we take the lock.
6186   if (!free_regions_coming()) {
6187     return;
6188   }
6189 
6190   if (G1ConcRegionFreeingVerbose) {
6191     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6192                            "waiting for free regions");
6193   }
6194 
6195   {
6196     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6197     while (free_regions_coming()) {
6198       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6199     }
6200   }
6201 
6202   if (G1ConcRegionFreeingVerbose) {
6203     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6204                            "done waiting for free regions");
6205   }
6206 }
6207 
6208 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6209   assert(heap_lock_held_for_gc(),
6210               "the heap lock should already be held by or for this thread");
6211   _young_list->push_region(hr);
6212 }
6213 
6214 class NoYoungRegionsClosure: public HeapRegionClosure {
6215 private:
6216   bool _success;
6217 public:
6218   NoYoungRegionsClosure() : _success(true) { }
6219   bool doHeapRegion(HeapRegion* r) {
6220     if (r->is_young()) {
6221       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6222                              r->bottom(), r->end());
6223       _success = false;
6224     }
6225     return false;
6226   }
6227   bool success() { return _success; }
6228 };
6229 
6230 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6231   bool ret = _young_list->check_list_empty(check_sample);
6232 
6233   if (check_heap) {
6234     NoYoungRegionsClosure closure;
6235     heap_region_iterate(&closure);
6236     ret = ret && closure.success();
6237   }
6238 
6239   return ret;
6240 }
6241 
6242 class TearDownRegionSetsClosure : public HeapRegionClosure {
6243 private:
6244   OldRegionSet *_old_set;
6245 
6246 public:
6247   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6248 
6249   bool doHeapRegion(HeapRegion* r) {
6250     if (r->is_empty()) {
6251       // We ignore empty regions, we'll empty the free list afterwards
6252     } else if (r->is_young()) {
6253       // We ignore young regions, we'll empty the young list afterwards
6254     } else if (r->isHumongous()) {
6255       // We ignore humongous regions, we're not tearing down the
6256       // humongous region set
6257     } else {
6258       // The rest should be old
6259       _old_set->remove(r);
6260     }
6261     return false;
6262   }
6263 
6264   ~TearDownRegionSetsClosure() {
6265     assert(_old_set->is_empty(), "post-condition");
6266   }
6267 };
6268 
6269 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6270   assert_at_safepoint(true /* should_be_vm_thread */);
6271 
6272   if (!free_list_only) {
6273     TearDownRegionSetsClosure cl(&_old_set);
6274     heap_region_iterate(&cl);
6275 
6276     // Need to do this after the heap iteration to be able to
6277     // recognize the young regions and ignore them during the iteration.
6278     _young_list->empty_list();
6279   }
6280   _free_list.remove_all();
6281 }
6282 
6283 class RebuildRegionSetsClosure : public HeapRegionClosure {
6284 private:
6285   bool            _free_list_only;
6286   OldRegionSet*   _old_set;
6287   FreeRegionList* _free_list;
6288   size_t          _total_used;
6289 
6290 public:
6291   RebuildRegionSetsClosure(bool free_list_only,
6292                            OldRegionSet* old_set, FreeRegionList* free_list) :
6293     _free_list_only(free_list_only),
6294     _old_set(old_set), _free_list(free_list), _total_used(0) {
6295     assert(_free_list->is_empty(), "pre-condition");
6296     if (!free_list_only) {
6297       assert(_old_set->is_empty(), "pre-condition");
6298     }
6299   }
6300 
6301   bool doHeapRegion(HeapRegion* r) {
6302     if (r->continuesHumongous()) {
6303       return false;
6304     }
6305 
6306     if (r->is_empty()) {
6307       // Add free regions to the free list
6308       _free_list->add_as_tail(r);
6309     } else if (!_free_list_only) {
6310       assert(!r->is_young(), "we should not come across young regions");
6311 
6312       if (r->isHumongous()) {
6313         // We ignore humongous regions, we left the humongous set unchanged
6314       } else {
6315         // The rest should be old, add them to the old set
6316         _old_set->add(r);
6317       }
6318       _total_used += r->used();
6319     }
6320 
6321     return false;
6322   }
6323 
6324   size_t total_used() {
6325     return _total_used;
6326   }
6327 };
6328 
6329 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6330   assert_at_safepoint(true /* should_be_vm_thread */);
6331 
6332   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6333   heap_region_iterate(&cl);
6334 
6335   if (!free_list_only) {
6336     _summary_bytes_used = cl.total_used();
6337   }
6338   assert(_summary_bytes_used == recalculate_used(),
6339          err_msg("inconsistent _summary_bytes_used, "
6340                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6341                  _summary_bytes_used, recalculate_used()));
6342 }
6343 
6344 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6345   _refine_cte_cl->set_concurrent(concurrent);
6346 }
6347 
6348 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6349   HeapRegion* hr = heap_region_containing(p);
6350   if (hr == NULL) {
6351     return is_in_permanent(p);
6352   } else {
6353     return hr->is_in(p);
6354   }
6355 }
6356 
6357 // Methods for the mutator alloc region
6358 
6359 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6360                                                       bool force) {
6361   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6362   assert(!force || g1_policy()->can_expand_young_list(),
6363          "if force is true we should be able to expand the young list");
6364   bool young_list_full = g1_policy()->is_young_list_full();
6365   if (force || !young_list_full) {
6366     HeapRegion* new_alloc_region = new_region(word_size,
6367                                               false /* do_expand */);
6368     if (new_alloc_region != NULL) {
6369       set_region_short_lived_locked(new_alloc_region);
6370       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6371       return new_alloc_region;
6372     }
6373   }
6374   return NULL;
6375 }
6376 
6377 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6378                                                   size_t allocated_bytes) {
6379   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6380   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6381 
6382   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6383   _summary_bytes_used += allocated_bytes;
6384   _hr_printer.retire(alloc_region);
6385   // We update the eden sizes here, when the region is retired,
6386   // instead of when it's allocated, since this is the point that its
6387   // used space has been recored in _summary_bytes_used.
6388   g1mm()->update_eden_size();
6389 }
6390 
6391 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6392                                                     bool force) {
6393   return _g1h->new_mutator_alloc_region(word_size, force);
6394 }
6395 
6396 void G1CollectedHeap::set_par_threads() {
6397   // Don't change the number of workers.  Use the value previously set
6398   // in the workgroup.
6399   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6400   uint n_workers = workers()->active_workers();
6401   assert(UseDynamicNumberOfGCThreads ||
6402            n_workers == workers()->total_workers(),
6403       "Otherwise should be using the total number of workers");
6404   if (n_workers == 0) {
6405     assert(false, "Should have been set in prior evacuation pause.");
6406     n_workers = ParallelGCThreads;
6407     workers()->set_active_workers(n_workers);
6408   }
6409   set_par_threads(n_workers);
6410 }
6411 
6412 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6413                                        size_t allocated_bytes) {
6414   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6415 }
6416 
6417 // Methods for the GC alloc regions
6418 
6419 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6420                                                  uint count,
6421                                                  GCAllocPurpose ap) {
6422   assert(FreeList_lock->owned_by_self(), "pre-condition");
6423 
6424   if (count < g1_policy()->max_regions(ap)) {
6425     HeapRegion* new_alloc_region = new_region(word_size,
6426                                               true /* do_expand */);
6427     if (new_alloc_region != NULL) {
6428       // We really only need to do this for old regions given that we
6429       // should never scan survivors. But it doesn't hurt to do it
6430       // for survivors too.
6431       new_alloc_region->set_saved_mark();
6432       if (ap == GCAllocForSurvived) {
6433         new_alloc_region->set_survivor();
6434         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6435       } else {
6436         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6437       }
6438       bool during_im = g1_policy()->during_initial_mark_pause();
6439       new_alloc_region->note_start_of_copying(during_im);
6440       return new_alloc_region;
6441     } else {
6442       g1_policy()->note_alloc_region_limit_reached(ap);
6443     }
6444   }
6445   return NULL;
6446 }
6447 
6448 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6449                                              size_t allocated_bytes,
6450                                              GCAllocPurpose ap) {
6451   bool during_im = g1_policy()->during_initial_mark_pause();
6452   alloc_region->note_end_of_copying(during_im);
6453   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6454   if (ap == GCAllocForSurvived) {
6455     young_list()->add_survivor_region(alloc_region);
6456   } else {
6457     _old_set.add(alloc_region);
6458   }
6459   _hr_printer.retire(alloc_region);
6460 }
6461 
6462 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6463                                                        bool force) {
6464   assert(!force, "not supported for GC alloc regions");
6465   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6466 }
6467 
6468 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6469                                           size_t allocated_bytes) {
6470   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6471                                GCAllocForSurvived);
6472 }
6473 
6474 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6475                                                   bool force) {
6476   assert(!force, "not supported for GC alloc regions");
6477   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6478 }
6479 
6480 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6481                                      size_t allocated_bytes) {
6482   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6483                                GCAllocForTenured);
6484 }
6485 // Heap region set verification
6486 
6487 class VerifyRegionListsClosure : public HeapRegionClosure {
6488 private:
6489   FreeRegionList*     _free_list;
6490   OldRegionSet*       _old_set;
6491   HumongousRegionSet* _humongous_set;
6492   uint                _region_count;
6493 
6494 public:
6495   VerifyRegionListsClosure(OldRegionSet* old_set,
6496                            HumongousRegionSet* humongous_set,
6497                            FreeRegionList* free_list) :
6498     _old_set(old_set), _humongous_set(humongous_set),
6499     _free_list(free_list), _region_count(0) { }
6500 
6501   uint region_count() { return _region_count; }
6502 
6503   bool doHeapRegion(HeapRegion* hr) {
6504     _region_count += 1;
6505 
6506     if (hr->continuesHumongous()) {
6507       return false;
6508     }
6509 
6510     if (hr->is_young()) {
6511       // TODO
6512     } else if (hr->startsHumongous()) {
6513       _humongous_set->verify_next_region(hr);
6514     } else if (hr->is_empty()) {
6515       _free_list->verify_next_region(hr);
6516     } else {
6517       _old_set->verify_next_region(hr);
6518     }
6519     return false;
6520   }
6521 };
6522 
6523 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6524                                              HeapWord* bottom) {
6525   HeapWord* end = bottom + HeapRegion::GrainWords;
6526   MemRegion mr(bottom, end);
6527   assert(_g1_reserved.contains(mr), "invariant");
6528   // This might return NULL if the allocation fails
6529   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6530 }
6531 
6532 void G1CollectedHeap::verify_region_sets() {
6533   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6534 
6535   // First, check the explicit lists.
6536   _free_list.verify();
6537   {
6538     // Given that a concurrent operation might be adding regions to
6539     // the secondary free list we have to take the lock before
6540     // verifying it.
6541     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6542     _secondary_free_list.verify();
6543   }
6544   _old_set.verify();
6545   _humongous_set.verify();
6546 
6547   // If a concurrent region freeing operation is in progress it will
6548   // be difficult to correctly attributed any free regions we come
6549   // across to the correct free list given that they might belong to
6550   // one of several (free_list, secondary_free_list, any local lists,
6551   // etc.). So, if that's the case we will skip the rest of the
6552   // verification operation. Alternatively, waiting for the concurrent
6553   // operation to complete will have a non-trivial effect on the GC's
6554   // operation (no concurrent operation will last longer than the
6555   // interval between two calls to verification) and it might hide
6556   // any issues that we would like to catch during testing.
6557   if (free_regions_coming()) {
6558     return;
6559   }
6560 
6561   // Make sure we append the secondary_free_list on the free_list so
6562   // that all free regions we will come across can be safely
6563   // attributed to the free_list.
6564   append_secondary_free_list_if_not_empty_with_lock();
6565 
6566   // Finally, make sure that the region accounting in the lists is
6567   // consistent with what we see in the heap.
6568   _old_set.verify_start();
6569   _humongous_set.verify_start();
6570   _free_list.verify_start();
6571 
6572   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6573   heap_region_iterate(&cl);
6574 
6575   _old_set.verify_end();
6576   _humongous_set.verify_end();
6577   _free_list.verify_end();
6578 }