1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
  27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
  28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
  38 #include "gc_implementation/shared/gcHeapSummary.hpp"
  39 #include "gc_implementation/shared/gcWhen.hpp"
  40 #include "memory/gcLocker.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/vmThread.hpp"
  45 #include "services/memTracker.hpp"
  46 #include "utilities/vmError.hpp"
  47 
  48 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  49 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  50 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
  51 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  52 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  53 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  54 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  55 
  56 static void trace_gen_sizes(const char* const str,
  57                             size_t pg_min, size_t pg_max,
  58                             size_t og_min, size_t og_max,
  59                             size_t yg_min, size_t yg_max)
  60 {
  61   if (TracePageSizes) {
  62     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
  63                   SIZE_FORMAT "," SIZE_FORMAT " "
  64                   SIZE_FORMAT "," SIZE_FORMAT " "
  65                   SIZE_FORMAT,
  66                   str, pg_min / K, pg_max / K,
  67                   og_min / K, og_max / K,
  68                   yg_min / K, yg_max / K,
  69                   (pg_max + og_max + yg_max) / K);
  70   }
  71 }
  72 
  73 jint ParallelScavengeHeap::initialize() {
  74   CollectedHeap::pre_initialize();
  75 
  76   // Cannot be initialized until after the flags are parsed
  77   // GenerationSizer flag_parser;
  78   _collector_policy = new GenerationSizer();
  79 
  80   size_t yg_min_size = _collector_policy->min_young_gen_size();
  81   size_t yg_max_size = _collector_policy->max_young_gen_size();
  82   size_t og_min_size = _collector_policy->min_old_gen_size();
  83   size_t og_max_size = _collector_policy->max_old_gen_size();
  84   // Why isn't there a min_perm_gen_size()?
  85   size_t pg_min_size = _collector_policy->perm_gen_size();
  86   size_t pg_max_size = _collector_policy->max_perm_gen_size();
  87 
  88   trace_gen_sizes("ps heap raw",
  89                   pg_min_size, pg_max_size,
  90                   og_min_size, og_max_size,
  91                   yg_min_size, yg_max_size);
  92 
  93   // The ReservedSpace ctor used below requires that the page size for the perm
  94   // gen is <= the page size for the rest of the heap (young + old gens).
  95   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
  96                                                      yg_max_size + og_max_size,
  97                                                      8);
  98   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
  99                                                           pg_max_size, 16),
 100                                  og_page_sz);
 101 
 102   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
 103   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
 104   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
 105 
 106   // Update sizes to reflect the selected page size(s).
 107   //
 108   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
 109   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
 110   // move to the common code.
 111   yg_min_size = align_size_up(yg_min_size, yg_align);
 112   yg_max_size = align_size_up(yg_max_size, yg_align);
 113   size_t yg_cur_size =
 114     align_size_up(_collector_policy->young_gen_size(), yg_align);
 115   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
 116 
 117   og_min_size = align_size_up(og_min_size, og_align);
 118   // Align old gen size down to preserve specified heap size.
 119   assert(og_align == yg_align, "sanity");
 120   og_max_size = align_size_down(og_max_size, og_align);
 121   og_max_size = MAX2(og_max_size, og_min_size);
 122   size_t og_cur_size =
 123     align_size_down(_collector_policy->old_gen_size(), og_align);
 124   og_cur_size = MAX2(og_cur_size, og_min_size);
 125 
 126   pg_min_size = align_size_up(pg_min_size, pg_align);
 127   pg_max_size = align_size_up(pg_max_size, pg_align);
 128   size_t pg_cur_size = pg_min_size;
 129 
 130   trace_gen_sizes("ps heap rnd",
 131                   pg_min_size, pg_max_size,
 132                   og_min_size, og_max_size,
 133                   yg_min_size, yg_max_size);
 134 
 135   size_t total_reserved = 0;
 136 
 137   total_reserved = add_and_check_overflow(total_reserved, pg_max_size);
 138   total_reserved = add_and_check_overflow(total_reserved, og_max_size);
 139   total_reserved = add_and_check_overflow(total_reserved, yg_max_size);
 140 
 141   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
 142 
 143   // The main part of the heap (old gen + young gen) can often use a larger page
 144   // size than is needed or wanted for the perm gen.  Use the "compound
 145   // alignment" ReservedSpace ctor to avoid having to use the same page size for
 146   // all gens.
 147 
 148   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
 149                             og_align, addr);
 150 
 151   if (UseCompressedOops) {
 152     if (addr != NULL && !heap_rs.is_reserved()) {
 153       // Failed to reserve at specified address - the requested memory
 154       // region is taken already, for example, by 'java' launcher.
 155       // Try again to reserver heap higher.
 156       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
 157       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
 158                                  og_align, addr);
 159       if (addr != NULL && !heap_rs0.is_reserved()) {
 160         // Failed to reserve at specified address again - give up.
 161         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
 162         assert(addr == NULL, "");
 163         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
 164                                    og_align, addr);
 165         heap_rs = heap_rs1;
 166       } else {
 167         heap_rs = heap_rs0;
 168       }
 169     }
 170   }
 171 
 172   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
 173 
 174   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
 175                        heap_rs.base(), pg_max_size);
 176   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
 177                        og_max_size + yg_max_size, og_page_sz,
 178                        heap_rs.base() + pg_max_size,
 179                        heap_rs.size() - pg_max_size);
 180   if (!heap_rs.is_reserved()) {
 181     vm_shutdown_during_initialization(
 182       "Could not reserve enough space for object heap");
 183     return JNI_ENOMEM;
 184   }
 185 
 186   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 187                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 188 
 189   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
 190   _barrier_set = barrier_set;
 191   oopDesc::set_bs(_barrier_set);
 192   if (_barrier_set == NULL) {
 193     vm_shutdown_during_initialization(
 194       "Could not reserve enough space for barrier set");
 195     return JNI_ENOMEM;
 196   }
 197 
 198   // Initial young gen size is 4 Mb
 199   //
 200   // XXX - what about flag_parser.young_gen_size()?
 201   const size_t init_young_size = align_size_up(4 * M, yg_align);
 202   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
 203 
 204   // Split the reserved space into perm gen and the main heap (everything else).
 205   // The main heap uses a different alignment.
 206   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
 207   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
 208 
 209   // Make up the generations
 210   // Calculate the maximum size that a generation can grow.  This
 211   // includes growth into the other generation.  Note that the
 212   // parameter _max_gen_size is kept as the maximum
 213   // size of the generation as the boundaries currently stand.
 214   // _max_gen_size is still used as that value.
 215   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 216   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 217 
 218   _gens = new AdjoiningGenerations(main_rs,
 219                                    og_cur_size,
 220                                    og_min_size,
 221                                    og_max_size,
 222                                    yg_cur_size,
 223                                    yg_min_size,
 224                                    yg_max_size,
 225                                    yg_align);
 226 
 227   _old_gen = _gens->old_gen();
 228   _young_gen = _gens->young_gen();
 229 
 230   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 231   const size_t old_capacity = _old_gen->capacity_in_bytes();
 232   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 233   _size_policy =
 234     new PSAdaptiveSizePolicy(eden_capacity,
 235                              initial_promo_size,
 236                              young_gen()->to_space()->capacity_in_bytes(),
 237                              intra_heap_alignment(),
 238                              max_gc_pause_sec,
 239                              max_gc_minor_pause_sec,
 240                              GCTimeRatio
 241                              );
 242 
 243   _perm_gen = new PSPermGen(perm_rs,
 244                             pg_align,
 245                             pg_cur_size,
 246                             pg_cur_size,
 247                             pg_max_size,
 248                             "perm", 2);
 249 
 250   assert(!UseAdaptiveGCBoundary ||
 251     (old_gen()->virtual_space()->high_boundary() ==
 252      young_gen()->virtual_space()->low_boundary()),
 253     "Boundaries must meet");
 254   // initialize the policy counters - 2 collectors, 3 generations
 255   _gc_policy_counters =
 256     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 257   _psh = this;
 258 
 259   // Set up the GCTaskManager
 260   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 261 
 262   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 263     return JNI_ENOMEM;
 264   }
 265 
 266   return JNI_OK;
 267 }
 268 
 269 void ParallelScavengeHeap::post_initialize() {
 270   // Need to init the tenuring threshold
 271   PSScavenge::initialize();
 272   if (UseParallelOldGC) {
 273     PSParallelCompact::post_initialize();
 274   } else {
 275     PSMarkSweep::initialize();
 276   }
 277   PSPromotionManager::initialize();
 278 }
 279 
 280 void ParallelScavengeHeap::update_counters() {
 281   young_gen()->update_counters();
 282   old_gen()->update_counters();
 283   perm_gen()->update_counters();
 284 }
 285 
 286 size_t ParallelScavengeHeap::capacity() const {
 287   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 288   return value;
 289 }
 290 
 291 size_t ParallelScavengeHeap::used() const {
 292   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 293   return value;
 294 }
 295 
 296 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 297   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 298 }
 299 
 300 
 301 size_t ParallelScavengeHeap::permanent_capacity() const {
 302   return perm_gen()->capacity_in_bytes();
 303 }
 304 
 305 size_t ParallelScavengeHeap::permanent_used() const {
 306   return perm_gen()->used_in_bytes();
 307 }
 308 
 309 size_t ParallelScavengeHeap::max_capacity() const {
 310   size_t estimated = reserved_region().byte_size();
 311   estimated -= perm_gen()->reserved().byte_size();
 312   if (UseAdaptiveSizePolicy) {
 313     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 314   } else {
 315     estimated -= young_gen()->to_space()->capacity_in_bytes();
 316   }
 317   return MAX2(estimated, capacity());
 318 }
 319 
 320 bool ParallelScavengeHeap::is_in(const void* p) const {
 321   if (young_gen()->is_in(p)) {
 322     return true;
 323   }
 324 
 325   if (old_gen()->is_in(p)) {
 326     return true;
 327   }
 328 
 329   if (perm_gen()->is_in(p)) {
 330     return true;
 331   }
 332 
 333   return false;
 334 }
 335 
 336 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 337   if (young_gen()->is_in_reserved(p)) {
 338     return true;
 339   }
 340 
 341   if (old_gen()->is_in_reserved(p)) {
 342     return true;
 343   }
 344 
 345   if (perm_gen()->is_in_reserved(p)) {
 346     return true;
 347   }
 348 
 349   return false;
 350 }
 351 
 352 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 353   return is_in_young((oop)addr);
 354 }
 355 
 356 #ifdef ASSERT
 357 // Don't implement this by using is_in_young().  This method is used
 358 // in some cases to check that is_in_young() is correct.
 359 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
 360   assert(is_in_reserved(p) || p == NULL,
 361     "Does not work if address is non-null and outside of the heap");
 362   // The order of the generations is perm (low addr), old, young (high addr)
 363   return p >= old_gen()->reserved().end();
 364 }
 365 #endif
 366 
 367 // There are two levels of allocation policy here.
 368 //
 369 // When an allocation request fails, the requesting thread must invoke a VM
 370 // operation, transfer control to the VM thread, and await the results of a
 371 // garbage collection. That is quite expensive, and we should avoid doing it
 372 // multiple times if possible.
 373 //
 374 // To accomplish this, we have a basic allocation policy, and also a
 375 // failed allocation policy.
 376 //
 377 // The basic allocation policy controls how you allocate memory without
 378 // attempting garbage collection. It is okay to grab locks and
 379 // expand the heap, if that can be done without coming to a safepoint.
 380 // It is likely that the basic allocation policy will not be very
 381 // aggressive.
 382 //
 383 // The failed allocation policy is invoked from the VM thread after
 384 // the basic allocation policy is unable to satisfy a mem_allocate
 385 // request. This policy needs to cover the entire range of collection,
 386 // heap expansion, and out-of-memory conditions. It should make every
 387 // attempt to allocate the requested memory.
 388 
 389 // Basic allocation policy. Should never be called at a safepoint, or
 390 // from the VM thread.
 391 //
 392 // This method must handle cases where many mem_allocate requests fail
 393 // simultaneously. When that happens, only one VM operation will succeed,
 394 // and the rest will not be executed. For that reason, this method loops
 395 // during failed allocation attempts. If the java heap becomes exhausted,
 396 // we rely on the size_policy object to force a bail out.
 397 HeapWord* ParallelScavengeHeap::mem_allocate(
 398                                      size_t size,
 399                                      bool* gc_overhead_limit_was_exceeded) {
 400   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 401   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 402   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 403 
 404   // In general gc_overhead_limit_was_exceeded should be false so
 405   // set it so here and reset it to true only if the gc time
 406   // limit is being exceeded as checked below.
 407   *gc_overhead_limit_was_exceeded = false;
 408 
 409   HeapWord* result = young_gen()->allocate(size);
 410 
 411   uint loop_count = 0;
 412   uint gc_count = 0;
 413 
 414   while (result == NULL) {
 415     // We don't want to have multiple collections for a single filled generation.
 416     // To prevent this, each thread tracks the total_collections() value, and if
 417     // the count has changed, does not do a new collection.
 418     //
 419     // The collection count must be read only while holding the heap lock. VM
 420     // operations also hold the heap lock during collections. There is a lock
 421     // contention case where thread A blocks waiting on the Heap_lock, while
 422     // thread B is holding it doing a collection. When thread A gets the lock,
 423     // the collection count has already changed. To prevent duplicate collections,
 424     // The policy MUST attempt allocations during the same period it reads the
 425     // total_collections() value!
 426     {
 427       MutexLocker ml(Heap_lock);
 428       gc_count = Universe::heap()->total_collections();
 429 
 430       result = young_gen()->allocate(size);
 431       if (result != NULL) {
 432         return result;
 433       }
 434 
 435       // If certain conditions hold, try allocating from the old gen.
 436       result = mem_allocate_old_gen(size);
 437       if (result != NULL) {
 438         return result;
 439       }
 440 
 441       // Failed to allocate without a gc.
 442       if (GC_locker::is_active_and_needs_gc()) {
 443         // If this thread is not in a jni critical section, we stall
 444         // the requestor until the critical section has cleared and
 445         // GC allowed. When the critical section clears, a GC is
 446         // initiated by the last thread exiting the critical section; so
 447         // we retry the allocation sequence from the beginning of the loop,
 448         // rather than causing more, now probably unnecessary, GC attempts.
 449         JavaThread* jthr = JavaThread::current();
 450         if (!jthr->in_critical()) {
 451           MutexUnlocker mul(Heap_lock);
 452           GC_locker::stall_until_clear();
 453           continue;
 454         } else {
 455           if (CheckJNICalls) {
 456             fatal("Possible deadlock due to allocating while"
 457                   " in jni critical section");
 458           }
 459           return NULL;
 460         }
 461       }
 462     }
 463 
 464     if (result == NULL) {
 465       // Generate a VM operation
 466       VM_ParallelGCFailedAllocation op(size, gc_count);
 467       VMThread::execute(&op);
 468 
 469       // Did the VM operation execute? If so, return the result directly.
 470       // This prevents us from looping until time out on requests that can
 471       // not be satisfied.
 472       if (op.prologue_succeeded()) {
 473         assert(Universe::heap()->is_in_or_null(op.result()),
 474           "result not in heap");
 475 
 476         // If GC was locked out during VM operation then retry allocation
 477         // and/or stall as necessary.
 478         if (op.gc_locked()) {
 479           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 480           continue;  // retry and/or stall as necessary
 481         }
 482 
 483         // Exit the loop if the gc time limit has been exceeded.
 484         // The allocation must have failed above ("result" guarding
 485         // this path is NULL) and the most recent collection has exceeded the
 486         // gc overhead limit (although enough may have been collected to
 487         // satisfy the allocation).  Exit the loop so that an out-of-memory
 488         // will be thrown (return a NULL ignoring the contents of
 489         // op.result()),
 490         // but clear gc_overhead_limit_exceeded so that the next collection
 491         // starts with a clean slate (i.e., forgets about previous overhead
 492         // excesses).  Fill op.result() with a filler object so that the
 493         // heap remains parsable.
 494         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 495         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 496         assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
 497         if (limit_exceeded && softrefs_clear) {
 498           *gc_overhead_limit_was_exceeded = true;
 499           size_policy()->set_gc_overhead_limit_exceeded(false);
 500           if (PrintGCDetails && Verbose) {
 501             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 502               "return NULL because gc_overhead_limit_exceeded is set");
 503           }
 504           if (op.result() != NULL) {
 505             CollectedHeap::fill_with_object(op.result(), size);
 506           }
 507           return NULL;
 508         }
 509 
 510         return op.result();
 511       }
 512     }
 513 
 514     // The policy object will prevent us from looping forever. If the
 515     // time spent in gc crosses a threshold, we will bail out.
 516     loop_count++;
 517     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 518         (loop_count % QueuedAllocationWarningCount == 0)) {
 519       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 520               " size=%d", loop_count, size);
 521     }
 522   }
 523 
 524   return result;
 525 }
 526 
 527 // A "death march" is a series of ultra-slow allocations in which a full gc is
 528 // done before each allocation, and after the full gc the allocation still
 529 // cannot be satisfied from the young gen.  This routine detects that condition;
 530 // it should be called after a full gc has been done and the allocation
 531 // attempted from the young gen. The parameter 'addr' should be the result of
 532 // that young gen allocation attempt.
 533 void
 534 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 535   if (addr != NULL) {
 536     _death_march_count = 0;  // death march has ended
 537   } else if (_death_march_count == 0) {
 538     if (should_alloc_in_eden(size)) {
 539       _death_march_count = 1;    // death march has started
 540     }
 541   }
 542 }
 543 
 544 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 545   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
 546     // Size is too big for eden, or gc is locked out.
 547     return old_gen()->allocate(size);
 548   }
 549 
 550   // If a "death march" is in progress, allocate from the old gen a limited
 551   // number of times before doing a GC.
 552   if (_death_march_count > 0) {
 553     if (_death_march_count < 64) {
 554       ++_death_march_count;
 555       return old_gen()->allocate(size);
 556     } else {
 557       _death_march_count = 0;
 558     }
 559   }
 560   return NULL;
 561 }
 562 
 563 // Failed allocation policy. Must be called from the VM thread, and
 564 // only at a safepoint! Note that this method has policy for allocation
 565 // flow, and NOT collection policy. So we do not check for gc collection
 566 // time over limit here, that is the responsibility of the heap specific
 567 // collection methods. This method decides where to attempt allocations,
 568 // and when to attempt collections, but no collection specific policy.
 569 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 570   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 571   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 572   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 573   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 574 
 575   // We assume that allocation in eden will fail unless we collect.
 576 
 577   // First level allocation failure, scavenge and allocate in young gen.
 578   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 579   const bool invoked_full_gc = PSScavenge::invoke();
 580   HeapWord* result = young_gen()->allocate(size);
 581 
 582   // Second level allocation failure.
 583   //   Mark sweep and allocate in young generation.
 584   if (result == NULL && !invoked_full_gc) {
 585     invoke_full_gc(false);
 586     result = young_gen()->allocate(size);
 587   }
 588 
 589   death_march_check(result, size);
 590 
 591   // Third level allocation failure.
 592   //   After mark sweep and young generation allocation failure,
 593   //   allocate in old generation.
 594   if (result == NULL) {
 595     result = old_gen()->allocate(size);
 596   }
 597 
 598   // Fourth level allocation failure. We're running out of memory.
 599   //   More complete mark sweep and allocate in young generation.
 600   if (result == NULL) {
 601     invoke_full_gc(true);
 602     result = young_gen()->allocate(size);
 603   }
 604 
 605   // Fifth level allocation failure.
 606   //   After more complete mark sweep, allocate in old generation.
 607   if (result == NULL) {
 608     result = old_gen()->allocate(size);
 609   }
 610 
 611   return result;
 612 }
 613 
 614 //
 615 // This is the policy loop for allocating in the permanent generation.
 616 // If the initial allocation fails, we create a vm operation which will
 617 // cause a collection.
 618 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
 619   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 620   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 621   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 622 
 623   HeapWord* result;
 624 
 625   uint loop_count = 0;
 626   uint gc_count = 0;
 627   uint full_gc_count = 0;
 628 
 629   do {
 630     // We don't want to have multiple collections for a single filled generation.
 631     // To prevent this, each thread tracks the total_collections() value, and if
 632     // the count has changed, does not do a new collection.
 633     //
 634     // The collection count must be read only while holding the heap lock. VM
 635     // operations also hold the heap lock during collections. There is a lock
 636     // contention case where thread A blocks waiting on the Heap_lock, while
 637     // thread B is holding it doing a collection. When thread A gets the lock,
 638     // the collection count has already changed. To prevent duplicate collections,
 639     // The policy MUST attempt allocations during the same period it reads the
 640     // total_collections() value!
 641     {
 642       MutexLocker ml(Heap_lock);
 643       gc_count      = Universe::heap()->total_collections();
 644       full_gc_count = Universe::heap()->total_full_collections();
 645 
 646       result = perm_gen()->allocate_permanent(size);
 647 
 648       if (result != NULL) {
 649         return result;
 650       }
 651 
 652       if (GC_locker::is_active_and_needs_gc()) {
 653         // If this thread is not in a jni critical section, we stall
 654         // the requestor until the critical section has cleared and
 655         // GC allowed. When the critical section clears, a GC is
 656         // initiated by the last thread exiting the critical section; so
 657         // we retry the allocation sequence from the beginning of the loop,
 658         // rather than causing more, now probably unnecessary, GC attempts.
 659         JavaThread* jthr = JavaThread::current();
 660         if (!jthr->in_critical()) {
 661           MutexUnlocker mul(Heap_lock);
 662           GC_locker::stall_until_clear();
 663           continue;
 664         } else {
 665           if (CheckJNICalls) {
 666             fatal("Possible deadlock due to allocating while"
 667                   " in jni critical section");
 668           }
 669           return NULL;
 670         }
 671       }
 672     }
 673 
 674     if (result == NULL) {
 675 
 676       // Exit the loop if the gc time limit has been exceeded.
 677       // The allocation must have failed above (result must be NULL),
 678       // and the most recent collection must have exceeded the
 679       // gc time limit.  Exit the loop so that an out-of-memory
 680       // will be thrown (returning a NULL will do that), but
 681       // clear gc_overhead_limit_exceeded so that the next collection
 682       // will succeeded if the applications decides to handle the
 683       // out-of-memory and tries to go on.
 684       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 685       if (limit_exceeded) {
 686         size_policy()->set_gc_overhead_limit_exceeded(false);
 687         if (PrintGCDetails && Verbose) {
 688           gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
 689             " return NULL because gc_overhead_limit_exceeded is set");
 690         }
 691         assert(result == NULL, "Allocation did not fail");
 692         return NULL;
 693       }
 694 
 695       // Generate a VM operation
 696       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
 697       VMThread::execute(&op);
 698 
 699       // Did the VM operation execute? If so, return the result directly.
 700       // This prevents us from looping until time out on requests that can
 701       // not be satisfied.
 702       if (op.prologue_succeeded()) {
 703         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
 704           "result not in heap");
 705         // If GC was locked out during VM operation then retry allocation
 706         // and/or stall as necessary.
 707         if (op.gc_locked()) {
 708           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 709           continue;  // retry and/or stall as necessary
 710         }
 711         // If a NULL results is being returned, an out-of-memory
 712         // will be thrown now.  Clear the gc_overhead_limit_exceeded
 713         // flag to avoid the following situation.
 714         //      gc_overhead_limit_exceeded is set during a collection
 715         //      the collection fails to return enough space and an OOM is thrown
 716         //      a subsequent GC prematurely throws an out-of-memory because
 717         //        the gc_overhead_limit_exceeded counts did not start
 718         //        again from 0.
 719         if (op.result() == NULL) {
 720           size_policy()->reset_gc_overhead_limit_count();
 721         }
 722         return op.result();
 723       }
 724     }
 725 
 726     // The policy object will prevent us from looping forever. If the
 727     // time spent in gc crosses a threshold, we will bail out.
 728     loop_count++;
 729     if ((QueuedAllocationWarningCount > 0) &&
 730         (loop_count % QueuedAllocationWarningCount == 0)) {
 731       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
 732               " size=%d", loop_count, size);
 733     }
 734   } while (result == NULL);
 735 
 736   return result;
 737 }
 738 
 739 //
 740 // This is the policy code for permanent allocations which have failed
 741 // and require a collection. Note that just as in failed_mem_allocate,
 742 // we do not set collection policy, only where & when to allocate and
 743 // collect.
 744 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
 745   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 746   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 747   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 748   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 749   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
 750 
 751   // We assume (and assert!) that an allocation at this point will fail
 752   // unless we collect.
 753 
 754   // First level allocation failure.  Mark-sweep and allocate in perm gen.
 755   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 756   invoke_full_gc(false);
 757   HeapWord* result = perm_gen()->allocate_permanent(size);
 758 
 759   // Second level allocation failure. We're running out of memory.
 760   if (result == NULL) {
 761     invoke_full_gc(true);
 762     result = perm_gen()->allocate_permanent(size);
 763   }
 764 
 765   return result;
 766 }
 767 
 768 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 769   CollectedHeap::ensure_parsability(retire_tlabs);
 770   young_gen()->eden_space()->ensure_parsability();
 771 }
 772 
 773 size_t ParallelScavengeHeap::unsafe_max_alloc() {
 774   return young_gen()->eden_space()->free_in_bytes();
 775 }
 776 
 777 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 778   return young_gen()->eden_space()->tlab_capacity(thr);
 779 }
 780 
 781 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 782   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 783 }
 784 
 785 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 786   return young_gen()->allocate(size);
 787 }
 788 
 789 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 790   CollectedHeap::accumulate_statistics_all_tlabs();
 791 }
 792 
 793 void ParallelScavengeHeap::resize_all_tlabs() {
 794   CollectedHeap::resize_all_tlabs();
 795 }
 796 
 797 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 798   // We don't need barriers for stores to objects in the
 799   // young gen and, a fortiori, for initializing stores to
 800   // objects therein.
 801   return is_in_young(new_obj);
 802 }
 803 
 804 // This method is used by System.gc() and JVMTI.
 805 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 806   assert(!Heap_lock->owned_by_self(),
 807     "this thread should not own the Heap_lock");
 808 
 809   unsigned int gc_count      = 0;
 810   unsigned int full_gc_count = 0;
 811   {
 812     MutexLocker ml(Heap_lock);
 813     // This value is guarded by the Heap_lock
 814     gc_count      = Universe::heap()->total_collections();
 815     full_gc_count = Universe::heap()->total_full_collections();
 816   }
 817 
 818   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 819   VMThread::execute(&op);
 820 }
 821 
 822 // This interface assumes that it's being called by the
 823 // vm thread. It collects the heap assuming that the
 824 // heap lock is already held and that we are executing in
 825 // the context of the vm thread.
 826 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
 827   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 828   assert(Heap_lock->is_locked(), "Precondition#2");
 829   GCCauseSetter gcs(this, cause);
 830   switch (cause) {
 831     case GCCause::_heap_inspection:
 832     case GCCause::_heap_dump: {
 833       HandleMark hm;
 834       invoke_full_gc(false);
 835       break;
 836     }
 837     default: // XXX FIX ME
 838       ShouldNotReachHere();
 839   }
 840 }
 841 
 842 
 843 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
 844   Unimplemented();
 845 }
 846 
 847 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 848   young_gen()->object_iterate(cl);
 849   old_gen()->object_iterate(cl);
 850   perm_gen()->object_iterate(cl);
 851 }
 852 
 853 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
 854   Unimplemented();
 855 }
 856 
 857 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
 858   perm_gen()->object_iterate(cl);
 859 }
 860 
 861 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 862   if (young_gen()->is_in_reserved(addr)) {
 863     assert(young_gen()->is_in(addr),
 864            "addr should be in allocated part of young gen");
 865     // called from os::print_location by find or VMError
 866     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 867     Unimplemented();
 868   } else if (old_gen()->is_in_reserved(addr)) {
 869     assert(old_gen()->is_in(addr),
 870            "addr should be in allocated part of old gen");
 871     return old_gen()->start_array()->object_start((HeapWord*)addr);
 872   } else if (perm_gen()->is_in_reserved(addr)) {
 873     assert(perm_gen()->is_in(addr),
 874            "addr should be in allocated part of perm gen");
 875     return perm_gen()->start_array()->object_start((HeapWord*)addr);
 876   }
 877   return 0;
 878 }
 879 
 880 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 881   return oop(addr)->size();
 882 }
 883 
 884 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 885   return block_start(addr) == addr;
 886 }
 887 
 888 jlong ParallelScavengeHeap::millis_since_last_gc() {
 889   return UseParallelOldGC ?
 890     PSParallelCompact::millis_since_last_gc() :
 891     PSMarkSweep::millis_since_last_gc();
 892 }
 893 
 894 void ParallelScavengeHeap::prepare_for_verify() {
 895   ensure_parsability(false);  // no need to retire TLABs for verification
 896 }
 897 
 898 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 899   PSOldGen* old = old_gen();
 900   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 901   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 902   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 903 
 904   PSYoungGen* young = young_gen();
 905   VirtualSpaceSummary young_summary(young->reserved().start(),
 906     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 907 
 908   MutableSpace* eden = young_gen()->eden_space();
 909   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 910 
 911   MutableSpace* from = young_gen()->from_space();
 912   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 913 
 914   MutableSpace* to = young_gen()->to_space();
 915   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 916 
 917   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 918   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 919 }
 920 
 921 VirtualSpaceSummary ParallelScavengeHeap::create_perm_gen_space_summary() {
 922   PSVirtualSpace* space = perm_gen()->virtual_space();
 923   return VirtualSpaceSummary(
 924     (HeapWord*)space->low_boundary(),
 925     (HeapWord*)space->high(),
 926     (HeapWord*)space->high_boundary());
 927 }
 928 
 929 void ParallelScavengeHeap::print_on(outputStream* st) const {
 930   young_gen()->print_on(st);
 931   old_gen()->print_on(st);
 932   perm_gen()->print_on(st);
 933 }
 934 
 935 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 936   PSScavenge::gc_task_manager()->threads_do(tc);
 937 }
 938 
 939 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 940   PSScavenge::gc_task_manager()->print_threads_on(st);
 941 }
 942 
 943 void ParallelScavengeHeap::print_tracing_info() const {
 944   if (TraceGen0Time) {
 945     double time = PSScavenge::accumulated_time()->seconds();
 946     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 947   }
 948   if (TraceGen1Time) {
 949     double time = PSMarkSweep::accumulated_time()->seconds();
 950     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 951   }
 952 }
 953 
 954 
 955 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
 956   // Why do we need the total_collections()-filter below?
 957   if (total_collections() > 0) {
 958     if (!silent) {
 959       gclog_or_tty->print("permanent ");
 960     }
 961     perm_gen()->verify();
 962 
 963     if (!silent) {
 964       gclog_or_tty->print("tenured ");
 965     }
 966     old_gen()->verify();
 967 
 968     if (!silent) {
 969       gclog_or_tty->print("eden ");
 970     }
 971     young_gen()->verify();
 972   }
 973 }
 974 
 975 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 976   if (PrintGCDetails && Verbose) {
 977     gclog_or_tty->print(" "  SIZE_FORMAT
 978                         "->" SIZE_FORMAT
 979                         "("  SIZE_FORMAT ")",
 980                         prev_used, used(), capacity());
 981   } else {
 982     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 983                         "->" SIZE_FORMAT "K"
 984                         "("  SIZE_FORMAT "K)",
 985                         prev_used / K, used() / K, capacity() / K);
 986   }
 987 }
 988 
 989 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
 990   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 991   const PermGenSummary& perm_gen_summary = create_perm_gen_summary();
 992   gc_tracer->report_gc_heap_summary(when, heap_summary, perm_gen_summary);
 993 }
 994 
 995 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 996   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 997   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 998   return _psh;
 999 }
1000 
1001 // Before delegating the resize to the young generation,
1002 // the reserved space for the young and old generations
1003 // may be changed to accomodate the desired resize.
1004 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
1005     size_t survivor_size) {
1006   if (UseAdaptiveGCBoundary) {
1007     if (size_policy()->bytes_absorbed_from_eden() != 0) {
1008       size_policy()->reset_bytes_absorbed_from_eden();
1009       return;  // The generation changed size already.
1010     }
1011     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
1012   }
1013 
1014   // Delegate the resize to the generation.
1015   _young_gen->resize(eden_size, survivor_size);
1016 }
1017 
1018 // Before delegating the resize to the old generation,
1019 // the reserved space for the young and old generations
1020 // may be changed to accomodate the desired resize.
1021 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
1022   if (UseAdaptiveGCBoundary) {
1023     if (size_policy()->bytes_absorbed_from_eden() != 0) {
1024       size_policy()->reset_bytes_absorbed_from_eden();
1025       return;  // The generation changed size already.
1026     }
1027     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
1028   }
1029 
1030   // Delegate the resize to the generation.
1031   _old_gen->resize(desired_free_space);
1032 }
1033 
1034 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
1035   // nothing particular
1036 }
1037 
1038 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
1039   // nothing particular
1040 }
1041 
1042 #ifndef PRODUCT
1043 void ParallelScavengeHeap::record_gen_tops_before_GC() {
1044   if (ZapUnusedHeapArea) {
1045     young_gen()->record_spaces_top();
1046     old_gen()->record_spaces_top();
1047     perm_gen()->record_spaces_top();
1048   }
1049 }
1050 
1051 void ParallelScavengeHeap::gen_mangle_unused_area() {
1052   if (ZapUnusedHeapArea) {
1053     young_gen()->eden_space()->mangle_unused_area();
1054     young_gen()->to_space()->mangle_unused_area();
1055     young_gen()->from_space()->mangle_unused_area();
1056     old_gen()->object_space()->mangle_unused_area();
1057     perm_gen()->object_space()->mangle_unused_area();
1058   }
1059 }
1060 #endif