1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/vmThread.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_windows
  48 # include "thread_windows.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_bsd
  51 # include "thread_bsd.inline.hpp"
  52 #endif
  53 #ifndef SERIALGC
  54 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  55 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  56 #endif
  57 
  58 // CollectorPolicy methods.
  59 
  60 void CollectorPolicy::initialize_flags() {
  61   assert(max_alignment() >= min_alignment(),
  62       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  63           max_alignment(), min_alignment()));
  64   assert(max_alignment() % min_alignment() == 0,
  65       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  66           max_alignment(), min_alignment()));
  67 
  68   if (PermSize > MaxPermSize) {
  69     MaxPermSize = PermSize;
  70   }
  71   PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
  72   // Don't increase Perm size limit above specified.
  73   MaxPermSize = align_size_down(MaxPermSize, max_alignment());
  74   if (PermSize > MaxPermSize) {
  75     PermSize = MaxPermSize;
  76   }
  77 
  78   MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
  79   MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
  80 
  81   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  82 
  83   SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
  84   SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
  85   SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
  86 
  87   assert(PermSize    % min_alignment() == 0, "permanent space alignment");
  88   assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
  89   assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
  90   assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
  91   assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
  92   if (PermSize < M) {
  93     vm_exit_during_initialization("Too small initial permanent heap");
  94   }
  95 }
  96 
  97 void CollectorPolicy::initialize_size_info() {
  98   // User inputs from -mx and ms are aligned
  99   set_initial_heap_byte_size(InitialHeapSize);
 100   if (initial_heap_byte_size() == 0) {
 101     set_initial_heap_byte_size(NewSize + OldSize);
 102   }
 103   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
 104                                            min_alignment()));
 105 
 106   set_min_heap_byte_size(Arguments::min_heap_size());
 107   if (min_heap_byte_size() == 0) {
 108     set_min_heap_byte_size(NewSize + OldSize);
 109   }
 110   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
 111                                        min_alignment()));
 112 
 113   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
 114 
 115   // Check heap parameter properties
 116   if (initial_heap_byte_size() < M) {
 117     vm_exit_during_initialization("Too small initial heap");
 118   }
 119   // Check heap parameter properties
 120   if (min_heap_byte_size() < M) {
 121     vm_exit_during_initialization("Too small minimum heap");
 122   }
 123   if (initial_heap_byte_size() <= NewSize) {
 124      // make sure there is at least some room in old space
 125     vm_exit_during_initialization("Too small initial heap for new size specified");
 126   }
 127   if (max_heap_byte_size() < min_heap_byte_size()) {
 128     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 129   }
 130   if (initial_heap_byte_size() < min_heap_byte_size()) {
 131     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 132   }
 133   if (max_heap_byte_size() < initial_heap_byte_size()) {
 134     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 135   }
 136 
 137   if (PrintGCDetails && Verbose) {
 138     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 139       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 140       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 141   }
 142 }
 143 
 144 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
 145   _permanent_generation =
 146     new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
 147                                 SharedReadOnlySize,
 148                                 SharedReadWriteSize,
 149                                 SharedMiscDataSize,
 150                                 SharedMiscCodeSize);
 151   if (_permanent_generation == NULL) {
 152     vm_exit_during_initialization("Unable to allocate gen spec");
 153   }
 154 }
 155 
 156 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 157   bool result = _should_clear_all_soft_refs;
 158   set_should_clear_all_soft_refs(false);
 159   return result;
 160 }
 161 
 162 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 163                                            int max_covered_regions) {
 164   switch (rem_set_name()) {
 165   case GenRemSet::CardTable: {
 166     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 167     return res;
 168   }
 169   default:
 170     guarantee(false, "unrecognized GenRemSet::Name");
 171     return NULL;
 172   }
 173 }
 174 
 175 void CollectorPolicy::cleared_all_soft_refs() {
 176   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 177   // have been cleared in the last collection but if the gc overhear
 178   // limit continues to be near, SoftRefs should still be cleared.
 179   if (size_policy() != NULL) {
 180     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 181   }
 182   _all_soft_refs_clear = true;
 183 }
 184 
 185 
 186 // GenCollectorPolicy methods.
 187 
 188 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 189   size_t x = base_size / (NewRatio+1);
 190   size_t new_gen_size = x > min_alignment() ?
 191                      align_size_down(x, min_alignment()) :
 192                      min_alignment();
 193   return new_gen_size;
 194 }
 195 
 196 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 197                                                  size_t maximum_size) {
 198   size_t alignment = min_alignment();
 199   size_t max_minus = maximum_size - alignment;
 200   return desired_size < max_minus ? desired_size : max_minus;
 201 }
 202 
 203 
 204 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 205                                                 size_t init_promo_size,
 206                                                 size_t init_survivor_size) {
 207   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 208   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 209                                         init_promo_size,
 210                                         init_survivor_size,
 211                                         max_gc_minor_pause_sec,
 212                                         GCTimeRatio);
 213 }
 214 
 215 size_t GenCollectorPolicy::compute_max_alignment() {
 216   // The card marking array and the offset arrays for old generations are
 217   // committed in os pages as well. Make sure they are entirely full (to
 218   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 219   // byte entry and the os page size is 4096, the maximum heap size should
 220   // be 512*4096 = 2MB aligned.
 221   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 222 
 223   // Parallel GC does its own alignment of the generations to avoid requiring a
 224   // large page (256M on some platforms) for the permanent generation.  The
 225   // other collectors should also be updated to do their own alignment and then
 226   // this use of lcm() should be removed.
 227   if (UseLargePages && !UseParallelGC) {
 228       // in presence of large pages we have to make sure that our
 229       // alignment is large page aware
 230       alignment = lcm(os::large_page_size(), alignment);
 231   }
 232 
 233   return alignment;
 234 }
 235 
 236 void GenCollectorPolicy::initialize_flags() {
 237   // All sizes must be multiples of the generation granularity.
 238   set_min_alignment((uintx) Generation::GenGrain);
 239   set_max_alignment(compute_max_alignment());
 240 
 241   CollectorPolicy::initialize_flags();
 242 
 243   // All generational heaps have a youngest gen; handle those flags here.
 244 
 245   // Adjust max size parameters
 246   if (NewSize > MaxNewSize) {
 247     MaxNewSize = NewSize;
 248   }
 249   NewSize = align_size_down(NewSize, min_alignment());
 250   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 251 
 252   // Check validity of heap flags
 253   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 254   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 255 
 256   if (NewSize < 3*min_alignment()) {
 257      // make sure there room for eden and two survivor spaces
 258     vm_exit_during_initialization("Too small new size specified");
 259   }
 260   if (SurvivorRatio < 1 || NewRatio < 1) {
 261     vm_exit_during_initialization("Invalid heap ratio specified");
 262   }
 263 }
 264 
 265 void TwoGenerationCollectorPolicy::initialize_flags() {
 266   GenCollectorPolicy::initialize_flags();
 267 
 268   OldSize = align_size_down(OldSize, min_alignment());
 269   if (NewSize + OldSize > MaxHeapSize) {
 270     MaxHeapSize = NewSize + OldSize;
 271   }
 272   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 273 
 274   always_do_update_barrier = UseConcMarkSweepGC;
 275 
 276   // Check validity of heap flags
 277   assert(OldSize     % min_alignment() == 0, "old space alignment");
 278   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 279 }
 280 
 281 // Values set on the command line win over any ergonomically
 282 // set command line parameters.
 283 // Ergonomic choice of parameters are done before this
 284 // method is called.  Values for command line parameters such as NewSize
 285 // and MaxNewSize feed those ergonomic choices into this method.
 286 // This method makes the final generation sizings consistent with
 287 // themselves and with overall heap sizings.
 288 // In the absence of explicitly set command line flags, policies
 289 // such as the use of NewRatio are used to size the generation.
 290 void GenCollectorPolicy::initialize_size_info() {
 291   CollectorPolicy::initialize_size_info();
 292 
 293   // min_alignment() is used for alignment within a generation.
 294   // There is additional alignment done down stream for some
 295   // collectors that sometimes causes unwanted rounding up of
 296   // generations sizes.
 297 
 298   // Determine maximum size of gen0
 299 
 300   size_t max_new_size = 0;
 301   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 302     if (MaxNewSize < min_alignment()) {
 303       max_new_size = min_alignment();
 304     }
 305     if (MaxNewSize >= max_heap_byte_size()) {
 306       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 307                                      min_alignment());
 308       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 309         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 310         "new generation size of " SIZE_FORMAT "k will be used.",
 311         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 312     } else {
 313       max_new_size = align_size_down(MaxNewSize, min_alignment());
 314     }
 315 
 316   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 317   // specially at this point to just use an ergonomically set
 318   // MaxNewSize to set max_new_size.  For cases with small
 319   // heaps such a policy often did not work because the MaxNewSize
 320   // was larger than the entire heap.  The interpretation given
 321   // to ergonomically set flags is that the flags are set
 322   // by different collectors for their own special needs but
 323   // are not allowed to badly shape the heap.  This allows the
 324   // different collectors to decide what's best for themselves
 325   // without having to factor in the overall heap shape.  It
 326   // can be the case in the future that the collectors would
 327   // only make "wise" ergonomics choices and this policy could
 328   // just accept those choices.  The choices currently made are
 329   // not always "wise".
 330   } else {
 331     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 332     // Bound the maximum size by NewSize below (since it historically
 333     // would have been NewSize and because the NewRatio calculation could
 334     // yield a size that is too small) and bound it by MaxNewSize above.
 335     // Ergonomics plays here by previously calculating the desired
 336     // NewSize and MaxNewSize.
 337     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 338   }
 339   assert(max_new_size > 0, "All paths should set max_new_size");
 340 
 341   // Given the maximum gen0 size, determine the initial and
 342   // minimum gen0 sizes.
 343 
 344   if (max_heap_byte_size() == min_heap_byte_size()) {
 345     // The maximum and minimum heap sizes are the same so
 346     // the generations minimum and initial must be the
 347     // same as its maximum.
 348     set_min_gen0_size(max_new_size);
 349     set_initial_gen0_size(max_new_size);
 350     set_max_gen0_size(max_new_size);
 351   } else {
 352     size_t desired_new_size = 0;
 353     if (!FLAG_IS_DEFAULT(NewSize)) {
 354       // If NewSize is set ergonomically (for example by cms), it
 355       // would make sense to use it.  If it is used, also use it
 356       // to set the initial size.  Although there is no reason
 357       // the minimum size and the initial size have to be the same,
 358       // the current implementation gets into trouble during the calculation
 359       // of the tenured generation sizes if they are different.
 360       // Note that this makes the initial size and the minimum size
 361       // generally small compared to the NewRatio calculation.
 362       _min_gen0_size = NewSize;
 363       desired_new_size = NewSize;
 364       max_new_size = MAX2(max_new_size, NewSize);
 365     } else {
 366       // For the case where NewSize is the default, use NewRatio
 367       // to size the minimum and initial generation sizes.
 368       // Use the default NewSize as the floor for these values.  If
 369       // NewRatio is overly large, the resulting sizes can be too
 370       // small.
 371       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 372                           NewSize);
 373       desired_new_size =
 374         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 375              NewSize);
 376     }
 377 
 378     assert(_min_gen0_size > 0, "Sanity check");
 379     set_initial_gen0_size(desired_new_size);
 380     set_max_gen0_size(max_new_size);
 381 
 382     // At this point the desirable initial and minimum sizes have been
 383     // determined without regard to the maximum sizes.
 384 
 385     // Bound the sizes by the corresponding overall heap sizes.
 386     set_min_gen0_size(
 387       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 388     set_initial_gen0_size(
 389       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 390     set_max_gen0_size(
 391       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 392 
 393     // At this point all three sizes have been checked against the
 394     // maximum sizes but have not been checked for consistency
 395     // among the three.
 396 
 397     // Final check min <= initial <= max
 398     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 399     set_initial_gen0_size(
 400       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 401     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 402   }
 403 
 404   if (PrintGCDetails && Verbose) {
 405     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 406       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 407       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 408   }
 409 }
 410 
 411 // Call this method during the sizing of the gen1 to make
 412 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 413 // the most freedom in sizing because it is done before the
 414 // policy for gen1 is applied.  Once gen1 policies have been applied,
 415 // there may be conflicts in the shape of the heap and this method
 416 // is used to make the needed adjustments.  The application of the
 417 // policies could be more sophisticated (iterative for example) but
 418 // keeping it simple also seems a worthwhile goal.
 419 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 420                                                      size_t* gen1_size_ptr,
 421                                                      size_t heap_size,
 422                                                      size_t min_gen0_size) {
 423   bool result = false;
 424   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 425     if (((*gen0_size_ptr + OldSize) > heap_size) &&
 426        (heap_size - min_gen0_size) >= min_alignment()) {
 427       // Adjust gen0 down to accomodate OldSize
 428       *gen0_size_ptr = heap_size - min_gen0_size;
 429       *gen0_size_ptr =
 430         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 431              min_alignment());
 432       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 433       result = true;
 434     } else {
 435       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 436       *gen1_size_ptr =
 437         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 438                        min_alignment());
 439     }
 440   }
 441   return result;
 442 }
 443 
 444 // Minimum sizes of the generations may be different than
 445 // the initial sizes.  An inconsistently is permitted here
 446 // in the total size that can be specified explicitly by
 447 // command line specification of OldSize and NewSize and
 448 // also a command line specification of -Xms.  Issue a warning
 449 // but allow the values to pass.
 450 
 451 void TwoGenerationCollectorPolicy::initialize_size_info() {
 452   GenCollectorPolicy::initialize_size_info();
 453 
 454   // At this point the minimum, initial and maximum sizes
 455   // of the overall heap and of gen0 have been determined.
 456   // The maximum gen1 size can be determined from the maximum gen0
 457   // and maximum heap size since no explicit flags exits
 458   // for setting the gen1 maximum.
 459   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 460   _max_gen1_size =
 461     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 462          min_alignment());
 463   // If no explicit command line flag has been set for the
 464   // gen1 size, use what is left for gen1.
 465   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 466     // The user has not specified any value or ergonomics
 467     // has chosen a value (which may or may not be consistent
 468     // with the overall heap size).  In either case make
 469     // the minimum, maximum and initial sizes consistent
 470     // with the gen0 sizes and the overall heap sizes.
 471     assert(min_heap_byte_size() > _min_gen0_size,
 472       "gen0 has an unexpected minimum size");
 473     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 474     set_min_gen1_size(
 475       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 476            min_alignment()));
 477     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 478     set_initial_gen1_size(
 479       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 480            min_alignment()));
 481 
 482   } else {
 483     // It's been explicitly set on the command line.  Use the
 484     // OldSize and then determine the consequences.
 485     set_min_gen1_size(OldSize);
 486     set_initial_gen1_size(OldSize);
 487 
 488     // If the user has explicitly set an OldSize that is inconsistent
 489     // with other command line flags, issue a warning.
 490     // The generation minimums and the overall heap mimimum should
 491     // be within one heap alignment.
 492     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 493            min_heap_byte_size()) {
 494       warning("Inconsistency between minimum heap size and minimum "
 495           "generation sizes: using minimum heap = " SIZE_FORMAT,
 496           min_heap_byte_size());
 497     }
 498     if ((OldSize > _max_gen1_size)) {
 499       warning("Inconsistency between maximum heap size and maximum "
 500           "generation sizes: using maximum heap = " SIZE_FORMAT
 501           " -XX:OldSize flag is being ignored",
 502           max_heap_byte_size());
 503     }
 504     // If there is an inconsistency between the OldSize and the minimum and/or
 505     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 506     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 507                           min_heap_byte_size(), OldSize)) {
 508       if (PrintGCDetails && Verbose) {
 509         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 510               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 511               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 512       }
 513     }
 514     // Initial size
 515     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 516                          initial_heap_byte_size(), OldSize)) {
 517       if (PrintGCDetails && Verbose) {
 518         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 519           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 520           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 521       }
 522     }
 523   }
 524   // Enforce the maximum gen1 size.
 525   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 526 
 527   // Check that min gen1 <= initial gen1 <= max gen1
 528   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 529   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 530 
 531   if (PrintGCDetails && Verbose) {
 532     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 533       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 534       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 535   }
 536 }
 537 
 538 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 539                                         bool is_tlab,
 540                                         bool* gc_overhead_limit_was_exceeded) {
 541   GenCollectedHeap *gch = GenCollectedHeap::heap();
 542 
 543   debug_only(gch->check_for_valid_allocation_state());
 544   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 545 
 546   // In general gc_overhead_limit_was_exceeded should be false so
 547   // set it so here and reset it to true only if the gc time
 548   // limit is being exceeded as checked below.
 549   *gc_overhead_limit_was_exceeded = false;
 550 
 551   HeapWord* result = NULL;
 552 
 553   // Loop until the allocation is satisified,
 554   // or unsatisfied after GC.
 555   for (int try_count = 1; /* return or throw */; try_count += 1) {
 556     HandleMark hm; // discard any handles allocated in each iteration
 557 
 558     // First allocation attempt is lock-free.
 559     Generation *gen0 = gch->get_gen(0);
 560     assert(gen0->supports_inline_contig_alloc(),
 561       "Otherwise, must do alloc within heap lock");
 562     if (gen0->should_allocate(size, is_tlab)) {
 563       result = gen0->par_allocate(size, is_tlab);
 564       if (result != NULL) {
 565         assert(gch->is_in_reserved(result), "result not in heap");
 566         return result;
 567       }
 568     }
 569     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 570     {
 571       MutexLocker ml(Heap_lock);
 572       if (PrintGC && Verbose) {
 573         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 574                       " attempting locked slow path allocation");
 575       }
 576       // Note that only large objects get a shot at being
 577       // allocated in later generations.
 578       bool first_only = ! should_try_older_generation_allocation(size);
 579 
 580       result = gch->attempt_allocation(size, is_tlab, first_only);
 581       if (result != NULL) {
 582         assert(gch->is_in_reserved(result), "result not in heap");
 583         return result;
 584       }
 585 
 586       if (GC_locker::is_active_and_needs_gc()) {
 587         if (is_tlab) {
 588           return NULL;  // Caller will retry allocating individual object
 589         }
 590         if (!gch->is_maximal_no_gc()) {
 591           // Try and expand heap to satisfy request
 592           result = expand_heap_and_allocate(size, is_tlab);
 593           // result could be null if we are out of space
 594           if (result != NULL) {
 595             return result;
 596           }
 597         }
 598 
 599         // If this thread is not in a jni critical section, we stall
 600         // the requestor until the critical section has cleared and
 601         // GC allowed. When the critical section clears, a GC is
 602         // initiated by the last thread exiting the critical section; so
 603         // we retry the allocation sequence from the beginning of the loop,
 604         // rather than causing more, now probably unnecessary, GC attempts.
 605         JavaThread* jthr = JavaThread::current();
 606         if (!jthr->in_critical()) {
 607           MutexUnlocker mul(Heap_lock);
 608           // Wait for JNI critical section to be exited
 609           GC_locker::stall_until_clear();
 610           continue;
 611         } else {
 612           if (CheckJNICalls) {
 613             fatal("Possible deadlock due to allocating while"
 614                   " in jni critical section");
 615           }
 616           return NULL;
 617         }
 618       }
 619 
 620       // Read the gc count while the heap lock is held.
 621       gc_count_before = Universe::heap()->total_collections();
 622     }
 623 
 624     VM_GenCollectForAllocation op(size,
 625                                   is_tlab,
 626                                   gc_count_before);
 627     VMThread::execute(&op);
 628     if (op.prologue_succeeded()) {
 629       result = op.result();
 630       if (op.gc_locked()) {
 631          assert(result == NULL, "must be NULL if gc_locked() is true");
 632          continue;  // retry and/or stall as necessary
 633       }
 634 
 635       // Allocation has failed and a collection
 636       // has been done.  If the gc time limit was exceeded the
 637       // this time, return NULL so that an out-of-memory
 638       // will be thrown.  Clear gc_overhead_limit_exceeded
 639       // so that the overhead exceeded does not persist.
 640 
 641       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 642       const bool softrefs_clear = all_soft_refs_clear();
 643       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
 644       if (limit_exceeded && softrefs_clear) {
 645         *gc_overhead_limit_was_exceeded = true;
 646         size_policy()->set_gc_overhead_limit_exceeded(false);
 647         if (op.result() != NULL) {
 648           CollectedHeap::fill_with_object(op.result(), size);
 649         }
 650         return NULL;
 651       }
 652       assert(result == NULL || gch->is_in_reserved(result),
 653              "result not in heap");
 654       return result;
 655     }
 656 
 657     // Give a warning if we seem to be looping forever.
 658     if ((QueuedAllocationWarningCount > 0) &&
 659         (try_count % QueuedAllocationWarningCount == 0)) {
 660           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 661                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 662     }
 663   }
 664 }
 665 
 666 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 667                                                        bool   is_tlab) {
 668   GenCollectedHeap *gch = GenCollectedHeap::heap();
 669   HeapWord* result = NULL;
 670   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 671     Generation *gen = gch->get_gen(i);
 672     if (gen->should_allocate(size, is_tlab)) {
 673       result = gen->expand_and_allocate(size, is_tlab);
 674     }
 675   }
 676   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 677   return result;
 678 }
 679 
 680 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 681                                                         bool   is_tlab) {
 682   GenCollectedHeap *gch = GenCollectedHeap::heap();
 683   GCCauseSetter x(gch, GCCause::_allocation_failure);
 684   HeapWord* result = NULL;
 685 
 686   assert(size != 0, "Precondition violated");
 687   if (GC_locker::is_active_and_needs_gc()) {
 688     // GC locker is active; instead of a collection we will attempt
 689     // to expand the heap, if there's room for expansion.
 690     if (!gch->is_maximal_no_gc()) {
 691       result = expand_heap_and_allocate(size, is_tlab);
 692     }
 693     return result;   // could be null if we are out of space
 694   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 695     // Do an incremental collection.
 696     gch->do_collection(false            /* full */,
 697                        false            /* clear_all_soft_refs */,
 698                        size             /* size */,
 699                        is_tlab          /* is_tlab */,
 700                        number_of_generations() - 1 /* max_level */);
 701   } else {
 702     if (Verbose && PrintGCDetails) {
 703       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 704     }
 705     // Try a full collection; see delta for bug id 6266275
 706     // for the original code and why this has been simplified
 707     // with from-space allocation criteria modified and
 708     // such allocation moved out of the safepoint path.
 709     gch->do_collection(true             /* full */,
 710                        false            /* clear_all_soft_refs */,
 711                        size             /* size */,
 712                        is_tlab          /* is_tlab */,
 713                        number_of_generations() - 1 /* max_level */);
 714   }
 715 
 716   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 717 
 718   if (result != NULL) {
 719     assert(gch->is_in_reserved(result), "result not in heap");
 720     return result;
 721   }
 722 
 723   // OK, collection failed, try expansion.
 724   result = expand_heap_and_allocate(size, is_tlab);
 725   if (result != NULL) {
 726     return result;
 727   }
 728 
 729   // If we reach this point, we're really out of memory. Try every trick
 730   // we can to reclaim memory. Force collection of soft references. Force
 731   // a complete compaction of the heap. Any additional methods for finding
 732   // free memory should be here, especially if they are expensive. If this
 733   // attempt fails, an OOM exception will be thrown.
 734   {
 735     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 736 
 737     gch->do_collection(true             /* full */,
 738                        true             /* clear_all_soft_refs */,
 739                        size             /* size */,
 740                        is_tlab          /* is_tlab */,
 741                        number_of_generations() - 1 /* max_level */);
 742   }
 743 
 744   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 745   if (result != NULL) {
 746     assert(gch->is_in_reserved(result), "result not in heap");
 747     return result;
 748   }
 749 
 750   assert(!should_clear_all_soft_refs(),
 751     "Flag should have been handled and cleared prior to this point");
 752 
 753   // What else?  We might try synchronous finalization later.  If the total
 754   // space available is large enough for the allocation, then a more
 755   // complete compaction phase than we've tried so far might be
 756   // appropriate.
 757   return NULL;
 758 }
 759 
 760 // Return true if any of the following is true:
 761 // . the allocation won't fit into the current young gen heap
 762 // . gc locker is occupied (jni critical section)
 763 // . heap memory is tight -- the most recent previous collection
 764 //   was a full collection because a partial collection (would
 765 //   have) failed and is likely to fail again
 766 bool GenCollectorPolicy::should_try_older_generation_allocation(
 767         size_t word_size) const {
 768   GenCollectedHeap* gch = GenCollectedHeap::heap();
 769   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 770   return    (word_size > heap_word_size(gen0_capacity))
 771          || GC_locker::is_active_and_needs_gc()
 772          || gch->incremental_collection_failed();
 773 }
 774 
 775 
 776 //
 777 // MarkSweepPolicy methods
 778 //
 779 
 780 MarkSweepPolicy::MarkSweepPolicy() {
 781   initialize_all();
 782 }
 783 
 784 void MarkSweepPolicy::initialize_generations() {
 785   initialize_perm_generation(PermGen::MarkSweepCompact);
 786   _generations = new GenerationSpecPtr[number_of_generations()];
 787   if (_generations == NULL)
 788     vm_exit_during_initialization("Unable to allocate gen spec");
 789 
 790   if (UseParNewGC && ParallelGCThreads > 0) {
 791     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 792   } else {
 793     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 794   }
 795   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 796 
 797   if (_generations[0] == NULL || _generations[1] == NULL)
 798     vm_exit_during_initialization("Unable to allocate gen spec");
 799 }
 800 
 801 void MarkSweepPolicy::initialize_gc_policy_counters() {
 802   // initialize the policy counters - 2 collectors, 3 generations
 803   if (UseParNewGC && ParallelGCThreads > 0) {
 804     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 805   }
 806   else {
 807     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 808   }
 809 }