1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTraceTime.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "memory/compactPermGen.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/permGen.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/sharedHeap.hpp"
  44 #include "memory/space.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/oop.inline2.hpp"
  47 #include "runtime/aprofiler.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "services/memTracker.hpp"
  56 #include "utilities/vmError.hpp"
  57 #include "utilities/workgroup.hpp"
  58 #ifndef SERIALGC
  59 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  60 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  61 #endif
  62 
  63 GenCollectedHeap* GenCollectedHeap::_gch;
  64 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  65 
  66 // The set of potentially parallel tasks in strong root scanning.
  67 enum GCH_process_strong_roots_tasks {
  68   // We probably want to parallelize both of these internally, but for now...
  69   GCH_PS_younger_gens,
  70   // Leave this one last.
  71   GCH_PS_NumElements
  72 };
  73 
  74 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  75   SharedHeap(policy),
  76   _gen_policy(policy),
  77   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  78   _full_collections_completed(0)
  79 {
  80   if (_gen_process_strong_tasks == NULL ||
  81       !_gen_process_strong_tasks->valid()) {
  82     vm_exit_during_initialization("Failed necessary allocation.");
  83   }
  84   assert(policy != NULL, "Sanity check");
  85   _preloading_shared_classes = false;
  86 }
  87 
  88 jint GenCollectedHeap::initialize() {
  89   CollectedHeap::pre_initialize();
  90 
  91   int i;
  92   _n_gens = gen_policy()->number_of_generations();
  93 
  94   // While there are no constraints in the GC code that HeapWordSize
  95   // be any particular value, there are multiple other areas in the
  96   // system which believe this to be true (e.g. oop->object_size in some
  97   // cases incorrectly returns the size in wordSize units rather than
  98   // HeapWordSize).
  99   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 100 
 101   // The heap must be at least as aligned as generations.
 102   size_t gen_alignment = Generation::GenGrain;
 103 
 104   _gen_specs = gen_policy()->generations();
 105   PermanentGenerationSpec *perm_gen_spec =
 106                                 collector_policy()->permanent_generation();
 107 
 108   size_t heap_alignment = collector_policy()->max_alignment();
 109 
 110   // Make sure the sizes are all aligned.
 111   for (i = 0; i < _n_gens; i++) {
 112     _gen_specs[i]->align(gen_alignment);
 113   }
 114   perm_gen_spec->align(heap_alignment);
 115 
 116   // If we are dumping the heap, then allocate a wasted block of address
 117   // space in order to push the heap to a lower address.  This extra
 118   // address range allows for other (or larger) libraries to be loaded
 119   // without them occupying the space required for the shared spaces.
 120 
 121   if (DumpSharedSpaces) {
 122     uintx reserved = 0;
 123     uintx block_size = 64*1024*1024;
 124     while (reserved < SharedDummyBlockSize) {
 125       char* dummy = os::reserve_memory(block_size);
 126       reserved += block_size;
 127     }
 128   }
 129 
 130   // Allocate space for the heap.
 131 
 132   char* heap_address;
 133   size_t total_reserved = 0;
 134   int n_covered_regions = 0;
 135   ReservedSpace heap_rs;
 136 
 137   heap_address = allocate(heap_alignment, perm_gen_spec, &total_reserved,
 138                           &n_covered_regions, &heap_rs);
 139 
 140   if (UseSharedSpaces) {
 141     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
 142       if (heap_rs.is_reserved()) {
 143         heap_rs.release();
 144       }
 145       FileMapInfo* mapinfo = FileMapInfo::current_info();
 146       mapinfo->fail_continue("Unable to reserve shared region.");
 147       allocate(heap_alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
 148                &heap_rs);
 149     }
 150   }
 151 
 152   if (!heap_rs.is_reserved()) {
 153     vm_shutdown_during_initialization(
 154       "Could not reserve enough space for object heap");
 155     return JNI_ENOMEM;
 156   }
 157 
 158   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 159                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 160 
 161   // It is important to do this in a way such that concurrent readers can't
 162   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
 163   _reserved.set_word_size(0);
 164   _reserved.set_start((HeapWord*)heap_rs.base());
 165   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
 166                                            - perm_gen_spec->misc_code_size();
 167   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 168 
 169   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 170   set_barrier_set(rem_set()->bs());
 171 
 172   _gch = this;
 173 
 174   for (i = 0; i < _n_gens; i++) {
 175     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
 176                                               UseSharedSpaces, UseSharedSpaces);
 177     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 178     // tag generations in JavaHeap
 179     MemTracker::record_virtual_memory_type((address)this_rs.base(), mtJavaHeap);
 180     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 181   }
 182   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
 183   // tag PermGen
 184   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
 185 
 186   clear_incremental_collection_failed();
 187 
 188 #ifndef SERIALGC
 189   // If we are running CMS, create the collector responsible
 190   // for collecting the CMS generations.
 191   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 192     bool success = create_cms_collector();
 193     if (!success) return JNI_ENOMEM;
 194   }
 195 #endif // SERIALGC
 196 
 197   return JNI_OK;
 198 }
 199 
 200 
 201 char* GenCollectedHeap::allocate(size_t alignment,
 202                                  PermanentGenerationSpec* perm_gen_spec,
 203                                  size_t* _total_reserved,
 204                                  int* _n_covered_regions,
 205                                  ReservedSpace* heap_rs){
 206   // Now figure out the total size.
 207   size_t total_reserved = 0;
 208   int n_covered_regions = 0;
 209   const size_t pageSize = UseLargePages ?
 210       os::large_page_size() : os::vm_page_size();
 211 
 212   assert(alignment % pageSize == 0, "Must be");
 213 
 214   for (int i = 0; i < _n_gens; i++) {
 215     total_reserved = add_and_check_overflow(total_reserved, _gen_specs[i]->max_size());
 216     n_covered_regions += _gen_specs[i]->n_covered_regions();
 217   }
 218 
 219   assert(total_reserved % alignment == 0,
 220          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 221                  SIZE_FORMAT, total_reserved, alignment));
 222   total_reserved = add_and_check_overflow(total_reserved, perm_gen_spec->max_size());
 223   assert(total_reserved % alignment == 0,
 224          err_msg("Perm size; total_reserved=" SIZE_FORMAT ", alignment="
 225                  SIZE_FORMAT ", perm gen max=" SIZE_FORMAT, total_reserved,
 226                  alignment, perm_gen_spec->max_size()));
 227 
 228   n_covered_regions += perm_gen_spec->n_covered_regions();
 229 
 230   // Add the size of the data area which shares the same reserved area
 231   // as the heap, but which is not actually part of the heap.
 232   size_t misc = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
 233   total_reserved = add_and_check_overflow(total_reserved, misc);
 234 
 235   if (UseLargePages) {
 236     assert(misc == 0, "CDS does not support Large Pages");
 237     assert(total_reserved != 0, "total_reserved cannot be 0");
 238     assert(is_size_aligned(total_reserved, os::large_page_size()), "Must be");
 239     total_reserved = round_up_and_check_overflow(total_reserved, os::large_page_size());
 240   }
 241 
 242   // Calculate the address at which the heap must reside in order for
 243   // the shared data to be at the required address.
 244 
 245   char* heap_address;
 246   if (UseSharedSpaces) {
 247 
 248     // Calculate the address of the first word beyond the heap.
 249     FileMapInfo* mapinfo = FileMapInfo::current_info();
 250     int lr = CompactingPermGenGen::n_regions - 1;
 251     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
 252     heap_address = mapinfo->region_base(lr) + capacity;
 253 
 254     // Calculate the address of the first word of the heap.
 255     heap_address -= total_reserved;
 256   } else {
 257     heap_address = NULL;  // any address will do.
 258     if (UseCompressedOops) {
 259       heap_address = Universe::preferred_heap_base(total_reserved, alignment, Universe::UnscaledNarrowOop);
 260       *_total_reserved = total_reserved;
 261       *_n_covered_regions = n_covered_regions;
 262       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 263                                    UseLargePages, heap_address);
 264 
 265       if (heap_address != NULL && !heap_rs->is_reserved()) {
 266         // Failed to reserve at specified address - the requested memory
 267         // region is taken already, for example, by 'java' launcher.
 268         // Try again to reserver heap higher.
 269         heap_address = Universe::preferred_heap_base(total_reserved, alignment, Universe::ZeroBasedNarrowOop);
 270         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 271                                      UseLargePages, heap_address);
 272 
 273         if (heap_address != NULL && !heap_rs->is_reserved()) {
 274           // Failed to reserve at specified address again - give up.
 275           heap_address = Universe::preferred_heap_base(total_reserved, alignment, Universe::HeapBasedNarrowOop);
 276           assert(heap_address == NULL, "");
 277           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 278                                        UseLargePages, heap_address);
 279         }
 280       }
 281       return heap_address;
 282     }
 283   }
 284 
 285   *_total_reserved = total_reserved;
 286   *_n_covered_regions = n_covered_regions;
 287   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 288                                UseLargePages, heap_address);
 289 
 290   return heap_address;
 291 }
 292 
 293 
 294 void GenCollectedHeap::post_initialize() {
 295   SharedHeap::post_initialize();
 296   TwoGenerationCollectorPolicy *policy =
 297     (TwoGenerationCollectorPolicy *)collector_policy();
 298   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
 299   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 300   assert(def_new_gen->kind() == Generation::DefNew ||
 301          def_new_gen->kind() == Generation::ParNew ||
 302          def_new_gen->kind() == Generation::ASParNew,
 303          "Wrong generation kind");
 304 
 305   Generation* old_gen = get_gen(1);
 306   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 307          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
 308          old_gen->kind() == Generation::MarkSweepCompact,
 309     "Wrong generation kind");
 310 
 311   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 312                                  old_gen->capacity(),
 313                                  def_new_gen->from()->capacity());
 314   policy->initialize_gc_policy_counters();
 315 }
 316 
 317 void GenCollectedHeap::ref_processing_init() {
 318   SharedHeap::ref_processing_init();
 319   for (int i = 0; i < _n_gens; i++) {
 320     _gens[i]->ref_processor_init();
 321   }
 322 }
 323 
 324 size_t GenCollectedHeap::capacity() const {
 325   size_t res = 0;
 326   for (int i = 0; i < _n_gens; i++) {
 327     res += _gens[i]->capacity();
 328   }
 329   return res;
 330 }
 331 
 332 size_t GenCollectedHeap::used() const {
 333   size_t res = 0;
 334   for (int i = 0; i < _n_gens; i++) {
 335     res += _gens[i]->used();
 336   }
 337   return res;
 338 }
 339 
 340 // Save the "used_region" for generations level and lower,
 341 // and, if perm is true, for perm gen.
 342 void GenCollectedHeap::save_used_regions(int level, bool perm) {
 343   assert(level < _n_gens, "Illegal level parameter");
 344   for (int i = level; i >= 0; i--) {
 345     _gens[i]->save_used_region();
 346   }
 347   if (perm) {
 348     perm_gen()->save_used_region();
 349   }
 350 }
 351 
 352 size_t GenCollectedHeap::max_capacity() const {
 353   size_t res = 0;
 354   for (int i = 0; i < _n_gens; i++) {
 355     res += _gens[i]->max_capacity();
 356   }
 357   return res;
 358 }
 359 
 360 // Update the _full_collections_completed counter
 361 // at the end of a stop-world full GC.
 362 unsigned int GenCollectedHeap::update_full_collections_completed() {
 363   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 364   assert(_full_collections_completed <= _total_full_collections,
 365          "Can't complete more collections than were started");
 366   _full_collections_completed = _total_full_collections;
 367   ml.notify_all();
 368   return _full_collections_completed;
 369 }
 370 
 371 // Update the _full_collections_completed counter, as appropriate,
 372 // at the end of a concurrent GC cycle. Note the conditional update
 373 // below to allow this method to be called by a concurrent collector
 374 // without synchronizing in any manner with the VM thread (which
 375 // may already have initiated a STW full collection "concurrently").
 376 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 377   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 378   assert((_full_collections_completed <= _total_full_collections) &&
 379          (count <= _total_full_collections),
 380          "Can't complete more collections than were started");
 381   if (count > _full_collections_completed) {
 382     _full_collections_completed = count;
 383     ml.notify_all();
 384   }
 385   return _full_collections_completed;
 386 }
 387 
 388 
 389 #ifndef PRODUCT
 390 // Override of memory state checking method in CollectedHeap:
 391 // Some collectors (CMS for example) can't have badHeapWordVal written
 392 // in the first two words of an object. (For instance , in the case of
 393 // CMS these words hold state used to synchronize between certain
 394 // (concurrent) GC steps and direct allocating mutators.)
 395 // The skip_header_HeapWords() method below, allows us to skip
 396 // over the requisite number of HeapWord's. Note that (for
 397 // generational collectors) this means that those many words are
 398 // skipped in each object, irrespective of the generation in which
 399 // that object lives. The resultant loss of precision seems to be
 400 // harmless and the pain of avoiding that imprecision appears somewhat
 401 // higher than we are prepared to pay for such rudimentary debugging
 402 // support.
 403 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 404                                                          size_t size) {
 405   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 406     // We are asked to check a size in HeapWords,
 407     // but the memory is mangled in juint words.
 408     juint* start = (juint*) (addr + skip_header_HeapWords());
 409     juint* end   = (juint*) (addr + size);
 410     for (juint* slot = start; slot < end; slot += 1) {
 411       assert(*slot == badHeapWordVal,
 412              "Found non badHeapWordValue in pre-allocation check");
 413     }
 414   }
 415 }
 416 #endif
 417 
 418 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 419                                                bool is_tlab,
 420                                                bool first_only) {
 421   HeapWord* res;
 422   for (int i = 0; i < _n_gens; i++) {
 423     if (_gens[i]->should_allocate(size, is_tlab)) {
 424       res = _gens[i]->allocate(size, is_tlab);
 425       if (res != NULL) return res;
 426       else if (first_only) break;
 427     }
 428   }
 429   // Otherwise...
 430   return NULL;
 431 }
 432 
 433 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 434                                          bool* gc_overhead_limit_was_exceeded) {
 435   return collector_policy()->mem_allocate_work(size,
 436                                                false /* is_tlab */,
 437                                                gc_overhead_limit_was_exceeded);
 438 }
 439 
 440 bool GenCollectedHeap::must_clear_all_soft_refs() {
 441   return _gc_cause == GCCause::_last_ditch_collection;
 442 }
 443 
 444 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 445   return UseConcMarkSweepGC &&
 446          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 447           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 448 }
 449 
 450 void GenCollectedHeap::do_collection(bool  full,
 451                                      bool   clear_all_soft_refs,
 452                                      size_t size,
 453                                      bool   is_tlab,
 454                                      int    max_level) {
 455   bool prepared_for_verification = false;
 456   ResourceMark rm;
 457   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 458 
 459   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 460   assert(my_thread->is_VM_thread() ||
 461          my_thread->is_ConcurrentGC_thread(),
 462          "incorrect thread type capability");
 463   assert(Heap_lock->is_locked(),
 464          "the requesting thread should have the Heap_lock");
 465   guarantee(!is_gc_active(), "collection is not reentrant");
 466   assert(max_level < n_gens(), "sanity check");
 467 
 468   if (GC_locker::check_active_before_gc()) {
 469     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 470   }
 471 
 472   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 473                           collector_policy()->should_clear_all_soft_refs();
 474 
 475   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 476 
 477   const size_t perm_prev_used = perm_gen()->used();
 478 
 479   print_heap_before_gc();
 480 
 481   {
 482     FlagSetting fl(_is_gc_active, true);
 483 
 484     bool complete = full && (max_level == (n_gens()-1));
 485     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 486     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 487     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
 488 
 489     gc_prologue(complete);
 490     increment_total_collections(complete);
 491 
 492     size_t gch_prev_used = used();
 493 
 494     int starting_level = 0;
 495     if (full) {
 496       // Search for the oldest generation which will collect all younger
 497       // generations, and start collection loop there.
 498       for (int i = max_level; i >= 0; i--) {
 499         if (_gens[i]->full_collects_younger_generations()) {
 500           starting_level = i;
 501           break;
 502         }
 503       }
 504     }
 505 
 506     bool must_restore_marks_for_biased_locking = false;
 507 
 508     int max_level_collected = starting_level;
 509     for (int i = starting_level; i <= max_level; i++) {
 510       if (_gens[i]->should_collect(full, size, is_tlab)) {
 511         if (i == n_gens() - 1) {  // a major collection is to happen
 512           if (!complete) {
 513             // The full_collections increment was missed above.
 514             increment_total_full_collections();
 515           }
 516           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 517         }
 518         // Timer for individual generations. Last argument is false: no CR
 519         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 520         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
 521         TraceCollectorStats tcs(_gens[i]->counters());
 522         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 523 
 524         size_t prev_used = _gens[i]->used();
 525         _gens[i]->stat_record()->invocations++;
 526         _gens[i]->stat_record()->accumulated_time.start();
 527 
 528         // Must be done anew before each collection because
 529         // a previous collection will do mangling and will
 530         // change top of some spaces.
 531         record_gen_tops_before_GC();
 532 
 533         if (PrintGC && Verbose) {
 534           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 535                      i,
 536                      _gens[i]->stat_record()->invocations,
 537                      size*HeapWordSize);
 538         }
 539 
 540         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 541             total_collections() >= VerifyGCStartAt) {
 542           HandleMark hm;  // Discard invalid handles created during verification
 543           if (!prepared_for_verification) {
 544             prepare_for_verify();
 545             prepared_for_verification = true;
 546           }
 547           gclog_or_tty->print(" VerifyBeforeGC:");
 548           Universe::verify();
 549         }
 550         COMPILER2_PRESENT(DerivedPointerTable::clear());
 551 
 552         if (!must_restore_marks_for_biased_locking &&
 553             _gens[i]->performs_in_place_marking()) {
 554           // We perform this mark word preservation work lazily
 555           // because it's only at this point that we know whether we
 556           // absolutely have to do it; we want to avoid doing it for
 557           // scavenge-only collections where it's unnecessary
 558           must_restore_marks_for_biased_locking = true;
 559           BiasedLocking::preserve_marks();
 560         }
 561 
 562         // Do collection work
 563         {
 564           // Note on ref discovery: For what appear to be historical reasons,
 565           // GCH enables and disabled (by enqueing) refs discovery.
 566           // In the future this should be moved into the generation's
 567           // collect method so that ref discovery and enqueueing concerns
 568           // are local to a generation. The collect method could return
 569           // an appropriate indication in the case that notification on
 570           // the ref lock was needed. This will make the treatment of
 571           // weak refs more uniform (and indeed remove such concerns
 572           // from GCH). XXX
 573 
 574           HandleMark hm;  // Discard invalid handles created during gc
 575           save_marks();   // save marks for all gens
 576           // We want to discover references, but not process them yet.
 577           // This mode is disabled in process_discovered_references if the
 578           // generation does some collection work, or in
 579           // enqueue_discovered_references if the generation returns
 580           // without doing any work.
 581           ReferenceProcessor* rp = _gens[i]->ref_processor();
 582           // If the discovery of ("weak") refs in this generation is
 583           // atomic wrt other collectors in this configuration, we
 584           // are guaranteed to have empty discovered ref lists.
 585           if (rp->discovery_is_atomic()) {
 586             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 587             rp->setup_policy(do_clear_all_soft_refs);
 588           } else {
 589             // collect() below will enable discovery as appropriate
 590           }
 591           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 592           if (!rp->enqueuing_is_done()) {
 593             rp->enqueue_discovered_references();
 594           } else {
 595             rp->set_enqueuing_is_done(false);
 596           }
 597           rp->verify_no_references_recorded();
 598         }
 599         max_level_collected = i;
 600 
 601         // Determine if allocation request was met.
 602         if (size > 0) {
 603           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 604             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 605               size = 0;
 606             }
 607           }
 608         }
 609 
 610         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 611 
 612         _gens[i]->stat_record()->accumulated_time.stop();
 613 
 614         update_gc_stats(i, full);
 615 
 616         if (VerifyAfterGC && i >= VerifyGCLevel &&
 617             total_collections() >= VerifyGCStartAt) {
 618           HandleMark hm;  // Discard invalid handles created during verification
 619           gclog_or_tty->print(" VerifyAfterGC:");
 620           Universe::verify();
 621         }
 622 
 623         if (PrintGCDetails) {
 624           gclog_or_tty->print(":");
 625           _gens[i]->print_heap_change(prev_used);
 626         }
 627       }
 628     }
 629 
 630     // Update "complete" boolean wrt what actually transpired --
 631     // for instance, a promotion failure could have led to
 632     // a whole heap collection.
 633     complete = complete || (max_level_collected == n_gens() - 1);
 634 
 635     if (complete) { // We did a "major" collection
 636       // FIXME: See comment at pre_full_gc_dump call
 637       post_full_gc_dump(NULL);   // do any post full gc dumps
 638     }
 639 
 640     if (PrintGCDetails) {
 641       print_heap_change(gch_prev_used);
 642 
 643       // Print perm gen info for full GC with PrintGCDetails flag.
 644       if (complete) {
 645         print_perm_heap_change(perm_prev_used);
 646       }
 647     }
 648 
 649     for (int j = max_level_collected; j >= 0; j -= 1) {
 650       // Adjust generation sizes.
 651       _gens[j]->compute_new_size();
 652     }
 653 
 654     if (complete) {
 655       // Ask the permanent generation to adjust size for full collections
 656       perm()->compute_new_size();
 657       update_full_collections_completed();
 658     }
 659 
 660     // Track memory usage and detect low memory after GC finishes
 661     MemoryService::track_memory_usage();
 662 
 663     gc_epilogue(complete);
 664 
 665     if (must_restore_marks_for_biased_locking) {
 666       BiasedLocking::restore_marks();
 667     }
 668   }
 669 
 670   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
 671   AdaptiveSizePolicyOutput(sp, total_collections());
 672 
 673   print_heap_after_gc();
 674 
 675 #ifdef TRACESPINNING
 676   ParallelTaskTerminator::print_termination_counts();
 677 #endif
 678 }
 679 
 680 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 681   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 682 }
 683 
 684 void GenCollectedHeap::set_par_threads(uint t) {
 685   SharedHeap::set_par_threads(t);
 686   _gen_process_strong_tasks->set_n_threads(t);
 687 }
 688 
 689 void GenCollectedHeap::
 690 gen_process_strong_roots(int level,
 691                          bool younger_gens_as_roots,
 692                          bool activate_scope,
 693                          bool collecting_perm_gen,
 694                          SharedHeap::ScanningOption so,
 695                          OopsInGenClosure* not_older_gens,
 696                          bool do_code_roots,
 697                          OopsInGenClosure* older_gens) {
 698   // General strong roots.
 699 
 700   if (!do_code_roots) {
 701     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
 702                                      not_older_gens, NULL, older_gens);
 703   } else {
 704     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
 705     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
 706     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
 707                                      not_older_gens, &code_roots, older_gens);
 708   }
 709 
 710   if (younger_gens_as_roots) {
 711     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 712       for (int i = 0; i < level; i++) {
 713         not_older_gens->set_generation(_gens[i]);
 714         _gens[i]->oop_iterate(not_older_gens);
 715       }
 716       not_older_gens->reset_generation();
 717     }
 718   }
 719   // When collection is parallel, all threads get to cooperate to do
 720   // older-gen scanning.
 721   for (int i = level+1; i < _n_gens; i++) {
 722     older_gens->set_generation(_gens[i]);
 723     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 724     older_gens->reset_generation();
 725   }
 726 
 727   _gen_process_strong_tasks->all_tasks_completed();
 728 }
 729 
 730 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
 731                                               CodeBlobClosure* code_roots,
 732                                               OopClosure* non_root_closure) {
 733   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
 734   // "Local" "weak" refs
 735   for (int i = 0; i < _n_gens; i++) {
 736     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 737   }
 738 }
 739 
 740 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 741 void GenCollectedHeap::                                                 \
 742 oop_since_save_marks_iterate(int level,                                 \
 743                              OopClosureType* cur,                       \
 744                              OopClosureType* older) {                   \
 745   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 746   for (int i = level+1; i < n_gens(); i++) {                            \
 747     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 748   }                                                                     \
 749   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
 750 }
 751 
 752 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 753 
 754 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 755 
 756 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 757   for (int i = level; i < _n_gens; i++) {
 758     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 759   }
 760   return perm_gen()->no_allocs_since_save_marks();
 761 }
 762 
 763 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 764   return _gens[0]->supports_inline_contig_alloc();
 765 }
 766 
 767 HeapWord** GenCollectedHeap::top_addr() const {
 768   return _gens[0]->top_addr();
 769 }
 770 
 771 HeapWord** GenCollectedHeap::end_addr() const {
 772   return _gens[0]->end_addr();
 773 }
 774 
 775 size_t GenCollectedHeap::unsafe_max_alloc() {
 776   return _gens[0]->unsafe_max_alloc_nogc();
 777 }
 778 
 779 // public collection interfaces
 780 
 781 void GenCollectedHeap::collect(GCCause::Cause cause) {
 782   if (should_do_concurrent_full_gc(cause)) {
 783 #ifndef SERIALGC
 784     // mostly concurrent full collection
 785     collect_mostly_concurrent(cause);
 786 #else  // SERIALGC
 787     ShouldNotReachHere();
 788 #endif // SERIALGC
 789   } else {
 790 #ifdef ASSERT
 791     if (cause == GCCause::_scavenge_alot) {
 792       // minor collection only
 793       collect(cause, 0);
 794     } else {
 795       // Stop-the-world full collection
 796       collect(cause, n_gens() - 1);
 797     }
 798 #else
 799     // Stop-the-world full collection
 800     collect(cause, n_gens() - 1);
 801 #endif
 802   }
 803 }
 804 
 805 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 806   // The caller doesn't have the Heap_lock
 807   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 808   MutexLocker ml(Heap_lock);
 809   collect_locked(cause, max_level);
 810 }
 811 
 812 // This interface assumes that it's being called by the
 813 // vm thread. It collects the heap assuming that the
 814 // heap lock is already held and that we are executing in
 815 // the context of the vm thread.
 816 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 817   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 818   assert(Heap_lock->is_locked(), "Precondition#2");
 819   GCCauseSetter gcs(this, cause);
 820   switch (cause) {
 821     case GCCause::_heap_inspection:
 822     case GCCause::_heap_dump: {
 823       HandleMark hm;
 824       do_full_collection(false,         // don't clear all soft refs
 825                          n_gens() - 1);
 826       break;
 827     }
 828     default: // XXX FIX ME
 829       ShouldNotReachHere(); // Unexpected use of this function
 830   }
 831 }
 832 
 833 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 834   // The caller has the Heap_lock
 835   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 836   collect_locked(cause, n_gens() - 1);
 837 }
 838 
 839 // this is the private collection interface
 840 // The Heap_lock is expected to be held on entry.
 841 
 842 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 843   if (_preloading_shared_classes) {
 844     report_out_of_shared_space(SharedPermGen);
 845   }
 846   // Read the GC count while holding the Heap_lock
 847   unsigned int gc_count_before      = total_collections();
 848   unsigned int full_gc_count_before = total_full_collections();
 849   {
 850     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 851     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 852                          cause, max_level);
 853     VMThread::execute(&op);
 854   }
 855 }
 856 
 857 #ifndef SERIALGC
 858 bool GenCollectedHeap::create_cms_collector() {
 859 
 860   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
 861          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
 862          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
 863          "Unexpected generation kinds");
 864   // Skip two header words in the block content verification
 865   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 866   CMSCollector* collector = new CMSCollector(
 867     (ConcurrentMarkSweepGeneration*)_gens[1],
 868     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
 869     _rem_set->as_CardTableRS(),
 870     (ConcurrentMarkSweepPolicy*) collector_policy());
 871 
 872   if (collector == NULL || !collector->completed_initialization()) {
 873     if (collector) {
 874       delete collector;  // Be nice in embedded situation
 875     }
 876     vm_shutdown_during_initialization("Could not create CMS collector");
 877     return false;
 878   }
 879   return true;  // success
 880 }
 881 
 882 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 883   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 884 
 885   MutexLocker ml(Heap_lock);
 886   // Read the GC counts while holding the Heap_lock
 887   unsigned int full_gc_count_before = total_full_collections();
 888   unsigned int gc_count_before      = total_collections();
 889   {
 890     MutexUnlocker mu(Heap_lock);
 891     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 892     VMThread::execute(&op);
 893   }
 894 }
 895 #endif // SERIALGC
 896 
 897 
 898 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 899                                           int max_level) {
 900   int local_max_level;
 901   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 902       gc_cause() == GCCause::_gc_locker) {
 903     local_max_level = 0;
 904   } else {
 905     local_max_level = max_level;
 906   }
 907 
 908   do_collection(true                 /* full */,
 909                 clear_all_soft_refs  /* clear_all_soft_refs */,
 910                 0                    /* size */,
 911                 false                /* is_tlab */,
 912                 local_max_level      /* max_level */);
 913   // Hack XXX FIX ME !!!
 914   // A scavenge may not have been attempted, or may have
 915   // been attempted and failed, because the old gen was too full
 916   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 917       incremental_collection_will_fail(false /* don't consult_young */)) {
 918     if (PrintGCDetails) {
 919       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 920                              "because scavenge failed");
 921     }
 922     // This time allow the old gen to be collected as well
 923     do_collection(true                 /* full */,
 924                   clear_all_soft_refs  /* clear_all_soft_refs */,
 925                   0                    /* size */,
 926                   false                /* is_tlab */,
 927                   n_gens() - 1         /* max_level */);
 928   }
 929 }
 930 
 931 bool GenCollectedHeap::is_in_young(oop p) {
 932   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 933   assert(result == _gens[0]->is_in_reserved(p),
 934          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
 935   return result;
 936 }
 937 
 938 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 939 bool GenCollectedHeap::is_in(const void* p) const {
 940   #ifndef ASSERT
 941   guarantee(VerifyBeforeGC   ||
 942             VerifyDuringGC   ||
 943             VerifyBeforeExit ||
 944             PrintAssembly    ||
 945             tty->count() != 0 ||   // already printing
 946             VerifyAfterGC    ||
 947     VMError::fatal_error_in_progress(), "too expensive");
 948 
 949   #endif
 950   // This might be sped up with a cache of the last generation that
 951   // answered yes.
 952   for (int i = 0; i < _n_gens; i++) {
 953     if (_gens[i]->is_in(p)) return true;
 954   }
 955   if (_perm_gen->as_gen()->is_in(p)) return true;
 956   // Otherwise...
 957   return false;
 958 }
 959 
 960 #ifdef ASSERT
 961 // Don't implement this by using is_in_young().  This method is used
 962 // in some cases to check that is_in_young() is correct.
 963 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 964   assert(is_in_reserved(p) || p == NULL,
 965     "Does not work if address is non-null and outside of the heap");
 966   // The order of the generations is young (low addr), old, perm (high addr)
 967   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 968 }
 969 #endif
 970 
 971 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
 972   for (int i = 0; i < _n_gens; i++) {
 973     _gens[i]->oop_iterate(cl);
 974   }
 975 }
 976 
 977 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
 978   for (int i = 0; i < _n_gens; i++) {
 979     _gens[i]->oop_iterate(mr, cl);
 980   }
 981 }
 982 
 983 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 984   for (int i = 0; i < _n_gens; i++) {
 985     _gens[i]->object_iterate(cl);
 986   }
 987   perm_gen()->object_iterate(cl);
 988 }
 989 
 990 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 991   for (int i = 0; i < _n_gens; i++) {
 992     _gens[i]->safe_object_iterate(cl);
 993   }
 994   perm_gen()->safe_object_iterate(cl);
 995 }
 996 
 997 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
 998   for (int i = 0; i < _n_gens; i++) {
 999     _gens[i]->object_iterate_since_last_GC(cl);
1000   }
1001 }
1002 
1003 Space* GenCollectedHeap::space_containing(const void* addr) const {
1004   for (int i = 0; i < _n_gens; i++) {
1005     Space* res = _gens[i]->space_containing(addr);
1006     if (res != NULL) return res;
1007   }
1008   Space* res = perm_gen()->space_containing(addr);
1009   if (res != NULL) return res;
1010   // Otherwise...
1011   assert(false, "Could not find containing space");
1012   return NULL;
1013 }
1014 
1015 
1016 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1017   assert(is_in_reserved(addr), "block_start of address outside of heap");
1018   for (int i = 0; i < _n_gens; i++) {
1019     if (_gens[i]->is_in_reserved(addr)) {
1020       assert(_gens[i]->is_in(addr),
1021              "addr should be in allocated part of generation");
1022       return _gens[i]->block_start(addr);
1023     }
1024   }
1025   if (perm_gen()->is_in_reserved(addr)) {
1026     assert(perm_gen()->is_in(addr),
1027            "addr should be in allocated part of perm gen");
1028     return perm_gen()->block_start(addr);
1029   }
1030   assert(false, "Some generation should contain the address");
1031   return NULL;
1032 }
1033 
1034 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1035   assert(is_in_reserved(addr), "block_size of address outside of heap");
1036   for (int i = 0; i < _n_gens; i++) {
1037     if (_gens[i]->is_in_reserved(addr)) {
1038       assert(_gens[i]->is_in(addr),
1039              "addr should be in allocated part of generation");
1040       return _gens[i]->block_size(addr);
1041     }
1042   }
1043   if (perm_gen()->is_in_reserved(addr)) {
1044     assert(perm_gen()->is_in(addr),
1045            "addr should be in allocated part of perm gen");
1046     return perm_gen()->block_size(addr);
1047   }
1048   assert(false, "Some generation should contain the address");
1049   return 0;
1050 }
1051 
1052 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1053   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1054   assert(block_start(addr) == addr, "addr must be a block start");
1055   for (int i = 0; i < _n_gens; i++) {
1056     if (_gens[i]->is_in_reserved(addr)) {
1057       return _gens[i]->block_is_obj(addr);
1058     }
1059   }
1060   if (perm_gen()->is_in_reserved(addr)) {
1061     return perm_gen()->block_is_obj(addr);
1062   }
1063   assert(false, "Some generation should contain the address");
1064   return false;
1065 }
1066 
1067 bool GenCollectedHeap::supports_tlab_allocation() const {
1068   for (int i = 0; i < _n_gens; i += 1) {
1069     if (_gens[i]->supports_tlab_allocation()) {
1070       return true;
1071     }
1072   }
1073   return false;
1074 }
1075 
1076 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1077   size_t result = 0;
1078   for (int i = 0; i < _n_gens; i += 1) {
1079     if (_gens[i]->supports_tlab_allocation()) {
1080       result += _gens[i]->tlab_capacity();
1081     }
1082   }
1083   return result;
1084 }
1085 
1086 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1087   size_t result = 0;
1088   for (int i = 0; i < _n_gens; i += 1) {
1089     if (_gens[i]->supports_tlab_allocation()) {
1090       result += _gens[i]->unsafe_max_tlab_alloc();
1091     }
1092   }
1093   return result;
1094 }
1095 
1096 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1097   bool gc_overhead_limit_was_exceeded;
1098   return collector_policy()->mem_allocate_work(size /* size */,
1099                                                true /* is_tlab */,
1100                                                &gc_overhead_limit_was_exceeded);
1101 }
1102 
1103 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1104 // from the list headed by "*prev_ptr".
1105 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1106   bool first = true;
1107   size_t min_size = 0;   // "first" makes this conceptually infinite.
1108   ScratchBlock **smallest_ptr, *smallest;
1109   ScratchBlock  *cur = *prev_ptr;
1110   while (cur) {
1111     assert(*prev_ptr == cur, "just checking");
1112     if (first || cur->num_words < min_size) {
1113       smallest_ptr = prev_ptr;
1114       smallest     = cur;
1115       min_size     = smallest->num_words;
1116       first        = false;
1117     }
1118     prev_ptr = &cur->next;
1119     cur     =  cur->next;
1120   }
1121   smallest      = *smallest_ptr;
1122   *smallest_ptr = smallest->next;
1123   return smallest;
1124 }
1125 
1126 // Sort the scratch block list headed by res into decreasing size order,
1127 // and set "res" to the result.
1128 static void sort_scratch_list(ScratchBlock*& list) {
1129   ScratchBlock* sorted = NULL;
1130   ScratchBlock* unsorted = list;
1131   while (unsorted) {
1132     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1133     smallest->next  = sorted;
1134     sorted          = smallest;
1135   }
1136   list = sorted;
1137 }
1138 
1139 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1140                                                size_t max_alloc_words) {
1141   ScratchBlock* res = NULL;
1142   for (int i = 0; i < _n_gens; i++) {
1143     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1144   }
1145   sort_scratch_list(res);
1146   return res;
1147 }
1148 
1149 void GenCollectedHeap::release_scratch() {
1150   for (int i = 0; i < _n_gens; i++) {
1151     _gens[i]->reset_scratch();
1152   }
1153 }
1154 
1155 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1156   void do_generation(Generation* gen) {
1157     gen->prepare_for_verify();
1158   }
1159 };
1160 
1161 void GenCollectedHeap::prepare_for_verify() {
1162   ensure_parsability(false);        // no need to retire TLABs
1163   GenPrepareForVerifyClosure blk;
1164   generation_iterate(&blk, false);
1165   perm_gen()->prepare_for_verify();
1166 }
1167 
1168 
1169 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1170                                           bool old_to_young) {
1171   if (old_to_young) {
1172     for (int i = _n_gens-1; i >= 0; i--) {
1173       cl->do_generation(_gens[i]);
1174     }
1175   } else {
1176     for (int i = 0; i < _n_gens; i++) {
1177       cl->do_generation(_gens[i]);
1178     }
1179   }
1180 }
1181 
1182 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1183   for (int i = 0; i < _n_gens; i++) {
1184     _gens[i]->space_iterate(cl, true);
1185   }
1186   perm_gen()->space_iterate(cl, true);
1187 }
1188 
1189 bool GenCollectedHeap::is_maximal_no_gc() const {
1190   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
1191     if (!_gens[i]->is_maximal_no_gc()) {
1192       return false;
1193     }
1194   }
1195   return true;
1196 }
1197 
1198 void GenCollectedHeap::save_marks() {
1199   for (int i = 0; i < _n_gens; i++) {
1200     _gens[i]->save_marks();
1201   }
1202   perm_gen()->save_marks();
1203 }
1204 
1205 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
1206   for (int i = 0; i <= collectedGen; i++) {
1207     _gens[i]->compute_new_size();
1208   }
1209 }
1210 
1211 GenCollectedHeap* GenCollectedHeap::heap() {
1212   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1213   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1214   return _gch;
1215 }
1216 
1217 
1218 void GenCollectedHeap::prepare_for_compaction() {
1219   Generation* scanning_gen = _gens[_n_gens-1];
1220   // Start by compacting into same gen.
1221   CompactPoint cp(scanning_gen, NULL, NULL);
1222   while (scanning_gen != NULL) {
1223     scanning_gen->prepare_for_compaction(&cp);
1224     scanning_gen = prev_gen(scanning_gen);
1225   }
1226 }
1227 
1228 GCStats* GenCollectedHeap::gc_stats(int level) const {
1229   return _gens[level]->gc_stats();
1230 }
1231 
1232 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1233   if (!silent) {
1234     gclog_or_tty->print("permgen ");
1235   }
1236   perm_gen()->verify();
1237   for (int i = _n_gens-1; i >= 0; i--) {
1238     Generation* g = _gens[i];
1239     if (!silent) {
1240       gclog_or_tty->print(g->name());
1241       gclog_or_tty->print(" ");
1242     }
1243     g->verify();
1244   }
1245   if (!silent) {
1246     gclog_or_tty->print("remset ");
1247   }
1248   rem_set()->verify();
1249 }
1250 
1251 void GenCollectedHeap::print_on(outputStream* st) const {
1252   for (int i = 0; i < _n_gens; i++) {
1253     _gens[i]->print_on(st);
1254   }
1255   perm_gen()->print_on(st);
1256 }
1257 
1258 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1259   if (workers() != NULL) {
1260     workers()->threads_do(tc);
1261   }
1262 #ifndef SERIALGC
1263   if (UseConcMarkSweepGC) {
1264     ConcurrentMarkSweepThread::threads_do(tc);
1265   }
1266 #endif // SERIALGC
1267 }
1268 
1269 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1270 #ifndef SERIALGC
1271   if (UseParNewGC) {
1272     workers()->print_worker_threads_on(st);
1273   }
1274   if (UseConcMarkSweepGC) {
1275     ConcurrentMarkSweepThread::print_all_on(st);
1276   }
1277 #endif // SERIALGC
1278 }
1279 
1280 void GenCollectedHeap::print_tracing_info() const {
1281   if (TraceGen0Time) {
1282     get_gen(0)->print_summary_info();
1283   }
1284   if (TraceGen1Time) {
1285     get_gen(1)->print_summary_info();
1286   }
1287 }
1288 
1289 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1290   if (PrintGCDetails && Verbose) {
1291     gclog_or_tty->print(" "  SIZE_FORMAT
1292                         "->" SIZE_FORMAT
1293                         "("  SIZE_FORMAT ")",
1294                         prev_used, used(), capacity());
1295   } else {
1296     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1297                         "->" SIZE_FORMAT "K"
1298                         "("  SIZE_FORMAT "K)",
1299                         prev_used / K, used() / K, capacity() / K);
1300   }
1301 }
1302 
1303 //New method to print perm gen info with PrintGCDetails flag
1304 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
1305   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
1306   perm_gen()->print_heap_change(perm_prev_used);
1307   gclog_or_tty->print("]");
1308 }
1309 
1310 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1311  private:
1312   bool _full;
1313  public:
1314   void do_generation(Generation* gen) {
1315     gen->gc_prologue(_full);
1316   }
1317   GenGCPrologueClosure(bool full) : _full(full) {};
1318 };
1319 
1320 void GenCollectedHeap::gc_prologue(bool full) {
1321   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1322 
1323   always_do_update_barrier = false;
1324   // Fill TLAB's and such
1325   CollectedHeap::accumulate_statistics_all_tlabs();
1326   ensure_parsability(true);   // retire TLABs
1327 
1328   // Call allocation profiler
1329   AllocationProfiler::iterate_since_last_gc();
1330   // Walk generations
1331   GenGCPrologueClosure blk(full);
1332   generation_iterate(&blk, false);  // not old-to-young.
1333   perm_gen()->gc_prologue(full);
1334 };
1335 
1336 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1337  private:
1338   bool _full;
1339  public:
1340   void do_generation(Generation* gen) {
1341     gen->gc_epilogue(_full);
1342   }
1343   GenGCEpilogueClosure(bool full) : _full(full) {};
1344 };
1345 
1346 void GenCollectedHeap::gc_epilogue(bool full) {
1347 #ifdef COMPILER2
1348   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1349   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1350   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1351 #endif /* COMPILER2 */
1352 
1353   resize_all_tlabs();
1354 
1355   GenGCEpilogueClosure blk(full);
1356   generation_iterate(&blk, false);  // not old-to-young.
1357   perm_gen()->gc_epilogue(full);
1358 
1359   if (!CleanChunkPoolAsync) {
1360     Chunk::clean_chunk_pool();
1361   }
1362 
1363   always_do_update_barrier = UseConcMarkSweepGC;
1364 };
1365 
1366 #ifndef PRODUCT
1367 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1368  private:
1369  public:
1370   void do_generation(Generation* gen) {
1371     gen->record_spaces_top();
1372   }
1373 };
1374 
1375 void GenCollectedHeap::record_gen_tops_before_GC() {
1376   if (ZapUnusedHeapArea) {
1377     GenGCSaveTopsBeforeGCClosure blk;
1378     generation_iterate(&blk, false);  // not old-to-young.
1379     perm_gen()->record_spaces_top();
1380   }
1381 }
1382 #endif  // not PRODUCT
1383 
1384 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1385  public:
1386   void do_generation(Generation* gen) {
1387     gen->ensure_parsability();
1388   }
1389 };
1390 
1391 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1392   CollectedHeap::ensure_parsability(retire_tlabs);
1393   GenEnsureParsabilityClosure ep_cl;
1394   generation_iterate(&ep_cl, false);
1395   perm_gen()->ensure_parsability();
1396 }
1397 
1398 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
1399                                               oop obj,
1400                                               size_t obj_size) {
1401   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1402   HeapWord* result = NULL;
1403 
1404   // First give each higher generation a chance to allocate the promoted object.
1405   Generation* allocator = next_gen(gen);
1406   if (allocator != NULL) {
1407     do {
1408       result = allocator->allocate(obj_size, false);
1409     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
1410   }
1411 
1412   if (result == NULL) {
1413     // Then give gen and higher generations a chance to expand and allocate the
1414     // object.
1415     do {
1416       result = gen->expand_and_allocate(obj_size, false);
1417     } while (result == NULL && (gen = next_gen(gen)) != NULL);
1418   }
1419 
1420   if (result != NULL) {
1421     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1422   }
1423   return oop(result);
1424 }
1425 
1426 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1427   jlong _time;   // in ms
1428   jlong _now;    // in ms
1429 
1430  public:
1431   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1432 
1433   jlong time() { return _time; }
1434 
1435   void do_generation(Generation* gen) {
1436     _time = MIN2(_time, gen->time_of_last_gc(_now));
1437   }
1438 };
1439 
1440 jlong GenCollectedHeap::millis_since_last_gc() {
1441   // We need a monotonically non-deccreasing time in ms but
1442   // os::javaTimeMillis() does not guarantee monotonicity.
1443   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1444   GenTimeOfLastGCClosure tolgc_cl(now);
1445   // iterate over generations getting the oldest
1446   // time that a generation was collected
1447   generation_iterate(&tolgc_cl, false);
1448   tolgc_cl.do_generation(perm_gen());
1449 
1450   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1451   // provided the underlying platform provides such a time source
1452   // (and it is bug free). So we still have to guard against getting
1453   // back a time later than 'now'.
1454   jlong retVal = now - tolgc_cl.time();
1455   if (retVal < 0) {
1456     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
1457     return 0;
1458   }
1459   return retVal;
1460 }