1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_used_bytes_before_gc(0),
 128   _survivor_used_bytes_before_gc(0),
 129   _heap_used_bytes_before_gc(0),
 130   _metaspace_used_bytes_before_gc(0),
 131   _eden_capacity_bytes_before_gc(0),
 132   _heap_capacity_bytes_before_gc(0),
 133 
 134   _eden_cset_region_length(0),
 135   _survivor_cset_region_length(0),
 136   _old_cset_region_length(0),
 137 
 138   _collection_set(NULL),
 139   _collection_set_bytes_used_before(0),
 140 
 141   // Incremental CSet attributes
 142   _inc_cset_build_state(Inactive),
 143   _inc_cset_head(NULL),
 144   _inc_cset_tail(NULL),
 145   _inc_cset_bytes_used_before(0),
 146   _inc_cset_max_finger(NULL),
 147   _inc_cset_recorded_rs_lengths(0),
 148   _inc_cset_recorded_rs_lengths_diffs(0),
 149   _inc_cset_predicted_elapsed_time_ms(0.0),
 150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 151 
 152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 154 #endif // _MSC_VER
 155 
 156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 157                                                  G1YoungSurvRateNumRegionsSummary)),
 158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 159                                               G1YoungSurvRateNumRegionsSummary)),
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible.
 171   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 172   HeapRegionRemSet::setup_remset_size();
 173 
 174   G1ErgoVerbose::initialize();
 175   if (PrintAdaptiveSizePolicy) {
 176     // Currently, we only use a single switch for all the heuristics.
 177     G1ErgoVerbose::set_enabled(true);
 178     // Given that we don't currently have a verboseness level
 179     // parameter, we'll hardcode this to high. This can be easily
 180     // changed in the future.
 181     G1ErgoVerbose::set_level(ErgoHigh);
 182   } else {
 183     G1ErgoVerbose::set_enabled(false);
 184   }
 185 
 186   // Verify PLAB sizes
 187   const size_t region_size = HeapRegion::GrainWords;
 188   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 189     char buffer[128];
 190     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 191                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 192     vm_exit_during_initialization(buffer);
 193   }
 194 
 195   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 196   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 197 
 198   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 199 
 200   int index = MIN2(_parallel_gc_threads - 1, 7);
 201 
 202   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 203   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 204   _young_cards_per_entry_ratio_seq->add(
 205                                   young_cards_per_entry_ratio_defaults[index]);
 206   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 207   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 208   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 209   _young_other_cost_per_region_ms_seq->add(
 210                                young_other_cost_per_region_ms_defaults[index]);
 211   _non_young_other_cost_per_region_ms_seq->add(
 212                            non_young_other_cost_per_region_ms_defaults[index]);
 213 
 214   // Below, we might need to calculate the pause time target based on
 215   // the pause interval. When we do so we are going to give G1 maximum
 216   // flexibility and allow it to do pauses when it needs to. So, we'll
 217   // arrange that the pause interval to be pause time target + 1 to
 218   // ensure that a) the pause time target is maximized with respect to
 219   // the pause interval and b) we maintain the invariant that pause
 220   // time target < pause interval. If the user does not want this
 221   // maximum flexibility, they will have to set the pause interval
 222   // explicitly.
 223 
 224   // First make sure that, if either parameter is set, its value is
 225   // reasonable.
 226   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 227     if (MaxGCPauseMillis < 1) {
 228       vm_exit_during_initialization("MaxGCPauseMillis should be "
 229                                     "greater than 0");
 230     }
 231   }
 232   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 233     if (GCPauseIntervalMillis < 1) {
 234       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 235                                     "greater than 0");
 236     }
 237   }
 238 
 239   // Then, if the pause time target parameter was not set, set it to
 240   // the default value.
 241   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 242     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 243       // The default pause time target in G1 is 200ms
 244       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 245     } else {
 246       // We do not allow the pause interval to be set without the
 247       // pause time target
 248       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 249                                     "without setting MaxGCPauseMillis");
 250     }
 251   }
 252 
 253   // Then, if the interval parameter was not set, set it according to
 254   // the pause time target (this will also deal with the case when the
 255   // pause time target is the default value).
 256   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 257     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 258   }
 259 
 260   // Finally, make sure that the two parameters are consistent.
 261   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 262     char buffer[256];
 263     jio_snprintf(buffer, 256,
 264                  "MaxGCPauseMillis (%u) should be less than "
 265                  "GCPauseIntervalMillis (%u)",
 266                  MaxGCPauseMillis, GCPauseIntervalMillis);
 267     vm_exit_during_initialization(buffer);
 268   }
 269 
 270   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 271   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 272   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 273 
 274   uintx confidence_perc = G1ConfidencePercent;
 275   // Put an artificial ceiling on this so that it's not set to a silly value.
 276   if (confidence_perc > 100) {
 277     confidence_perc = 100;
 278     warning("G1ConfidencePercent is set to a value that is too large, "
 279             "it's been updated to %u", confidence_perc);
 280   }
 281   _sigma = (double) confidence_perc / 100.0;
 282 
 283   // start conservatively (around 50ms is about right)
 284   _concurrent_mark_remark_times_ms->add(0.05);
 285   _concurrent_mark_cleanup_times_ms->add(0.20);
 286   _tenuring_threshold = MaxTenuringThreshold;
 287   // _max_survivor_regions will be calculated by
 288   // update_young_list_target_length() during initialization.
 289   _max_survivor_regions = 0;
 290 
 291   assert(GCTimeRatio > 0,
 292          "we should have set it to a default value set_g1_gc_flags() "
 293          "if a user set it to 0");
 294   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 295 
 296   uintx reserve_perc = G1ReservePercent;
 297   // Put an artificial ceiling on this so that it's not set to a silly value.
 298   if (reserve_perc > 50) {
 299     reserve_perc = 50;
 300     warning("G1ReservePercent is set to a value that is too large, "
 301             "it's been updated to %u", reserve_perc);
 302   }
 303   _reserve_factor = (double) reserve_perc / 100.0;
 304   // This will be set when the heap is expanded
 305   // for the first time during initialization.
 306   _reserve_regions = 0;
 307 
 308   initialize_all();
 309   _collectionSetChooser = new CollectionSetChooser();
 310   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 311 }
 312 
 313 void G1CollectorPolicy::initialize_flags() {
 314   set_min_alignment(HeapRegion::GrainBytes);
 315   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 316   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 317   set_max_alignment(MAX3(card_table_alignment, min_alignment(), page_size));
 318   if (SurvivorRatio < 1) {
 319     vm_exit_during_initialization("Invalid survivor ratio specified");
 320   }
 321   CollectorPolicy::initialize_flags();
 322 }
 323 
 324 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 325   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 326   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 327   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 328 
 329   if (FLAG_IS_CMDLINE(NewRatio)) {
 330     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 331       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 332     } else {
 333       _sizer_kind = SizerNewRatio;
 334       _adaptive_size = false;
 335       return;
 336     }
 337   }
 338 
 339   if (FLAG_IS_CMDLINE(NewSize)) {
 340     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 341                                      1U);
 342     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 343       _max_desired_young_length =
 344                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 345                                   1U);
 346       _sizer_kind = SizerMaxAndNewSize;
 347       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 348     } else {
 349       _sizer_kind = SizerNewSizeOnly;
 350     }
 351   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 352     _max_desired_young_length =
 353                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 354                                   1U);
 355     _sizer_kind = SizerMaxNewSizeOnly;
 356   }
 357 }
 358 
 359 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 360   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 361   return MAX2(1U, default_value);
 362 }
 363 
 364 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 365   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 366   return MAX2(1U, default_value);
 367 }
 368 
 369 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 370   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 371 
 372   switch (_sizer_kind) {
 373     case SizerDefaults:
 374       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 375       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 376       break;
 377     case SizerNewSizeOnly:
 378       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 379       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 380       break;
 381     case SizerMaxNewSizeOnly:
 382       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 383       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 384       break;
 385     case SizerMaxAndNewSize:
 386       // Do nothing. Values set on the command line, don't update them at runtime.
 387       break;
 388     case SizerNewRatio:
 389       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 390       _max_desired_young_length = _min_desired_young_length;
 391       break;
 392     default:
 393       ShouldNotReachHere();
 394   }
 395 
 396   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 397 }
 398 
 399 void G1CollectorPolicy::init() {
 400   // Set aside an initial future to_space.
 401   _g1 = G1CollectedHeap::heap();
 402 
 403   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 404 
 405   initialize_gc_policy_counters();
 406 
 407   if (adaptive_young_list_length()) {
 408     _young_list_fixed_length = 0;
 409   } else {
 410     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 411   }
 412   _free_regions_at_end_of_collection = _g1->free_regions();
 413   update_young_list_target_length();
 414 
 415   // We may immediately start allocating regions and placing them on the
 416   // collection set list. Initialize the per-collection set info
 417   start_incremental_cset_building();
 418 }
 419 
 420 // Create the jstat counters for the policy.
 421 void G1CollectorPolicy::initialize_gc_policy_counters() {
 422   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 423 }
 424 
 425 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 426                                          double base_time_ms,
 427                                          uint base_free_regions,
 428                                          double target_pause_time_ms) {
 429   if (young_length >= base_free_regions) {
 430     // end condition 1: not enough space for the young regions
 431     return false;
 432   }
 433 
 434   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 435   size_t bytes_to_copy =
 436                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 437   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 438   double young_other_time_ms = predict_young_other_time_ms(young_length);
 439   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 440   if (pause_time_ms > target_pause_time_ms) {
 441     // end condition 2: prediction is over the target pause time
 442     return false;
 443   }
 444 
 445   size_t free_bytes =
 446                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 447   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 448     // end condition 3: out-of-space (conservatively!)
 449     return false;
 450   }
 451 
 452   // success!
 453   return true;
 454 }
 455 
 456 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 457   // re-calculate the necessary reserve
 458   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 459   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 460   // smaller than 1.0) we'll get 1.
 461   _reserve_regions = (uint) ceil(reserve_regions_d);
 462 
 463   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 464 }
 465 
 466 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 467                                                        uint base_min_length) {
 468   uint desired_min_length = 0;
 469   if (adaptive_young_list_length()) {
 470     if (_alloc_rate_ms_seq->num() > 3) {
 471       double now_sec = os::elapsedTime();
 472       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 473       double alloc_rate_ms = predict_alloc_rate_ms();
 474       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 475     } else {
 476       // otherwise we don't have enough info to make the prediction
 477     }
 478   }
 479   desired_min_length += base_min_length;
 480   // make sure we don't go below any user-defined minimum bound
 481   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 482 }
 483 
 484 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 485   // Here, we might want to also take into account any additional
 486   // constraints (i.e., user-defined minimum bound). Currently, we
 487   // effectively don't set this bound.
 488   return _young_gen_sizer->max_desired_young_length();
 489 }
 490 
 491 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 492   if (rs_lengths == (size_t) -1) {
 493     // if it's set to the default value (-1), we should predict it;
 494     // otherwise, use the given value.
 495     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 496   }
 497 
 498   // Calculate the absolute and desired min bounds.
 499 
 500   // This is how many young regions we already have (currently: the survivors).
 501   uint base_min_length = recorded_survivor_regions();
 502   // This is the absolute minimum young length, which ensures that we
 503   // can allocate one eden region in the worst-case.
 504   uint absolute_min_length = base_min_length + 1;
 505   uint desired_min_length =
 506                      calculate_young_list_desired_min_length(base_min_length);
 507   if (desired_min_length < absolute_min_length) {
 508     desired_min_length = absolute_min_length;
 509   }
 510 
 511   // Calculate the absolute and desired max bounds.
 512 
 513   // We will try our best not to "eat" into the reserve.
 514   uint absolute_max_length = 0;
 515   if (_free_regions_at_end_of_collection > _reserve_regions) {
 516     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 517   }
 518   uint desired_max_length = calculate_young_list_desired_max_length();
 519   if (desired_max_length > absolute_max_length) {
 520     desired_max_length = absolute_max_length;
 521   }
 522 
 523   uint young_list_target_length = 0;
 524   if (adaptive_young_list_length()) {
 525     if (gcs_are_young()) {
 526       young_list_target_length =
 527                         calculate_young_list_target_length(rs_lengths,
 528                                                            base_min_length,
 529                                                            desired_min_length,
 530                                                            desired_max_length);
 531       _rs_lengths_prediction = rs_lengths;
 532     } else {
 533       // Don't calculate anything and let the code below bound it to
 534       // the desired_min_length, i.e., do the next GC as soon as
 535       // possible to maximize how many old regions we can add to it.
 536     }
 537   } else {
 538     // The user asked for a fixed young gen so we'll fix the young gen
 539     // whether the next GC is young or mixed.
 540     young_list_target_length = _young_list_fixed_length;
 541   }
 542 
 543   // Make sure we don't go over the desired max length, nor under the
 544   // desired min length. In case they clash, desired_min_length wins
 545   // which is why that test is second.
 546   if (young_list_target_length > desired_max_length) {
 547     young_list_target_length = desired_max_length;
 548   }
 549   if (young_list_target_length < desired_min_length) {
 550     young_list_target_length = desired_min_length;
 551   }
 552 
 553   assert(young_list_target_length > recorded_survivor_regions(),
 554          "we should be able to allocate at least one eden region");
 555   assert(young_list_target_length >= absolute_min_length, "post-condition");
 556   _young_list_target_length = young_list_target_length;
 557 
 558   update_max_gc_locker_expansion();
 559 }
 560 
 561 uint
 562 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 563                                                      uint base_min_length,
 564                                                      uint desired_min_length,
 565                                                      uint desired_max_length) {
 566   assert(adaptive_young_list_length(), "pre-condition");
 567   assert(gcs_are_young(), "only call this for young GCs");
 568 
 569   // In case some edge-condition makes the desired max length too small...
 570   if (desired_max_length <= desired_min_length) {
 571     return desired_min_length;
 572   }
 573 
 574   // We'll adjust min_young_length and max_young_length not to include
 575   // the already allocated young regions (i.e., so they reflect the
 576   // min and max eden regions we'll allocate). The base_min_length
 577   // will be reflected in the predictions by the
 578   // survivor_regions_evac_time prediction.
 579   assert(desired_min_length > base_min_length, "invariant");
 580   uint min_young_length = desired_min_length - base_min_length;
 581   assert(desired_max_length > base_min_length, "invariant");
 582   uint max_young_length = desired_max_length - base_min_length;
 583 
 584   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 585   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 586   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 587   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 588   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 589   double base_time_ms =
 590     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 591     survivor_regions_evac_time;
 592   uint available_free_regions = _free_regions_at_end_of_collection;
 593   uint base_free_regions = 0;
 594   if (available_free_regions > _reserve_regions) {
 595     base_free_regions = available_free_regions - _reserve_regions;
 596   }
 597 
 598   // Here, we will make sure that the shortest young length that
 599   // makes sense fits within the target pause time.
 600 
 601   if (predict_will_fit(min_young_length, base_time_ms,
 602                        base_free_regions, target_pause_time_ms)) {
 603     // The shortest young length will fit into the target pause time;
 604     // we'll now check whether the absolute maximum number of young
 605     // regions will fit in the target pause time. If not, we'll do
 606     // a binary search between min_young_length and max_young_length.
 607     if (predict_will_fit(max_young_length, base_time_ms,
 608                          base_free_regions, target_pause_time_ms)) {
 609       // The maximum young length will fit into the target pause time.
 610       // We are done so set min young length to the maximum length (as
 611       // the result is assumed to be returned in min_young_length).
 612       min_young_length = max_young_length;
 613     } else {
 614       // The maximum possible number of young regions will not fit within
 615       // the target pause time so we'll search for the optimal
 616       // length. The loop invariants are:
 617       //
 618       // min_young_length < max_young_length
 619       // min_young_length is known to fit into the target pause time
 620       // max_young_length is known not to fit into the target pause time
 621       //
 622       // Going into the loop we know the above hold as we've just
 623       // checked them. Every time around the loop we check whether
 624       // the middle value between min_young_length and
 625       // max_young_length fits into the target pause time. If it
 626       // does, it becomes the new min. If it doesn't, it becomes
 627       // the new max. This way we maintain the loop invariants.
 628 
 629       assert(min_young_length < max_young_length, "invariant");
 630       uint diff = (max_young_length - min_young_length) / 2;
 631       while (diff > 0) {
 632         uint young_length = min_young_length + diff;
 633         if (predict_will_fit(young_length, base_time_ms,
 634                              base_free_regions, target_pause_time_ms)) {
 635           min_young_length = young_length;
 636         } else {
 637           max_young_length = young_length;
 638         }
 639         assert(min_young_length <  max_young_length, "invariant");
 640         diff = (max_young_length - min_young_length) / 2;
 641       }
 642       // The results is min_young_length which, according to the
 643       // loop invariants, should fit within the target pause time.
 644 
 645       // These are the post-conditions of the binary search above:
 646       assert(min_young_length < max_young_length,
 647              "otherwise we should have discovered that max_young_length "
 648              "fits into the pause target and not done the binary search");
 649       assert(predict_will_fit(min_young_length, base_time_ms,
 650                               base_free_regions, target_pause_time_ms),
 651              "min_young_length, the result of the binary search, should "
 652              "fit into the pause target");
 653       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 654                                base_free_regions, target_pause_time_ms),
 655              "min_young_length, the result of the binary search, should be "
 656              "optimal, so no larger length should fit into the pause target");
 657     }
 658   } else {
 659     // Even the minimum length doesn't fit into the pause time
 660     // target, return it as the result nevertheless.
 661   }
 662   return base_min_length + min_young_length;
 663 }
 664 
 665 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 666   double survivor_regions_evac_time = 0.0;
 667   for (HeapRegion * r = _recorded_survivor_head;
 668        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 669        r = r->get_next_young_region()) {
 670     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 671   }
 672   return survivor_regions_evac_time;
 673 }
 674 
 675 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 676   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 677 
 678   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 679   if (rs_lengths > _rs_lengths_prediction) {
 680     // add 10% to avoid having to recalculate often
 681     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 682     update_young_list_target_length(rs_lengths_prediction);
 683   }
 684 }
 685 
 686 
 687 
 688 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 689                                                bool is_tlab,
 690                                                bool* gc_overhead_limit_was_exceeded) {
 691   guarantee(false, "Not using this policy feature yet.");
 692   return NULL;
 693 }
 694 
 695 // This method controls how a collector handles one or more
 696 // of its generations being fully allocated.
 697 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 698                                                        bool is_tlab) {
 699   guarantee(false, "Not using this policy feature yet.");
 700   return NULL;
 701 }
 702 
 703 
 704 #ifndef PRODUCT
 705 bool G1CollectorPolicy::verify_young_ages() {
 706   HeapRegion* head = _g1->young_list()->first_region();
 707   return
 708     verify_young_ages(head, _short_lived_surv_rate_group);
 709   // also call verify_young_ages on any additional surv rate groups
 710 }
 711 
 712 bool
 713 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 714                                      SurvRateGroup *surv_rate_group) {
 715   guarantee( surv_rate_group != NULL, "pre-condition" );
 716 
 717   const char* name = surv_rate_group->name();
 718   bool ret = true;
 719   int prev_age = -1;
 720 
 721   for (HeapRegion* curr = head;
 722        curr != NULL;
 723        curr = curr->get_next_young_region()) {
 724     SurvRateGroup* group = curr->surv_rate_group();
 725     if (group == NULL && !curr->is_survivor()) {
 726       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 727       ret = false;
 728     }
 729 
 730     if (surv_rate_group == group) {
 731       int age = curr->age_in_surv_rate_group();
 732 
 733       if (age < 0) {
 734         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 735         ret = false;
 736       }
 737 
 738       if (age <= prev_age) {
 739         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 740                                "(%d, %d)", name, age, prev_age);
 741         ret = false;
 742       }
 743       prev_age = age;
 744     }
 745   }
 746 
 747   return ret;
 748 }
 749 #endif // PRODUCT
 750 
 751 void G1CollectorPolicy::record_full_collection_start() {
 752   _full_collection_start_sec = os::elapsedTime();
 753   record_heap_size_info_at_start(true /* full */);
 754   // Release the future to-space so that it is available for compaction into.
 755   _g1->set_full_collection();
 756 }
 757 
 758 void G1CollectorPolicy::record_full_collection_end() {
 759   // Consider this like a collection pause for the purposes of allocation
 760   // since last pause.
 761   double end_sec = os::elapsedTime();
 762   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 763   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 764 
 765   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 766 
 767   update_recent_gc_times(end_sec, full_gc_time_ms);
 768 
 769   _g1->clear_full_collection();
 770 
 771   // "Nuke" the heuristics that control the young/mixed GC
 772   // transitions and make sure we start with young GCs after the Full GC.
 773   set_gcs_are_young(true);
 774   _last_young_gc = false;
 775   clear_initiate_conc_mark_if_possible();
 776   clear_during_initial_mark_pause();
 777   _in_marking_window = false;
 778   _in_marking_window_im = false;
 779 
 780   _short_lived_surv_rate_group->start_adding_regions();
 781   // also call this on any additional surv rate groups
 782 
 783   record_survivor_regions(0, NULL, NULL);
 784 
 785   _free_regions_at_end_of_collection = _g1->free_regions();
 786   // Reset survivors SurvRateGroup.
 787   _survivor_surv_rate_group->reset();
 788   update_young_list_target_length();
 789   _collectionSetChooser->clear();
 790 }
 791 
 792 void G1CollectorPolicy::record_stop_world_start() {
 793   _stop_world_start = os::elapsedTime();
 794 }
 795 
 796 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 797   // We only need to do this here as the policy will only be applied
 798   // to the GC we're about to start. so, no point is calculating this
 799   // every time we calculate / recalculate the target young length.
 800   update_survivors_policy();
 801 
 802   assert(_g1->used() == _g1->recalculate_used(),
 803          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 804                  _g1->used(), _g1->recalculate_used()));
 805 
 806   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 807   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 808   _stop_world_start = 0.0;
 809 
 810   record_heap_size_info_at_start(false /* full */);
 811 
 812   phase_times()->record_cur_collection_start_sec(start_time_sec);
 813   _pending_cards = _g1->pending_card_num();
 814 
 815   _collection_set_bytes_used_before = 0;
 816   _bytes_copied_during_gc = 0;
 817 
 818   _last_gc_was_young = false;
 819 
 820   // do that for any other surv rate groups
 821   _short_lived_surv_rate_group->stop_adding_regions();
 822   _survivors_age_table.clear();
 823 
 824   assert( verify_young_ages(), "region age verification" );
 825 }
 826 
 827 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 828                                                    mark_init_elapsed_time_ms) {
 829   _during_marking = true;
 830   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 831   clear_during_initial_mark_pause();
 832   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 833 }
 834 
 835 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 836   _mark_remark_start_sec = os::elapsedTime();
 837   _during_marking = false;
 838 }
 839 
 840 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 841   double end_time_sec = os::elapsedTime();
 842   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 843   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 844   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 845   _prev_collection_pause_end_ms += elapsed_time_ms;
 846 
 847   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 848 }
 849 
 850 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 851   _mark_cleanup_start_sec = os::elapsedTime();
 852 }
 853 
 854 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 855   _last_young_gc = true;
 856   _in_marking_window = false;
 857 }
 858 
 859 void G1CollectorPolicy::record_concurrent_pause() {
 860   if (_stop_world_start > 0.0) {
 861     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 862     _trace_gen0_time_data.record_yield_time(yield_ms);
 863   }
 864 }
 865 
 866 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 867   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 868     return false;
 869   }
 870 
 871   size_t marking_initiating_used_threshold =
 872     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 873   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 874   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 875 
 876   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 877     if (gcs_are_young() && !_last_young_gc) {
 878       ergo_verbose5(ErgoConcCycles,
 879         "request concurrent cycle initiation",
 880         ergo_format_reason("occupancy higher than threshold")
 881         ergo_format_byte("occupancy")
 882         ergo_format_byte("allocation request")
 883         ergo_format_byte_perc("threshold")
 884         ergo_format_str("source"),
 885         cur_used_bytes,
 886         alloc_byte_size,
 887         marking_initiating_used_threshold,
 888         (double) InitiatingHeapOccupancyPercent,
 889         source);
 890       return true;
 891     } else {
 892       ergo_verbose5(ErgoConcCycles,
 893         "do not request concurrent cycle initiation",
 894         ergo_format_reason("still doing mixed collections")
 895         ergo_format_byte("occupancy")
 896         ergo_format_byte("allocation request")
 897         ergo_format_byte_perc("threshold")
 898         ergo_format_str("source"),
 899         cur_used_bytes,
 900         alloc_byte_size,
 901         marking_initiating_used_threshold,
 902         (double) InitiatingHeapOccupancyPercent,
 903         source);
 904     }
 905   }
 906 
 907   return false;
 908 }
 909 
 910 // Anything below that is considered to be zero
 911 #define MIN_TIMER_GRANULARITY 0.0000001
 912 
 913 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 914   double end_time_sec = os::elapsedTime();
 915   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 916          "otherwise, the subtraction below does not make sense");
 917   size_t rs_size =
 918             _cur_collection_pause_used_regions_at_start - cset_region_length();
 919   size_t cur_used_bytes = _g1->used();
 920   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 921   bool last_pause_included_initial_mark = false;
 922   bool update_stats = !_g1->evacuation_failed();
 923 
 924 #ifndef PRODUCT
 925   if (G1YoungSurvRateVerbose) {
 926     gclog_or_tty->print_cr("");
 927     _short_lived_surv_rate_group->print();
 928     // do that for any other surv rate groups too
 929   }
 930 #endif // PRODUCT
 931 
 932   last_pause_included_initial_mark = during_initial_mark_pause();
 933   if (last_pause_included_initial_mark) {
 934     record_concurrent_mark_init_end(0.0);
 935   } else if (need_to_start_conc_mark("end of GC")) {
 936     // Note: this might have already been set, if during the last
 937     // pause we decided to start a cycle but at the beginning of
 938     // this pause we decided to postpone it. That's OK.
 939     set_initiate_conc_mark_if_possible();
 940   }
 941 
 942   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 943                           end_time_sec, false);
 944 
 945   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 946   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 947 
 948   if (update_stats) {
 949     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 950     // this is where we update the allocation rate of the application
 951     double app_time_ms =
 952       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 953     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 954       // This usually happens due to the timer not having the required
 955       // granularity. Some Linuxes are the usual culprits.
 956       // We'll just set it to something (arbitrarily) small.
 957       app_time_ms = 1.0;
 958     }
 959     // We maintain the invariant that all objects allocated by mutator
 960     // threads will be allocated out of eden regions. So, we can use
 961     // the eden region number allocated since the previous GC to
 962     // calculate the application's allocate rate. The only exception
 963     // to that is humongous objects that are allocated separately. But
 964     // given that humongous object allocations do not really affect
 965     // either the pause's duration nor when the next pause will take
 966     // place we can safely ignore them here.
 967     uint regions_allocated = eden_cset_region_length();
 968     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 969     _alloc_rate_ms_seq->add(alloc_rate_ms);
 970 
 971     double interval_ms =
 972       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 973     update_recent_gc_times(end_time_sec, pause_time_ms);
 974     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 975     if (recent_avg_pause_time_ratio() < 0.0 ||
 976         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 977 #ifndef PRODUCT
 978       // Dump info to allow post-facto debugging
 979       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 980       gclog_or_tty->print_cr("-------------------------------------------");
 981       gclog_or_tty->print_cr("Recent GC Times (ms):");
 982       _recent_gc_times_ms->dump();
 983       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 984       _recent_prev_end_times_for_all_gcs_sec->dump();
 985       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 986                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 987       // In debug mode, terminate the JVM if the user wants to debug at this point.
 988       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 989 #endif  // !PRODUCT
 990       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 991       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 992       if (_recent_avg_pause_time_ratio < 0.0) {
 993         _recent_avg_pause_time_ratio = 0.0;
 994       } else {
 995         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 996         _recent_avg_pause_time_ratio = 1.0;
 997       }
 998     }
 999   }
1000 
1001   bool new_in_marking_window = _in_marking_window;
1002   bool new_in_marking_window_im = false;
1003   if (during_initial_mark_pause()) {
1004     new_in_marking_window = true;
1005     new_in_marking_window_im = true;
1006   }
1007 
1008   if (_last_young_gc) {
1009     // This is supposed to to be the "last young GC" before we start
1010     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1011 
1012     if (!last_pause_included_initial_mark) {
1013       if (next_gc_should_be_mixed("start mixed GCs",
1014                                   "do not start mixed GCs")) {
1015         set_gcs_are_young(false);
1016       }
1017     } else {
1018       ergo_verbose0(ErgoMixedGCs,
1019                     "do not start mixed GCs",
1020                     ergo_format_reason("concurrent cycle is about to start"));
1021     }
1022     _last_young_gc = false;
1023   }
1024 
1025   if (!_last_gc_was_young) {
1026     // This is a mixed GC. Here we decide whether to continue doing
1027     // mixed GCs or not.
1028 
1029     if (!next_gc_should_be_mixed("continue mixed GCs",
1030                                  "do not continue mixed GCs")) {
1031       set_gcs_are_young(true);
1032     }
1033   }
1034 
1035   _short_lived_surv_rate_group->start_adding_regions();
1036   // do that for any other surv rate groupsx
1037 
1038   if (update_stats) {
1039     double cost_per_card_ms = 0.0;
1040     if (_pending_cards > 0) {
1041       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1042       _cost_per_card_ms_seq->add(cost_per_card_ms);
1043     }
1044 
1045     size_t cards_scanned = _g1->cards_scanned();
1046 
1047     double cost_per_entry_ms = 0.0;
1048     if (cards_scanned > 10) {
1049       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1050       if (_last_gc_was_young) {
1051         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1052       } else {
1053         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1054       }
1055     }
1056 
1057     if (_max_rs_lengths > 0) {
1058       double cards_per_entry_ratio =
1059         (double) cards_scanned / (double) _max_rs_lengths;
1060       if (_last_gc_was_young) {
1061         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1062       } else {
1063         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1064       }
1065     }
1066 
1067     // This is defensive. For a while _max_rs_lengths could get
1068     // smaller than _recorded_rs_lengths which was causing
1069     // rs_length_diff to get very large and mess up the RSet length
1070     // predictions. The reason was unsafe concurrent updates to the
1071     // _inc_cset_recorded_rs_lengths field which the code below guards
1072     // against (see CR 7118202). This bug has now been fixed (see CR
1073     // 7119027). However, I'm still worried that
1074     // _inc_cset_recorded_rs_lengths might still end up somewhat
1075     // inaccurate. The concurrent refinement thread calculates an
1076     // RSet's length concurrently with other CR threads updating it
1077     // which might cause it to calculate the length incorrectly (if,
1078     // say, it's in mid-coarsening). So I'll leave in the defensive
1079     // conditional below just in case.
1080     size_t rs_length_diff = 0;
1081     if (_max_rs_lengths > _recorded_rs_lengths) {
1082       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1083     }
1084     _rs_length_diff_seq->add((double) rs_length_diff);
1085 
1086     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1087     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1088     double cost_per_byte_ms = 0.0;
1089 
1090     if (copied_bytes > 0) {
1091       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1092       if (_in_marking_window) {
1093         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1094       } else {
1095         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1096       }
1097     }
1098 
1099     double all_other_time_ms = pause_time_ms -
1100       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1101       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1102 
1103     double young_other_time_ms = 0.0;
1104     if (young_cset_region_length() > 0) {
1105       young_other_time_ms =
1106         phase_times()->young_cset_choice_time_ms() +
1107         phase_times()->young_free_cset_time_ms();
1108       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1109                                           (double) young_cset_region_length());
1110     }
1111     double non_young_other_time_ms = 0.0;
1112     if (old_cset_region_length() > 0) {
1113       non_young_other_time_ms =
1114         phase_times()->non_young_cset_choice_time_ms() +
1115         phase_times()->non_young_free_cset_time_ms();
1116 
1117       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1118                                             (double) old_cset_region_length());
1119     }
1120 
1121     double constant_other_time_ms = all_other_time_ms -
1122       (young_other_time_ms + non_young_other_time_ms);
1123     _constant_other_time_ms_seq->add(constant_other_time_ms);
1124 
1125     double survival_ratio = 0.0;
1126     if (_collection_set_bytes_used_before > 0) {
1127       survival_ratio = (double) _bytes_copied_during_gc /
1128                                    (double) _collection_set_bytes_used_before;
1129     }
1130 
1131     _pending_cards_seq->add((double) _pending_cards);
1132     _rs_lengths_seq->add((double) _max_rs_lengths);
1133   }
1134 
1135   _in_marking_window = new_in_marking_window;
1136   _in_marking_window_im = new_in_marking_window_im;
1137   _free_regions_at_end_of_collection = _g1->free_regions();
1138   update_young_list_target_length();
1139 
1140   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1141   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1142   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1143                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1144 
1145   _collectionSetChooser->verify();
1146 }
1147 
1148 #define EXT_SIZE_FORMAT "%.1f%s"
1149 #define EXT_SIZE_PARAMS(bytes)                                  \
1150   byte_size_in_proper_unit((double)(bytes)),                    \
1151   proper_unit_for_byte_size((bytes))
1152 
1153 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1154   YoungList* young_list = _g1->young_list();
1155   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1156   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1157   _heap_capacity_bytes_before_gc = _g1->capacity();
1158   _heap_used_bytes_before_gc = _g1->used();
1159   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1160 
1161   _eden_capacity_bytes_before_gc =
1162          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1163 
1164   if (full) {
1165     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
1166   }
1167 }
1168 
1169 void G1CollectorPolicy::print_heap_transition() {
1170   _g1->print_size_transition(gclog_or_tty,
1171                              _heap_used_bytes_before_gc,
1172                              _g1->used(),
1173                              _g1->capacity());
1174 }
1175 
1176 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1177   YoungList* young_list = _g1->young_list();
1178 
1179   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1180   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1181   size_t heap_used_bytes_after_gc = _g1->used();
1182 
1183   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1184   size_t eden_capacity_bytes_after_gc =
1185     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1186 
1187   gclog_or_tty->print(
1188     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1189     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1190     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1191     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1192     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1193     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1194     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1195     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1196     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1197     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1198     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1199     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1200     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1201     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1202 
1203   if (full) {
1204     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1205   }
1206 
1207   gclog_or_tty->cr();
1208 }
1209 
1210 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1211                                                      double update_rs_processed_buffers,
1212                                                      double goal_ms) {
1213   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1214   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1215 
1216   if (G1UseAdaptiveConcRefinement) {
1217     const int k_gy = 3, k_gr = 6;
1218     const double inc_k = 1.1, dec_k = 0.9;
1219 
1220     int g = cg1r->green_zone();
1221     if (update_rs_time > goal_ms) {
1222       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1223     } else {
1224       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1225         g = (int)MAX2(g * inc_k, g + 1.0);
1226       }
1227     }
1228     // Change the refinement threads params
1229     cg1r->set_green_zone(g);
1230     cg1r->set_yellow_zone(g * k_gy);
1231     cg1r->set_red_zone(g * k_gr);
1232     cg1r->reinitialize_threads();
1233 
1234     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1235     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1236                                     cg1r->yellow_zone());
1237     // Change the barrier params
1238     dcqs.set_process_completed_threshold(processing_threshold);
1239     dcqs.set_max_completed_queue(cg1r->red_zone());
1240   }
1241 
1242   int curr_queue_size = dcqs.completed_buffers_num();
1243   if (curr_queue_size >= cg1r->yellow_zone()) {
1244     dcqs.set_completed_queue_padding(curr_queue_size);
1245   } else {
1246     dcqs.set_completed_queue_padding(0);
1247   }
1248   dcqs.notify_if_necessary();
1249 }
1250 
1251 double
1252 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1253                                                 size_t scanned_cards) {
1254   return
1255     predict_rs_update_time_ms(pending_cards) +
1256     predict_rs_scan_time_ms(scanned_cards) +
1257     predict_constant_other_time_ms();
1258 }
1259 
1260 double
1261 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1262   size_t rs_length = predict_rs_length_diff();
1263   size_t card_num;
1264   if (gcs_are_young()) {
1265     card_num = predict_young_card_num(rs_length);
1266   } else {
1267     card_num = predict_non_young_card_num(rs_length);
1268   }
1269   return predict_base_elapsed_time_ms(pending_cards, card_num);
1270 }
1271 
1272 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1273   size_t bytes_to_copy;
1274   if (hr->is_marked())
1275     bytes_to_copy = hr->max_live_bytes();
1276   else {
1277     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1278     int age = hr->age_in_surv_rate_group();
1279     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1280     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1281   }
1282   return bytes_to_copy;
1283 }
1284 
1285 double
1286 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1287                                                   bool for_young_gc) {
1288   size_t rs_length = hr->rem_set()->occupied();
1289   size_t card_num;
1290 
1291   // Predicting the number of cards is based on which type of GC
1292   // we're predicting for.
1293   if (for_young_gc) {
1294     card_num = predict_young_card_num(rs_length);
1295   } else {
1296     card_num = predict_non_young_card_num(rs_length);
1297   }
1298   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1299 
1300   double region_elapsed_time_ms =
1301     predict_rs_scan_time_ms(card_num) +
1302     predict_object_copy_time_ms(bytes_to_copy);
1303 
1304   // The prediction of the "other" time for this region is based
1305   // upon the region type and NOT the GC type.
1306   if (hr->is_young()) {
1307     region_elapsed_time_ms += predict_young_other_time_ms(1);
1308   } else {
1309     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1310   }
1311   return region_elapsed_time_ms;
1312 }
1313 
1314 void
1315 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1316                                             uint survivor_cset_region_length) {
1317   _eden_cset_region_length     = eden_cset_region_length;
1318   _survivor_cset_region_length = survivor_cset_region_length;
1319   _old_cset_region_length      = 0;
1320 }
1321 
1322 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1323   _recorded_rs_lengths = rs_lengths;
1324 }
1325 
1326 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1327                                                double elapsed_ms) {
1328   _recent_gc_times_ms->add(elapsed_ms);
1329   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1330   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1331 }
1332 
1333 size_t G1CollectorPolicy::expansion_amount() {
1334   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1335   double threshold = _gc_overhead_perc;
1336   if (recent_gc_overhead > threshold) {
1337     // We will double the existing space, or take
1338     // G1ExpandByPercentOfAvailable % of the available expansion
1339     // space, whichever is smaller, bounded below by a minimum
1340     // expansion (unless that's all that's left.)
1341     const size_t min_expand_bytes = 1*M;
1342     size_t reserved_bytes = _g1->max_capacity();
1343     size_t committed_bytes = _g1->capacity();
1344     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1345     size_t expand_bytes;
1346     size_t expand_bytes_via_pct =
1347       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1348     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1349     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1350     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1351 
1352     ergo_verbose5(ErgoHeapSizing,
1353                   "attempt heap expansion",
1354                   ergo_format_reason("recent GC overhead higher than "
1355                                      "threshold after GC")
1356                   ergo_format_perc("recent GC overhead")
1357                   ergo_format_perc("threshold")
1358                   ergo_format_byte("uncommitted")
1359                   ergo_format_byte_perc("calculated expansion amount"),
1360                   recent_gc_overhead, threshold,
1361                   uncommitted_bytes,
1362                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1363 
1364     return expand_bytes;
1365   } else {
1366     return 0;
1367   }
1368 }
1369 
1370 void G1CollectorPolicy::print_tracing_info() const {
1371   _trace_gen0_time_data.print();
1372   _trace_gen1_time_data.print();
1373 }
1374 
1375 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1376 #ifndef PRODUCT
1377   _short_lived_surv_rate_group->print_surv_rate_summary();
1378   // add this call for any other surv rate groups
1379 #endif // PRODUCT
1380 }
1381 
1382 uint G1CollectorPolicy::max_regions(int purpose) {
1383   switch (purpose) {
1384     case GCAllocForSurvived:
1385       return _max_survivor_regions;
1386     case GCAllocForTenured:
1387       return REGIONS_UNLIMITED;
1388     default:
1389       ShouldNotReachHere();
1390       return REGIONS_UNLIMITED;
1391   };
1392 }
1393 
1394 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1395   uint expansion_region_num = 0;
1396   if (GCLockerEdenExpansionPercent > 0) {
1397     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1398     double expansion_region_num_d = perc * (double) _young_list_target_length;
1399     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1400     // less than 1.0) we'll get 1.
1401     expansion_region_num = (uint) ceil(expansion_region_num_d);
1402   } else {
1403     assert(expansion_region_num == 0, "sanity");
1404   }
1405   _young_list_max_length = _young_list_target_length + expansion_region_num;
1406   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1407 }
1408 
1409 // Calculates survivor space parameters.
1410 void G1CollectorPolicy::update_survivors_policy() {
1411   double max_survivor_regions_d =
1412                  (double) _young_list_target_length / (double) SurvivorRatio;
1413   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1414   // smaller than 1.0) we'll get 1.
1415   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1416 
1417   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1418         HeapRegion::GrainWords * _max_survivor_regions);
1419 }
1420 
1421 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1422                                                      GCCause::Cause gc_cause) {
1423   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1424   if (!during_cycle) {
1425     ergo_verbose1(ErgoConcCycles,
1426                   "request concurrent cycle initiation",
1427                   ergo_format_reason("requested by GC cause")
1428                   ergo_format_str("GC cause"),
1429                   GCCause::to_string(gc_cause));
1430     set_initiate_conc_mark_if_possible();
1431     return true;
1432   } else {
1433     ergo_verbose1(ErgoConcCycles,
1434                   "do not request concurrent cycle initiation",
1435                   ergo_format_reason("concurrent cycle already in progress")
1436                   ergo_format_str("GC cause"),
1437                   GCCause::to_string(gc_cause));
1438     return false;
1439   }
1440 }
1441 
1442 void
1443 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1444   // We are about to decide on whether this pause will be an
1445   // initial-mark pause.
1446 
1447   // First, during_initial_mark_pause() should not be already set. We
1448   // will set it here if we have to. However, it should be cleared by
1449   // the end of the pause (it's only set for the duration of an
1450   // initial-mark pause).
1451   assert(!during_initial_mark_pause(), "pre-condition");
1452 
1453   if (initiate_conc_mark_if_possible()) {
1454     // We had noticed on a previous pause that the heap occupancy has
1455     // gone over the initiating threshold and we should start a
1456     // concurrent marking cycle. So we might initiate one.
1457 
1458     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1459     if (!during_cycle) {
1460       // The concurrent marking thread is not "during a cycle", i.e.,
1461       // it has completed the last one. So we can go ahead and
1462       // initiate a new cycle.
1463 
1464       set_during_initial_mark_pause();
1465       // We do not allow mixed GCs during marking.
1466       if (!gcs_are_young()) {
1467         set_gcs_are_young(true);
1468         ergo_verbose0(ErgoMixedGCs,
1469                       "end mixed GCs",
1470                       ergo_format_reason("concurrent cycle is about to start"));
1471       }
1472 
1473       // And we can now clear initiate_conc_mark_if_possible() as
1474       // we've already acted on it.
1475       clear_initiate_conc_mark_if_possible();
1476 
1477       ergo_verbose0(ErgoConcCycles,
1478                   "initiate concurrent cycle",
1479                   ergo_format_reason("concurrent cycle initiation requested"));
1480     } else {
1481       // The concurrent marking thread is still finishing up the
1482       // previous cycle. If we start one right now the two cycles
1483       // overlap. In particular, the concurrent marking thread might
1484       // be in the process of clearing the next marking bitmap (which
1485       // we will use for the next cycle if we start one). Starting a
1486       // cycle now will be bad given that parts of the marking
1487       // information might get cleared by the marking thread. And we
1488       // cannot wait for the marking thread to finish the cycle as it
1489       // periodically yields while clearing the next marking bitmap
1490       // and, if it's in a yield point, it's waiting for us to
1491       // finish. So, at this point we will not start a cycle and we'll
1492       // let the concurrent marking thread complete the last one.
1493       ergo_verbose0(ErgoConcCycles,
1494                     "do not initiate concurrent cycle",
1495                     ergo_format_reason("concurrent cycle already in progress"));
1496     }
1497   }
1498 }
1499 
1500 class KnownGarbageClosure: public HeapRegionClosure {
1501   G1CollectedHeap* _g1h;
1502   CollectionSetChooser* _hrSorted;
1503 
1504 public:
1505   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1506     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1507 
1508   bool doHeapRegion(HeapRegion* r) {
1509     // We only include humongous regions in collection
1510     // sets when concurrent mark shows that their contained object is
1511     // unreachable.
1512 
1513     // Do we have any marking information for this region?
1514     if (r->is_marked()) {
1515       // We will skip any region that's currently used as an old GC
1516       // alloc region (we should not consider those for collection
1517       // before we fill them up).
1518       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1519         _hrSorted->add_region(r);
1520       }
1521     }
1522     return false;
1523   }
1524 };
1525 
1526 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1527   G1CollectedHeap* _g1h;
1528   CSetChooserParUpdater _cset_updater;
1529 
1530 public:
1531   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1532                            uint chunk_size) :
1533     _g1h(G1CollectedHeap::heap()),
1534     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1535 
1536   bool doHeapRegion(HeapRegion* r) {
1537     // Do we have any marking information for this region?
1538     if (r->is_marked()) {
1539       // We will skip any region that's currently used as an old GC
1540       // alloc region (we should not consider those for collection
1541       // before we fill them up).
1542       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1543         _cset_updater.add_region(r);
1544       }
1545     }
1546     return false;
1547   }
1548 };
1549 
1550 class ParKnownGarbageTask: public AbstractGangTask {
1551   CollectionSetChooser* _hrSorted;
1552   uint _chunk_size;
1553   G1CollectedHeap* _g1;
1554 public:
1555   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1556     AbstractGangTask("ParKnownGarbageTask"),
1557     _hrSorted(hrSorted), _chunk_size(chunk_size),
1558     _g1(G1CollectedHeap::heap()) { }
1559 
1560   void work(uint worker_id) {
1561     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1562 
1563     // Back to zero for the claim value.
1564     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1565                                          _g1->workers()->active_workers(),
1566                                          HeapRegion::InitialClaimValue);
1567   }
1568 };
1569 
1570 void
1571 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1572   _collectionSetChooser->clear();
1573 
1574   uint region_num = _g1->n_regions();
1575   if (G1CollectedHeap::use_parallel_gc_threads()) {
1576     const uint OverpartitionFactor = 4;
1577     uint WorkUnit;
1578     // The use of MinChunkSize = 8 in the original code
1579     // causes some assertion failures when the total number of
1580     // region is less than 8.  The code here tries to fix that.
1581     // Should the original code also be fixed?
1582     if (no_of_gc_threads > 0) {
1583       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1584       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1585                       MinWorkUnit);
1586     } else {
1587       assert(no_of_gc_threads > 0,
1588         "The active gc workers should be greater than 0");
1589       // In a product build do something reasonable to avoid a crash.
1590       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1591       WorkUnit =
1592         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1593              MinWorkUnit);
1594     }
1595     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1596                                                            WorkUnit);
1597     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1598                                             (int) WorkUnit);
1599     _g1->workers()->run_task(&parKnownGarbageTask);
1600 
1601     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1602            "sanity check");
1603   } else {
1604     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1605     _g1->heap_region_iterate(&knownGarbagecl);
1606   }
1607 
1608   _collectionSetChooser->sort_regions();
1609 
1610   double end_sec = os::elapsedTime();
1611   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1612   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1613   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1614   _prev_collection_pause_end_ms += elapsed_time_ms;
1615   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1616 }
1617 
1618 // Add the heap region at the head of the non-incremental collection set
1619 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1620   assert(_inc_cset_build_state == Active, "Precondition");
1621   assert(!hr->is_young(), "non-incremental add of young region");
1622 
1623   assert(!hr->in_collection_set(), "should not already be in the CSet");
1624   hr->set_in_collection_set(true);
1625   hr->set_next_in_collection_set(_collection_set);
1626   _collection_set = hr;
1627   _collection_set_bytes_used_before += hr->used();
1628   _g1->register_region_with_in_cset_fast_test(hr);
1629   size_t rs_length = hr->rem_set()->occupied();
1630   _recorded_rs_lengths += rs_length;
1631   _old_cset_region_length += 1;
1632 }
1633 
1634 // Initialize the per-collection-set information
1635 void G1CollectorPolicy::start_incremental_cset_building() {
1636   assert(_inc_cset_build_state == Inactive, "Precondition");
1637 
1638   _inc_cset_head = NULL;
1639   _inc_cset_tail = NULL;
1640   _inc_cset_bytes_used_before = 0;
1641 
1642   _inc_cset_max_finger = 0;
1643   _inc_cset_recorded_rs_lengths = 0;
1644   _inc_cset_recorded_rs_lengths_diffs = 0;
1645   _inc_cset_predicted_elapsed_time_ms = 0.0;
1646   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1647   _inc_cset_build_state = Active;
1648 }
1649 
1650 void G1CollectorPolicy::finalize_incremental_cset_building() {
1651   assert(_inc_cset_build_state == Active, "Precondition");
1652   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1653 
1654   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1655   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1656   // that adds a new region to the CSet. Further updates by the
1657   // concurrent refinement thread that samples the young RSet lengths
1658   // are accumulated in the *_diffs fields. Here we add the diffs to
1659   // the "main" fields.
1660 
1661   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1662     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1663   } else {
1664     // This is defensive. The diff should in theory be always positive
1665     // as RSets can only grow between GCs. However, given that we
1666     // sample their size concurrently with other threads updating them
1667     // it's possible that we might get the wrong size back, which
1668     // could make the calculations somewhat inaccurate.
1669     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1670     if (_inc_cset_recorded_rs_lengths >= diffs) {
1671       _inc_cset_recorded_rs_lengths -= diffs;
1672     } else {
1673       _inc_cset_recorded_rs_lengths = 0;
1674     }
1675   }
1676   _inc_cset_predicted_elapsed_time_ms +=
1677                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1678 
1679   _inc_cset_recorded_rs_lengths_diffs = 0;
1680   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1681 }
1682 
1683 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1684   // This routine is used when:
1685   // * adding survivor regions to the incremental cset at the end of an
1686   //   evacuation pause,
1687   // * adding the current allocation region to the incremental cset
1688   //   when it is retired, and
1689   // * updating existing policy information for a region in the
1690   //   incremental cset via young list RSet sampling.
1691   // Therefore this routine may be called at a safepoint by the
1692   // VM thread, or in-between safepoints by mutator threads (when
1693   // retiring the current allocation region) or a concurrent
1694   // refine thread (RSet sampling).
1695 
1696   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1697   size_t used_bytes = hr->used();
1698   _inc_cset_recorded_rs_lengths += rs_length;
1699   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1700   _inc_cset_bytes_used_before += used_bytes;
1701 
1702   // Cache the values we have added to the aggregated informtion
1703   // in the heap region in case we have to remove this region from
1704   // the incremental collection set, or it is updated by the
1705   // rset sampling code
1706   hr->set_recorded_rs_length(rs_length);
1707   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1708 }
1709 
1710 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1711                                                      size_t new_rs_length) {
1712   // Update the CSet information that is dependent on the new RS length
1713   assert(hr->is_young(), "Precondition");
1714   assert(!SafepointSynchronize::is_at_safepoint(),
1715                                                "should not be at a safepoint");
1716 
1717   // We could have updated _inc_cset_recorded_rs_lengths and
1718   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1719   // that atomically, as this code is executed by a concurrent
1720   // refinement thread, potentially concurrently with a mutator thread
1721   // allocating a new region and also updating the same fields. To
1722   // avoid the atomic operations we accumulate these updates on two
1723   // separate fields (*_diffs) and we'll just add them to the "main"
1724   // fields at the start of a GC.
1725 
1726   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1727   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1728   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1729 
1730   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1731   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1732   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1733   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1734 
1735   hr->set_recorded_rs_length(new_rs_length);
1736   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1737 }
1738 
1739 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1740   assert(hr->is_young(), "invariant");
1741   assert(hr->young_index_in_cset() > -1, "should have already been set");
1742   assert(_inc_cset_build_state == Active, "Precondition");
1743 
1744   // We need to clear and set the cached recorded/cached collection set
1745   // information in the heap region here (before the region gets added
1746   // to the collection set). An individual heap region's cached values
1747   // are calculated, aggregated with the policy collection set info,
1748   // and cached in the heap region here (initially) and (subsequently)
1749   // by the Young List sampling code.
1750 
1751   size_t rs_length = hr->rem_set()->occupied();
1752   add_to_incremental_cset_info(hr, rs_length);
1753 
1754   HeapWord* hr_end = hr->end();
1755   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1756 
1757   assert(!hr->in_collection_set(), "invariant");
1758   hr->set_in_collection_set(true);
1759   assert( hr->next_in_collection_set() == NULL, "invariant");
1760 
1761   _g1->register_region_with_in_cset_fast_test(hr);
1762 }
1763 
1764 // Add the region at the RHS of the incremental cset
1765 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1766   // We should only ever be appending survivors at the end of a pause
1767   assert( hr->is_survivor(), "Logic");
1768 
1769   // Do the 'common' stuff
1770   add_region_to_incremental_cset_common(hr);
1771 
1772   // Now add the region at the right hand side
1773   if (_inc_cset_tail == NULL) {
1774     assert(_inc_cset_head == NULL, "invariant");
1775     _inc_cset_head = hr;
1776   } else {
1777     _inc_cset_tail->set_next_in_collection_set(hr);
1778   }
1779   _inc_cset_tail = hr;
1780 }
1781 
1782 // Add the region to the LHS of the incremental cset
1783 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1784   // Survivors should be added to the RHS at the end of a pause
1785   assert(!hr->is_survivor(), "Logic");
1786 
1787   // Do the 'common' stuff
1788   add_region_to_incremental_cset_common(hr);
1789 
1790   // Add the region at the left hand side
1791   hr->set_next_in_collection_set(_inc_cset_head);
1792   if (_inc_cset_head == NULL) {
1793     assert(_inc_cset_tail == NULL, "Invariant");
1794     _inc_cset_tail = hr;
1795   }
1796   _inc_cset_head = hr;
1797 }
1798 
1799 #ifndef PRODUCT
1800 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1801   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1802 
1803   st->print_cr("\nCollection_set:");
1804   HeapRegion* csr = list_head;
1805   while (csr != NULL) {
1806     HeapRegion* next = csr->next_in_collection_set();
1807     assert(csr->in_collection_set(), "bad CS");
1808     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1809                  HR_FORMAT_PARAMS(csr),
1810                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1811                  csr->age_in_surv_rate_group_cond());
1812     csr = next;
1813   }
1814 }
1815 #endif // !PRODUCT
1816 
1817 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1818   // Returns the given amount of reclaimable bytes (that represents
1819   // the amount of reclaimable space still to be collected) as a
1820   // percentage of the current heap capacity.
1821   size_t capacity_bytes = _g1->capacity();
1822   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1823 }
1824 
1825 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1826                                                 const char* false_action_str) {
1827   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1828   if (cset_chooser->is_empty()) {
1829     ergo_verbose0(ErgoMixedGCs,
1830                   false_action_str,
1831                   ergo_format_reason("candidate old regions not available"));
1832     return false;
1833   }
1834 
1835   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1836   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1837   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1838   double threshold = (double) G1HeapWastePercent;
1839   if (reclaimable_perc <= threshold) {
1840     ergo_verbose4(ErgoMixedGCs,
1841               false_action_str,
1842               ergo_format_reason("reclaimable percentage not over threshold")
1843               ergo_format_region("candidate old regions")
1844               ergo_format_byte_perc("reclaimable")
1845               ergo_format_perc("threshold"),
1846               cset_chooser->remaining_regions(),
1847               reclaimable_bytes,
1848               reclaimable_perc, threshold);
1849     return false;
1850   }
1851 
1852   ergo_verbose4(ErgoMixedGCs,
1853                 true_action_str,
1854                 ergo_format_reason("candidate old regions available")
1855                 ergo_format_region("candidate old regions")
1856                 ergo_format_byte_perc("reclaimable")
1857                 ergo_format_perc("threshold"),
1858                 cset_chooser->remaining_regions(),
1859                 reclaimable_bytes,
1860                 reclaimable_perc, threshold);
1861   return true;
1862 }
1863 
1864 uint G1CollectorPolicy::calc_min_old_cset_length() {
1865   // The min old CSet region bound is based on the maximum desired
1866   // number of mixed GCs after a cycle. I.e., even if some old regions
1867   // look expensive, we should add them to the CSet anyway to make
1868   // sure we go through the available old regions in no more than the
1869   // maximum desired number of mixed GCs.
1870   //
1871   // The calculation is based on the number of marked regions we added
1872   // to the CSet chooser in the first place, not how many remain, so
1873   // that the result is the same during all mixed GCs that follow a cycle.
1874 
1875   const size_t region_num = (size_t) _collectionSetChooser->length();
1876   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1877   size_t result = region_num / gc_num;
1878   // emulate ceiling
1879   if (result * gc_num < region_num) {
1880     result += 1;
1881   }
1882   return (uint) result;
1883 }
1884 
1885 uint G1CollectorPolicy::calc_max_old_cset_length() {
1886   // The max old CSet region bound is based on the threshold expressed
1887   // as a percentage of the heap size. I.e., it should bound the
1888   // number of old regions added to the CSet irrespective of how many
1889   // of them are available.
1890 
1891   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1892   const size_t region_num = g1h->n_regions();
1893   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1894   size_t result = region_num * perc / 100;
1895   // emulate ceiling
1896   if (100 * result < region_num * perc) {
1897     result += 1;
1898   }
1899   return (uint) result;
1900 }
1901 
1902 
1903 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1904   double young_start_time_sec = os::elapsedTime();
1905 
1906   YoungList* young_list = _g1->young_list();
1907   finalize_incremental_cset_building();
1908 
1909   guarantee(target_pause_time_ms > 0.0,
1910             err_msg("target_pause_time_ms = %1.6lf should be positive",
1911                     target_pause_time_ms));
1912   guarantee(_collection_set == NULL, "Precondition");
1913 
1914   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1915   double predicted_pause_time_ms = base_time_ms;
1916   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1917 
1918   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1919                 "start choosing CSet",
1920                 ergo_format_size("_pending_cards")
1921                 ergo_format_ms("predicted base time")
1922                 ergo_format_ms("remaining time")
1923                 ergo_format_ms("target pause time"),
1924                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1925 
1926   _last_gc_was_young = gcs_are_young() ? true : false;
1927 
1928   if (_last_gc_was_young) {
1929     _trace_gen0_time_data.increment_young_collection_count();
1930   } else {
1931     _trace_gen0_time_data.increment_mixed_collection_count();
1932   }
1933 
1934   // The young list is laid with the survivor regions from the previous
1935   // pause are appended to the RHS of the young list, i.e.
1936   //   [Newly Young Regions ++ Survivors from last pause].
1937 
1938   uint survivor_region_length = young_list->survivor_length();
1939   uint eden_region_length = young_list->length() - survivor_region_length;
1940   init_cset_region_lengths(eden_region_length, survivor_region_length);
1941 
1942   HeapRegion* hr = young_list->first_survivor_region();
1943   while (hr != NULL) {
1944     assert(hr->is_survivor(), "badly formed young list");
1945     hr->set_young();
1946     hr = hr->get_next_young_region();
1947   }
1948 
1949   // Clear the fields that point to the survivor list - they are all young now.
1950   young_list->clear_survivors();
1951 
1952   _collection_set = _inc_cset_head;
1953   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1954   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1955   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1956 
1957   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1958                 "add young regions to CSet",
1959                 ergo_format_region("eden")
1960                 ergo_format_region("survivors")
1961                 ergo_format_ms("predicted young region time"),
1962                 eden_region_length, survivor_region_length,
1963                 _inc_cset_predicted_elapsed_time_ms);
1964 
1965   // The number of recorded young regions is the incremental
1966   // collection set's current size
1967   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1968 
1969   double young_end_time_sec = os::elapsedTime();
1970   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1971 
1972   // Set the start of the non-young choice time.
1973   double non_young_start_time_sec = young_end_time_sec;
1974 
1975   if (!gcs_are_young()) {
1976     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1977     cset_chooser->verify();
1978     const uint min_old_cset_length = calc_min_old_cset_length();
1979     const uint max_old_cset_length = calc_max_old_cset_length();
1980 
1981     uint expensive_region_num = 0;
1982     bool check_time_remaining = adaptive_young_list_length();
1983 
1984     HeapRegion* hr = cset_chooser->peek();
1985     while (hr != NULL) {
1986       if (old_cset_region_length() >= max_old_cset_length) {
1987         // Added maximum number of old regions to the CSet.
1988         ergo_verbose2(ErgoCSetConstruction,
1989                       "finish adding old regions to CSet",
1990                       ergo_format_reason("old CSet region num reached max")
1991                       ergo_format_region("old")
1992                       ergo_format_region("max"),
1993                       old_cset_region_length(), max_old_cset_length);
1994         break;
1995       }
1996 
1997 
1998       // Stop adding regions if the remaining reclaimable space is
1999       // not above G1HeapWastePercent.
2000       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2001       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2002       double threshold = (double) G1HeapWastePercent;
2003       if (reclaimable_perc <= threshold) {
2004         // We've added enough old regions that the amount of uncollected
2005         // reclaimable space is at or below the waste threshold. Stop
2006         // adding old regions to the CSet.
2007         ergo_verbose5(ErgoCSetConstruction,
2008                       "finish adding old regions to CSet",
2009                       ergo_format_reason("reclaimable percentage not over threshold")
2010                       ergo_format_region("old")
2011                       ergo_format_region("max")
2012                       ergo_format_byte_perc("reclaimable")
2013                       ergo_format_perc("threshold"),
2014                       old_cset_region_length(),
2015                       max_old_cset_length,
2016                       reclaimable_bytes,
2017                       reclaimable_perc, threshold);
2018         break;
2019       }
2020 
2021       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2022       if (check_time_remaining) {
2023         if (predicted_time_ms > time_remaining_ms) {
2024           // Too expensive for the current CSet.
2025 
2026           if (old_cset_region_length() >= min_old_cset_length) {
2027             // We have added the minimum number of old regions to the CSet,
2028             // we are done with this CSet.
2029             ergo_verbose4(ErgoCSetConstruction,
2030                           "finish adding old regions to CSet",
2031                           ergo_format_reason("predicted time is too high")
2032                           ergo_format_ms("predicted time")
2033                           ergo_format_ms("remaining time")
2034                           ergo_format_region("old")
2035                           ergo_format_region("min"),
2036                           predicted_time_ms, time_remaining_ms,
2037                           old_cset_region_length(), min_old_cset_length);
2038             break;
2039           }
2040 
2041           // We'll add it anyway given that we haven't reached the
2042           // minimum number of old regions.
2043           expensive_region_num += 1;
2044         }
2045       } else {
2046         if (old_cset_region_length() >= min_old_cset_length) {
2047           // In the non-auto-tuning case, we'll finish adding regions
2048           // to the CSet if we reach the minimum.
2049           ergo_verbose2(ErgoCSetConstruction,
2050                         "finish adding old regions to CSet",
2051                         ergo_format_reason("old CSet region num reached min")
2052                         ergo_format_region("old")
2053                         ergo_format_region("min"),
2054                         old_cset_region_length(), min_old_cset_length);
2055           break;
2056         }
2057       }
2058 
2059       // We will add this region to the CSet.
2060       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2061       predicted_pause_time_ms += predicted_time_ms;
2062       cset_chooser->remove_and_move_to_next(hr);
2063       _g1->old_set_remove(hr);
2064       add_old_region_to_cset(hr);
2065 
2066       hr = cset_chooser->peek();
2067     }
2068     if (hr == NULL) {
2069       ergo_verbose0(ErgoCSetConstruction,
2070                     "finish adding old regions to CSet",
2071                     ergo_format_reason("candidate old regions not available"));
2072     }
2073 
2074     if (expensive_region_num > 0) {
2075       // We print the information once here at the end, predicated on
2076       // whether we added any apparently expensive regions or not, to
2077       // avoid generating output per region.
2078       ergo_verbose4(ErgoCSetConstruction,
2079                     "added expensive regions to CSet",
2080                     ergo_format_reason("old CSet region num not reached min")
2081                     ergo_format_region("old")
2082                     ergo_format_region("expensive")
2083                     ergo_format_region("min")
2084                     ergo_format_ms("remaining time"),
2085                     old_cset_region_length(),
2086                     expensive_region_num,
2087                     min_old_cset_length,
2088                     time_remaining_ms);
2089     }
2090 
2091     cset_chooser->verify();
2092   }
2093 
2094   stop_incremental_cset_building();
2095 
2096   ergo_verbose5(ErgoCSetConstruction,
2097                 "finish choosing CSet",
2098                 ergo_format_region("eden")
2099                 ergo_format_region("survivors")
2100                 ergo_format_region("old")
2101                 ergo_format_ms("predicted pause time")
2102                 ergo_format_ms("target pause time"),
2103                 eden_region_length, survivor_region_length,
2104                 old_cset_region_length(),
2105                 predicted_pause_time_ms, target_pause_time_ms);
2106 
2107   double non_young_end_time_sec = os::elapsedTime();
2108   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2109   evacuation_info.set_collectionset_regions(cset_region_length());
2110 }
2111 
2112 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2113   if(TraceGen0Time) {
2114     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2115   }
2116 }
2117 
2118 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2119   if(TraceGen0Time) {
2120     _all_yield_times_ms.add(yield_time_ms);
2121   }
2122 }
2123 
2124 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2125   if(TraceGen0Time) {
2126     _total.add(pause_time_ms);
2127     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2128     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2129     _parallel.add(phase_times->cur_collection_par_time_ms());
2130     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2131     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2132     _update_rs.add(phase_times->average_last_update_rs_time());
2133     _scan_rs.add(phase_times->average_last_scan_rs_time());
2134     _obj_copy.add(phase_times->average_last_obj_copy_time());
2135     _termination.add(phase_times->average_last_termination_time());
2136 
2137     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2138       phase_times->average_last_satb_filtering_times_ms() +
2139       phase_times->average_last_update_rs_time() +
2140       phase_times->average_last_scan_rs_time() +
2141       phase_times->average_last_obj_copy_time() +
2142       + phase_times->average_last_termination_time();
2143 
2144     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2145     _parallel_other.add(parallel_other_time);
2146     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2147   }
2148 }
2149 
2150 void TraceGen0TimeData::increment_young_collection_count() {
2151   if(TraceGen0Time) {
2152     ++_young_pause_num;
2153   }
2154 }
2155 
2156 void TraceGen0TimeData::increment_mixed_collection_count() {
2157   if(TraceGen0Time) {
2158     ++_mixed_pause_num;
2159   }
2160 }
2161 
2162 void TraceGen0TimeData::print_summary(const char* str,
2163                                       const NumberSeq* seq) const {
2164   double sum = seq->sum();
2165   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2166                 str, sum / 1000.0, seq->avg());
2167 }
2168 
2169 void TraceGen0TimeData::print_summary_sd(const char* str,
2170                                          const NumberSeq* seq) const {
2171   print_summary(str, seq);
2172   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2173                 "(num", seq->num(), seq->sd(), seq->maximum());
2174 }
2175 
2176 void TraceGen0TimeData::print() const {
2177   if (!TraceGen0Time) {
2178     return;
2179   }
2180 
2181   gclog_or_tty->print_cr("ALL PAUSES");
2182   print_summary_sd("   Total", &_total);
2183   gclog_or_tty->print_cr("");
2184   gclog_or_tty->print_cr("");
2185   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2186   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2187   gclog_or_tty->print_cr("");
2188 
2189   gclog_or_tty->print_cr("EVACUATION PAUSES");
2190 
2191   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2192     gclog_or_tty->print_cr("none");
2193   } else {
2194     print_summary_sd("   Evacuation Pauses", &_total);
2195     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2196     print_summary("      Parallel Time", &_parallel);
2197     print_summary("         Ext Root Scanning", &_ext_root_scan);
2198     print_summary("         SATB Filtering", &_satb_filtering);
2199     print_summary("         Update RS", &_update_rs);
2200     print_summary("         Scan RS", &_scan_rs);
2201     print_summary("         Object Copy", &_obj_copy);
2202     print_summary("         Termination", &_termination);
2203     print_summary("         Parallel Other", &_parallel_other);
2204     print_summary("      Clear CT", &_clear_ct);
2205     print_summary("      Other", &_other);
2206   }
2207   gclog_or_tty->print_cr("");
2208 
2209   gclog_or_tty->print_cr("MISC");
2210   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2211   print_summary_sd("   Yields", &_all_yield_times_ms);
2212 }
2213 
2214 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2215   if (TraceGen1Time) {
2216     _all_full_gc_times.add(full_gc_time_ms);
2217   }
2218 }
2219 
2220 void TraceGen1TimeData::print() const {
2221   if (!TraceGen1Time) {
2222     return;
2223   }
2224 
2225   if (_all_full_gc_times.num() > 0) {
2226     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2227       _all_full_gc_times.num(),
2228       _all_full_gc_times.sum() / 1000.0);
2229     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2230     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2231       _all_full_gc_times.sd(),
2232       _all_full_gc_times.maximum());
2233   }
2234 }