1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 // Align down. If the aligning result in 0, return 'alignment'.
  51 static size_t restricted_align_down(size_t size, size_t alignment) {
  52   return MAX2(alignment, align_size_down_(size, alignment));
  53 }
  54 
  55 void CollectorPolicy::initialize_flags() {
  56   assert(_max_alignment >= _min_alignment,
  57          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  58                  _max_alignment, _min_alignment));
  59   assert(_max_alignment % _min_alignment == 0,
  60          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  61                  _max_alignment, _min_alignment));
  62 
  63   if (MaxHeapSize < InitialHeapSize) {
  64     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  65   }
  66 
  67   // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
  68   // override if MaxMetaspaceSize was set on the command line or not.
  69   // This information is needed later to conform to the specification of the
  70   // java.lang.management.MemoryUsage API.
  71   //
  72   // Ideally, we would be able to set the default value of MaxMetaspaceSize in
  73   // globals.hpp to the aligned value, but this is not possible, since the
  74   // alignment depends on other flags being parsed.
  75   MaxMetaspaceSize = restricted_align_down(MaxMetaspaceSize, _max_alignment);
  76 
  77   if (MetaspaceSize > MaxMetaspaceSize) {
  78     MetaspaceSize = MaxMetaspaceSize;
  79   }
  80 
  81   MetaspaceSize = restricted_align_down(MetaspaceSize, _min_alignment);
  82 
  83   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
  84 
  85   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, _min_alignment);
  86   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, _min_alignment);
  87 
  88   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  89 
  90   assert(MetaspaceSize    % _min_alignment == 0, "metapace alignment");
  91   assert(MaxMetaspaceSize % _max_alignment == 0, "maximum metaspace alignment");
  92   if (MetaspaceSize < 256*K) {
  93     vm_exit_during_initialization("Too small initial Metaspace size");
  94   }
  95 }
  96 
  97 void CollectorPolicy::initialize_size_info() {
  98   // User inputs from -mx and ms must be aligned
  99   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
 100   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
 101   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
 102 
 103   // Check heap parameter properties
 104   if (_initial_heap_byte_size < M) {
 105     vm_exit_during_initialization("Too small initial heap");
 106   }
 107   // Check heap parameter properties
 108   if (_min_heap_byte_size < M) {
 109     vm_exit_during_initialization("Too small minimum heap");
 110   }
 111   if (_initial_heap_byte_size <= NewSize) {
 112      // make sure there is at least some room in old space
 113     vm_exit_during_initialization("Too small initial heap for new size specified");
 114   }
 115   if (_max_heap_byte_size < _min_heap_byte_size) {
 116     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 117   }
 118   if (_initial_heap_byte_size < _min_heap_byte_size) {
 119     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 120   }
 121   if (_max_heap_byte_size < _initial_heap_byte_size) {
 122     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 123   }
 124 
 125   if (PrintGCDetails && Verbose) {
 126     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 127       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 128       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 129   }
 130 }
 131 
 132 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 133   bool result = _should_clear_all_soft_refs;
 134   set_should_clear_all_soft_refs(false);
 135   return result;
 136 }
 137 
 138 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 139                                            int max_covered_regions) {
 140   assert(rem_set_name() == GenRemSet::CardTable, "unrecognized GenRemSet::Name");
 141   return new CardTableRS(whole_heap, max_covered_regions);
 142 }
 143 
 144 void CollectorPolicy::cleared_all_soft_refs() {
 145   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 146   // have been cleared in the last collection but if the gc overhear
 147   // limit continues to be near, SoftRefs should still be cleared.
 148   if (size_policy() != NULL) {
 149     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 150   }
 151   _all_soft_refs_clear = true;
 152 }
 153 
 154 size_t CollectorPolicy::compute_max_alignment() {
 155   // The card marking array and the offset arrays for old generations are
 156   // committed in os pages as well. Make sure they are entirely full (to
 157   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 158   // byte entry and the os page size is 4096, the maximum heap size should
 159   // be 512*4096 = 2MB aligned.
 160 
 161   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 162   // is supported.
 163   // Requirements of any new remembered set implementations must be added here.
 164   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 165 
 166   // Parallel GC does its own alignment of the generations to avoid requiring a
 167   // large page (256M on some platforms) for the permanent generation.  The
 168   // other collectors should also be updated to do their own alignment and then
 169   // this use of lcm() should be removed.
 170   if (UseLargePages && !UseParallelGC) {
 171       // in presence of large pages we have to make sure that our
 172       // alignment is large page aware
 173       alignment = lcm(os::large_page_size(), alignment);
 174   }
 175 
 176   return alignment;
 177 }
 178 
 179 // GenCollectorPolicy methods.
 180 
 181 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 182   size_t x = base_size / (NewRatio+1);
 183   size_t new_gen_size = x > _min_alignment ?
 184                      align_size_down(x, _min_alignment) :
 185                      _min_alignment;
 186   return new_gen_size;
 187 }
 188 
 189 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 190                                                  size_t maximum_size) {
 191   size_t alignment = _min_alignment;
 192   size_t max_minus = maximum_size - alignment;
 193   return desired_size < max_minus ? desired_size : max_minus;
 194 }
 195 
 196 
 197 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 198                                                 size_t init_promo_size,
 199                                                 size_t init_survivor_size) {
 200   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 201   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 202                                         init_promo_size,
 203                                         init_survivor_size,
 204                                         max_gc_pause_sec,
 205                                         GCTimeRatio);
 206 }
 207 
 208 void GenCollectorPolicy::initialize_flags() {
 209   // All sizes must be multiples of the generation granularity.
 210   _min_alignment = (uintx) Generation::GenGrain;
 211   _max_alignment = compute_max_alignment();
 212 
 213   CollectorPolicy::initialize_flags();
 214 
 215   // All generational heaps have a youngest gen; handle those flags here.
 216 
 217   // Adjust max size parameters
 218   if (NewSize > MaxNewSize) {
 219     MaxNewSize = NewSize;
 220   }
 221   NewSize = align_size_down(NewSize, _min_alignment);
 222   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 223 
 224   // Check validity of heap flags
 225   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 226   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 227 
 228   if (NewSize < 3 * _min_alignment) {
 229      // make sure there room for eden and two survivor spaces
 230     vm_exit_during_initialization("Too small new size specified");
 231   }
 232   if (SurvivorRatio < 1 || NewRatio < 1) {
 233     vm_exit_during_initialization("Invalid young gen ratio specified");
 234   }
 235 }
 236 
 237 void TwoGenerationCollectorPolicy::initialize_flags() {
 238   GenCollectorPolicy::initialize_flags();
 239 
 240   OldSize = align_size_down(OldSize, _min_alignment);
 241 
 242   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 243     // NewRatio will be used later to set the young generation size so we use
 244     // it to calculate how big the heap should be based on the requested OldSize
 245     // and NewRatio.
 246     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 247     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 248 
 249     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 250     MaxHeapSize = calculated_heapsize;
 251     InitialHeapSize = calculated_heapsize;
 252   }
 253   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 254 
 255   // adjust max heap size if necessary
 256   if (NewSize + OldSize > MaxHeapSize) {
 257     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 258       // somebody set a maximum heap size with the intention that we should not
 259       // exceed it. Adjust New/OldSize as necessary.
 260       uintx calculated_size = NewSize + OldSize;
 261       double shrink_factor = (double) MaxHeapSize / calculated_size;
 262       // align
 263       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 264       // OldSize is already aligned because above we aligned MaxHeapSize to
 265       // _max_alignment, and we just made sure that NewSize is aligned to
 266       // _min_alignment. In initialize_flags() we verified that _max_alignment
 267       // is a multiple of _min_alignment.
 268       OldSize = MaxHeapSize - NewSize;
 269     } else {
 270       MaxHeapSize = NewSize + OldSize;
 271     }
 272   }
 273   // need to do this again
 274   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 275 
 276   // adjust max heap size if necessary
 277   if (NewSize + OldSize > MaxHeapSize) {
 278     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 279       // somebody set a maximum heap size with the intention that we should not
 280       // exceed it. Adjust New/OldSize as necessary.
 281       uintx calculated_size = NewSize + OldSize;
 282       double shrink_factor = (double) MaxHeapSize / calculated_size;
 283       // align
 284       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 285       // OldSize is already aligned because above we aligned MaxHeapSize to
 286       // _max_alignment, and we just made sure that NewSize is aligned to
 287       // _min_alignment. In initialize_flags() we verified that _max_alignment
 288       // is a multiple of _min_alignment.
 289       OldSize = MaxHeapSize - NewSize;
 290     } else {
 291       MaxHeapSize = NewSize + OldSize;
 292     }
 293   }
 294   // need to do this again
 295   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 296 
 297   always_do_update_barrier = UseConcMarkSweepGC;
 298 
 299   // Check validity of heap flags
 300   assert(OldSize     % _min_alignment == 0, "old space alignment");
 301   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 302 }
 303 
 304 // Values set on the command line win over any ergonomically
 305 // set command line parameters.
 306 // Ergonomic choice of parameters are done before this
 307 // method is called.  Values for command line parameters such as NewSize
 308 // and MaxNewSize feed those ergonomic choices into this method.
 309 // This method makes the final generation sizings consistent with
 310 // themselves and with overall heap sizings.
 311 // In the absence of explicitly set command line flags, policies
 312 // such as the use of NewRatio are used to size the generation.
 313 void GenCollectorPolicy::initialize_size_info() {
 314   CollectorPolicy::initialize_size_info();
 315 
 316   // _min_alignment is used for alignment within a generation.
 317   // There is additional alignment done down stream for some
 318   // collectors that sometimes causes unwanted rounding up of
 319   // generations sizes.
 320 
 321   // Determine maximum size of gen0
 322 
 323   size_t max_new_size = 0;
 324   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 325     if (MaxNewSize < _min_alignment) {
 326       max_new_size = _min_alignment;
 327     }
 328     if (MaxNewSize >= _max_heap_byte_size) {
 329       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 330                                      _min_alignment);
 331       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 332         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 333         "new generation size of " SIZE_FORMAT "k will be used.",
 334         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 335     } else {
 336       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 337     }
 338 
 339   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 340   // specially at this point to just use an ergonomically set
 341   // MaxNewSize to set max_new_size.  For cases with small
 342   // heaps such a policy often did not work because the MaxNewSize
 343   // was larger than the entire heap.  The interpretation given
 344   // to ergonomically set flags is that the flags are set
 345   // by different collectors for their own special needs but
 346   // are not allowed to badly shape the heap.  This allows the
 347   // different collectors to decide what's best for themselves
 348   // without having to factor in the overall heap shape.  It
 349   // can be the case in the future that the collectors would
 350   // only make "wise" ergonomics choices and this policy could
 351   // just accept those choices.  The choices currently made are
 352   // not always "wise".
 353   } else {
 354     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 355     // Bound the maximum size by NewSize below (since it historically
 356     // would have been NewSize and because the NewRatio calculation could
 357     // yield a size that is too small) and bound it by MaxNewSize above.
 358     // Ergonomics plays here by previously calculating the desired
 359     // NewSize and MaxNewSize.
 360     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 361   }
 362   assert(max_new_size > 0, "All paths should set max_new_size");
 363 
 364   // Given the maximum gen0 size, determine the initial and
 365   // minimum gen0 sizes.
 366 
 367   if (_max_heap_byte_size == _min_heap_byte_size) {
 368     // The maximum and minimum heap sizes are the same so
 369     // the generations minimum and initial must be the
 370     // same as its maximum.
 371     _min_gen0_size = max_new_size;
 372     _initial_gen0_size = max_new_size;
 373     _max_gen0_size = max_new_size;
 374   } else {
 375     size_t desired_new_size = 0;
 376     if (!FLAG_IS_DEFAULT(NewSize)) {
 377       // If NewSize is set ergonomically (for example by cms), it
 378       // would make sense to use it.  If it is used, also use it
 379       // to set the initial size.  Although there is no reason
 380       // the minimum size and the initial size have to be the same,
 381       // the current implementation gets into trouble during the calculation
 382       // of the tenured generation sizes if they are different.
 383       // Note that this makes the initial size and the minimum size
 384       // generally small compared to the NewRatio calculation.
 385       _min_gen0_size = NewSize;
 386       desired_new_size = NewSize;
 387       max_new_size = MAX2(max_new_size, NewSize);
 388     } else {
 389       // For the case where NewSize is the default, use NewRatio
 390       // to size the minimum and initial generation sizes.
 391       // Use the default NewSize as the floor for these values.  If
 392       // NewRatio is overly large, the resulting sizes can be too
 393       // small.
 394       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 395       desired_new_size =
 396         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 397     }
 398 
 399     assert(_min_gen0_size > 0, "Sanity check");
 400     _initial_gen0_size = desired_new_size;
 401     _max_gen0_size = max_new_size;
 402 
 403     // At this point the desirable initial and minimum sizes have been
 404     // determined without regard to the maximum sizes.
 405 
 406     // Bound the sizes by the corresponding overall heap sizes.
 407     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 408     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 409     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 410 
 411     // At this point all three sizes have been checked against the
 412     // maximum sizes but have not been checked for consistency
 413     // among the three.
 414 
 415     // Final check min <= initial <= max
 416     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 417     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 418     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 419   }
 420 
 421   if (PrintGCDetails && Verbose) {
 422     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 423       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 424       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 425   }
 426 }
 427 
 428 // Call this method during the sizing of the gen1 to make
 429 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 430 // the most freedom in sizing because it is done before the
 431 // policy for gen1 is applied.  Once gen1 policies have been applied,
 432 // there may be conflicts in the shape of the heap and this method
 433 // is used to make the needed adjustments.  The application of the
 434 // policies could be more sophisticated (iterative for example) but
 435 // keeping it simple also seems a worthwhile goal.
 436 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 437                                                      size_t* gen1_size_ptr,
 438                                                      const size_t heap_size,
 439                                                      const size_t min_gen1_size) {
 440   bool result = false;
 441 
 442   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 443     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 444         (heap_size >= min_gen1_size + _min_alignment)) {
 445       // Adjust gen0 down to accommodate min_gen1_size
 446       *gen0_size_ptr = heap_size - min_gen1_size;
 447       *gen0_size_ptr =
 448         MAX2((uintx)align_size_down(*gen0_size_ptr, _min_alignment), _min_alignment);
 449       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 450       result = true;
 451     } else {
 452       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 453       *gen1_size_ptr =
 454         MAX2((uintx)align_size_down(*gen1_size_ptr, _min_alignment), _min_alignment);
 455     }
 456   }
 457   return result;
 458 }
 459 
 460 // Minimum sizes of the generations may be different than
 461 // the initial sizes.  An inconsistently is permitted here
 462 // in the total size that can be specified explicitly by
 463 // command line specification of OldSize and NewSize and
 464 // also a command line specification of -Xms.  Issue a warning
 465 // but allow the values to pass.
 466 
 467 void TwoGenerationCollectorPolicy::initialize_size_info() {
 468   GenCollectorPolicy::initialize_size_info();
 469 
 470   // At this point the minimum, initial and maximum sizes
 471   // of the overall heap and of gen0 have been determined.
 472   // The maximum gen1 size can be determined from the maximum gen0
 473   // and maximum heap size since no explicit flags exits
 474   // for setting the gen1 maximum.
 475   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 476   _max_gen1_size =
 477     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
 478   // If no explicit command line flag has been set for the
 479   // gen1 size, use what is left for gen1.
 480   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 481     // The user has not specified any value or ergonomics
 482     // has chosen a value (which may or may not be consistent
 483     // with the overall heap size).  In either case make
 484     // the minimum, maximum and initial sizes consistent
 485     // with the gen0 sizes and the overall heap sizes.
 486     assert(_min_heap_byte_size > _min_gen0_size,
 487       "gen0 has an unexpected minimum size");
 488     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 489     _min_gen1_size =
 490       MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment), _min_alignment);
 491     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 492     _initial_gen1_size =
 493       MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment), _min_alignment);
 494   } else {
 495     // It's been explicitly set on the command line.  Use the
 496     // OldSize and then determine the consequences.
 497     _min_gen1_size = OldSize;
 498     _initial_gen1_size = OldSize;
 499 
 500     // If the user has explicitly set an OldSize that is inconsistent
 501     // with other command line flags, issue a warning.
 502     // The generation minimums and the overall heap mimimum should
 503     // be within one heap alignment.
 504     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 505       warning("Inconsistency between minimum heap size and minimum "
 506               "generation sizes: using minimum heap = " SIZE_FORMAT,
 507               _min_heap_byte_size);
 508     }
 509     if ((OldSize > _max_gen1_size)) {
 510       warning("Inconsistency between maximum heap size and maximum "
 511               "generation sizes: using maximum heap = " SIZE_FORMAT
 512               " -XX:OldSize flag is being ignored",
 513               _max_heap_byte_size);
 514     }
 515     // If there is an inconsistency between the OldSize and the minimum and/or
 516     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 517     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 518                           _min_heap_byte_size, OldSize)) {
 519       if (PrintGCDetails && Verbose) {
 520         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 521               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 522               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 523       }
 524     }
 525     // Initial size
 526     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 527                           _initial_heap_byte_size, OldSize)) {
 528       if (PrintGCDetails && Verbose) {
 529         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 530           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 531           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 532       }
 533     }
 534   }
 535   // Enforce the maximum gen1 size.
 536   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 537 
 538   // Check that min gen1 <= initial gen1 <= max gen1
 539   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 540   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 541 
 542   if (PrintGCDetails && Verbose) {
 543     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 544       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 545       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 546   }
 547 }
 548 
 549 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 550                                         bool is_tlab,
 551                                         bool* gc_overhead_limit_was_exceeded) {
 552   GenCollectedHeap *gch = GenCollectedHeap::heap();
 553 
 554   debug_only(gch->check_for_valid_allocation_state());
 555   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 556 
 557   // In general gc_overhead_limit_was_exceeded should be false so
 558   // set it so here and reset it to true only if the gc time
 559   // limit is being exceeded as checked below.
 560   *gc_overhead_limit_was_exceeded = false;
 561 
 562   HeapWord* result = NULL;
 563 
 564   // Loop until the allocation is satisified,
 565   // or unsatisfied after GC.
 566   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 567     HandleMark hm; // discard any handles allocated in each iteration
 568 
 569     // First allocation attempt is lock-free.
 570     Generation *gen0 = gch->get_gen(0);
 571     assert(gen0->supports_inline_contig_alloc(),
 572       "Otherwise, must do alloc within heap lock");
 573     if (gen0->should_allocate(size, is_tlab)) {
 574       result = gen0->par_allocate(size, is_tlab);
 575       if (result != NULL) {
 576         assert(gch->is_in_reserved(result), "result not in heap");
 577         return result;
 578       }
 579     }
 580     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 581     {
 582       MutexLocker ml(Heap_lock);
 583       if (PrintGC && Verbose) {
 584         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 585                       " attempting locked slow path allocation");
 586       }
 587       // Note that only large objects get a shot at being
 588       // allocated in later generations.
 589       bool first_only = ! should_try_older_generation_allocation(size);
 590 
 591       result = gch->attempt_allocation(size, is_tlab, first_only);
 592       if (result != NULL) {
 593         assert(gch->is_in_reserved(result), "result not in heap");
 594         return result;
 595       }
 596 
 597       if (GC_locker::is_active_and_needs_gc()) {
 598         if (is_tlab) {
 599           return NULL;  // Caller will retry allocating individual object
 600         }
 601         if (!gch->is_maximal_no_gc()) {
 602           // Try and expand heap to satisfy request
 603           result = expand_heap_and_allocate(size, is_tlab);
 604           // result could be null if we are out of space
 605           if (result != NULL) {
 606             return result;
 607           }
 608         }
 609 
 610         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 611           return NULL; // we didn't get to do a GC and we didn't get any memory
 612         }
 613 
 614         // If this thread is not in a jni critical section, we stall
 615         // the requestor until the critical section has cleared and
 616         // GC allowed. When the critical section clears, a GC is
 617         // initiated by the last thread exiting the critical section; so
 618         // we retry the allocation sequence from the beginning of the loop,
 619         // rather than causing more, now probably unnecessary, GC attempts.
 620         JavaThread* jthr = JavaThread::current();
 621         if (!jthr->in_critical()) {
 622           MutexUnlocker mul(Heap_lock);
 623           // Wait for JNI critical section to be exited
 624           GC_locker::stall_until_clear();
 625           gclocker_stalled_count += 1;
 626           continue;
 627         } else {
 628           if (CheckJNICalls) {
 629             fatal("Possible deadlock due to allocating while"
 630                   " in jni critical section");
 631           }
 632           return NULL;
 633         }
 634       }
 635 
 636       // Read the gc count while the heap lock is held.
 637       gc_count_before = Universe::heap()->total_collections();
 638     }
 639 
 640     VM_GenCollectForAllocation op(size,
 641                                   is_tlab,
 642                                   gc_count_before);
 643     VMThread::execute(&op);
 644     if (op.prologue_succeeded()) {
 645       result = op.result();
 646       if (op.gc_locked()) {
 647          assert(result == NULL, "must be NULL if gc_locked() is true");
 648          continue;  // retry and/or stall as necessary
 649       }
 650 
 651       // Allocation has failed and a collection
 652       // has been done.  If the gc time limit was exceeded the
 653       // this time, return NULL so that an out-of-memory
 654       // will be thrown.  Clear gc_overhead_limit_exceeded
 655       // so that the overhead exceeded does not persist.
 656 
 657       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 658       const bool softrefs_clear = all_soft_refs_clear();
 659 
 660       if (limit_exceeded && softrefs_clear) {
 661         *gc_overhead_limit_was_exceeded = true;
 662         size_policy()->set_gc_overhead_limit_exceeded(false);
 663         if (op.result() != NULL) {
 664           CollectedHeap::fill_with_object(op.result(), size);
 665         }
 666         return NULL;
 667       }
 668       assert(result == NULL || gch->is_in_reserved(result),
 669              "result not in heap");
 670       return result;
 671     }
 672 
 673     // Give a warning if we seem to be looping forever.
 674     if ((QueuedAllocationWarningCount > 0) &&
 675         (try_count % QueuedAllocationWarningCount == 0)) {
 676           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 677                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 678     }
 679   }
 680 }
 681 
 682 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 683                                                        bool   is_tlab) {
 684   GenCollectedHeap *gch = GenCollectedHeap::heap();
 685   HeapWord* result = NULL;
 686   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 687     Generation *gen = gch->get_gen(i);
 688     if (gen->should_allocate(size, is_tlab)) {
 689       result = gen->expand_and_allocate(size, is_tlab);
 690     }
 691   }
 692   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 693   return result;
 694 }
 695 
 696 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 697                                                         bool   is_tlab) {
 698   GenCollectedHeap *gch = GenCollectedHeap::heap();
 699   GCCauseSetter x(gch, GCCause::_allocation_failure);
 700   HeapWord* result = NULL;
 701 
 702   assert(size != 0, "Precondition violated");
 703   if (GC_locker::is_active_and_needs_gc()) {
 704     // GC locker is active; instead of a collection we will attempt
 705     // to expand the heap, if there's room for expansion.
 706     if (!gch->is_maximal_no_gc()) {
 707       result = expand_heap_and_allocate(size, is_tlab);
 708     }
 709     return result;   // could be null if we are out of space
 710   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 711     // Do an incremental collection.
 712     gch->do_collection(false            /* full */,
 713                        false            /* clear_all_soft_refs */,
 714                        size             /* size */,
 715                        is_tlab          /* is_tlab */,
 716                        number_of_generations() - 1 /* max_level */);
 717   } else {
 718     if (Verbose && PrintGCDetails) {
 719       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 720     }
 721     // Try a full collection; see delta for bug id 6266275
 722     // for the original code and why this has been simplified
 723     // with from-space allocation criteria modified and
 724     // such allocation moved out of the safepoint path.
 725     gch->do_collection(true             /* full */,
 726                        false            /* clear_all_soft_refs */,
 727                        size             /* size */,
 728                        is_tlab          /* is_tlab */,
 729                        number_of_generations() - 1 /* max_level */);
 730   }
 731 
 732   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 733 
 734   if (result != NULL) {
 735     assert(gch->is_in_reserved(result), "result not in heap");
 736     return result;
 737   }
 738 
 739   // OK, collection failed, try expansion.
 740   result = expand_heap_and_allocate(size, is_tlab);
 741   if (result != NULL) {
 742     return result;
 743   }
 744 
 745   // If we reach this point, we're really out of memory. Try every trick
 746   // we can to reclaim memory. Force collection of soft references. Force
 747   // a complete compaction of the heap. Any additional methods for finding
 748   // free memory should be here, especially if they are expensive. If this
 749   // attempt fails, an OOM exception will be thrown.
 750   {
 751     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 752 
 753     gch->do_collection(true             /* full */,
 754                        true             /* clear_all_soft_refs */,
 755                        size             /* size */,
 756                        is_tlab          /* is_tlab */,
 757                        number_of_generations() - 1 /* max_level */);
 758   }
 759 
 760   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 761   if (result != NULL) {
 762     assert(gch->is_in_reserved(result), "result not in heap");
 763     return result;
 764   }
 765 
 766   assert(!should_clear_all_soft_refs(),
 767     "Flag should have been handled and cleared prior to this point");
 768 
 769   // What else?  We might try synchronous finalization later.  If the total
 770   // space available is large enough for the allocation, then a more
 771   // complete compaction phase than we've tried so far might be
 772   // appropriate.
 773   return NULL;
 774 }
 775 
 776 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 777                                                  ClassLoaderData* loader_data,
 778                                                  size_t word_size,
 779                                                  Metaspace::MetadataType mdtype) {
 780   uint loop_count = 0;
 781   uint gc_count = 0;
 782   uint full_gc_count = 0;
 783 
 784   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 785 
 786   do {
 787     MetaWord* result = NULL;
 788     if (GC_locker::is_active_and_needs_gc()) {
 789       // If the GC_locker is active, just expand and allocate.
 790       // If that does not succeed, wait if this thread is not
 791       // in a critical section itself.
 792       result =
 793         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 794                                                                mdtype);
 795       if (result != NULL) {
 796         return result;
 797       }
 798       JavaThread* jthr = JavaThread::current();
 799       if (!jthr->in_critical()) {
 800         // Wait for JNI critical section to be exited
 801         GC_locker::stall_until_clear();
 802         // The GC invoked by the last thread leaving the critical
 803         // section will be a young collection and a full collection
 804         // is (currently) needed for unloading classes so continue
 805         // to the next iteration to get a full GC.
 806         continue;
 807       } else {
 808         if (CheckJNICalls) {
 809           fatal("Possible deadlock due to allocating while"
 810                 " in jni critical section");
 811         }
 812         return NULL;
 813       }
 814     }
 815 
 816     {  // Need lock to get self consistent gc_count's
 817       MutexLocker ml(Heap_lock);
 818       gc_count      = Universe::heap()->total_collections();
 819       full_gc_count = Universe::heap()->total_full_collections();
 820     }
 821 
 822     // Generate a VM operation
 823     VM_CollectForMetadataAllocation op(loader_data,
 824                                        word_size,
 825                                        mdtype,
 826                                        gc_count,
 827                                        full_gc_count,
 828                                        GCCause::_metadata_GC_threshold);
 829     VMThread::execute(&op);
 830 
 831     // If GC was locked out, try again.  Check
 832     // before checking success because the prologue
 833     // could have succeeded and the GC still have
 834     // been locked out.
 835     if (op.gc_locked()) {
 836       continue;
 837     }
 838 
 839     if (op.prologue_succeeded()) {
 840       return op.result();
 841     }
 842     loop_count++;
 843     if ((QueuedAllocationWarningCount > 0) &&
 844         (loop_count % QueuedAllocationWarningCount == 0)) {
 845       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 846               " size=%d", loop_count, word_size);
 847     }
 848   } while (true);  // Until a GC is done
 849 }
 850 
 851 // Return true if any of the following is true:
 852 // . the allocation won't fit into the current young gen heap
 853 // . gc locker is occupied (jni critical section)
 854 // . heap memory is tight -- the most recent previous collection
 855 //   was a full collection because a partial collection (would
 856 //   have) failed and is likely to fail again
 857 bool GenCollectorPolicy::should_try_older_generation_allocation(
 858         size_t word_size) const {
 859   GenCollectedHeap* gch = GenCollectedHeap::heap();
 860   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 861   return    (word_size > heap_word_size(gen0_capacity))
 862          || GC_locker::is_active_and_needs_gc()
 863          || gch->incremental_collection_failed();
 864 }
 865 
 866 
 867 //
 868 // MarkSweepPolicy methods
 869 //
 870 
 871 MarkSweepPolicy::MarkSweepPolicy() {
 872   initialize_all();
 873 }
 874 
 875 void MarkSweepPolicy::initialize_generations() {
 876   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 877   if (_generations == NULL)
 878     vm_exit_during_initialization("Unable to allocate gen spec");
 879 
 880   if (UseParNewGC) {
 881     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 882   } else {
 883     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 884   }
 885   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 886 
 887   if (_generations[0] == NULL || _generations[1] == NULL)
 888     vm_exit_during_initialization("Unable to allocate gen spec");
 889 }
 890 
 891 void MarkSweepPolicy::initialize_gc_policy_counters() {
 892   // initialize the policy counters - 2 collectors, 3 generations
 893   if (UseParNewGC) {
 894     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 895   } else {
 896     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 897   }
 898 }