1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   assert(max_alignment() >= min_alignment(),
  52       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53           max_alignment(), min_alignment()));
  54   assert(max_alignment() % min_alignment() == 0,
  55       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56           max_alignment(), min_alignment()));
  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  60   }
  61 
  62   if (MetaspaceSize > MaxMetaspaceSize) {
  63     MaxMetaspaceSize = MetaspaceSize;
  64   }
  65   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
  66   // Don't increase Metaspace size limit above specified.
  67   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
  68   if (MetaspaceSize > MaxMetaspaceSize) {
  69     MetaspaceSize = MaxMetaspaceSize;
  70   }
  71 
  72   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
  73   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
  74 
  75   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  76 
  77   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  78   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  79   if (MetaspaceSize < 256*K) {
  80     vm_exit_during_initialization("Too small initial Metaspace size");
  81   }
  82 }
  83 
  84 void CollectorPolicy::initialize_size_info() {
  85   // User inputs from -mx and ms must be aligned
  86   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
  87   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
  88   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
  89 
  90   // Check heap parameter properties
  91   if (initial_heap_byte_size() < M) {
  92     vm_exit_during_initialization("Too small initial heap");
  93   }
  94   // Check heap parameter properties
  95   if (min_heap_byte_size() < M) {
  96     vm_exit_during_initialization("Too small minimum heap");
  97   }
  98   if (initial_heap_byte_size() <= NewSize) {
  99      // make sure there is at least some room in old space
 100     vm_exit_during_initialization("Too small initial heap for new size specified");
 101   }
 102   if (max_heap_byte_size() < min_heap_byte_size()) {
 103     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 104   }
 105   if (initial_heap_byte_size() < min_heap_byte_size()) {
 106     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 107   }
 108   if (max_heap_byte_size() < initial_heap_byte_size()) {
 109     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 110   }
 111 
 112   if (PrintGCDetails && Verbose) {
 113     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 114       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 115       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 116   }
 117 }
 118 
 119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 120   bool result = _should_clear_all_soft_refs;
 121   set_should_clear_all_soft_refs(false);
 122   return result;
 123 }
 124 
 125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 126                                            int max_covered_regions) {
 127   switch (rem_set_name()) {
 128   case GenRemSet::CardTable: {
 129     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 130     return res;
 131   }
 132   default:
 133     guarantee(false, "unrecognized GenRemSet::Name");
 134     return NULL;
 135   }
 136 }
 137 
 138 void CollectorPolicy::cleared_all_soft_refs() {
 139   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 140   // have been cleared in the last collection but if the gc overhear
 141   // limit continues to be near, SoftRefs should still be cleared.
 142   if (size_policy() != NULL) {
 143     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 144   }
 145   _all_soft_refs_clear = true;
 146 }
 147 
 148 size_t CollectorPolicy::compute_max_alignment() {
 149   // The card marking array and the offset arrays for old generations are
 150   // committed in os pages as well. Make sure they are entirely full (to
 151   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 152   // byte entry and the os page size is 4096, the maximum heap size should
 153   // be 512*4096 = 2MB aligned.
 154 
 155   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 156   // is supported.
 157   // Requirements of any new remembered set implementations must be added here.
 158   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 159 
 160   // Parallel GC does its own alignment of the generations to avoid requiring a
 161   // large page (256M on some platforms) for the permanent generation.  The
 162   // other collectors should also be updated to do their own alignment and then
 163   // this use of lcm() should be removed.
 164   if (UseLargePages && !UseParallelGC) {
 165       // in presence of large pages we have to make sure that our
 166       // alignment is large page aware
 167       alignment = lcm(os::large_page_size(), alignment);
 168   }
 169 
 170   return alignment;
 171 }
 172 
 173 // GenCollectorPolicy methods.
 174 
 175 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 176   size_t x = base_size / (NewRatio+1);
 177   size_t new_gen_size = x > min_alignment() ?
 178                      align_size_down(x, min_alignment()) :
 179                      min_alignment();
 180   return new_gen_size;
 181 }
 182 
 183 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 184                                                  size_t maximum_size) {
 185   size_t alignment = min_alignment();
 186   size_t max_minus = maximum_size - alignment;
 187   return desired_size < max_minus ? desired_size : max_minus;
 188 }
 189 
 190 
 191 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 192                                                 size_t init_promo_size,
 193                                                 size_t init_survivor_size) {
 194   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 195   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 196                                         init_promo_size,
 197                                         init_survivor_size,
 198                                         max_gc_pause_sec,
 199                                         GCTimeRatio);
 200 }
 201 
 202 void GenCollectorPolicy::initialize_flags() {
 203   // All sizes must be multiples of the generation granularity.
 204   set_min_alignment((uintx) Generation::GenGrain);
 205   set_max_alignment(compute_max_alignment());
 206 
 207   CollectorPolicy::initialize_flags();
 208 
 209   // All generational heaps have a youngest gen; handle those flags here.
 210 
 211   // Adjust max size parameters
 212   if (NewSize > MaxNewSize) {
 213     MaxNewSize = NewSize;
 214   }
 215   NewSize = align_size_down(NewSize, min_alignment());
 216   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 217 
 218   // Check validity of heap flags
 219   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 220   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 221 
 222   if (NewSize < 3*min_alignment()) {
 223      // make sure there room for eden and two survivor spaces
 224     vm_exit_during_initialization("Too small new size specified");
 225   }
 226   if (SurvivorRatio < 1 || NewRatio < 1) {
 227     vm_exit_during_initialization("Invalid heap ratio specified");
 228   }
 229 }
 230 
 231 void TwoGenerationCollectorPolicy::initialize_flags() {
 232   GenCollectorPolicy::initialize_flags();
 233 
 234   OldSize = align_size_down(OldSize, min_alignment());
 235 
 236   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 237     // NewRatio will be used later to set the young generation size so we use
 238     // it to calculate how big the heap should be based on the requested OldSize
 239     // and NewRatio.
 240     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 241     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 242 
 243     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 244     MaxHeapSize = calculated_heapsize;
 245     InitialHeapSize = calculated_heapsize;
 246   }
 247   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 248 
 249   // adjust max heap size if necessary
 250   if (NewSize + OldSize > MaxHeapSize) {
 251     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 252       // somebody set a maximum heap size with the intention that we should not
 253       // exceed it. Adjust New/OldSize as necessary.
 254       uintx calculated_size = NewSize + OldSize;
 255       double shrink_factor = (double) MaxHeapSize / calculated_size;
 256       // align
 257       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 258       // OldSize is already aligned because above we aligned MaxHeapSize to
 259       // max_alignment(), and we just made sure that NewSize is aligned to
 260       // min_alignment(). In initialize_flags() we verified that max_alignment()
 261       // is a multiple of min_alignment().
 262       OldSize = MaxHeapSize - NewSize;
 263     } else {
 264       MaxHeapSize = NewSize + OldSize;
 265     }
 266   }
 267   // need to do this again
 268   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 269 
 270   // adjust max heap size if necessary
 271   if (NewSize + OldSize > MaxHeapSize) {
 272     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 273       // somebody set a maximum heap size with the intention that we should not
 274       // exceed it. Adjust New/OldSize as necessary.
 275       uintx calculated_size = NewSize + OldSize;
 276       double shrink_factor = (double) MaxHeapSize / calculated_size;
 277       // align
 278       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 279       // OldSize is already aligned because above we aligned MaxHeapSize to
 280       // max_alignment(), and we just made sure that NewSize is aligned to
 281       // min_alignment(). In initialize_flags() we verified that max_alignment()
 282       // is a multiple of min_alignment().
 283       OldSize = MaxHeapSize - NewSize;
 284     } else {
 285       MaxHeapSize = NewSize + OldSize;
 286     }
 287   }
 288   // need to do this again
 289   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 290 
 291   always_do_update_barrier = UseConcMarkSweepGC;
 292 
 293   // Check validity of heap flags
 294   assert(OldSize     % min_alignment() == 0, "old space alignment");
 295   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 296 }
 297 
 298 // Values set on the command line win over any ergonomically
 299 // set command line parameters.
 300 // Ergonomic choice of parameters are done before this
 301 // method is called.  Values for command line parameters such as NewSize
 302 // and MaxNewSize feed those ergonomic choices into this method.
 303 // This method makes the final generation sizings consistent with
 304 // themselves and with overall heap sizings.
 305 // In the absence of explicitly set command line flags, policies
 306 // such as the use of NewRatio are used to size the generation.
 307 void GenCollectorPolicy::initialize_size_info() {
 308   CollectorPolicy::initialize_size_info();
 309 
 310   // min_alignment() is used for alignment within a generation.
 311   // There is additional alignment done down stream for some
 312   // collectors that sometimes causes unwanted rounding up of
 313   // generations sizes.
 314 
 315   // Determine maximum size of gen0
 316 
 317   size_t max_new_size = 0;
 318   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 319     if (MaxNewSize < min_alignment()) {
 320       max_new_size = min_alignment();
 321     }
 322     if (MaxNewSize >= max_heap_byte_size()) {
 323       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 324                                      min_alignment());
 325       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 326         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 327         "new generation size of " SIZE_FORMAT "k will be used.",
 328         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 329     } else {
 330       max_new_size = align_size_down(MaxNewSize, min_alignment());
 331     }
 332 
 333   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 334   // specially at this point to just use an ergonomically set
 335   // MaxNewSize to set max_new_size.  For cases with small
 336   // heaps such a policy often did not work because the MaxNewSize
 337   // was larger than the entire heap.  The interpretation given
 338   // to ergonomically set flags is that the flags are set
 339   // by different collectors for their own special needs but
 340   // are not allowed to badly shape the heap.  This allows the
 341   // different collectors to decide what's best for themselves
 342   // without having to factor in the overall heap shape.  It
 343   // can be the case in the future that the collectors would
 344   // only make "wise" ergonomics choices and this policy could
 345   // just accept those choices.  The choices currently made are
 346   // not always "wise".
 347   } else {
 348     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 349     // Bound the maximum size by NewSize below (since it historically
 350     // would have been NewSize and because the NewRatio calculation could
 351     // yield a size that is too small) and bound it by MaxNewSize above.
 352     // Ergonomics plays here by previously calculating the desired
 353     // NewSize and MaxNewSize.
 354     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 355   }
 356   assert(max_new_size > 0, "All paths should set max_new_size");
 357 
 358   // Given the maximum gen0 size, determine the initial and
 359   // minimum gen0 sizes.
 360 
 361   if (max_heap_byte_size() == min_heap_byte_size()) {
 362     // The maximum and minimum heap sizes are the same so
 363     // the generations minimum and initial must be the
 364     // same as its maximum.
 365     set_min_gen0_size(max_new_size);
 366     set_initial_gen0_size(max_new_size);
 367     set_max_gen0_size(max_new_size);
 368   } else {
 369     size_t desired_new_size = 0;
 370     if (!FLAG_IS_DEFAULT(NewSize)) {
 371       // If NewSize is set ergonomically (for example by cms), it
 372       // would make sense to use it.  If it is used, also use it
 373       // to set the initial size.  Although there is no reason
 374       // the minimum size and the initial size have to be the same,
 375       // the current implementation gets into trouble during the calculation
 376       // of the tenured generation sizes if they are different.
 377       // Note that this makes the initial size and the minimum size
 378       // generally small compared to the NewRatio calculation.
 379       _min_gen0_size = NewSize;
 380       desired_new_size = NewSize;
 381       max_new_size = MAX2(max_new_size, NewSize);
 382     } else {
 383       // For the case where NewSize is the default, use NewRatio
 384       // to size the minimum and initial generation sizes.
 385       // Use the default NewSize as the floor for these values.  If
 386       // NewRatio is overly large, the resulting sizes can be too
 387       // small.
 388       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 389                           NewSize);
 390       desired_new_size =
 391         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 392              NewSize);
 393     }
 394 
 395     assert(_min_gen0_size > 0, "Sanity check");
 396     set_initial_gen0_size(desired_new_size);
 397     set_max_gen0_size(max_new_size);
 398 
 399     // At this point the desirable initial and minimum sizes have been
 400     // determined without regard to the maximum sizes.
 401 
 402     // Bound the sizes by the corresponding overall heap sizes.
 403     set_min_gen0_size(
 404       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 405     set_initial_gen0_size(
 406       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 407     set_max_gen0_size(
 408       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 409 
 410     // At this point all three sizes have been checked against the
 411     // maximum sizes but have not been checked for consistency
 412     // among the three.
 413 
 414     // Final check min <= initial <= max
 415     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 416     set_initial_gen0_size(
 417       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 418     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 419   }
 420 
 421   if (PrintGCDetails && Verbose) {
 422     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 423       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 424       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 425   }
 426 }
 427 
 428 // Call this method during the sizing of the gen1 to make
 429 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 430 // the most freedom in sizing because it is done before the
 431 // policy for gen1 is applied.  Once gen1 policies have been applied,
 432 // there may be conflicts in the shape of the heap and this method
 433 // is used to make the needed adjustments.  The application of the
 434 // policies could be more sophisticated (iterative for example) but
 435 // keeping it simple also seems a worthwhile goal.
 436 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 437                                                      size_t* gen1_size_ptr,
 438                                                      const size_t heap_size,
 439                                                      const size_t min_gen1_size) {
 440   bool result = false;
 441 
 442   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 443     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 444         (heap_size >= min_gen1_size + min_alignment())) {
 445       // Adjust gen0 down to accommodate min_gen1_size
 446       *gen0_size_ptr = heap_size - min_gen1_size;
 447       *gen0_size_ptr =
 448         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 449              min_alignment());
 450       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 451       result = true;
 452     } else {
 453       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 454       *gen1_size_ptr =
 455         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 456                        min_alignment());
 457     }
 458   }
 459   return result;
 460 }
 461 
 462 // Minimum sizes of the generations may be different than
 463 // the initial sizes.  An inconsistently is permitted here
 464 // in the total size that can be specified explicitly by
 465 // command line specification of OldSize and NewSize and
 466 // also a command line specification of -Xms.  Issue a warning
 467 // but allow the values to pass.
 468 
 469 void TwoGenerationCollectorPolicy::initialize_size_info() {
 470   GenCollectorPolicy::initialize_size_info();
 471 
 472   // At this point the minimum, initial and maximum sizes
 473   // of the overall heap and of gen0 have been determined.
 474   // The maximum gen1 size can be determined from the maximum gen0
 475   // and maximum heap size since no explicit flags exits
 476   // for setting the gen1 maximum.
 477   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 478   _max_gen1_size =
 479     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 480          min_alignment());
 481   // If no explicit command line flag has been set for the
 482   // gen1 size, use what is left for gen1.
 483   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 484     // The user has not specified any value or ergonomics
 485     // has chosen a value (which may or may not be consistent
 486     // with the overall heap size).  In either case make
 487     // the minimum, maximum and initial sizes consistent
 488     // with the gen0 sizes and the overall heap sizes.
 489     assert(min_heap_byte_size() > _min_gen0_size,
 490       "gen0 has an unexpected minimum size");
 491     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 492     set_min_gen1_size(
 493       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 494            min_alignment()));
 495     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 496     set_initial_gen1_size(
 497       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 498            min_alignment()));
 499 
 500   } else {
 501     // It's been explicitly set on the command line.  Use the
 502     // OldSize and then determine the consequences.
 503     set_min_gen1_size(OldSize);
 504     set_initial_gen1_size(OldSize);
 505 
 506     // If the user has explicitly set an OldSize that is inconsistent
 507     // with other command line flags, issue a warning.
 508     // The generation minimums and the overall heap mimimum should
 509     // be within one heap alignment.
 510     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 511            min_heap_byte_size()) {
 512       warning("Inconsistency between minimum heap size and minimum "
 513           "generation sizes: using minimum heap = " SIZE_FORMAT,
 514           min_heap_byte_size());
 515     }
 516     if ((OldSize > _max_gen1_size)) {
 517       warning("Inconsistency between maximum heap size and maximum "
 518           "generation sizes: using maximum heap = " SIZE_FORMAT
 519           " -XX:OldSize flag is being ignored",
 520           max_heap_byte_size());
 521     }
 522     // If there is an inconsistency between the OldSize and the minimum and/or
 523     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 524     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 525                           min_heap_byte_size(), OldSize)) {
 526       if (PrintGCDetails && Verbose) {
 527         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 528               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 529               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 530       }
 531     }
 532     // Initial size
 533     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 534                          initial_heap_byte_size(), OldSize)) {
 535       if (PrintGCDetails && Verbose) {
 536         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 537           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 538           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 539       }
 540     }
 541   }
 542   // Enforce the maximum gen1 size.
 543   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 544 
 545   // Check that min gen1 <= initial gen1 <= max gen1
 546   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 547   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 548 
 549   if (PrintGCDetails && Verbose) {
 550     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 551       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 552       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 553   }
 554 }
 555 
 556 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 557                                         bool is_tlab,
 558                                         bool* gc_overhead_limit_was_exceeded) {
 559   GenCollectedHeap *gch = GenCollectedHeap::heap();
 560 
 561   debug_only(gch->check_for_valid_allocation_state());
 562   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 563 
 564   // In general gc_overhead_limit_was_exceeded should be false so
 565   // set it so here and reset it to true only if the gc time
 566   // limit is being exceeded as checked below.
 567   *gc_overhead_limit_was_exceeded = false;
 568 
 569   HeapWord* result = NULL;
 570 
 571   // Loop until the allocation is satisified,
 572   // or unsatisfied after GC.
 573   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 574     HandleMark hm; // discard any handles allocated in each iteration
 575 
 576     // First allocation attempt is lock-free.
 577     Generation *gen0 = gch->get_gen(0);
 578     assert(gen0->supports_inline_contig_alloc(),
 579       "Otherwise, must do alloc within heap lock");
 580     if (gen0->should_allocate(size, is_tlab)) {
 581       result = gen0->par_allocate(size, is_tlab);
 582       if (result != NULL) {
 583         assert(gch->is_in_reserved(result), "result not in heap");
 584         return result;
 585       }
 586     }
 587     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 588     {
 589       MutexLocker ml(Heap_lock);
 590       if (PrintGC && Verbose) {
 591         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 592                       " attempting locked slow path allocation");
 593       }
 594       // Note that only large objects get a shot at being
 595       // allocated in later generations.
 596       bool first_only = ! should_try_older_generation_allocation(size);
 597 
 598       result = gch->attempt_allocation(size, is_tlab, first_only);
 599       if (result != NULL) {
 600         assert(gch->is_in_reserved(result), "result not in heap");
 601         return result;
 602       }
 603 
 604       if (GC_locker::is_active_and_needs_gc()) {
 605         if (is_tlab) {
 606           return NULL;  // Caller will retry allocating individual object
 607         }
 608         if (!gch->is_maximal_no_gc()) {
 609           // Try and expand heap to satisfy request
 610           result = expand_heap_and_allocate(size, is_tlab);
 611           // result could be null if we are out of space
 612           if (result != NULL) {
 613             return result;
 614           }
 615         }
 616 
 617         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 618           return NULL; // we didn't get to do a GC and we didn't get any memory
 619         }
 620 
 621         // If this thread is not in a jni critical section, we stall
 622         // the requestor until the critical section has cleared and
 623         // GC allowed. When the critical section clears, a GC is
 624         // initiated by the last thread exiting the critical section; so
 625         // we retry the allocation sequence from the beginning of the loop,
 626         // rather than causing more, now probably unnecessary, GC attempts.
 627         JavaThread* jthr = JavaThread::current();
 628         if (!jthr->in_critical()) {
 629           MutexUnlocker mul(Heap_lock);
 630           // Wait for JNI critical section to be exited
 631           GC_locker::stall_until_clear();
 632           gclocker_stalled_count += 1;
 633           continue;
 634         } else {
 635           if (CheckJNICalls) {
 636             fatal("Possible deadlock due to allocating while"
 637                   " in jni critical section");
 638           }
 639           return NULL;
 640         }
 641       }
 642 
 643       // Read the gc count while the heap lock is held.
 644       gc_count_before = Universe::heap()->total_collections();
 645     }
 646 
 647     VM_GenCollectForAllocation op(size,
 648                                   is_tlab,
 649                                   gc_count_before);
 650     VMThread::execute(&op);
 651     if (op.prologue_succeeded()) {
 652       result = op.result();
 653       if (op.gc_locked()) {
 654          assert(result == NULL, "must be NULL if gc_locked() is true");
 655          continue;  // retry and/or stall as necessary
 656       }
 657 
 658       // Allocation has failed and a collection
 659       // has been done.  If the gc time limit was exceeded the
 660       // this time, return NULL so that an out-of-memory
 661       // will be thrown.  Clear gc_overhead_limit_exceeded
 662       // so that the overhead exceeded does not persist.
 663 
 664       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 665       const bool softrefs_clear = all_soft_refs_clear();
 666 
 667       if (limit_exceeded && softrefs_clear) {
 668         *gc_overhead_limit_was_exceeded = true;
 669         size_policy()->set_gc_overhead_limit_exceeded(false);
 670         if (op.result() != NULL) {
 671           CollectedHeap::fill_with_object(op.result(), size);
 672         }
 673         return NULL;
 674       }
 675       assert(result == NULL || gch->is_in_reserved(result),
 676              "result not in heap");
 677       return result;
 678     }
 679 
 680     // Give a warning if we seem to be looping forever.
 681     if ((QueuedAllocationWarningCount > 0) &&
 682         (try_count % QueuedAllocationWarningCount == 0)) {
 683           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 684                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 685     }
 686   }
 687 }
 688 
 689 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 690                                                        bool   is_tlab) {
 691   GenCollectedHeap *gch = GenCollectedHeap::heap();
 692   HeapWord* result = NULL;
 693   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 694     Generation *gen = gch->get_gen(i);
 695     if (gen->should_allocate(size, is_tlab)) {
 696       result = gen->expand_and_allocate(size, is_tlab);
 697     }
 698   }
 699   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 700   return result;
 701 }
 702 
 703 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 704                                                         bool   is_tlab) {
 705   GenCollectedHeap *gch = GenCollectedHeap::heap();
 706   GCCauseSetter x(gch, GCCause::_allocation_failure);
 707   HeapWord* result = NULL;
 708 
 709   assert(size != 0, "Precondition violated");
 710   if (GC_locker::is_active_and_needs_gc()) {
 711     // GC locker is active; instead of a collection we will attempt
 712     // to expand the heap, if there's room for expansion.
 713     if (!gch->is_maximal_no_gc()) {
 714       result = expand_heap_and_allocate(size, is_tlab);
 715     }
 716     return result;   // could be null if we are out of space
 717   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 718     // Do an incremental collection.
 719     gch->do_collection(false            /* full */,
 720                        false            /* clear_all_soft_refs */,
 721                        size             /* size */,
 722                        is_tlab          /* is_tlab */,
 723                        number_of_generations() - 1 /* max_level */);
 724   } else {
 725     if (Verbose && PrintGCDetails) {
 726       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 727     }
 728     // Try a full collection; see delta for bug id 6266275
 729     // for the original code and why this has been simplified
 730     // with from-space allocation criteria modified and
 731     // such allocation moved out of the safepoint path.
 732     gch->do_collection(true             /* full */,
 733                        false            /* clear_all_soft_refs */,
 734                        size             /* size */,
 735                        is_tlab          /* is_tlab */,
 736                        number_of_generations() - 1 /* max_level */);
 737   }
 738 
 739   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 740 
 741   if (result != NULL) {
 742     assert(gch->is_in_reserved(result), "result not in heap");
 743     return result;
 744   }
 745 
 746   // OK, collection failed, try expansion.
 747   result = expand_heap_and_allocate(size, is_tlab);
 748   if (result != NULL) {
 749     return result;
 750   }
 751 
 752   // If we reach this point, we're really out of memory. Try every trick
 753   // we can to reclaim memory. Force collection of soft references. Force
 754   // a complete compaction of the heap. Any additional methods for finding
 755   // free memory should be here, especially if they are expensive. If this
 756   // attempt fails, an OOM exception will be thrown.
 757   {
 758     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 759 
 760     gch->do_collection(true             /* full */,
 761                        true             /* clear_all_soft_refs */,
 762                        size             /* size */,
 763                        is_tlab          /* is_tlab */,
 764                        number_of_generations() - 1 /* max_level */);
 765   }
 766 
 767   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 768   if (result != NULL) {
 769     assert(gch->is_in_reserved(result), "result not in heap");
 770     return result;
 771   }
 772 
 773   assert(!should_clear_all_soft_refs(),
 774     "Flag should have been handled and cleared prior to this point");
 775 
 776   // What else?  We might try synchronous finalization later.  If the total
 777   // space available is large enough for the allocation, then a more
 778   // complete compaction phase than we've tried so far might be
 779   // appropriate.
 780   return NULL;
 781 }
 782 
 783 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 784                                                  ClassLoaderData* loader_data,
 785                                                  size_t word_size,
 786                                                  Metaspace::MetadataType mdtype) {
 787   uint loop_count = 0;
 788   uint gc_count = 0;
 789   uint full_gc_count = 0;
 790 
 791   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 792 
 793   do {
 794     MetaWord* result = NULL;
 795     if (GC_locker::is_active_and_needs_gc()) {
 796       // If the GC_locker is active, just expand and allocate.
 797       // If that does not succeed, wait if this thread is not
 798       // in a critical section itself.
 799       result =
 800         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 801                                                                mdtype);
 802       if (result != NULL) {
 803         return result;
 804       }
 805       JavaThread* jthr = JavaThread::current();
 806       if (!jthr->in_critical()) {
 807         // Wait for JNI critical section to be exited
 808         GC_locker::stall_until_clear();
 809         // The GC invoked by the last thread leaving the critical
 810         // section will be a young collection and a full collection
 811         // is (currently) needed for unloading classes so continue
 812         // to the next iteration to get a full GC.
 813         continue;
 814       } else {
 815         if (CheckJNICalls) {
 816           fatal("Possible deadlock due to allocating while"
 817                 " in jni critical section");
 818         }
 819         return NULL;
 820       }
 821     }
 822 
 823     {  // Need lock to get self consistent gc_count's
 824       MutexLocker ml(Heap_lock);
 825       gc_count      = Universe::heap()->total_collections();
 826       full_gc_count = Universe::heap()->total_full_collections();
 827     }
 828 
 829     // Generate a VM operation
 830     VM_CollectForMetadataAllocation op(loader_data,
 831                                        word_size,
 832                                        mdtype,
 833                                        gc_count,
 834                                        full_gc_count,
 835                                        GCCause::_metadata_GC_threshold);
 836     VMThread::execute(&op);
 837 
 838     // If GC was locked out, try again.  Check
 839     // before checking success because the prologue
 840     // could have succeeded and the GC still have
 841     // been locked out.
 842     if (op.gc_locked()) {
 843       continue;
 844     }
 845 
 846     if (op.prologue_succeeded()) {
 847       return op.result();
 848     }
 849     loop_count++;
 850     if ((QueuedAllocationWarningCount > 0) &&
 851         (loop_count % QueuedAllocationWarningCount == 0)) {
 852       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 853               " size=%d", loop_count, word_size);
 854     }
 855   } while (true);  // Until a GC is done
 856 }
 857 
 858 // Return true if any of the following is true:
 859 // . the allocation won't fit into the current young gen heap
 860 // . gc locker is occupied (jni critical section)
 861 // . heap memory is tight -- the most recent previous collection
 862 //   was a full collection because a partial collection (would
 863 //   have) failed and is likely to fail again
 864 bool GenCollectorPolicy::should_try_older_generation_allocation(
 865         size_t word_size) const {
 866   GenCollectedHeap* gch = GenCollectedHeap::heap();
 867   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 868   return    (word_size > heap_word_size(gen0_capacity))
 869          || GC_locker::is_active_and_needs_gc()
 870          || gch->incremental_collection_failed();
 871 }
 872 
 873 
 874 //
 875 // MarkSweepPolicy methods
 876 //
 877 
 878 MarkSweepPolicy::MarkSweepPolicy() {
 879   initialize_all();
 880 }
 881 
 882 void MarkSweepPolicy::initialize_generations() {
 883   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 884   if (_generations == NULL)
 885     vm_exit_during_initialization("Unable to allocate gen spec");
 886 
 887   if (UseParNewGC) {
 888     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 889   } else {
 890     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 891   }
 892   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 893 
 894   if (_generations[0] == NULL || _generations[1] == NULL)
 895     vm_exit_during_initialization("Unable to allocate gen spec");
 896 }
 897 
 898 void MarkSweepPolicy::initialize_gc_policy_counters() {
 899   // initialize the policy counters - 2 collectors, 3 generations
 900   if (UseParNewGC) {
 901     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 902   } else {
 903     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 904   }
 905 }