1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  27 
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gSpaceCounters.hpp"
  30 #include "gc_implementation/shared/gcStats.hpp"
  31 #include "gc_implementation/shared/gcWhen.hpp"
  32 #include "gc_implementation/shared/generationCounters.hpp"
  33 #include "memory/freeBlockDictionary.hpp"
  34 #include "memory/generation.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "runtime/virtualspace.hpp"
  37 #include "services/memoryService.hpp"
  38 #include "utilities/bitMap.inline.hpp"
  39 #include "utilities/stack.inline.hpp"
  40 #include "utilities/taskqueue.hpp"
  41 #include "utilities/yieldingWorkgroup.hpp"
  42 
  43 // ConcurrentMarkSweepGeneration is in support of a concurrent
  44 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  45 // style. We assume, for now, that this generation is always the
  46 // seniormost generation and for simplicity
  47 // in the first implementation, that this generation is a single compactible
  48 // space. Neither of these restrictions appears essential, and will be
  49 // relaxed in the future when more time is available to implement the
  50 // greater generality (and there's a need for it).
  51 //
  52 // Concurrent mode failures are currently handled by
  53 // means of a sliding mark-compact.
  54 
  55 class CMSAdaptiveSizePolicy;
  56 class CMSConcMarkingTask;
  57 class CMSGCAdaptivePolicyCounters;
  58 class CMSTracer;
  59 class ConcurrentGCTimer;
  60 class ConcurrentMarkSweepGeneration;
  61 class ConcurrentMarkSweepPolicy;
  62 class ConcurrentMarkSweepThread;
  63 class CompactibleFreeListSpace;
  64 class FreeChunk;
  65 class PromotionInfo;
  66 class ScanMarkedObjectsAgainCarefullyClosure;
  67 class TenuredGeneration;
  68 class SerialOldTracer;
  69 
  70 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  71 // as well as for the mod union table (in each case only a subset of the
  72 // methods are used). This is essentially a wrapper around the BitMap class,
  73 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  74 // we have _shifter == 0. and for the mod union table we have
  75 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
  76 // XXX 64-bit issues in BitMap?
  77 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
  78   friend class VMStructs;
  79 
  80   HeapWord* _bmStartWord;   // base address of range covered by map
  81   size_t    _bmWordSize;    // map size (in #HeapWords covered)
  82   const int _shifter;       // shifts to convert HeapWord to bit position
  83   VirtualSpace _virtual_space; // underlying the bit map
  84   BitMap    _bm;            // the bit map itself
  85  public:
  86   Mutex* const _lock;       // mutex protecting _bm;
  87 
  88  public:
  89   // constructor
  90   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
  91 
  92   // allocates the actual storage for the map
  93   bool allocate(MemRegion mr);
  94   // field getter
  95   Mutex* lock() const { return _lock; }
  96   // locking verifier convenience function
  97   void assert_locked() const PRODUCT_RETURN;
  98 
  99   // inquiries
 100   HeapWord* startWord()   const { return _bmStartWord; }
 101   size_t    sizeInWords() const { return _bmWordSize;  }
 102   size_t    sizeInBits()  const { return _bm.size();   }
 103   // the following is one past the last word in space
 104   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 105 
 106   // reading marks
 107   bool isMarked(HeapWord* addr) const;
 108   bool par_isMarked(HeapWord* addr) const; // do not lock checks
 109   bool isUnmarked(HeapWord* addr) const;
 110   bool isAllClear() const;
 111 
 112   // writing marks
 113   void mark(HeapWord* addr);
 114   // For marking by parallel GC threads;
 115   // returns true if we did, false if another thread did
 116   bool par_mark(HeapWord* addr);
 117 
 118   void mark_range(MemRegion mr);
 119   void par_mark_range(MemRegion mr);
 120   void mark_large_range(MemRegion mr);
 121   void par_mark_large_range(MemRegion mr);
 122   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 123   void clear_range(MemRegion mr);
 124   void par_clear_range(MemRegion mr);
 125   void clear_large_range(MemRegion mr);
 126   void par_clear_large_range(MemRegion mr);
 127   void clear_all();
 128   void clear_all_incrementally();  // Not yet implemented!!
 129 
 130   NOT_PRODUCT(
 131     // checks the memory region for validity
 132     void region_invariant(MemRegion mr);
 133   )
 134 
 135   // iteration
 136   void iterate(BitMapClosure* cl) {
 137     _bm.iterate(cl);
 138   }
 139   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 140   void dirty_range_iterate_clear(MemRegionClosure* cl);
 141   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 142 
 143   // auxiliary support for iteration
 144   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 145   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 146                                             HeapWord* end_addr) const;
 147   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 148   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 149                                               HeapWord* end_addr) const;
 150   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 151   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 152                                            HeapWord* end_addr);
 153 
 154   // conversion utilities
 155   HeapWord* offsetToHeapWord(size_t offset) const;
 156   size_t    heapWordToOffset(HeapWord* addr) const;
 157   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 158 
 159   void print_on_error(outputStream* st, const char* prefix) const;
 160 
 161   // debugging
 162   // is this address range covered by the bit-map?
 163   NOT_PRODUCT(
 164     bool covers(MemRegion mr) const;
 165     bool covers(HeapWord* start, size_t size = 0) const;
 166   )
 167   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 168 };
 169 
 170 // Represents a marking stack used by the CMS collector.
 171 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 172 class CMSMarkStack: public CHeapObj<mtGC>  {
 173   //
 174   friend class CMSCollector;   // To get at expansion stats further below.
 175   //
 176 
 177   VirtualSpace _virtual_space;  // Space for the stack
 178   oop*   _base;      // Bottom of stack
 179   size_t _index;     // One more than last occupied index
 180   size_t _capacity;  // Max #elements
 181   Mutex  _par_lock;  // An advisory lock used in case of parallel access
 182   NOT_PRODUCT(size_t _max_depth;)  // Max depth plumbed during run
 183 
 184  protected:
 185   size_t _hit_limit;      // We hit max stack size limit
 186   size_t _failed_double;  // We failed expansion before hitting limit
 187 
 188  public:
 189   CMSMarkStack():
 190     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
 191     _hit_limit(0),
 192     _failed_double(0) {}
 193 
 194   bool allocate(size_t size);
 195 
 196   size_t capacity() const { return _capacity; }
 197 
 198   oop pop() {
 199     if (!isEmpty()) {
 200       return _base[--_index] ;
 201     }
 202     return NULL;
 203   }
 204 
 205   bool push(oop ptr) {
 206     if (isFull()) {
 207       return false;
 208     } else {
 209       _base[_index++] = ptr;
 210       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 211       return true;
 212     }
 213   }
 214 
 215   bool isEmpty() const { return _index == 0; }
 216   bool isFull()  const {
 217     assert(_index <= _capacity, "buffer overflow");
 218     return _index == _capacity;
 219   }
 220 
 221   size_t length() { return _index; }
 222 
 223   // "Parallel versions" of some of the above
 224   oop par_pop() {
 225     // lock and pop
 226     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 227     return pop();
 228   }
 229 
 230   bool par_push(oop ptr) {
 231     // lock and push
 232     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 233     return push(ptr);
 234   }
 235 
 236   // Forcibly reset the stack, losing all of its contents.
 237   void reset() {
 238     _index = 0;
 239   }
 240 
 241   // Expand the stack, typically in response to an overflow condition.
 242   void expand();
 243 
 244   // Compute the least valued stack element.
 245   oop least_value(HeapWord* low) {
 246      oop least = (oop)low;
 247      for (size_t i = 0; i < _index; i++) {
 248        least = MIN2(least, _base[i]);
 249      }
 250      return least;
 251   }
 252 
 253   // Exposed here to allow stack expansion in || case.
 254   Mutex* par_lock() { return &_par_lock; }
 255 };
 256 
 257 class CardTableRS;
 258 class CMSParGCThreadState;
 259 
 260 class ModUnionClosure: public MemRegionClosure {
 261  protected:
 262   CMSBitMap* _t;
 263  public:
 264   ModUnionClosure(CMSBitMap* t): _t(t) { }
 265   void do_MemRegion(MemRegion mr);
 266 };
 267 
 268 class ModUnionClosurePar: public ModUnionClosure {
 269  public:
 270   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 271   void do_MemRegion(MemRegion mr);
 272 };
 273 
 274 // Survivor Chunk Array in support of parallelization of
 275 // Survivor Space rescan.
 276 class ChunkArray: public CHeapObj<mtGC> {
 277   size_t _index;
 278   size_t _capacity;
 279   size_t _overflows;
 280   HeapWord** _array;   // storage for array
 281 
 282  public:
 283   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 284   ChunkArray(HeapWord** a, size_t c):
 285     _index(0), _capacity(c), _overflows(0), _array(a) {}
 286 
 287   HeapWord** array() { return _array; }
 288   void set_array(HeapWord** a) { _array = a; }
 289 
 290   size_t capacity() { return _capacity; }
 291   void set_capacity(size_t c) { _capacity = c; }
 292 
 293   size_t end() {
 294     assert(_index <= capacity(),
 295            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 296                    _index, _capacity));
 297     return _index;
 298   }  // exclusive
 299 
 300   HeapWord* nth(size_t n) {
 301     assert(n < end(), "Out of bounds access");
 302     return _array[n];
 303   }
 304 
 305   void reset() {
 306     _index = 0;
 307     if (_overflows > 0 && PrintCMSStatistics > 1) {
 308       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
 309               _capacity, _overflows);
 310     }
 311     _overflows = 0;
 312   }
 313 
 314   void record_sample(HeapWord* p, size_t sz) {
 315     // For now we do not do anything with the size
 316     if (_index < _capacity) {
 317       _array[_index++] = p;
 318     } else {
 319       ++_overflows;
 320       assert(_index == _capacity,
 321              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 322                      "): out of bounds at overflow#" SIZE_FORMAT,
 323                      _index, _capacity, _overflows));
 324     }
 325   }
 326 };
 327 
 328 //
 329 // Timing, allocation and promotion statistics for gc scheduling and incremental
 330 // mode pacing.  Most statistics are exponential averages.
 331 //
 332 class CMSStats VALUE_OBJ_CLASS_SPEC {
 333  private:
 334   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 335 
 336   // The following are exponential averages with factor alpha:
 337   //   avg = (100 - alpha) * avg + alpha * cur_sample
 338   //
 339   //   The durations measure:  end_time[n] - start_time[n]
 340   //   The periods measure:    start_time[n] - start_time[n-1]
 341   //
 342   // The cms period and duration include only concurrent collections; time spent
 343   // in foreground cms collections due to System.gc() or because of a failure to
 344   // keep up are not included.
 345   //
 346   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 347   // real value, but is used only after the first period.  A value of 100 is
 348   // used for the first sample so it gets the entire weight.
 349   unsigned int _saved_alpha; // 0-100
 350   unsigned int _gc0_alpha;
 351   unsigned int _cms_alpha;
 352 
 353   double _gc0_duration;
 354   double _gc0_period;
 355   size_t _gc0_promoted;         // bytes promoted per gc0
 356   double _cms_duration;
 357   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 358   double _cms_duration_per_mb;
 359   double _cms_period;
 360   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 361 
 362   // Timers.
 363   elapsedTimer _cms_timer;
 364   TimeStamp    _gc0_begin_time;
 365   TimeStamp    _cms_begin_time;
 366   TimeStamp    _cms_end_time;
 367 
 368   // Snapshots of the amount used in the CMS generation.
 369   size_t _cms_used_at_gc0_begin;
 370   size_t _cms_used_at_gc0_end;
 371   size_t _cms_used_at_cms_begin;
 372 
 373   // Used to prevent the duty cycle from being reduced in the middle of a cms
 374   // cycle.
 375   bool _allow_duty_cycle_reduction;
 376 
 377   enum {
 378     _GC0_VALID = 0x1,
 379     _CMS_VALID = 0x2,
 380     _ALL_VALID = _GC0_VALID | _CMS_VALID
 381   };
 382 
 383   unsigned int _valid_bits;
 384 
 385   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
 386 
 387  protected:
 388 
 389   // Return a duty cycle that avoids wild oscillations, by limiting the amount
 390   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
 391   // as a recommended value).
 392   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
 393                                              unsigned int new_duty_cycle);
 394   unsigned int icms_update_duty_cycle_impl();
 395 
 396   // In support of adjusting of cms trigger ratios based on history
 397   // of concurrent mode failure.
 398   double cms_free_adjustment_factor(size_t free) const;
 399   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 400 
 401  public:
 402   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 403            unsigned int alpha = CMSExpAvgFactor);
 404 
 405   // Whether or not the statistics contain valid data; higher level statistics
 406   // cannot be called until this returns true (they require at least one young
 407   // gen and one cms cycle to have completed).
 408   bool valid() const;
 409 
 410   // Record statistics.
 411   void record_gc0_begin();
 412   void record_gc0_end(size_t cms_gen_bytes_used);
 413   void record_cms_begin();
 414   void record_cms_end();
 415 
 416   // Allow management of the cms timer, which must be stopped/started around
 417   // yield points.
 418   elapsedTimer& cms_timer()     { return _cms_timer; }
 419   void start_cms_timer()        { _cms_timer.start(); }
 420   void stop_cms_timer()         { _cms_timer.stop(); }
 421 
 422   // Basic statistics; units are seconds or bytes.
 423   double gc0_period() const     { return _gc0_period; }
 424   double gc0_duration() const   { return _gc0_duration; }
 425   size_t gc0_promoted() const   { return _gc0_promoted; }
 426   double cms_period() const          { return _cms_period; }
 427   double cms_duration() const        { return _cms_duration; }
 428   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
 429   size_t cms_allocated() const       { return _cms_allocated; }
 430 
 431   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 432 
 433   // Seconds since the last background cms cycle began or ended.
 434   double cms_time_since_begin() const;
 435   double cms_time_since_end() const;
 436 
 437   // Higher level statistics--caller must check that valid() returns true before
 438   // calling.
 439 
 440   // Returns bytes promoted per second of wall clock time.
 441   double promotion_rate() const;
 442 
 443   // Returns bytes directly allocated per second of wall clock time.
 444   double cms_allocation_rate() const;
 445 
 446   // Rate at which space in the cms generation is being consumed (sum of the
 447   // above two).
 448   double cms_consumption_rate() const;
 449 
 450   // Returns an estimate of the number of seconds until the cms generation will
 451   // fill up, assuming no collection work is done.
 452   double time_until_cms_gen_full() const;
 453 
 454   // Returns an estimate of the number of seconds remaining until
 455   // the cms generation collection should start.
 456   double time_until_cms_start() const;
 457 
 458   // End of higher level statistics.
 459 
 460   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
 461   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
 462 
 463   // Update the duty cycle and return the new value.
 464   unsigned int icms_update_duty_cycle();
 465 
 466   // Debugging.
 467   void print_on(outputStream* st) const PRODUCT_RETURN;
 468   void print() const { print_on(gclog_or_tty); }
 469 };
 470 
 471 // A closure related to weak references processing which
 472 // we embed in the CMSCollector, since we need to pass
 473 // it to the reference processor for secondary filtering
 474 // of references based on reachability of referent;
 475 // see role of _is_alive_non_header closure in the
 476 // ReferenceProcessor class.
 477 // For objects in the CMS generation, this closure checks
 478 // if the object is "live" (reachable). Used in weak
 479 // reference processing.
 480 class CMSIsAliveClosure: public BoolObjectClosure {
 481   const MemRegion  _span;
 482   const CMSBitMap* _bit_map;
 483 
 484   friend class CMSCollector;
 485  public:
 486   CMSIsAliveClosure(MemRegion span,
 487                     CMSBitMap* bit_map):
 488     _span(span),
 489     _bit_map(bit_map) {
 490     assert(!span.is_empty(), "Empty span could spell trouble");
 491   }
 492 
 493   bool do_object_b(oop obj);
 494 };
 495 
 496 
 497 // Implements AbstractRefProcTaskExecutor for CMS.
 498 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 499 public:
 500 
 501   CMSRefProcTaskExecutor(CMSCollector& collector)
 502     : _collector(collector)
 503   { }
 504 
 505   // Executes a task using worker threads.
 506   virtual void execute(ProcessTask& task);
 507   virtual void execute(EnqueueTask& task);
 508 private:
 509   CMSCollector& _collector;
 510 };
 511 
 512 
 513 class CMSCollector: public CHeapObj<mtGC> {
 514   friend class VMStructs;
 515   friend class ConcurrentMarkSweepThread;
 516   friend class ConcurrentMarkSweepGeneration;
 517   friend class CompactibleFreeListSpace;
 518   friend class CMSParMarkTask;
 519   friend class CMSParInitialMarkTask;
 520   friend class CMSParRemarkTask;
 521   friend class CMSConcMarkingTask;
 522   friend class CMSRefProcTaskProxy;
 523   friend class CMSRefProcTaskExecutor;
 524   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 525   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 526   friend class PushOrMarkClosure;             // to access _restart_addr
 527   friend class Par_PushOrMarkClosure;             // to access _restart_addr
 528   friend class MarkFromRootsClosure;          //  -- ditto --
 529                                               // ... and for clearing cards
 530   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
 531                                               // ... and for clearing cards
 532   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
 533   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 534   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 535   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 536   friend class PushAndMarkClosure;            //  -- ditto --
 537   friend class Par_PushAndMarkClosure;        //  -- ditto --
 538   friend class CMSKeepAliveClosure;           //  -- ditto --
 539   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 540   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 541   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 542   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 543   friend class VM_CMS_Operation;
 544   friend class VM_CMS_Initial_Mark;
 545   friend class VM_CMS_Final_Remark;
 546   friend class TraceCMSMemoryManagerStats;
 547 
 548  private:
 549   jlong _time_of_last_gc;
 550   void update_time_of_last_gc(jlong now) {
 551     _time_of_last_gc = now;
 552   }
 553 
 554   OopTaskQueueSet* _task_queues;
 555 
 556   // Overflow list of grey objects, threaded through mark-word
 557   // Manipulated with CAS in the parallel/multi-threaded case.
 558   oop _overflow_list;
 559   // The following array-pair keeps track of mark words
 560   // displaced for accommodating overflow list above.
 561   // This code will likely be revisited under RFE#4922830.
 562   Stack<oop, mtGC>     _preserved_oop_stack;
 563   Stack<markOop, mtGC> _preserved_mark_stack;
 564 
 565   int*             _hash_seed;
 566 
 567   // In support of multi-threaded concurrent phases
 568   YieldingFlexibleWorkGang* _conc_workers;
 569 
 570   // Performance Counters
 571   CollectorCounters* _gc_counters;
 572 
 573   // Initialization Errors
 574   bool _completed_initialization;
 575 
 576   // In support of ExplicitGCInvokesConcurrent
 577   static bool _full_gc_requested;
 578   static GCCause::Cause _full_gc_cause;
 579   unsigned int _collection_count_start;
 580 
 581   // Should we unload classes this concurrent cycle?
 582   bool _should_unload_classes;
 583   unsigned int  _concurrent_cycles_since_last_unload;
 584   unsigned int concurrent_cycles_since_last_unload() const {
 585     return _concurrent_cycles_since_last_unload;
 586   }
 587   // Did we (allow) unload classes in the previous concurrent cycle?
 588   bool unloaded_classes_last_cycle() const {
 589     return concurrent_cycles_since_last_unload() == 0;
 590   }
 591   // Root scanning options for perm gen
 592   int _roots_scanning_options;
 593   int roots_scanning_options() const      { return _roots_scanning_options; }
 594   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 595   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 596 
 597   // Verification support
 598   CMSBitMap     _verification_mark_bm;
 599   void verify_after_remark_work_1();
 600   void verify_after_remark_work_2();
 601 
 602   // True if any verification flag is on.
 603   bool _verifying;
 604   bool verifying() const { return _verifying; }
 605   void set_verifying(bool v) { _verifying = v; }
 606 
 607   // Collector policy
 608   ConcurrentMarkSweepPolicy* _collector_policy;
 609   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
 610 
 611   void set_did_compact(bool v);
 612 
 613   // XXX Move these to CMSStats ??? FIX ME !!!
 614   elapsedTimer _inter_sweep_timer;   // Time between sweeps
 615   elapsedTimer _intra_sweep_timer;   // Time _in_ sweeps
 616   // Padded decaying average estimates of the above
 617   AdaptivePaddedAverage _inter_sweep_estimate;
 618   AdaptivePaddedAverage _intra_sweep_estimate;
 619 
 620   CMSTracer* _gc_tracer_cm;
 621   ConcurrentGCTimer* _gc_timer_cm;
 622 
 623   bool _cms_start_registered;
 624 
 625   GCHeapSummary _last_heap_summary;
 626   MetaspaceSummary _last_metaspace_summary;
 627 
 628   void register_foreground_gc_start(GCCause::Cause cause);
 629   void register_gc_start(GCCause::Cause cause);
 630   void register_gc_end();
 631   void save_heap_summary();
 632   void report_heap_summary(GCWhen::Type when);
 633 
 634  protected:
 635   ConcurrentMarkSweepGeneration* _cmsGen;  // Old gen (CMS)
 636   MemRegion                      _span;    // Span covering above two
 637   CardTableRS*                   _ct;      // Card table
 638 
 639   // CMS marking support structures
 640   CMSBitMap     _markBitMap;
 641   CMSBitMap     _modUnionTable;
 642   CMSMarkStack  _markStack;
 643 
 644   HeapWord*     _restart_addr; // In support of marking stack overflow
 645   void          lower_restart_addr(HeapWord* low);
 646 
 647   // Counters in support of marking stack / work queue overflow handling:
 648   // a non-zero value indicates certain types of overflow events during
 649   // the current CMS cycle and could lead to stack resizing efforts at
 650   // an opportune future time.
 651   size_t        _ser_pmc_preclean_ovflw;
 652   size_t        _ser_pmc_remark_ovflw;
 653   size_t        _par_pmc_remark_ovflw;
 654   size_t        _ser_kac_preclean_ovflw;
 655   size_t        _ser_kac_ovflw;
 656   size_t        _par_kac_ovflw;
 657   NOT_PRODUCT(ssize_t _num_par_pushes;)
 658 
 659   // ("Weak") Reference processing support.
 660   ReferenceProcessor*            _ref_processor;
 661   CMSIsAliveClosure              _is_alive_closure;
 662   // Keep this textually after _markBitMap and _span; c'tor dependency.
 663 
 664   ConcurrentMarkSweepThread*     _cmsThread;   // The thread doing the work
 665   ModUnionClosure    _modUnionClosure;
 666   ModUnionClosurePar _modUnionClosurePar;
 667 
 668   // CMS abstract state machine
 669   // initial_state: Idling
 670   // next_state(Idling)            = {Marking}
 671   // next_state(Marking)           = {Precleaning, Sweeping}
 672   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 673   // next_state(AbortablePreclean) = {FinalMarking}
 674   // next_state(FinalMarking)      = {Sweeping}
 675   // next_state(Sweeping)          = {Resizing}
 676   // next_state(Resizing)          = {Resetting}
 677   // next_state(Resetting)         = {Idling}
 678   // The numeric values below are chosen so that:
 679   // . _collectorState <= Idling ==  post-sweep && pre-mark
 680   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 681   //                                            precleaning || abortablePrecleanb
 682  public:
 683   enum CollectorState {
 684     Resizing            = 0,
 685     Resetting           = 1,
 686     Idling              = 2,
 687     InitialMarking      = 3,
 688     Marking             = 4,
 689     Precleaning         = 5,
 690     AbortablePreclean   = 6,
 691     FinalMarking        = 7,
 692     Sweeping            = 8
 693   };
 694  protected:
 695   static CollectorState _collectorState;
 696 
 697   // State related to prologue/epilogue invocation for my generations
 698   bool _between_prologue_and_epilogue;
 699 
 700   // Signaling/State related to coordination between fore- and background GC
 701   // Note: When the baton has been passed from background GC to foreground GC,
 702   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 703   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 704                                  // wants to go active
 705   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 706                                  // yet passed the baton to the foreground GC
 707 
 708   // Support for CMSScheduleRemark (abortable preclean)
 709   bool _abort_preclean;
 710   bool _start_sampling;
 711 
 712   int    _numYields;
 713   size_t _numDirtyCards;
 714   size_t _sweep_count;
 715   // Number of full gc's since the last concurrent gc.
 716   uint   _full_gcs_since_conc_gc;
 717 
 718   // Occupancy used for bootstrapping stats
 719   double _bootstrap_occupancy;
 720 
 721   // Timer
 722   elapsedTimer _timer;
 723 
 724   // Timing, allocation and promotion statistics, used for scheduling.
 725   CMSStats      _stats;
 726 
 727   // Allocation limits installed in the young gen, used only in
 728   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
 729   // these limits, the cms generation is notified and the cms thread is started
 730   // or stopped, respectively.
 731   HeapWord*     _icms_start_limit;
 732   HeapWord*     _icms_stop_limit;
 733 
 734   enum CMS_op_type {
 735     CMS_op_checkpointRootsInitial,
 736     CMS_op_checkpointRootsFinal
 737   };
 738 
 739   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
 740   bool stop_world_and_do(CMS_op_type op);
 741 
 742   OopTaskQueueSet* task_queues() { return _task_queues; }
 743   int*             hash_seed(int i) { return &_hash_seed[i]; }
 744   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 745 
 746   // Support for parallelizing Eden rescan in CMS remark phase
 747   void sample_eden(); // ... sample Eden space top
 748 
 749  private:
 750   // Support for parallelizing young gen rescan in CMS remark phase
 751   Generation* _young_gen;  // the younger gen
 752   HeapWord** _top_addr;    // ... Top of Eden
 753   HeapWord** _end_addr;    // ... End of Eden
 754   Mutex*     _eden_chunk_lock;
 755   HeapWord** _eden_chunk_array; // ... Eden partitioning array
 756   size_t     _eden_chunk_index; // ... top (exclusive) of array
 757   size_t     _eden_chunk_capacity;  // ... max entries in array
 758 
 759   // Support for parallelizing survivor space rescan
 760   HeapWord** _survivor_chunk_array;
 761   size_t     _survivor_chunk_index;
 762   size_t     _survivor_chunk_capacity;
 763   size_t*    _cursor;
 764   ChunkArray* _survivor_plab_array;
 765 
 766   // Support for marking stack overflow handling
 767   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 768   bool par_take_from_overflow_list(size_t num,
 769                                    OopTaskQueue* to_work_q,
 770                                    int no_of_gc_threads);
 771   void push_on_overflow_list(oop p);
 772   void par_push_on_overflow_list(oop p);
 773   // The following is, obviously, not, in general, "MT-stable"
 774   bool overflow_list_is_empty() const;
 775 
 776   void preserve_mark_if_necessary(oop p);
 777   void par_preserve_mark_if_necessary(oop p);
 778   void preserve_mark_work(oop p, markOop m);
 779   void restore_preserved_marks_if_any();
 780   NOT_PRODUCT(bool no_preserved_marks() const;)
 781   // In support of testing overflow code
 782   NOT_PRODUCT(int _overflow_counter;)
 783   NOT_PRODUCT(bool simulate_overflow();)       // Sequential
 784   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 785 
 786   // CMS work methods
 787   void checkpointRootsInitialWork(bool asynch); // Initial checkpoint work
 788 
 789   // A return value of false indicates failure due to stack overflow
 790   bool markFromRootsWork(bool asynch);  // Concurrent marking work
 791 
 792  public:   // FIX ME!!! only for testing
 793   bool do_marking_st(bool asynch);      // Single-threaded marking
 794   bool do_marking_mt(bool asynch);      // Multi-threaded  marking
 795 
 796  private:
 797 
 798   // Concurrent precleaning work
 799   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
 800                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 801   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
 802                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 803   // Does precleaning work, returning a quantity indicative of
 804   // the amount of "useful work" done.
 805   size_t preclean_work(bool clean_refs, bool clean_survivors);
 806   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
 807   void abortable_preclean(); // Preclean while looking for possible abort
 808   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 809   // Helper function for above; merge-sorts the per-thread plab samples
 810   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 811   // Resets (i.e. clears) the per-thread plab sample vectors
 812   void reset_survivor_plab_arrays();
 813 
 814   // Final (second) checkpoint work
 815   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
 816                                 bool init_mark_was_synchronous);
 817   // Work routine for parallel version of remark
 818   void do_remark_parallel();
 819   // Work routine for non-parallel version of remark
 820   void do_remark_non_parallel();
 821   // Reference processing work routine (during second checkpoint)
 822   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
 823 
 824   // Concurrent sweeping work
 825   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
 826 
 827   // (Concurrent) resetting of support data structures
 828   void reset(bool asynch);
 829 
 830   // Clear _expansion_cause fields of constituent generations
 831   void clear_expansion_cause();
 832 
 833   // An auxiliary method used to record the ends of
 834   // used regions of each generation to limit the extent of sweep
 835   void save_sweep_limits();
 836 
 837   // A work method used by foreground collection to determine
 838   // what type of collection (compacting or not, continuing or fresh)
 839   // it should do.
 840   void decide_foreground_collection_type(bool clear_all_soft_refs,
 841     bool* should_compact, bool* should_start_over);
 842 
 843   // A work method used by the foreground collector to do
 844   // a mark-sweep-compact.
 845   void do_compaction_work(bool clear_all_soft_refs);
 846 
 847   // A work method used by the foreground collector to do
 848   // a mark-sweep, after taking over from a possibly on-going
 849   // concurrent mark-sweep collection.
 850   void do_mark_sweep_work(bool clear_all_soft_refs,
 851     CollectorState first_state, bool should_start_over);
 852 
 853   // Work methods for reporting concurrent mode interruption or failure
 854   bool is_external_interruption();
 855   void report_concurrent_mode_interruption();
 856 
 857   // If the background GC is active, acquire control from the background
 858   // GC and do the collection.
 859   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 860 
 861   // For synchronizing passing of control from background to foreground
 862   // GC.  waitForForegroundGC() is called by the background
 863   // collector.  It if had to wait for a foreground collection,
 864   // it returns true and the background collection should assume
 865   // that the collection was finished by the foreground
 866   // collector.
 867   bool waitForForegroundGC();
 868 
 869   // Incremental mode triggering:  recompute the icms duty cycle and set the
 870   // allocation limits in the young gen.
 871   void icms_update_allocation_limits();
 872 
 873   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 874   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 875   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 876 
 877   void setup_cms_unloading_and_verification_state();
 878  public:
 879   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 880                CardTableRS*                   ct,
 881                ConcurrentMarkSweepPolicy*     cp);
 882   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 883 
 884   ReferenceProcessor* ref_processor() { return _ref_processor; }
 885   void ref_processor_init();
 886 
 887   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 888   static CollectorState abstract_state() { return _collectorState;  }
 889 
 890   bool should_abort_preclean() const; // Whether preclean should be aborted.
 891   size_t get_eden_used() const;
 892   size_t get_eden_capacity() const;
 893 
 894   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 895 
 896   // Locking checks
 897   NOT_PRODUCT(static bool have_cms_token();)
 898 
 899   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
 900   bool shouldConcurrentCollect();
 901 
 902   void collect(bool   full,
 903                bool   clear_all_soft_refs,
 904                size_t size,
 905                bool   tlab);
 906   void collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause);
 907   void collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause);
 908 
 909   // In support of ExplicitGCInvokesConcurrent
 910   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
 911   // Should we unload classes in a particular concurrent cycle?
 912   bool should_unload_classes() const {
 913     return _should_unload_classes;
 914   }
 915   void update_should_unload_classes();
 916 
 917   void direct_allocated(HeapWord* start, size_t size);
 918 
 919   // Object is dead if not marked and current phase is sweeping.
 920   bool is_dead_obj(oop obj) const;
 921 
 922   // After a promotion (of "start"), do any necessary marking.
 923   // If "par", then it's being done by a parallel GC thread.
 924   // The last two args indicate if we need precise marking
 925   // and if so the size of the object so it can be dirtied
 926   // in its entirety.
 927   void promoted(bool par, HeapWord* start,
 928                 bool is_obj_array, size_t obj_size);
 929 
 930   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 931                                      size_t word_size);
 932 
 933   void getFreelistLocks() const;
 934   void releaseFreelistLocks() const;
 935   bool haveFreelistLocks() const;
 936 
 937   // Adjust size of underlying generation
 938   void compute_new_size();
 939 
 940   // GC prologue and epilogue
 941   void gc_prologue(bool full);
 942   void gc_epilogue(bool full);
 943 
 944   jlong time_of_last_gc(jlong now) {
 945     if (_collectorState <= Idling) {
 946       // gc not in progress
 947       return _time_of_last_gc;
 948     } else {
 949       // collection in progress
 950       return now;
 951     }
 952   }
 953 
 954   // Support for parallel remark of survivor space
 955   void* get_data_recorder(int thr_num);
 956   void sample_eden_chunk();
 957 
 958   CMSBitMap* markBitMap()  { return &_markBitMap; }
 959   void directAllocated(HeapWord* start, size_t size);
 960 
 961   // Main CMS steps and related support
 962   void checkpointRootsInitial(bool asynch);
 963   bool markFromRoots(bool asynch);  // a return value of false indicates failure
 964                                     // due to stack overflow
 965   void preclean();
 966   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
 967                             bool init_mark_was_synchronous);
 968   void sweep(bool asynch);
 969 
 970   // Check that the currently executing thread is the expected
 971   // one (foreground collector or background collector).
 972   static void check_correct_thread_executing() PRODUCT_RETURN;
 973   // XXXPERM void print_statistics()           PRODUCT_RETURN;
 974 
 975   bool is_cms_reachable(HeapWord* addr);
 976 
 977   // Performance Counter Support
 978   CollectorCounters* counters()    { return _gc_counters; }
 979 
 980   // Timer stuff
 981   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 982   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 983   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 984   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
 985 
 986   int  yields()          { return _numYields; }
 987   void resetYields()     { _numYields = 0;    }
 988   void incrementYields() { _numYields++;      }
 989   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 990   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 991   size_t  numDirtyCards()                 { return _numDirtyCards; }
 992 
 993   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 994   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 995   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 996   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 997   size_t sweep_count() const             { return _sweep_count; }
 998   void   increment_sweep_count()         { _sweep_count++; }
 999 
1000   // Timers/stats for gc scheduling and incremental mode pacing.
1001   CMSStats& stats() { return _stats; }
1002 
1003   // Convenience methods that check whether CMSIncrementalMode is enabled and
1004   // forward to the corresponding methods in ConcurrentMarkSweepThread.
1005   static void start_icms();
1006   static void stop_icms();    // Called at the end of the cms cycle.
1007   static void disable_icms(); // Called before a foreground collection.
1008   static void enable_icms();  // Called after a foreground collection.
1009   void icms_wait();          // Called at yield points.
1010 
1011   // Adaptive size policy
1012   CMSAdaptiveSizePolicy* size_policy();
1013   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
1014 
1015   static void print_on_error(outputStream* st);
1016 
1017   // Debugging
1018   void verify();
1019   bool verify_after_remark(bool silent = VerifySilently);
1020   void verify_ok_to_terminate() const PRODUCT_RETURN;
1021   void verify_work_stacks_empty() const PRODUCT_RETURN;
1022   void verify_overflow_empty() const PRODUCT_RETURN;
1023 
1024   // Convenience methods in support of debugging
1025   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
1026   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
1027 
1028   // Accessors
1029   CMSMarkStack* verification_mark_stack() { return &_markStack; }
1030   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
1031 
1032   // Initialization errors
1033   bool completed_initialization() { return _completed_initialization; }
1034 
1035   void print_eden_and_survivor_chunk_arrays();
1036 };
1037 
1038 class CMSExpansionCause : public AllStatic  {
1039  public:
1040   enum Cause {
1041     _no_expansion,
1042     _satisfy_free_ratio,
1043     _satisfy_promotion,
1044     _satisfy_allocation,
1045     _allocate_par_lab,
1046     _allocate_par_spooling_space,
1047     _adaptive_size_policy
1048   };
1049   // Return a string describing the cause of the expansion.
1050   static const char* to_string(CMSExpansionCause::Cause cause);
1051 };
1052 
1053 class ConcurrentMarkSweepGeneration: public CardGeneration {
1054   friend class VMStructs;
1055   friend class ConcurrentMarkSweepThread;
1056   friend class ConcurrentMarkSweep;
1057   friend class CMSCollector;
1058  protected:
1059   static CMSCollector*       _collector; // the collector that collects us
1060   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1061 
1062   // Performance Counters
1063   GenerationCounters*      _gen_counters;
1064   GSpaceCounters*          _space_counters;
1065 
1066   // Words directly allocated, used by CMSStats.
1067   size_t _direct_allocated_words;
1068 
1069   // Non-product stat counters
1070   NOT_PRODUCT(
1071     size_t _numObjectsPromoted;
1072     size_t _numWordsPromoted;
1073     size_t _numObjectsAllocated;
1074     size_t _numWordsAllocated;
1075   )
1076 
1077   // Used for sizing decisions
1078   bool _incremental_collection_failed;
1079   bool incremental_collection_failed() {
1080     return _incremental_collection_failed;
1081   }
1082   void set_incremental_collection_failed() {
1083     _incremental_collection_failed = true;
1084   }
1085   void clear_incremental_collection_failed() {
1086     _incremental_collection_failed = false;
1087   }
1088 
1089   // accessors
1090   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1091   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1092 
1093  private:
1094   // For parallel young-gen GC support.
1095   CMSParGCThreadState** _par_gc_thread_states;
1096 
1097   // Reason generation was expanded
1098   CMSExpansionCause::Cause _expansion_cause;
1099 
1100   // In support of MinChunkSize being larger than min object size
1101   const double _dilatation_factor;
1102 
1103   enum CollectionTypes {
1104     Concurrent_collection_type          = 0,
1105     MS_foreground_collection_type       = 1,
1106     MSC_foreground_collection_type      = 2,
1107     Unknown_collection_type             = 3
1108   };
1109 
1110   CollectionTypes _debug_collection_type;
1111 
1112   // True if a compacting collection was done.
1113   bool _did_compact;
1114   bool did_compact() { return _did_compact; }
1115 
1116   // Fraction of current occupancy at which to start a CMS collection which
1117   // will collect this generation (at least).
1118   double _initiating_occupancy;
1119 
1120  protected:
1121   // Shrink generation by specified size (returns false if unable to shrink)
1122   void shrink_free_list_by(size_t bytes);
1123 
1124   // Update statistics for GC
1125   virtual void update_gc_stats(int level, bool full);
1126 
1127   // Maximum available space in the generation (including uncommitted)
1128   // space.
1129   size_t max_available() const;
1130 
1131   // getter and initializer for _initiating_occupancy field.
1132   double initiating_occupancy() const { return _initiating_occupancy; }
1133   void   init_initiating_occupancy(intx io, uintx tr);
1134 
1135  public:
1136   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1137                                 int level, CardTableRS* ct,
1138                                 bool use_adaptive_freelists,
1139                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
1140 
1141   // Accessors
1142   CMSCollector* collector() const { return _collector; }
1143   static void set_collector(CMSCollector* collector) {
1144     assert(_collector == NULL, "already set");
1145     _collector = collector;
1146   }
1147   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1148 
1149   Mutex* freelistLock() const;
1150 
1151   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1152 
1153   // Adaptive size policy
1154   CMSAdaptiveSizePolicy* size_policy();
1155 
1156   void set_did_compact(bool v) { _did_compact = v; }
1157 
1158   bool refs_discovery_is_atomic() const { return false; }
1159   bool refs_discovery_is_mt()     const {
1160     // Note: CMS does MT-discovery during the parallel-remark
1161     // phases. Use ReferenceProcessorMTMutator to make refs
1162     // discovery MT-safe during such phases or other parallel
1163     // discovery phases in the future. This may all go away
1164     // if/when we decide that refs discovery is sufficiently
1165     // rare that the cost of the CAS's involved is in the
1166     // noise. That's a measurement that should be done, and
1167     // the code simplified if that turns out to be the case.
1168     return ConcGCThreads > 1;
1169   }
1170 
1171   // Override
1172   virtual void ref_processor_init();
1173 
1174   // Grow generation by specified size (returns false if unable to grow)
1175   bool grow_by(size_t bytes);
1176   // Grow generation to reserved size.
1177   bool grow_to_reserved();
1178 
1179   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1180 
1181   // Space enquiries
1182   size_t capacity() const;
1183   size_t used() const;
1184   size_t free() const;
1185   double occupancy() const { return ((double)used())/((double)capacity()); }
1186   size_t contiguous_available() const;
1187   size_t unsafe_max_alloc_nogc() const;
1188 
1189   // over-rides
1190   MemRegion used_region() const;
1191   MemRegion used_region_at_save_marks() const;
1192 
1193   // Does a "full" (forced) collection invoked on this generation collect
1194   // all younger generations as well? Note that the second conjunct is a
1195   // hack to allow the collection of the younger gen first if the flag is
1196   // set. This is better than using th policy's should_collect_gen0_first()
1197   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
1198   virtual bool full_collects_younger_generations() const {
1199     return UseCMSCompactAtFullCollection && !CollectGen0First;
1200   }
1201 
1202   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
1203 
1204   // Support for compaction
1205   CompactibleSpace* first_compaction_space() const;
1206   // Adjust quantities in the generation affected by
1207   // the compaction.
1208   void reset_after_compaction();
1209 
1210   // Allocation support
1211   HeapWord* allocate(size_t size, bool tlab);
1212   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1213   oop       promote(oop obj, size_t obj_size);
1214   HeapWord* par_allocate(size_t size, bool tlab) {
1215     return allocate(size, tlab);
1216   }
1217 
1218   // Incremental mode triggering.
1219   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
1220                                      size_t word_size);
1221 
1222   // Used by CMSStats to track direct allocation.  The value is sampled and
1223   // reset after each young gen collection.
1224   size_t direct_allocated_words() const { return _direct_allocated_words; }
1225   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1226 
1227   // Overrides for parallel promotion.
1228   virtual oop par_promote(int thread_num,
1229                           oop obj, markOop m, size_t word_sz);
1230   // This one should not be called for CMS.
1231   virtual void par_promote_alloc_undo(int thread_num,
1232                                       HeapWord* obj, size_t word_sz);
1233   virtual void par_promote_alloc_done(int thread_num);
1234   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1235 
1236   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1237 
1238   // Inform this (non-young) generation that a promotion failure was
1239   // encountered during a collection of a younger generation that
1240   // promotes into this generation.
1241   virtual void promotion_failure_occurred();
1242 
1243   bool should_collect(bool full, size_t size, bool tlab);
1244   virtual bool should_concurrent_collect() const;
1245   virtual bool is_too_full() const;
1246   void collect(bool   full,
1247                bool   clear_all_soft_refs,
1248                size_t size,
1249                bool   tlab);
1250 
1251   HeapWord* expand_and_allocate(size_t word_size,
1252                                 bool tlab,
1253                                 bool parallel = false);
1254 
1255   // GC prologue and epilogue
1256   void gc_prologue(bool full);
1257   void gc_prologue_work(bool full, bool registerClosure,
1258                         ModUnionClosure* modUnionClosure);
1259   void gc_epilogue(bool full);
1260   void gc_epilogue_work(bool full);
1261 
1262   // Time since last GC of this generation
1263   jlong time_of_last_gc(jlong now) {
1264     return collector()->time_of_last_gc(now);
1265   }
1266   void update_time_of_last_gc(jlong now) {
1267     collector()-> update_time_of_last_gc(now);
1268   }
1269 
1270   // Allocation failure
1271   void expand(size_t bytes, size_t expand_bytes,
1272     CMSExpansionCause::Cause cause);
1273   virtual bool expand(size_t bytes, size_t expand_bytes);
1274   void shrink(size_t bytes);
1275   void shrink_by(size_t bytes);
1276   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1277   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1278 
1279   // Iteration support and related enquiries
1280   void save_marks();
1281   bool no_allocs_since_save_marks();
1282   void younger_refs_iterate(OopsInGenClosure* cl);
1283 
1284   // Iteration support specific to CMS generations
1285   void save_sweep_limit();
1286 
1287   // More iteration support
1288   virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1289   virtual void oop_iterate(ExtendedOopClosure* cl);
1290   virtual void safe_object_iterate(ObjectClosure* cl);
1291   virtual void object_iterate(ObjectClosure* cl);
1292 
1293   // Need to declare the full complement of closures, whether we'll
1294   // override them or not, or get message from the compiler:
1295   //   oop_since_save_marks_iterate_nv hides virtual function...
1296   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1297     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1298   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1299 
1300   // Smart allocation  XXX -- move to CFLSpace?
1301   void setNearLargestChunk();
1302   bool isNearLargestChunk(HeapWord* addr);
1303 
1304   // Get the chunk at the end of the space.  Delegates to
1305   // the space.
1306   FreeChunk* find_chunk_at_end();
1307 
1308   void post_compact();
1309 
1310   // Debugging
1311   void prepare_for_verify();
1312   void verify();
1313   void print_statistics()               PRODUCT_RETURN;
1314 
1315   // Performance Counters support
1316   virtual void update_counters();
1317   virtual void update_counters(size_t used);
1318   void initialize_performance_counters();
1319   CollectorCounters* counters()  { return collector()->counters(); }
1320 
1321   // Support for parallel remark of survivor space
1322   void* get_data_recorder(int thr_num) {
1323     //Delegate to collector
1324     return collector()->get_data_recorder(thr_num);
1325   }
1326   void sample_eden_chunk() {
1327     //Delegate to collector
1328     return collector()->sample_eden_chunk();
1329   }
1330 
1331   // Printing
1332   const char* name() const;
1333   virtual const char* short_name() const { return "CMS"; }
1334   void        print() const;
1335   void printOccupancy(const char* s);
1336   bool must_be_youngest() const { return false; }
1337   bool must_be_oldest()   const { return true; }
1338 
1339   // Resize the generation after a compacting GC.  The
1340   // generation can be treated as a contiguous space
1341   // after the compaction.
1342   virtual void compute_new_size();
1343   // Resize the generation after a non-compacting
1344   // collection.
1345   void compute_new_size_free_list();
1346 
1347   CollectionTypes debug_collection_type() { return _debug_collection_type; }
1348   void rotate_debug_collection_type();
1349 };
1350 
1351 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
1352 
1353   // Return the size policy from the heap's collector
1354   // policy casted to CMSAdaptiveSizePolicy*.
1355   CMSAdaptiveSizePolicy* cms_size_policy() const;
1356 
1357   // Resize the generation based on the adaptive size
1358   // policy.
1359   void resize(size_t cur_promo, size_t desired_promo);
1360 
1361   // Return the GC counters from the collector policy
1362   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
1363 
1364   virtual void shrink_by(size_t bytes);
1365 
1366  public:
1367   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1368                                   int level, CardTableRS* ct,
1369                                   bool use_adaptive_freelists,
1370                                   FreeBlockDictionary<FreeChunk>::DictionaryChoice
1371                                     dictionaryChoice) :
1372     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
1373       use_adaptive_freelists, dictionaryChoice) {}
1374 
1375   virtual const char* short_name() const { return "ASCMS"; }
1376   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
1377 
1378   virtual void update_counters();
1379   virtual void update_counters(size_t used);
1380 };
1381 
1382 //
1383 // Closures of various sorts used by CMS to accomplish its work
1384 //
1385 
1386 // This closure is used to check that a certain set of oops is empty.
1387 class FalseClosure: public OopClosure {
1388  public:
1389   void do_oop(oop* p)       { guarantee(false, "Should be an empty set"); }
1390   void do_oop(narrowOop* p) { guarantee(false, "Should be an empty set"); }
1391 };
1392 
1393 // This closure is used to do concurrent marking from the roots
1394 // following the first checkpoint.
1395 class MarkFromRootsClosure: public BitMapClosure {
1396   CMSCollector*  _collector;
1397   MemRegion      _span;
1398   CMSBitMap*     _bitMap;
1399   CMSBitMap*     _mut;
1400   CMSMarkStack*  _markStack;
1401   bool           _yield;
1402   int            _skipBits;
1403   HeapWord*      _finger;
1404   HeapWord*      _threshold;
1405   DEBUG_ONLY(bool _verifying;)
1406 
1407  public:
1408   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1409                        CMSBitMap* bitMap,
1410                        CMSMarkStack*  markStack,
1411                        bool should_yield, bool verifying = false);
1412   bool do_bit(size_t offset);
1413   void reset(HeapWord* addr);
1414   inline void do_yield_check();
1415 
1416  private:
1417   void scanOopsInOop(HeapWord* ptr);
1418   void do_yield_work();
1419 };
1420 
1421 // This closure is used to do concurrent multi-threaded
1422 // marking from the roots following the first checkpoint.
1423 // XXX This should really be a subclass of The serial version
1424 // above, but i have not had the time to refactor things cleanly.
1425 class Par_MarkFromRootsClosure: public BitMapClosure {
1426   CMSCollector*  _collector;
1427   MemRegion      _whole_span;
1428   MemRegion      _span;
1429   CMSBitMap*     _bit_map;
1430   CMSBitMap*     _mut;
1431   OopTaskQueue*  _work_queue;
1432   CMSMarkStack*  _overflow_stack;
1433   bool           _yield;
1434   int            _skip_bits;
1435   HeapWord*      _finger;
1436   HeapWord*      _threshold;
1437   CMSConcMarkingTask* _task;
1438  public:
1439   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1440                        MemRegion span,
1441                        CMSBitMap* bit_map,
1442                        OopTaskQueue* work_queue,
1443                        CMSMarkStack*  overflow_stack,
1444                        bool should_yield);
1445   bool do_bit(size_t offset);
1446   inline void do_yield_check();
1447 
1448  private:
1449   void scan_oops_in_oop(HeapWord* ptr);
1450   void do_yield_work();
1451   bool get_work_from_overflow_stack();
1452 };
1453 
1454 // The following closures are used to do certain kinds of verification of
1455 // CMS marking.
1456 class PushAndMarkVerifyClosure: public CMSOopClosure {
1457   CMSCollector*    _collector;
1458   MemRegion        _span;
1459   CMSBitMap*       _verification_bm;
1460   CMSBitMap*       _cms_bm;
1461   CMSMarkStack*    _mark_stack;
1462  protected:
1463   void do_oop(oop p);
1464   template <class T> inline void do_oop_work(T *p) {
1465     oop obj = oopDesc::load_decode_heap_oop(p);
1466     do_oop(obj);
1467   }
1468  public:
1469   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1470                            MemRegion span,
1471                            CMSBitMap* verification_bm,
1472                            CMSBitMap* cms_bm,
1473                            CMSMarkStack*  mark_stack);
1474   void do_oop(oop* p);
1475   void do_oop(narrowOop* p);
1476 
1477   // Deal with a stack overflow condition
1478   void handle_stack_overflow(HeapWord* lost);
1479 };
1480 
1481 class MarkFromRootsVerifyClosure: public BitMapClosure {
1482   CMSCollector*  _collector;
1483   MemRegion      _span;
1484   CMSBitMap*     _verification_bm;
1485   CMSBitMap*     _cms_bm;
1486   CMSMarkStack*  _mark_stack;
1487   HeapWord*      _finger;
1488   PushAndMarkVerifyClosure _pam_verify_closure;
1489  public:
1490   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1491                              CMSBitMap* verification_bm,
1492                              CMSBitMap* cms_bm,
1493                              CMSMarkStack*  mark_stack);
1494   bool do_bit(size_t offset);
1495   void reset(HeapWord* addr);
1496 };
1497 
1498 
1499 // This closure is used to check that a certain set of bits is
1500 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1501 class FalseBitMapClosure: public BitMapClosure {
1502  public:
1503   bool do_bit(size_t offset) {
1504     guarantee(false, "Should not have a 1 bit");
1505     return true;
1506   }
1507 };
1508 
1509 // This closure is used during the second checkpointing phase
1510 // to rescan the marked objects on the dirty cards in the mod
1511 // union table and the card table proper. It's invoked via
1512 // MarkFromDirtyCardsClosure below. It uses either
1513 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1514 // declared in genOopClosures.hpp to accomplish some of its work.
1515 // In the parallel case the bitMap is shared, so access to
1516 // it needs to be suitably synchronized for updates by embedded
1517 // closures that update it; however, this closure itself only
1518 // reads the bit_map and because it is idempotent, is immune to
1519 // reading stale values.
1520 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1521   #ifdef ASSERT
1522     CMSCollector*          _collector;
1523     MemRegion              _span;
1524     union {
1525       CMSMarkStack*        _mark_stack;
1526       OopTaskQueue*        _work_queue;
1527     };
1528   #endif // ASSERT
1529   bool                       _parallel;
1530   CMSBitMap*                 _bit_map;
1531   union {
1532     MarkRefsIntoAndScanClosure*     _scan_closure;
1533     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
1534   };
1535 
1536  public:
1537   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1538                                 MemRegion span,
1539                                 ReferenceProcessor* rp,
1540                                 CMSBitMap* bit_map,
1541                                 CMSMarkStack*  mark_stack,
1542                                 MarkRefsIntoAndScanClosure* cl):
1543     #ifdef ASSERT
1544       _collector(collector),
1545       _span(span),
1546       _mark_stack(mark_stack),
1547     #endif // ASSERT
1548     _parallel(false),
1549     _bit_map(bit_map),
1550     _scan_closure(cl) { }
1551 
1552   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1553                                 MemRegion span,
1554                                 ReferenceProcessor* rp,
1555                                 CMSBitMap* bit_map,
1556                                 OopTaskQueue* work_queue,
1557                                 Par_MarkRefsIntoAndScanClosure* cl):
1558     #ifdef ASSERT
1559       _collector(collector),
1560       _span(span),
1561       _work_queue(work_queue),
1562     #endif // ASSERT
1563     _parallel(true),
1564     _bit_map(bit_map),
1565     _par_scan_closure(cl) { }
1566 
1567   bool do_object_b(oop obj) {
1568     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1569     return false;
1570   }
1571   bool do_object_bm(oop p, MemRegion mr);
1572 };
1573 
1574 // This closure is used during the second checkpointing phase
1575 // to rescan the marked objects on the dirty cards in the mod
1576 // union table and the card table proper. It invokes
1577 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1578 // In the parallel case, the bit map is shared and requires
1579 // synchronized access.
1580 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1581   CompactibleFreeListSpace*      _space;
1582   ScanMarkedObjectsAgainClosure  _scan_cl;
1583   size_t                         _num_dirty_cards;
1584 
1585  public:
1586   MarkFromDirtyCardsClosure(CMSCollector* collector,
1587                             MemRegion span,
1588                             CompactibleFreeListSpace* space,
1589                             CMSBitMap* bit_map,
1590                             CMSMarkStack* mark_stack,
1591                             MarkRefsIntoAndScanClosure* cl):
1592     _space(space),
1593     _num_dirty_cards(0),
1594     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1595                  mark_stack, cl) { }
1596 
1597   MarkFromDirtyCardsClosure(CMSCollector* collector,
1598                             MemRegion span,
1599                             CompactibleFreeListSpace* space,
1600                             CMSBitMap* bit_map,
1601                             OopTaskQueue* work_queue,
1602                             Par_MarkRefsIntoAndScanClosure* cl):
1603     _space(space),
1604     _num_dirty_cards(0),
1605     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1606              work_queue, cl) { }
1607 
1608   void do_MemRegion(MemRegion mr);
1609   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1610   size_t num_dirty_cards() { return _num_dirty_cards; }
1611 };
1612 
1613 // This closure is used in the non-product build to check
1614 // that there are no MemRegions with a certain property.
1615 class FalseMemRegionClosure: public MemRegionClosure {
1616   void do_MemRegion(MemRegion mr) {
1617     guarantee(!mr.is_empty(), "Shouldn't be empty");
1618     guarantee(false, "Should never be here");
1619   }
1620 };
1621 
1622 // This closure is used during the precleaning phase
1623 // to "carefully" rescan marked objects on dirty cards.
1624 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1625 // to accomplish some of its work.
1626 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1627   CMSCollector*                  _collector;
1628   MemRegion                      _span;
1629   bool                           _yield;
1630   Mutex*                         _freelistLock;
1631   CMSBitMap*                     _bitMap;
1632   CMSMarkStack*                  _markStack;
1633   MarkRefsIntoAndScanClosure*    _scanningClosure;
1634 
1635  public:
1636   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1637                                          MemRegion     span,
1638                                          CMSBitMap* bitMap,
1639                                          CMSMarkStack*  markStack,
1640                                          MarkRefsIntoAndScanClosure* cl,
1641                                          bool should_yield):
1642     _collector(collector),
1643     _span(span),
1644     _yield(should_yield),
1645     _bitMap(bitMap),
1646     _markStack(markStack),
1647     _scanningClosure(cl) {
1648   }
1649 
1650   void do_object(oop p) {
1651     guarantee(false, "call do_object_careful instead");
1652   }
1653 
1654   size_t      do_object_careful(oop p) {
1655     guarantee(false, "Unexpected caller");
1656     return 0;
1657   }
1658 
1659   size_t      do_object_careful_m(oop p, MemRegion mr);
1660 
1661   void setFreelistLock(Mutex* m) {
1662     _freelistLock = m;
1663     _scanningClosure->set_freelistLock(m);
1664   }
1665 
1666  private:
1667   inline bool do_yield_check();
1668 
1669   void do_yield_work();
1670 };
1671 
1672 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1673   CMSCollector*                  _collector;
1674   MemRegion                      _span;
1675   bool                           _yield;
1676   CMSBitMap*                     _bit_map;
1677   CMSMarkStack*                  _mark_stack;
1678   PushAndMarkClosure*            _scanning_closure;
1679   unsigned int                   _before_count;
1680 
1681  public:
1682   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1683                                MemRegion     span,
1684                                CMSBitMap*    bit_map,
1685                                CMSMarkStack* mark_stack,
1686                                PushAndMarkClosure* cl,
1687                                unsigned int  before_count,
1688                                bool          should_yield):
1689     _collector(collector),
1690     _span(span),
1691     _yield(should_yield),
1692     _bit_map(bit_map),
1693     _mark_stack(mark_stack),
1694     _scanning_closure(cl),
1695     _before_count(before_count)
1696   { }
1697 
1698   void do_object(oop p) {
1699     guarantee(false, "call do_object_careful instead");
1700   }
1701 
1702   size_t      do_object_careful(oop p);
1703 
1704   size_t      do_object_careful_m(oop p, MemRegion mr) {
1705     guarantee(false, "Unexpected caller");
1706     return 0;
1707   }
1708 
1709  private:
1710   inline void do_yield_check();
1711   void do_yield_work();
1712 };
1713 
1714 // This closure is used to accomplish the sweeping work
1715 // after the second checkpoint but before the concurrent reset
1716 // phase.
1717 //
1718 // Terminology
1719 //   left hand chunk (LHC) - block of one or more chunks currently being
1720 //     coalesced.  The LHC is available for coalescing with a new chunk.
1721 //   right hand chunk (RHC) - block that is currently being swept that is
1722 //     free or garbage that can be coalesced with the LHC.
1723 // _inFreeRange is true if there is currently a LHC
1724 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1725 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1726 // _freeFinger is the address of the current LHC
1727 class SweepClosure: public BlkClosureCareful {
1728   CMSCollector*                  _collector;  // collector doing the work
1729   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1730   CompactibleFreeListSpace*      _sp;   // Space being swept
1731   HeapWord*                      _limit;// the address at or above which the sweep should stop
1732                                         // because we do not expect newly garbage blocks
1733                                         // eligible for sweeping past that address.
1734   Mutex*                         _freelistLock; // Free list lock (in space)
1735   CMSBitMap*                     _bitMap;       // Marking bit map (in
1736                                                 // generation)
1737   bool                           _inFreeRange;  // Indicates if we are in the
1738                                                 // midst of a free run
1739   bool                           _freeRangeInFreeLists;
1740                                         // Often, we have just found
1741                                         // a free chunk and started
1742                                         // a new free range; we do not
1743                                         // eagerly remove this chunk from
1744                                         // the free lists unless there is
1745                                         // a possibility of coalescing.
1746                                         // When true, this flag indicates
1747                                         // that the _freeFinger below
1748                                         // points to a potentially free chunk
1749                                         // that may still be in the free lists
1750   bool                           _lastFreeRangeCoalesced;
1751                                         // free range contains chunks
1752                                         // coalesced
1753   bool                           _yield;
1754                                         // Whether sweeping should be
1755                                         // done with yields. For instance
1756                                         // when done by the foreground
1757                                         // collector we shouldn't yield.
1758   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1759                                                 // pointer to the "left hand
1760                                                 // chunk"
1761   size_t                         _freeRangeSize;
1762                                         // When _inFreeRange is set, this
1763                                         // indicates the accumulated size
1764                                         // of the "left hand chunk"
1765   NOT_PRODUCT(
1766     size_t                       _numObjectsFreed;
1767     size_t                       _numWordsFreed;
1768     size_t                       _numObjectsLive;
1769     size_t                       _numWordsLive;
1770     size_t                       _numObjectsAlreadyFree;
1771     size_t                       _numWordsAlreadyFree;
1772     FreeChunk*                   _last_fc;
1773   )
1774  private:
1775   // Code that is common to a free chunk or garbage when
1776   // encountered during sweeping.
1777   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1778   // Process a free chunk during sweeping.
1779   void do_already_free_chunk(FreeChunk *fc);
1780   // Work method called when processing an already free or a
1781   // freshly garbage chunk to do a lookahead and possibly a
1782   // preemptive flush if crossing over _limit.
1783   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1784   // Process a garbage chunk during sweeping.
1785   size_t do_garbage_chunk(FreeChunk *fc);
1786   // Process a live chunk during sweeping.
1787   size_t do_live_chunk(FreeChunk* fc);
1788 
1789   // Accessors.
1790   HeapWord* freeFinger() const          { return _freeFinger; }
1791   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1792   bool inFreeRange()    const           { return _inFreeRange; }
1793   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1794   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1795   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1796   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1797   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1798 
1799   // Initialize a free range.
1800   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1801   // Return this chunk to the free lists.
1802   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1803 
1804   // Check if we should yield and do so when necessary.
1805   inline void do_yield_check(HeapWord* addr);
1806 
1807   // Yield
1808   void do_yield_work(HeapWord* addr);
1809 
1810   // Debugging/Printing
1811   void print_free_block_coalesced(FreeChunk* fc) const;
1812 
1813  public:
1814   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1815                CMSBitMap* bitMap, bool should_yield);
1816   ~SweepClosure() PRODUCT_RETURN;
1817 
1818   size_t       do_blk_careful(HeapWord* addr);
1819   void         print() const { print_on(tty); }
1820   void         print_on(outputStream *st) const;
1821 };
1822 
1823 // Closures related to weak references processing
1824 
1825 // During CMS' weak reference processing, this is a
1826 // work-routine/closure used to complete transitive
1827 // marking of objects as live after a certain point
1828 // in which an initial set has been completely accumulated.
1829 // This closure is currently used both during the final
1830 // remark stop-world phase, as well as during the concurrent
1831 // precleaning of the discovered reference lists.
1832 class CMSDrainMarkingStackClosure: public VoidClosure {
1833   CMSCollector*        _collector;
1834   MemRegion            _span;
1835   CMSMarkStack*        _mark_stack;
1836   CMSBitMap*           _bit_map;
1837   CMSKeepAliveClosure* _keep_alive;
1838   bool                 _concurrent_precleaning;
1839  public:
1840   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1841                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1842                       CMSKeepAliveClosure* keep_alive,
1843                       bool cpc):
1844     _collector(collector),
1845     _span(span),
1846     _bit_map(bit_map),
1847     _mark_stack(mark_stack),
1848     _keep_alive(keep_alive),
1849     _concurrent_precleaning(cpc) {
1850     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1851            "Mismatch");
1852   }
1853 
1854   void do_void();
1855 };
1856 
1857 // A parallel version of CMSDrainMarkingStackClosure above.
1858 class CMSParDrainMarkingStackClosure: public VoidClosure {
1859   CMSCollector*           _collector;
1860   MemRegion               _span;
1861   OopTaskQueue*           _work_queue;
1862   CMSBitMap*              _bit_map;
1863   CMSInnerParMarkAndPushClosure _mark_and_push;
1864 
1865  public:
1866   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1867                                  MemRegion span, CMSBitMap* bit_map,
1868                                  OopTaskQueue* work_queue):
1869     _collector(collector),
1870     _span(span),
1871     _bit_map(bit_map),
1872     _work_queue(work_queue),
1873     _mark_and_push(collector, span, bit_map, work_queue) { }
1874 
1875  public:
1876   void trim_queue(uint max);
1877   void do_void();
1878 };
1879 
1880 // Allow yielding or short-circuiting of reference list
1881 // precleaning work.
1882 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1883   CMSCollector* _collector;
1884   void do_yield_work();
1885  public:
1886   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1887     _collector(collector) {}
1888   virtual bool should_return();
1889 };
1890 
1891 
1892 // Convenience class that locks free list locks for given CMS collector
1893 class FreelistLocker: public StackObj {
1894  private:
1895   CMSCollector* _collector;
1896  public:
1897   FreelistLocker(CMSCollector* collector):
1898     _collector(collector) {
1899     _collector->getFreelistLocks();
1900   }
1901 
1902   ~FreelistLocker() {
1903     _collector->releaseFreelistLocks();
1904   }
1905 };
1906 
1907 // Mark all dead objects in a given space.
1908 class MarkDeadObjectsClosure: public BlkClosure {
1909   const CMSCollector*             _collector;
1910   const CompactibleFreeListSpace* _sp;
1911   CMSBitMap*                      _live_bit_map;
1912   CMSBitMap*                      _dead_bit_map;
1913 public:
1914   MarkDeadObjectsClosure(const CMSCollector* collector,
1915                          const CompactibleFreeListSpace* sp,
1916                          CMSBitMap *live_bit_map,
1917                          CMSBitMap *dead_bit_map) :
1918     _collector(collector),
1919     _sp(sp),
1920     _live_bit_map(live_bit_map),
1921     _dead_bit_map(dead_bit_map) {}
1922   size_t do_blk(HeapWord* addr);
1923 };
1924 
1925 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1926 
1927  public:
1928   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1929 };
1930 
1931 
1932 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP