1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gcTimer.hpp"
  30 #include "gc_implementation/shared/gcTraceTime.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/defNewGeneration.inline.hpp"
  34 #include "memory/gcLocker.inline.hpp"
  35 #include "memory/genCollectedHeap.hpp"
  36 #include "memory/genOopClosures.inline.hpp"
  37 #include "memory/genRemSet.hpp"
  38 #include "memory/generationSpec.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/thread.inline.hpp"
  46 #include "utilities/copy.hpp"
  47 #include "utilities/stack.inline.hpp"
  48 
  49 //
  50 // DefNewGeneration functions.
  51 
  52 // Methods of protected closure types.
  53 
  54 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  55   assert(g->level() == 0, "Optimized for youngest gen.");
  56 }
  57 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  58   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  59 }
  60 
  61 DefNewGeneration::KeepAliveClosure::
  62 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  63   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  64   _rs = (CardTableRS*)rs;
  65 }
  66 
  67 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  68 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  69 
  70 
  71 DefNewGeneration::FastKeepAliveClosure::
  72 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  73   DefNewGeneration::KeepAliveClosure(cl) {
  74   _boundary = g->reserved().end();
  75 }
  76 
  77 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  78 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  79 
  80 DefNewGeneration::EvacuateFollowersClosure::
  81 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  82                          ScanClosure* cur, ScanClosure* older) :
  83   _gch(gch), _level(level),
  84   _scan_cur_or_nonheap(cur), _scan_older(older)
  85 {}
  86 
  87 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  88   do {
  89     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  90                                        _scan_older);
  91   } while (!_gch->no_allocs_since_save_marks(_level));
  92 }
  93 
  94 DefNewGeneration::FastEvacuateFollowersClosure::
  95 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  96                              DefNewGeneration* gen,
  97                              FastScanClosure* cur, FastScanClosure* older) :
  98   _gch(gch), _level(level), _gen(gen),
  99   _scan_cur_or_nonheap(cur), _scan_older(older)
 100 {}
 101 
 102 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 103   do {
 104     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 105                                        _scan_older);
 106   } while (!_gch->no_allocs_since_save_marks(_level));
 107   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 108 }
 109 
 110 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 111     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 112 {
 113   assert(_g->level() == 0, "Optimized for youngest generation");
 114   _boundary = _g->reserved().end();
 115 }
 116 
 117 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 118 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 119 
 120 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 121     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 122 {
 123   assert(_g->level() == 0, "Optimized for youngest generation");
 124   _boundary = _g->reserved().end();
 125 }
 126 
 127 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 128 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 129 
 130 void KlassScanClosure::do_klass(Klass* klass) {
 131 #ifndef PRODUCT
 132   if (TraceScavenge) {
 133     ResourceMark rm;
 134     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
 135                            klass,
 136                            klass->external_name(),
 137                            klass->has_modified_oops() ? "true" : "false");
 138   }
 139 #endif
 140 
 141   // If the klass has not been dirtied we know that there's
 142   // no references into  the young gen and we can skip it.
 143   if (klass->has_modified_oops()) {
 144     if (_accumulate_modified_oops) {
 145       klass->accumulate_modified_oops();
 146     }
 147 
 148     // Clear this state since we're going to scavenge all the metadata.
 149     klass->clear_modified_oops();
 150 
 151     // Tell the closure which Klass is being scanned so that it can be dirtied
 152     // if oops are left pointing into the young gen.
 153     _scavenge_closure->set_scanned_klass(klass);
 154 
 155     klass->oops_do(_scavenge_closure);
 156 
 157     _scavenge_closure->set_scanned_klass(NULL);
 158   }
 159 }
 160 
 161 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 162   _g(g)
 163 {
 164   assert(_g->level() == 0, "Optimized for youngest generation");
 165   _boundary = _g->reserved().end();
 166 }
 167 
 168 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 169 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 170 
 171 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 172 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 173 
 174 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 175                                    KlassRemSet* klass_rem_set)
 176     : _scavenge_closure(scavenge_closure),
 177       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 178 
 179 
 180 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 181                                    size_t initial_size,
 182                                    int level,
 183                                    const char* policy)
 184   : Generation(rs, initial_size, level),
 185     _promo_failure_drain_in_progress(false),
 186     _should_allocate_from_space(false)
 187 {
 188   MemRegion cmr((HeapWord*)_virtual_space.low(),
 189                 (HeapWord*)_virtual_space.high());
 190   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 191 
 192   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
 193     _eden_space = new ConcEdenSpace(this);
 194   } else {
 195     _eden_space = new EdenSpace(this);
 196   }
 197   _from_space = new ContiguousSpace();
 198   _to_space   = new ContiguousSpace();
 199 
 200   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 201     vm_exit_during_initialization("Could not allocate a new gen space");
 202 
 203   // Compute the maximum eden and survivor space sizes. These sizes
 204   // are computed assuming the entire reserved space is committed.
 205   // These values are exported as performance counters.
 206   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 207   uintx size = _virtual_space.reserved_size();
 208   _max_survivor_size = compute_survivor_size(size, alignment);
 209   _max_eden_size = size - (2*_max_survivor_size);
 210 
 211   // allocate the performance counters
 212 
 213   // Generation counters -- generation 0, 3 subspaces
 214   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
 215   _gc_counters = new CollectorCounters(policy, 0);
 216 
 217   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 218                                       _gen_counters);
 219   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 220                                       _gen_counters);
 221   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 222                                     _gen_counters);
 223 
 224   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 225   update_counters();
 226   _next_gen = NULL;
 227   _tenuring_threshold = MaxTenuringThreshold;
 228   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 229 
 230   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 231 }
 232 
 233 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 234                                                 bool clear_space,
 235                                                 bool mangle_space) {
 236   uintx alignment =
 237     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 238 
 239   // If the spaces are being cleared (only done at heap initialization
 240   // currently), the survivor spaces need not be empty.
 241   // Otherwise, no care is taken for used areas in the survivor spaces
 242   // so check.
 243   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 244     "Initialization of the survivor spaces assumes these are empty");
 245 
 246   // Compute sizes
 247   uintx size = _virtual_space.committed_size();
 248   uintx survivor_size = compute_survivor_size(size, alignment);
 249   uintx eden_size = size - (2*survivor_size);
 250   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 251 
 252   if (eden_size < minimum_eden_size) {
 253     // May happen due to 64Kb rounding, if so adjust eden size back up
 254     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 255     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 256     uintx unaligned_survivor_size =
 257       align_size_down(maximum_survivor_size, alignment);
 258     survivor_size = MAX2(unaligned_survivor_size, alignment);
 259     eden_size = size - (2*survivor_size);
 260     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 261     assert(eden_size >= minimum_eden_size, "just checking");
 262   }
 263 
 264   char *eden_start = _virtual_space.low();
 265   char *from_start = eden_start + eden_size;
 266   char *to_start   = from_start + survivor_size;
 267   char *to_end     = to_start   + survivor_size;
 268 
 269   assert(to_end == _virtual_space.high(), "just checking");
 270   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 271   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 272   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 273 
 274   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 275   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 276   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 277 
 278   // A minimum eden size implies that there is a part of eden that
 279   // is being used and that affects the initialization of any
 280   // newly formed eden.
 281   bool live_in_eden = minimum_eden_size > 0;
 282 
 283   // If not clearing the spaces, do some checking to verify that
 284   // the space are already mangled.
 285   if (!clear_space) {
 286     // Must check mangling before the spaces are reshaped.  Otherwise,
 287     // the bottom or end of one space may have moved into another
 288     // a failure of the check may not correctly indicate which space
 289     // is not properly mangled.
 290     if (ZapUnusedHeapArea) {
 291       HeapWord* limit = (HeapWord*) _virtual_space.high();
 292       eden()->check_mangled_unused_area(limit);
 293       from()->check_mangled_unused_area(limit);
 294         to()->check_mangled_unused_area(limit);
 295     }
 296   }
 297 
 298   // Reset the spaces for their new regions.
 299   eden()->initialize(edenMR,
 300                      clear_space && !live_in_eden,
 301                      SpaceDecorator::Mangle);
 302   // If clear_space and live_in_eden, we will not have cleared any
 303   // portion of eden above its top. This can cause newly
 304   // expanded space not to be mangled if using ZapUnusedHeapArea.
 305   // We explicitly do such mangling here.
 306   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 307     eden()->mangle_unused_area();
 308   }
 309   from()->initialize(fromMR, clear_space, mangle_space);
 310   to()->initialize(toMR, clear_space, mangle_space);
 311 
 312   // Set next compaction spaces.
 313   eden()->set_next_compaction_space(from());
 314   // The to-space is normally empty before a compaction so need
 315   // not be considered.  The exception is during promotion
 316   // failure handling when to-space can contain live objects.
 317   from()->set_next_compaction_space(NULL);
 318 }
 319 
 320 void DefNewGeneration::swap_spaces() {
 321   ContiguousSpace* s = from();
 322   _from_space        = to();
 323   _to_space          = s;
 324   eden()->set_next_compaction_space(from());
 325   // The to-space is normally empty before a compaction so need
 326   // not be considered.  The exception is during promotion
 327   // failure handling when to-space can contain live objects.
 328   from()->set_next_compaction_space(NULL);
 329 
 330   if (UsePerfData) {
 331     CSpaceCounters* c = _from_counters;
 332     _from_counters = _to_counters;
 333     _to_counters = c;
 334   }
 335 }
 336 
 337 bool DefNewGeneration::expand(size_t bytes) {
 338   MutexLocker x(ExpandHeap_lock);
 339   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 340   bool success = _virtual_space.expand_by(bytes);
 341   if (success && ZapUnusedHeapArea) {
 342     // Mangle newly committed space immediately because it
 343     // can be done here more simply that after the new
 344     // spaces have been computed.
 345     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 346     MemRegion mangle_region(prev_high, new_high);
 347     SpaceMangler::mangle_region(mangle_region);
 348   }
 349 
 350   // Do not attempt an expand-to-the reserve size.  The
 351   // request should properly observe the maximum size of
 352   // the generation so an expand-to-reserve should be
 353   // unnecessary.  Also a second call to expand-to-reserve
 354   // value potentially can cause an undue expansion.
 355   // For example if the first expand fail for unknown reasons,
 356   // but the second succeeds and expands the heap to its maximum
 357   // value.
 358   if (GC_locker::is_active()) {
 359     if (PrintGC && Verbose) {
 360       gclog_or_tty->print_cr("Garbage collection disabled, "
 361         "expanded heap instead");
 362     }
 363   }
 364 
 365   return success;
 366 }
 367 
 368 
 369 void DefNewGeneration::compute_new_size() {
 370   // This is called after a gc that includes the following generation
 371   // (which is required to exist.)  So from-space will normally be empty.
 372   // Note that we check both spaces, since if scavenge failed they revert roles.
 373   // If not we bail out (otherwise we would have to relocate the objects)
 374   if (!from()->is_empty() || !to()->is_empty()) {
 375     return;
 376   }
 377 
 378   int next_level = level() + 1;
 379   GenCollectedHeap* gch = GenCollectedHeap::heap();
 380   assert(next_level < gch->_n_gens,
 381          "DefNewGeneration cannot be an oldest gen");
 382 
 383   Generation* next_gen = gch->_gens[next_level];
 384   size_t old_size = next_gen->capacity();
 385   size_t new_size_before = _virtual_space.committed_size();
 386   size_t min_new_size = spec()->init_size();
 387   size_t max_new_size = reserved().byte_size();
 388   assert(min_new_size <= new_size_before &&
 389          new_size_before <= max_new_size,
 390          "just checking");
 391   // All space sizes must be multiples of Generation::GenGrain.
 392   size_t alignment = Generation::GenGrain;
 393 
 394   // Compute desired new generation size based on NewRatio and
 395   // NewSizeThreadIncrease
 396   size_t desired_new_size = old_size/NewRatio;
 397   int threads_count = Threads::number_of_non_daemon_threads();
 398   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 399   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 400 
 401   // Adjust new generation size
 402   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 403   assert(desired_new_size <= max_new_size, "just checking");
 404 
 405   bool changed = false;
 406   if (desired_new_size > new_size_before) {
 407     size_t change = desired_new_size - new_size_before;
 408     assert(change % alignment == 0, "just checking");
 409     if (expand(change)) {
 410        changed = true;
 411     }
 412     // If the heap failed to expand to the desired size,
 413     // "changed" will be false.  If the expansion failed
 414     // (and at this point it was expected to succeed),
 415     // ignore the failure (leaving "changed" as false).
 416   }
 417   if (desired_new_size < new_size_before && eden()->is_empty()) {
 418     // bail out of shrinking if objects in eden
 419     size_t change = new_size_before - desired_new_size;
 420     assert(change % alignment == 0, "just checking");
 421     _virtual_space.shrink_by(change);
 422     changed = true;
 423   }
 424   if (changed) {
 425     // The spaces have already been mangled at this point but
 426     // may not have been cleared (set top = bottom) and should be.
 427     // Mangling was done when the heap was being expanded.
 428     compute_space_boundaries(eden()->used(),
 429                              SpaceDecorator::Clear,
 430                              SpaceDecorator::DontMangle);
 431     MemRegion cmr((HeapWord*)_virtual_space.low(),
 432                   (HeapWord*)_virtual_space.high());
 433     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 434     if (Verbose && PrintGC) {
 435       size_t new_size_after  = _virtual_space.committed_size();
 436       size_t eden_size_after = eden()->capacity();
 437       size_t survivor_size_after = from()->capacity();
 438       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 439         SIZE_FORMAT "K [eden="
 440         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 441         new_size_before/K, new_size_after/K,
 442         eden_size_after/K, survivor_size_after/K);
 443       if (WizardMode) {
 444         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 445           thread_increase_size/K, threads_count);
 446       }
 447       gclog_or_tty->cr();
 448     }
 449   }
 450 }
 451 
 452 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 453   assert(false, "NYI -- are you sure you want to call this?");
 454 }
 455 
 456 
 457 size_t DefNewGeneration::capacity() const {
 458   return eden()->capacity()
 459        + from()->capacity();  // to() is only used during scavenge
 460 }
 461 
 462 
 463 size_t DefNewGeneration::used() const {
 464   return eden()->used()
 465        + from()->used();      // to() is only used during scavenge
 466 }
 467 
 468 
 469 size_t DefNewGeneration::free() const {
 470   return eden()->free()
 471        + from()->free();      // to() is only used during scavenge
 472 }
 473 
 474 size_t DefNewGeneration::max_capacity() const {
 475   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 476   const size_t reserved_bytes = reserved().byte_size();
 477   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 478 }
 479 
 480 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 481   return eden()->free();
 482 }
 483 
 484 size_t DefNewGeneration::capacity_before_gc() const {
 485   return eden()->capacity();
 486 }
 487 
 488 size_t DefNewGeneration::contiguous_available() const {
 489   return eden()->free();
 490 }
 491 
 492 
 493 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 494 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 495 
 496 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 497   eden()->object_iterate(blk);
 498   from()->object_iterate(blk);
 499 }
 500 
 501 
 502 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 503                                      bool usedOnly) {
 504   blk->do_space(eden());
 505   blk->do_space(from());
 506   blk->do_space(to());
 507 }
 508 
 509 // The last collection bailed out, we are running out of heap space,
 510 // so we try to allocate the from-space, too.
 511 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 512   HeapWord* result = NULL;
 513   if (Verbose && PrintGCDetails) {
 514     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
 515                         "  will_fail: %s"
 516                         "  heap_lock: %s"
 517                         "  free: " SIZE_FORMAT,
 518                         size,
 519                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 520                           "true" : "false",
 521                         Heap_lock->is_locked() ? "locked" : "unlocked",
 522                         from()->free());
 523   }
 524   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 525     if (Heap_lock->owned_by_self() ||
 526         (SafepointSynchronize::is_at_safepoint() &&
 527          Thread::current()->is_VM_thread())) {
 528       // If the Heap_lock is not locked by this thread, this will be called
 529       // again later with the Heap_lock held.
 530       result = from()->allocate(size);
 531     } else if (PrintGC && Verbose) {
 532       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 533     }
 534   } else if (PrintGC && Verbose) {
 535     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 536   }
 537   if (PrintGC && Verbose) {
 538     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 539   }
 540   return result;
 541 }
 542 
 543 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 544                                                 bool   is_tlab,
 545                                                 bool   parallel) {
 546   // We don't attempt to expand the young generation (but perhaps we should.)
 547   return allocate(size, is_tlab);
 548 }
 549 
 550 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 551   // Set the desired survivor size to half the real survivor space
 552   _tenuring_threshold =
 553     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 554 }
 555 
 556 void DefNewGeneration::collect(bool   full,
 557                                bool   clear_all_soft_refs,
 558                                size_t size,
 559                                bool   is_tlab) {
 560   assert(full || size > 0, "otherwise we don't want to collect");
 561 
 562   GenCollectedHeap* gch = GenCollectedHeap::heap();
 563 
 564   _gc_timer->register_gc_start();
 565   DefNewTracer gc_tracer;
 566   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 567 
 568   _next_gen = gch->next_gen(this);
 569 
 570   // If the next generation is too full to accommodate promotion
 571   // from this generation, pass on collection; let the next generation
 572   // do it.
 573   if (!collection_attempt_is_safe()) {
 574     if (Verbose && PrintGCDetails) {
 575       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 576     }
 577     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 578     return;
 579   }
 580   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 581 
 582   init_assuming_no_promotion_failure();
 583 
 584   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
 585   // Capture heap used before collection (for printing).
 586   size_t gch_prev_used = gch->used();
 587 
 588   gch->trace_heap_before_gc(&gc_tracer);
 589 
 590   SpecializationStats::clear();
 591 
 592   // These can be shared for all code paths
 593   IsAliveClosure is_alive(this);
 594   ScanWeakRefClosure scan_weak_ref(this);
 595 
 596   age_table()->clear();
 597   to()->clear(SpaceDecorator::Mangle);
 598 
 599   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 600 
 601   assert(gch->no_allocs_since_save_marks(0),
 602          "save marks have not been newly set.");
 603 
 604   // Not very pretty.
 605   CollectorPolicy* cp = gch->collector_policy();
 606 
 607   FastScanClosure fsc_with_no_gc_barrier(this, false);
 608   FastScanClosure fsc_with_gc_barrier(this, true);
 609 
 610   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 611                                       gch->rem_set()->klass_rem_set());
 612 
 613   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 614   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 615                                                   &fsc_with_no_gc_barrier,
 616                                                   &fsc_with_gc_barrier);
 617 
 618   assert(gch->no_allocs_since_save_marks(0),
 619          "save marks have not been newly set.");
 620 
 621   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_ScavengeCodeCache;
 622 
 623   gch->gen_process_strong_roots(_level,
 624                                 true,  // Process younger gens, if any,
 625                                        // as strong roots.
 626                                 true,  // activate StrongRootsScope
 627                                 SharedHeap::ScanningOption(so),
 628                                 &fsc_with_no_gc_barrier,
 629                                 true,   // walk *all* scavengable nmethods
 630                                 &fsc_with_gc_barrier,
 631                                 &klass_scan_closure);
 632 
 633   // "evacuate followers".
 634   evacuate_followers.do_void();
 635 
 636   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 637   ReferenceProcessor* rp = ref_processor();
 638   rp->setup_policy(clear_all_soft_refs);
 639   const ReferenceProcessorStats& stats =
 640   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 641                                     NULL, _gc_timer);
 642   gc_tracer.report_gc_reference_stats(stats);
 643 
 644   if (!_promotion_failed) {
 645     // Swap the survivor spaces.
 646     eden()->clear(SpaceDecorator::Mangle);
 647     from()->clear(SpaceDecorator::Mangle);
 648     if (ZapUnusedHeapArea) {
 649       // This is now done here because of the piece-meal mangling which
 650       // can check for valid mangling at intermediate points in the
 651       // collection(s).  When a minor collection fails to collect
 652       // sufficient space resizing of the young generation can occur
 653       // an redistribute the spaces in the young generation.  Mangle
 654       // here so that unzapped regions don't get distributed to
 655       // other spaces.
 656       to()->mangle_unused_area();
 657     }
 658     swap_spaces();
 659 
 660     assert(to()->is_empty(), "to space should be empty now");
 661 
 662     adjust_desired_tenuring_threshold();
 663 
 664     // A successful scavenge should restart the GC time limit count which is
 665     // for full GC's.
 666     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 667     size_policy->reset_gc_overhead_limit_count();
 668     assert(!gch->incremental_collection_failed(), "Should be clear");
 669   } else {
 670     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 671     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 672 
 673     remove_forwarding_pointers();
 674     if (PrintGCDetails) {
 675       gclog_or_tty->print(" (promotion failed) ");
 676     }
 677     // Add to-space to the list of space to compact
 678     // when a promotion failure has occurred.  In that
 679     // case there can be live objects in to-space
 680     // as a result of a partial evacuation of eden
 681     // and from-space.
 682     swap_spaces();   // For uniformity wrt ParNewGeneration.
 683     from()->set_next_compaction_space(to());
 684     gch->set_incremental_collection_failed();
 685 
 686     // Inform the next generation that a promotion failure occurred.
 687     _next_gen->promotion_failure_occurred();
 688     gc_tracer.report_promotion_failed(_promotion_failed_info);
 689 
 690     // Reset the PromotionFailureALot counters.
 691     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 692   }
 693   if (PrintGC && !PrintGCDetails) {
 694     gch->print_heap_change(gch_prev_used);
 695   }
 696   // set new iteration safe limit for the survivor spaces
 697   from()->set_concurrent_iteration_safe_limit(from()->top());
 698   to()->set_concurrent_iteration_safe_limit(to()->top());
 699   SpecializationStats::print();
 700 
 701   // We need to use a monotonically non-decreasing time in ms
 702   // or we will see time-warp warnings and os::javaTimeMillis()
 703   // does not guarantee monotonicity.
 704   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 705   update_time_of_last_gc(now);
 706 
 707   gch->trace_heap_after_gc(&gc_tracer);
 708   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 709 
 710   _gc_timer->register_gc_end();
 711 
 712   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 713 }
 714 
 715 class RemoveForwardPointerClosure: public ObjectClosure {
 716 public:
 717   void do_object(oop obj) {
 718     obj->init_mark();
 719   }
 720 };
 721 
 722 void DefNewGeneration::init_assuming_no_promotion_failure() {
 723   _promotion_failed = false;
 724   _promotion_failed_info.reset();
 725   from()->set_next_compaction_space(NULL);
 726 }
 727 
 728 void DefNewGeneration::remove_forwarding_pointers() {
 729   RemoveForwardPointerClosure rspc;
 730   eden()->object_iterate(&rspc);
 731   from()->object_iterate(&rspc);
 732 
 733   // Now restore saved marks, if any.
 734   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 735          "should be the same");
 736   while (!_objs_with_preserved_marks.is_empty()) {
 737     oop obj   = _objs_with_preserved_marks.pop();
 738     markOop m = _preserved_marks_of_objs.pop();
 739     obj->set_mark(m);
 740   }
 741   _objs_with_preserved_marks.clear(true);
 742   _preserved_marks_of_objs.clear(true);
 743 }
 744 
 745 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 746   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 747          "Oversaving!");
 748   _objs_with_preserved_marks.push(obj);
 749   _preserved_marks_of_objs.push(m);
 750 }
 751 
 752 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 753   if (m->must_be_preserved_for_promotion_failure(obj)) {
 754     preserve_mark(obj, m);
 755   }
 756 }
 757 
 758 void DefNewGeneration::handle_promotion_failure(oop old) {
 759   if (PrintPromotionFailure && !_promotion_failed) {
 760     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
 761                         old->size());
 762   }
 763   _promotion_failed = true;
 764   _promotion_failed_info.register_copy_failure(old->size());
 765   preserve_mark_if_necessary(old, old->mark());
 766   // forward to self
 767   old->forward_to(old);
 768 
 769   _promo_failure_scan_stack.push(old);
 770 
 771   if (!_promo_failure_drain_in_progress) {
 772     // prevent recursion in copy_to_survivor_space()
 773     _promo_failure_drain_in_progress = true;
 774     drain_promo_failure_scan_stack();
 775     _promo_failure_drain_in_progress = false;
 776   }
 777 }
 778 
 779 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 780   assert(is_in_reserved(old) && !old->is_forwarded(),
 781          "shouldn't be scavenging this oop");
 782   size_t s = old->size();
 783   oop obj = NULL;
 784 
 785   // Try allocating obj in to-space (unless too old)
 786   if (old->age() < tenuring_threshold()) {
 787     obj = (oop) to()->allocate(s);
 788   }
 789 
 790   // Otherwise try allocating obj tenured
 791   if (obj == NULL) {
 792     obj = _next_gen->promote(old, s);
 793     if (obj == NULL) {
 794       handle_promotion_failure(old);
 795       return old;
 796     }
 797   } else {
 798     // Prefetch beyond obj
 799     const intx interval = PrefetchCopyIntervalInBytes;
 800     Prefetch::write(obj, interval);
 801 
 802     // Copy obj
 803     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 804 
 805     // Increment age if obj still in new generation
 806     obj->incr_age();
 807     age_table()->add(obj, s);
 808   }
 809 
 810   // Done, insert forward pointer to obj in this header
 811   old->forward_to(obj);
 812 
 813   return obj;
 814 }
 815 
 816 void DefNewGeneration::drain_promo_failure_scan_stack() {
 817   while (!_promo_failure_scan_stack.is_empty()) {
 818      oop obj = _promo_failure_scan_stack.pop();
 819      obj->oop_iterate(_promo_failure_scan_stack_closure);
 820   }
 821 }
 822 
 823 void DefNewGeneration::save_marks() {
 824   eden()->set_saved_mark();
 825   to()->set_saved_mark();
 826   from()->set_saved_mark();
 827 }
 828 
 829 
 830 void DefNewGeneration::reset_saved_marks() {
 831   eden()->reset_saved_mark();
 832   to()->reset_saved_mark();
 833   from()->reset_saved_mark();
 834 }
 835 
 836 
 837 bool DefNewGeneration::no_allocs_since_save_marks() {
 838   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 839   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 840   return to()->saved_mark_at_top();
 841 }
 842 
 843 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 844                                                                 \
 845 void DefNewGeneration::                                         \
 846 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 847   cl->set_generation(this);                                     \
 848   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 849   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 850   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 851   cl->reset_generation();                                       \
 852   save_marks();                                                 \
 853 }
 854 
 855 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 856 
 857 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 858 
 859 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 860                                          size_t max_alloc_words) {
 861   if (requestor == this || _promotion_failed) return;
 862   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 863 
 864   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 865   if (to_space->top() > to_space->bottom()) {
 866     trace("to_space not empty when contribute_scratch called");
 867   }
 868   */
 869 
 870   ContiguousSpace* to_space = to();
 871   assert(to_space->end() >= to_space->top(), "pointers out of order");
 872   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 873   if (free_words >= MinFreeScratchWords) {
 874     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 875     sb->num_words = free_words;
 876     sb->next = list;
 877     list = sb;
 878   }
 879 }
 880 
 881 void DefNewGeneration::reset_scratch() {
 882   // If contributing scratch in to_space, mangle all of
 883   // to_space if ZapUnusedHeapArea.  This is needed because
 884   // top is not maintained while using to-space as scratch.
 885   if (ZapUnusedHeapArea) {
 886     to()->mangle_unused_area_complete();
 887   }
 888 }
 889 
 890 bool DefNewGeneration::collection_attempt_is_safe() {
 891   if (!to()->is_empty()) {
 892     if (Verbose && PrintGCDetails) {
 893       gclog_or_tty->print(" :: to is not empty :: ");
 894     }
 895     return false;
 896   }
 897   if (_next_gen == NULL) {
 898     GenCollectedHeap* gch = GenCollectedHeap::heap();
 899     _next_gen = gch->next_gen(this);
 900   }
 901   return _next_gen->promotion_attempt_is_safe(used());
 902 }
 903 
 904 void DefNewGeneration::gc_epilogue(bool full) {
 905   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 906 
 907   assert(!GC_locker::is_active(), "We should not be executing here");
 908   // Check if the heap is approaching full after a collection has
 909   // been done.  Generally the young generation is empty at
 910   // a minimum at the end of a collection.  If it is not, then
 911   // the heap is approaching full.
 912   GenCollectedHeap* gch = GenCollectedHeap::heap();
 913   if (full) {
 914     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 915     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 916       if (Verbose && PrintGCDetails) {
 917         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 918                             GCCause::to_string(gch->gc_cause()));
 919       }
 920       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 921       set_should_allocate_from_space(); // we seem to be running out of space
 922     } else {
 923       if (Verbose && PrintGCDetails) {
 924         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 925                             GCCause::to_string(gch->gc_cause()));
 926       }
 927       gch->clear_incremental_collection_failed(); // We just did a full collection
 928       clear_should_allocate_from_space(); // if set
 929     }
 930   } else {
 931 #ifdef ASSERT
 932     // It is possible that incremental_collection_failed() == true
 933     // here, because an attempted scavenge did not succeed. The policy
 934     // is normally expected to cause a full collection which should
 935     // clear that condition, so we should not be here twice in a row
 936     // with incremental_collection_failed() == true without having done
 937     // a full collection in between.
 938     if (!seen_incremental_collection_failed &&
 939         gch->incremental_collection_failed()) {
 940       if (Verbose && PrintGCDetails) {
 941         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 942                             GCCause::to_string(gch->gc_cause()));
 943       }
 944       seen_incremental_collection_failed = true;
 945     } else if (seen_incremental_collection_failed) {
 946       if (Verbose && PrintGCDetails) {
 947         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 948                             GCCause::to_string(gch->gc_cause()));
 949       }
 950       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 951              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 952              !gch->incremental_collection_failed(),
 953              "Twice in a row");
 954       seen_incremental_collection_failed = false;
 955     }
 956 #endif // ASSERT
 957   }
 958 
 959   if (ZapUnusedHeapArea) {
 960     eden()->check_mangled_unused_area_complete();
 961     from()->check_mangled_unused_area_complete();
 962     to()->check_mangled_unused_area_complete();
 963   }
 964 
 965   if (!CleanChunkPoolAsync) {
 966     Chunk::clean_chunk_pool();
 967   }
 968 
 969   // update the generation and space performance counters
 970   update_counters();
 971   gch->collector_policy()->counters()->update_counters();
 972 }
 973 
 974 void DefNewGeneration::record_spaces_top() {
 975   assert(ZapUnusedHeapArea, "Not mangling unused space");
 976   eden()->set_top_for_allocations();
 977   to()->set_top_for_allocations();
 978   from()->set_top_for_allocations();
 979 }
 980 
 981 void DefNewGeneration::ref_processor_init() {
 982   Generation::ref_processor_init();
 983 }
 984 
 985 
 986 void DefNewGeneration::update_counters() {
 987   if (UsePerfData) {
 988     _eden_counters->update_all();
 989     _from_counters->update_all();
 990     _to_counters->update_all();
 991     _gen_counters->update_all();
 992   }
 993 }
 994 
 995 void DefNewGeneration::verify() {
 996   eden()->verify();
 997   from()->verify();
 998     to()->verify();
 999 }
1000 
1001 void DefNewGeneration::print_on(outputStream* st) const {
1002   Generation::print_on(st);
1003   st->print("  eden");
1004   eden()->print_on(st);
1005   st->print("  from");
1006   from()->print_on(st);
1007   st->print("  to  ");
1008   to()->print_on(st);
1009 }
1010 
1011 
1012 const char* DefNewGeneration::name() const {
1013   return "def new generation";
1014 }
1015 
1016 // Moved from inline file as they are not called inline
1017 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1018   return eden();
1019 }
1020 
1021 HeapWord* DefNewGeneration::allocate(size_t word_size,
1022                                      bool is_tlab) {
1023   // This is the slow-path allocation for the DefNewGeneration.
1024   // Most allocations are fast-path in compiled code.
1025   // We try to allocate from the eden.  If that works, we are happy.
1026   // Note that since DefNewGeneration supports lock-free allocation, we
1027   // have to use it here, as well.
1028   HeapWord* result = eden()->par_allocate(word_size);
1029   if (result != NULL) {
1030     if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1031       _next_gen->sample_eden_chunk();
1032     }
1033     return result;
1034   }
1035   do {
1036     HeapWord* old_limit = eden()->soft_end();
1037     if (old_limit < eden()->end()) {
1038       // Tell the next generation we reached a limit.
1039       HeapWord* new_limit =
1040         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
1041       if (new_limit != NULL) {
1042         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
1043       } else {
1044         assert(eden()->soft_end() == eden()->end(),
1045                "invalid state after allocation_limit_reached returned null");
1046       }
1047     } else {
1048       // The allocation failed and the soft limit is equal to the hard limit,
1049       // there are no reasons to do an attempt to allocate
1050       assert(old_limit == eden()->end(), "sanity check");
1051       break;
1052     }
1053     // Try to allocate until succeeded or the soft limit can't be adjusted
1054     result = eden()->par_allocate(word_size);
1055   } while (result == NULL);
1056 
1057   // If the eden is full and the last collection bailed out, we are running
1058   // out of heap space, and we try to allocate the from-space, too.
1059   // allocate_from_space can't be inlined because that would introduce a
1060   // circular dependency at compile time.
1061   if (result == NULL) {
1062     result = allocate_from_space(word_size);
1063   } else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1064     _next_gen->sample_eden_chunk();
1065   }
1066   return result;
1067 }
1068 
1069 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1070                                          bool is_tlab) {
1071   HeapWord* res = eden()->par_allocate(word_size);
1072   if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1073     _next_gen->sample_eden_chunk();
1074   }
1075   return res;
1076 }
1077 
1078 void DefNewGeneration::gc_prologue(bool full) {
1079   // Ensure that _end and _soft_end are the same in eden space.
1080   eden()->set_soft_end(eden()->end());
1081 }
1082 
1083 size_t DefNewGeneration::tlab_capacity() const {
1084   return eden()->capacity();
1085 }
1086 
1087 size_t DefNewGeneration::tlab_used() const {
1088   return eden()->used();
1089 }
1090 
1091 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1092   return unsafe_max_alloc_nogc();
1093 }