1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "services/runtimeService.hpp"
  65 
  66 // statics
  67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  68 bool CMSCollector::_full_gc_requested = false;
  69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  70 
  71 //////////////////////////////////////////////////////////////////
  72 // In support of CMS/VM thread synchronization
  73 //////////////////////////////////////////////////////////////////
  74 // We split use of the CGC_lock into 2 "levels".
  75 // The low-level locking is of the usual CGC_lock monitor. We introduce
  76 // a higher level "token" (hereafter "CMS token") built on top of the
  77 // low level monitor (hereafter "CGC lock").
  78 // The token-passing protocol gives priority to the VM thread. The
  79 // CMS-lock doesn't provide any fairness guarantees, but clients
  80 // should ensure that it is only held for very short, bounded
  81 // durations.
  82 //
  83 // When either of the CMS thread or the VM thread is involved in
  84 // collection operations during which it does not want the other
  85 // thread to interfere, it obtains the CMS token.
  86 //
  87 // If either thread tries to get the token while the other has
  88 // it, that thread waits. However, if the VM thread and CMS thread
  89 // both want the token, then the VM thread gets priority while the
  90 // CMS thread waits. This ensures, for instance, that the "concurrent"
  91 // phases of the CMS thread's work do not block out the VM thread
  92 // for long periods of time as the CMS thread continues to hog
  93 // the token. (See bug 4616232).
  94 //
  95 // The baton-passing functions are, however, controlled by the
  96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  97 // and here the low-level CMS lock, not the high level token,
  98 // ensures mutual exclusion.
  99 //
 100 // Two important conditions that we have to satisfy:
 101 // 1. if a thread does a low-level wait on the CMS lock, then it
 102 //    relinquishes the CMS token if it were holding that token
 103 //    when it acquired the low-level CMS lock.
 104 // 2. any low-level notifications on the low-level lock
 105 //    should only be sent when a thread has relinquished the token.
 106 //
 107 // In the absence of either property, we'd have potential deadlock.
 108 //
 109 // We protect each of the CMS (concurrent and sequential) phases
 110 // with the CMS _token_, not the CMS _lock_.
 111 //
 112 // The only code protected by CMS lock is the token acquisition code
 113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 114 // baton-passing code.
 115 //
 116 // Unfortunately, i couldn't come up with a good abstraction to factor and
 117 // hide the naked CGC_lock manipulation in the baton-passing code
 118 // further below. That's something we should try to do. Also, the proof
 119 // of correctness of this 2-level locking scheme is far from obvious,
 120 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 121 // that there may be a theoretical possibility of delay/starvation in the
 122 // low-level lock/wait/notify scheme used for the baton-passing because of
 123 // potential interference with the priority scheme embodied in the
 124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 125 // invocation further below and marked with "XXX 20011219YSR".
 126 // Indeed, as we note elsewhere, this may become yet more slippery
 127 // in the presence of multiple CMS and/or multiple VM threads. XXX
 128 
 129 class CMSTokenSync: public StackObj {
 130  private:
 131   bool _is_cms_thread;
 132  public:
 133   CMSTokenSync(bool is_cms_thread):
 134     _is_cms_thread(is_cms_thread) {
 135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 136            "Incorrect argument to constructor");
 137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 138   }
 139 
 140   ~CMSTokenSync() {
 141     assert(_is_cms_thread ?
 142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 144           "Incorrect state");
 145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 146   }
 147 };
 148 
 149 // Convenience class that does a CMSTokenSync, and then acquires
 150 // upto three locks.
 151 class CMSTokenSyncWithLocks: public CMSTokenSync {
 152  private:
 153   // Note: locks are acquired in textual declaration order
 154   // and released in the opposite order
 155   MutexLockerEx _locker1, _locker2, _locker3;
 156  public:
 157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 159     CMSTokenSync(is_cms_thread),
 160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 163   { }
 164 };
 165 
 166 
 167 // Wrapper class to temporarily disable icms during a foreground cms collection.
 168 class ICMSDisabler: public StackObj {
 169  public:
 170   // The ctor disables icms and wakes up the thread so it notices the change;
 171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 172   // CMSIncrementalMode.
 173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 175 };
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CFLS_LAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, int level,
 198      CardTableRS* ct, bool use_adaptive_freelists,
 199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 200   CardGeneration(rs, initial_byte_size, level, ct),
 201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 202   _debug_collection_type(Concurrent_collection_type),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 217                                            use_adaptive_freelists,
 218                                            dictionaryChoice);
 219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 220   if (_cmsSpace == NULL) {
 221     vm_exit_during_initialization(
 222       "CompactibleFreeListSpace allocation failure");
 223   }
 224   _cmsSpace->_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedClassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238   if (CollectedHeap::use_parallel_gc_threads()) {
 239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 240     _par_gc_thread_states =
 241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 242     if (_par_gc_thread_states == NULL) {
 243       vm_exit_during_initialization("Could not allocate par gc structs");
 244     }
 245     for (uint i = 0; i < ParallelGCThreads; i++) {
 246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 247       if (_par_gc_thread_states[i] == NULL) {
 248         vm_exit_during_initialization("Could not allocate par gc structs");
 249       }
 250     }
 251   } else {
 252     _par_gc_thread_states = NULL;
 253   }
 254   _incremental_collection_failed = false;
 255   // The "dilatation_factor" is the expansion that can occur on
 256   // account of the fact that the minimum object size in the CMS
 257   // generation may be larger than that in, say, a contiguous young
 258   //  generation.
 259   // Ideally, in the calculation below, we'd compute the dilatation
 260   // factor as: MinChunkSize/(promoting_gen's min object size)
 261   // Since we do not have such a general query interface for the
 262   // promoting generation, we'll instead just use the minimum
 263   // object size (which today is a header's worth of space);
 264   // note that all arithmetic is in units of HeapWords.
 265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 266   assert(_dilatation_factor >= 1.0, "from previous assert");
 267 }
 268 
 269 
 270 // The field "_initiating_occupancy" represents the occupancy percentage
 271 // at which we trigger a new collection cycle.  Unless explicitly specified
 272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 273 // is calculated by:
 274 //
 275 //   Let "f" be MinHeapFreeRatio in
 276 //
 277 //    _initiating_occupancy = 100-f +
 278 //                           f * (CMSTriggerRatio/100)
 279 //   where CMSTriggerRatio is the argument "tr" below.
 280 //
 281 // That is, if we assume the heap is at its desired maximum occupancy at the
 282 // end of a collection, we let CMSTriggerRatio of the (purported) free
 283 // space be allocated before initiating a new collection cycle.
 284 //
 285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 286   assert(io <= 100 && tr <= 100, "Check the arguments");
 287   if (io >= 0) {
 288     _initiating_occupancy = (double)io / 100.0;
 289   } else {
 290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 291                              (double)(tr * MinHeapFreeRatio) / 100.0)
 292                             / 100.0;
 293   }
 294 }
 295 
 296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 297   assert(collector() != NULL, "no collector");
 298   collector()->ref_processor_init();
 299 }
 300 
 301 void CMSCollector::ref_processor_init() {
 302   if (_ref_processor == NULL) {
 303     // Allocate and initialize a reference processor
 304     _ref_processor =
 305       new ReferenceProcessor(_span,                               // span
 306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 307                              (int) ParallelGCThreads,             // mt processing degree
 308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 311                              &_is_alive_closure,                  // closure for liveness info
 312                              false);                              // next field updates do not need write barrier
 313     // Initialize the _ref_processor field of CMSGen
 314     _cmsGen->set_ref_processor(_ref_processor);
 315 
 316   }
 317 }
 318 
 319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 320   GenCollectedHeap* gch = GenCollectedHeap::heap();
 321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 322     "Wrong type of heap");
 323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 324     gch->gen_policy()->size_policy();
 325   assert(sp->is_gc_cms_adaptive_size_policy(),
 326     "Wrong type of size policy");
 327   return sp;
 328 }
 329 
 330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 331   CMSGCAdaptivePolicyCounters* results =
 332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 333   assert(
 334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 335     "Wrong gc policy counter kind");
 336   return results;
 337 }
 338 
 339 
 340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 341 
 342   const char* gen_name = "old";
 343 
 344   // Generation Counters - generation 1, 1 subspace
 345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 346 
 347   _space_counters = new GSpaceCounters(gen_name, 0,
 348                                        _virtual_space.reserved_size(),
 349                                        this, _gen_counters);
 350 }
 351 
 352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 353   _cms_gen(cms_gen)
 354 {
 355   assert(alpha <= 100, "bad value");
 356   _saved_alpha = alpha;
 357 
 358   // Initialize the alphas to the bootstrap value of 100.
 359   _gc0_alpha = _cms_alpha = 100;
 360 
 361   _cms_begin_time.update();
 362   _cms_end_time.update();
 363 
 364   _gc0_duration = 0.0;
 365   _gc0_period = 0.0;
 366   _gc0_promoted = 0;
 367 
 368   _cms_duration = 0.0;
 369   _cms_period = 0.0;
 370   _cms_allocated = 0;
 371 
 372   _cms_used_at_gc0_begin = 0;
 373   _cms_used_at_gc0_end = 0;
 374   _allow_duty_cycle_reduction = false;
 375   _valid_bits = 0;
 376   _icms_duty_cycle = CMSIncrementalDutyCycle;
 377 }
 378 
 379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 380   // TBD: CR 6909490
 381   return 1.0;
 382 }
 383 
 384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 385 }
 386 
 387 // If promotion failure handling is on use
 388 // the padded average size of the promotion for each
 389 // young generation collection.
 390 double CMSStats::time_until_cms_gen_full() const {
 391   size_t cms_free = _cms_gen->cmsSpace()->free();
 392   GenCollectedHeap* gch = GenCollectedHeap::heap();
 393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 395   if (cms_free > expected_promotion) {
 396     // Start a cms collection if there isn't enough space to promote
 397     // for the next minor collection.  Use the padded average as
 398     // a safety factor.
 399     cms_free -= expected_promotion;
 400 
 401     // Adjust by the safety factor.
 402     double cms_free_dbl = (double)cms_free;
 403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 404     // Apply a further correction factor which tries to adjust
 405     // for recent occurance of concurrent mode failures.
 406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 407     cms_free_dbl = cms_free_dbl * cms_adjustment;
 408 
 409     if (PrintGCDetails && Verbose) {
 410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 412         cms_free, expected_promotion);
 413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 414         cms_free_dbl, cms_consumption_rate() + 1.0);
 415     }
 416     // Add 1 in case the consumption rate goes to zero.
 417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 418   }
 419   return 0.0;
 420 }
 421 
 422 // Compare the duration of the cms collection to the
 423 // time remaining before the cms generation is empty.
 424 // Note that the time from the start of the cms collection
 425 // to the start of the cms sweep (less than the total
 426 // duration of the cms collection) can be used.  This
 427 // has been tried and some applications experienced
 428 // promotion failures early in execution.  This was
 429 // possibly because the averages were not accurate
 430 // enough at the beginning.
 431 double CMSStats::time_until_cms_start() const {
 432   // We add "gc0_period" to the "work" calculation
 433   // below because this query is done (mostly) at the
 434   // end of a scavenge, so we need to conservatively
 435   // account for that much possible delay
 436   // in the query so as to avoid concurrent mode failures
 437   // due to starting the collection just a wee bit too
 438   // late.
 439   double work = cms_duration() + gc0_period();
 440   double deadline = time_until_cms_gen_full();
 441   // If a concurrent mode failure occurred recently, we want to be
 442   // more conservative and halve our expected time_until_cms_gen_full()
 443   if (work > deadline) {
 444     if (Verbose && PrintGCDetails) {
 445       gclog_or_tty->print(
 446         " CMSCollector: collect because of anticipated promotion "
 447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 448         gc0_period(), time_until_cms_gen_full());
 449     }
 450     return 0.0;
 451   }
 452   return work - deadline;
 453 }
 454 
 455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 456 // amount of change to prevent wild oscillation.
 457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 458                                               unsigned int new_duty_cycle) {
 459   assert(old_duty_cycle <= 100, "bad input value");
 460   assert(new_duty_cycle <= 100, "bad input value");
 461 
 462   // Note:  use subtraction with caution since it may underflow (values are
 463   // unsigned).  Addition is safe since we're in the range 0-100.
 464   unsigned int damped_duty_cycle = new_duty_cycle;
 465   if (new_duty_cycle < old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 468       damped_duty_cycle = old_duty_cycle - largest_delta;
 469     }
 470   } else if (new_duty_cycle > old_duty_cycle) {
 471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 474     }
 475   }
 476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 477 
 478   if (CMSTraceIncrementalPacing) {
 479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 481   }
 482   return damped_duty_cycle;
 483 }
 484 
 485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 486   assert(CMSIncrementalPacing && valid(),
 487          "should be handled in icms_update_duty_cycle()");
 488 
 489   double cms_time_so_far = cms_timer().seconds();
 490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 492 
 493   // Avoid division by 0.
 494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 496 
 497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 498   if (new_duty_cycle > _icms_duty_cycle) {
 499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 500     if (new_duty_cycle > 2) {
 501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 502                                                 new_duty_cycle);
 503     }
 504   } else if (_allow_duty_cycle_reduction) {
 505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 507     // Respect the minimum duty cycle.
 508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 510   }
 511 
 512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 514   }
 515 
 516   _allow_duty_cycle_reduction = false;
 517   return _icms_duty_cycle;
 518 }
 519 
 520 #ifndef PRODUCT
 521 void CMSStats::print_on(outputStream *st) const {
 522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 524                gc0_duration(), gc0_period(), gc0_promoted());
 525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 526             cms_duration(), cms_duration_per_mb(),
 527             cms_period(), cms_allocated());
 528   st->print(",cms_since_beg=%g,cms_since_end=%g",
 529             cms_time_since_begin(), cms_time_since_end());
 530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 532   if (CMSIncrementalMode) {
 533     st->print(",dc=%d", icms_duty_cycle());
 534   }
 535 
 536   if (valid()) {
 537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 538               promotion_rate(), cms_allocation_rate());
 539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 540               cms_consumption_rate(), time_until_cms_gen_full());
 541   }
 542   st->print(" ");
 543 }
 544 #endif // #ifndef PRODUCT
 545 
 546 CMSCollector::CollectorState CMSCollector::_collectorState =
 547                              CMSCollector::Idling;
 548 bool CMSCollector::_foregroundGCIsActive = false;
 549 bool CMSCollector::_foregroundGCShouldWait = false;
 550 
 551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 552                            CardTableRS*                   ct,
 553                            ConcurrentMarkSweepPolicy*     cp):
 554   _cmsGen(cmsGen),
 555   _ct(ct),
 556   _ref_processor(NULL),    // will be set later
 557   _conc_workers(NULL),     // may be set later
 558   _abort_preclean(false),
 559   _start_sampling(false),
 560   _between_prologue_and_epilogue(false),
 561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen
 567   _span(cmsGen->reserved()),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 574   _eden_chunk_array(NULL),     // may be set in ctor body
 575   _eden_chunk_capacity(0),     // -- ditto --
 576   _eden_chunk_index(0),        // -- ditto --
 577   _survivor_plab_array(NULL),  // -- ditto --
 578   _survivor_chunk_array(NULL), // -- ditto --
 579   _survivor_chunk_capacity(0), // -- ditto --
 580   _survivor_chunk_index(0),    // -- ditto --
 581   _ser_pmc_preclean_ovflw(0),
 582   _ser_kac_preclean_ovflw(0),
 583   _ser_pmc_remark_ovflw(0),
 584   _par_pmc_remark_ovflw(0),
 585   _ser_kac_ovflw(0),
 586   _par_kac_ovflw(0),
 587 #ifndef PRODUCT
 588   _num_par_pushes(0),
 589 #endif
 590   _collection_count_start(0),
 591   _verifying(false),
 592   _icms_start_limit(NULL),
 593   _icms_stop_limit(NULL),
 594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 595   _completed_initialization(false),
 596   _collector_policy(cp),
 597   _should_unload_classes(CMSClassUnloadingEnabled),
 598   _concurrent_cycles_since_last_unload(0),
 599   _roots_scanning_options(SharedHeap::SO_None),
 600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 604   _cms_start_registered(false)
 605 {
 606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 607     ExplicitGCInvokesConcurrent = true;
 608   }
 609   // Now expand the span and allocate the collection support structures
 610   // (MUT, marking bit map etc.) to cover both generations subject to
 611   // collection.
 612 
 613   // For use by dirty card to oop closures.
 614   _cmsGen->cmsSpace()->set_collector(this);
 615 
 616   // Allocate MUT and marking bit map
 617   {
 618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 619     if (!_markBitMap.allocate(_span)) {
 620       warning("Failed to allocate CMS Bit Map");
 621       return;
 622     }
 623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 624   }
 625   {
 626     _modUnionTable.allocate(_span);
 627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 628   }
 629 
 630   if (!_markStack.allocate(MarkStackSize)) {
 631     warning("Failed to allocate CMS Marking Stack");
 632     return;
 633   }
 634 
 635   // Support for multi-threaded concurrent phases
 636   if (CMSConcurrentMTEnabled) {
 637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 638       // just for now
 639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 640     }
 641     if (ConcGCThreads > 1) {
 642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 643                                  ConcGCThreads, true);
 644       if (_conc_workers == NULL) {
 645         warning("GC/CMS: _conc_workers allocation failure: "
 646               "forcing -CMSConcurrentMTEnabled");
 647         CMSConcurrentMTEnabled = false;
 648       } else {
 649         _conc_workers->initialize_workers();
 650       }
 651     } else {
 652       CMSConcurrentMTEnabled = false;
 653     }
 654   }
 655   if (!CMSConcurrentMTEnabled) {
 656     ConcGCThreads = 0;
 657   } else {
 658     // Turn off CMSCleanOnEnter optimization temporarily for
 659     // the MT case where it's not fixed yet; see 6178663.
 660     CMSCleanOnEnter = false;
 661   }
 662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 663          "Inconsistency");
 664 
 665   // Parallel task queues; these are shared for the
 666   // concurrent and stop-world phases of CMS, but
 667   // are not shared with parallel scavenge (ParNew).
 668   {
 669     uint i;
 670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 671 
 672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 673          || ParallelRefProcEnabled)
 674         && num_queues > 0) {
 675       _task_queues = new OopTaskQueueSet(num_queues);
 676       if (_task_queues == NULL) {
 677         warning("task_queues allocation failure.");
 678         return;
 679       }
 680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 681       if (_hash_seed == NULL) {
 682         warning("_hash_seed array allocation failure");
 683         return;
 684       }
 685 
 686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 687       for (i = 0; i < num_queues; i++) {
 688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 689         if (q == NULL) {
 690           warning("work_queue allocation failure.");
 691           return;
 692         }
 693         _task_queues->register_queue(i, q);
 694       }
 695       for (i = 0; i < num_queues; i++) {
 696         _task_queues->queue(i)->initialize();
 697         _hash_seed[i] = 17;  // copied from ParNew
 698       }
 699     }
 700   }
 701 
 702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 703 
 704   // Clip CMSBootstrapOccupancy between 0 and 100.
 705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 706 
 707   _full_gcs_since_conc_gc = 0;
 708 
 709   // Now tell CMS generations the identity of their collector
 710   ConcurrentMarkSweepGeneration::set_collector(this);
 711 
 712   // Create & start a CMS thread for this CMS collector
 713   _cmsThread = ConcurrentMarkSweepThread::start(this);
 714   assert(cmsThread() != NULL, "CMS Thread should have been created");
 715   assert(cmsThread()->collector() == this,
 716          "CMS Thread should refer to this gen");
 717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 718 
 719   // Support for parallelizing young gen rescan
 720   GenCollectedHeap* gch = GenCollectedHeap::heap();
 721   _young_gen = gch->prev_gen(_cmsGen);
 722   if (gch->supports_inline_contig_alloc()) {
 723     _top_addr = gch->top_addr();
 724     _end_addr = gch->end_addr();
 725     assert(_young_gen != NULL, "no _young_gen");
 726     _eden_chunk_index = 0;
 727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 729     if (_eden_chunk_array == NULL) {
 730       _eden_chunk_capacity = 0;
 731       warning("GC/CMS: _eden_chunk_array allocation failure");
 732     }
 733   }
 734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 735 
 736   // Support for parallelizing survivor space rescan
 737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 738     const size_t max_plab_samples =
 739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 740 
 741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 745         || _cursor == NULL) {
 746       warning("Failed to allocate survivor plab/chunk array");
 747       if (_survivor_plab_array  != NULL) {
 748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 749         _survivor_plab_array = NULL;
 750       }
 751       if (_survivor_chunk_array != NULL) {
 752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 753         _survivor_chunk_array = NULL;
 754       }
 755       if (_cursor != NULL) {
 756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 757         _cursor = NULL;
 758       }
 759     } else {
 760       _survivor_chunk_capacity = 2*max_plab_samples;
 761       for (uint i = 0; i < ParallelGCThreads; i++) {
 762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 763         if (vec == NULL) {
 764           warning("Failed to allocate survivor plab array");
 765           for (int j = i; j > 0; j--) {
 766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 767           }
 768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 770           _survivor_plab_array = NULL;
 771           _survivor_chunk_array = NULL;
 772           _survivor_chunk_capacity = 0;
 773           break;
 774         } else {
 775           ChunkArray* cur =
 776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 777                                                         max_plab_samples);
 778           assert(cur->end() == 0, "Should be 0");
 779           assert(cur->array() == vec, "Should be vec");
 780           assert(cur->capacity() == max_plab_samples, "Error");
 781         }
 782       }
 783     }
 784   }
 785   assert(   (   _survivor_plab_array  != NULL
 786              && _survivor_chunk_array != NULL)
 787          || (   _survivor_chunk_capacity == 0
 788              && _survivor_chunk_index == 0),
 789          "Error");
 790 
 791   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 792   _gc_counters = new CollectorCounters("CMS", 1);
 793   _completed_initialization = true;
 794   _inter_sweep_timer.start();  // start of time
 795 }
 796 
 797 const char* ConcurrentMarkSweepGeneration::name() const {
 798   return "concurrent mark-sweep generation";
 799 }
 800 void ConcurrentMarkSweepGeneration::update_counters() {
 801   if (UsePerfData) {
 802     _space_counters->update_all();
 803     _gen_counters->update_all();
 804   }
 805 }
 806 
 807 // this is an optimized version of update_counters(). it takes the
 808 // used value as a parameter rather than computing it.
 809 //
 810 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 811   if (UsePerfData) {
 812     _space_counters->update_used(used);
 813     _space_counters->update_capacity();
 814     _gen_counters->update_all();
 815   }
 816 }
 817 
 818 void ConcurrentMarkSweepGeneration::print() const {
 819   Generation::print();
 820   cmsSpace()->print();
 821 }
 822 
 823 #ifndef PRODUCT
 824 void ConcurrentMarkSweepGeneration::print_statistics() {
 825   cmsSpace()->printFLCensus(0);
 826 }
 827 #endif
 828 
 829 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 830   GenCollectedHeap* gch = GenCollectedHeap::heap();
 831   if (PrintGCDetails) {
 832     if (Verbose) {
 833       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 834         level(), short_name(), s, used(), capacity());
 835     } else {
 836       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 837         level(), short_name(), s, used() / K, capacity() / K);
 838     }
 839   }
 840   if (Verbose) {
 841     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 842               gch->used(), gch->capacity());
 843   } else {
 844     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 845               gch->used() / K, gch->capacity() / K);
 846   }
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::contiguous_available() const {
 851   // dld proposes an improvement in precision here. If the committed
 852   // part of the space ends in a free block we should add that to
 853   // uncommitted size in the calculation below. Will make this
 854   // change later, staying with the approximation below for the
 855   // time being. -- ysr.
 856   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 857 }
 858 
 859 size_t
 860 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 861   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 862 }
 863 
 864 size_t ConcurrentMarkSweepGeneration::max_available() const {
 865   return free() + _virtual_space.uncommitted_size();
 866 }
 867 
 868 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 869   size_t available = max_available();
 870   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 871   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 872   if (Verbose && PrintGCDetails) {
 873     gclog_or_tty->print_cr(
 874       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 875       "max_promo("SIZE_FORMAT")",
 876       res? "":" not", available, res? ">=":"<",
 877       av_promo, max_promotion_in_bytes);
 878   }
 879   return res;
 880 }
 881 
 882 // At a promotion failure dump information on block layout in heap
 883 // (cms old generation).
 884 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 885   if (CMSDumpAtPromotionFailure) {
 886     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 887   }
 888 }
 889 
 890 CompactibleSpace*
 891 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 892   return _cmsSpace;
 893 }
 894 
 895 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 896   // Clear the promotion information.  These pointers can be adjusted
 897   // along with all the other pointers into the heap but
 898   // compaction is expected to be a rare event with
 899   // a heap using cms so don't do it without seeing the need.
 900   if (CollectedHeap::use_parallel_gc_threads()) {
 901     for (uint i = 0; i < ParallelGCThreads; i++) {
 902       _par_gc_thread_states[i]->promo.reset();
 903     }
 904   }
 905 }
 906 
 907 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 908   blk->do_space(_cmsSpace);
 909 }
 910 
 911 void ConcurrentMarkSweepGeneration::compute_new_size() {
 912   assert_locked_or_safepoint(Heap_lock);
 913 
 914   // If incremental collection failed, we just want to expand
 915   // to the limit.
 916   if (incremental_collection_failed()) {
 917     clear_incremental_collection_failed();
 918     grow_to_reserved();
 919     return;
 920   }
 921 
 922   // The heap has been compacted but not reset yet.
 923   // Any metric such as free() or used() will be incorrect.
 924 
 925   CardGeneration::compute_new_size();
 926 
 927   // Reset again after a possible resizing
 928   if (did_compact()) {
 929     cmsSpace()->reset_after_compaction();
 930   }
 931 }
 932 
 933 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 934   assert_locked_or_safepoint(Heap_lock);
 935 
 936   // If incremental collection failed, we just want to expand
 937   // to the limit.
 938   if (incremental_collection_failed()) {
 939     clear_incremental_collection_failed();
 940     grow_to_reserved();
 941     return;
 942   }
 943 
 944   double free_percentage = ((double) free()) / capacity();
 945   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 946   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 947 
 948   // compute expansion delta needed for reaching desired free percentage
 949   if (free_percentage < desired_free_percentage) {
 950     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 951     assert(desired_capacity >= capacity(), "invalid expansion size");
 952     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 953     if (PrintGCDetails && Verbose) {
 954       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 955       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 956       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 957       gclog_or_tty->print_cr("  Desired free fraction %f",
 958         desired_free_percentage);
 959       gclog_or_tty->print_cr("  Maximum free fraction %f",
 960         maximum_free_percentage);
 961       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 962       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 963         desired_capacity/1000);
 964       int prev_level = level() - 1;
 965       if (prev_level >= 0) {
 966         size_t prev_size = 0;
 967         GenCollectedHeap* gch = GenCollectedHeap::heap();
 968         Generation* prev_gen = gch->_gens[prev_level];
 969         prev_size = prev_gen->capacity();
 970           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 971                                  prev_size/1000);
 972       }
 973       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 974         unsafe_max_alloc_nogc()/1000);
 975       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 976         contiguous_available()/1000);
 977       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 978         expand_bytes);
 979     }
 980     // safe if expansion fails
 981     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 982     if (PrintGCDetails && Verbose) {
 983       gclog_or_tty->print_cr("  Expanded free fraction %f",
 984         ((double) free()) / capacity());
 985     }
 986   } else {
 987     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 988     assert(desired_capacity <= capacity(), "invalid expansion size");
 989     size_t shrink_bytes = capacity() - desired_capacity;
 990     // Don't shrink unless the delta is greater than the minimum shrink we want
 991     if (shrink_bytes >= MinHeapDeltaBytes) {
 992       shrink_free_list_by(shrink_bytes);
 993     }
 994   }
 995 }
 996 
 997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 998   return cmsSpace()->freelistLock();
 999 }
1000 
1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1002                                                   bool   tlab) {
1003   CMSSynchronousYieldRequest yr;
1004   MutexLockerEx x(freelistLock(),
1005                   Mutex::_no_safepoint_check_flag);
1006   return have_lock_and_allocate(size, tlab);
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1010                                                   bool   tlab /* ignored */) {
1011   assert_lock_strong(freelistLock());
1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1014   // Allocate the object live (grey) if the background collector has
1015   // started marking. This is necessary because the marker may
1016   // have passed this address and consequently this object will
1017   // not otherwise be greyed and would be incorrectly swept up.
1018   // Note that if this object contains references, the writing
1019   // of those references will dirty the card containing this object
1020   // allowing the object to be blackened (and its references scanned)
1021   // either during a preclean phase or at the final checkpoint.
1022   if (res != NULL) {
1023     // We may block here with an uninitialized object with
1024     // its mark-bit or P-bits not yet set. Such objects need
1025     // to be safely navigable by block_start().
1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1027     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1028     collector()->direct_allocated(res, adjustedSize);
1029     _direct_allocated_words += adjustedSize;
1030     // allocation counters
1031     NOT_PRODUCT(
1032       _numObjectsAllocated++;
1033       _numWordsAllocated += (int)adjustedSize;
1034     )
1035   }
1036   return res;
1037 }
1038 
1039 // In the case of direct allocation by mutators in a generation that
1040 // is being concurrently collected, the object must be allocated
1041 // live (grey) if the background collector has started marking.
1042 // This is necessary because the marker may
1043 // have passed this address and consequently this object will
1044 // not otherwise be greyed and would be incorrectly swept up.
1045 // Note that if this object contains references, the writing
1046 // of those references will dirty the card containing this object
1047 // allowing the object to be blackened (and its references scanned)
1048 // either during a preclean phase or at the final checkpoint.
1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1050   assert(_markBitMap.covers(start, size), "Out of bounds");
1051   if (_collectorState >= Marking) {
1052     MutexLockerEx y(_markBitMap.lock(),
1053                     Mutex::_no_safepoint_check_flag);
1054     // [see comments preceding SweepClosure::do_blk() below for details]
1055     //
1056     // Can the P-bits be deleted now?  JJJ
1057     //
1058     // 1. need to mark the object as live so it isn't collected
1059     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1060     // 3. need to mark the end of the object so marking, precleaning or sweeping
1061     //    can skip over uninitialized or unparsable objects. An allocated
1062     //    object is considered uninitialized for our purposes as long as
1063     //    its klass word is NULL.  All old gen objects are parsable
1064     //    as soon as they are initialized.)
1065     _markBitMap.mark(start);          // object is live
1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1067     _markBitMap.mark(start + size - 1);
1068                                       // mark end of object
1069   }
1070   // check that oop looks uninitialized
1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1072 }
1073 
1074 void CMSCollector::promoted(bool par, HeapWord* start,
1075                             bool is_obj_array, size_t obj_size) {
1076   assert(_markBitMap.covers(start), "Out of bounds");
1077   // See comment in direct_allocated() about when objects should
1078   // be allocated live.
1079   if (_collectorState >= Marking) {
1080     // we already hold the marking bit map lock, taken in
1081     // the prologue
1082     if (par) {
1083       _markBitMap.par_mark(start);
1084     } else {
1085       _markBitMap.mark(start);
1086     }
1087     // We don't need to mark the object as uninitialized (as
1088     // in direct_allocated above) because this is being done with the
1089     // world stopped and the object will be initialized by the
1090     // time the marking, precleaning or sweeping get to look at it.
1091     // But see the code for copying objects into the CMS generation,
1092     // where we need to ensure that concurrent readers of the
1093     // block offset table are able to safely navigate a block that
1094     // is in flux from being free to being allocated (and in
1095     // transition while being copied into) and subsequently
1096     // becoming a bona-fide object when the copy/promotion is complete.
1097     assert(SafepointSynchronize::is_at_safepoint(),
1098            "expect promotion only at safepoints");
1099 
1100     if (_collectorState < Sweeping) {
1101       // Mark the appropriate cards in the modUnionTable, so that
1102       // this object gets scanned before the sweep. If this is
1103       // not done, CMS generation references in the object might
1104       // not get marked.
1105       // For the case of arrays, which are otherwise precisely
1106       // marked, we need to dirty the entire array, not just its head.
1107       if (is_obj_array) {
1108         // The [par_]mark_range() method expects mr.end() below to
1109         // be aligned to the granularity of a bit's representation
1110         // in the heap. In the case of the MUT below, that's a
1111         // card size.
1112         MemRegion mr(start,
1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1114                         CardTableModRefBS::card_size /* bytes */));
1115         if (par) {
1116           _modUnionTable.par_mark_range(mr);
1117         } else {
1118           _modUnionTable.mark_range(mr);
1119         }
1120       } else {  // not an obj array; we can just mark the head
1121         if (par) {
1122           _modUnionTable.par_mark(start);
1123         } else {
1124           _modUnionTable.mark(start);
1125         }
1126       }
1127     }
1128   }
1129 }
1130 
1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1132 {
1133   size_t delta = pointer_delta(addr, space->bottom());
1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1135 }
1136 
1137 void CMSCollector::icms_update_allocation_limits()
1138 {
1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1141 
1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1143   if (CMSTraceIncrementalPacing) {
1144     stats().print();
1145   }
1146 
1147   assert(duty_cycle <= 100, "invalid duty cycle");
1148   if (duty_cycle != 0) {
1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
1150     // then compute the offset from the endpoints of the space.
1151     size_t free_words = eden->free() / HeapWordSize;
1152     double free_words_dbl = (double)free_words;
1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
1155 
1156     _icms_start_limit = eden->top() + offset_words;
1157     _icms_stop_limit = eden->end() - offset_words;
1158 
1159     // The limits may be adjusted (shifted to the right) by
1160     // CMSIncrementalOffset, to allow the application more mutator time after a
1161     // young gen gc (when all mutators were stopped) and before CMS starts and
1162     // takes away one or more cpus.
1163     if (CMSIncrementalOffset != 0) {
1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1165       size_t adjustment = (size_t)adjustment_dbl;
1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1168         _icms_start_limit += adjustment;
1169         _icms_stop_limit = tmp_stop;
1170       }
1171     }
1172   }
1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1174     _icms_start_limit = _icms_stop_limit = eden->end();
1175   }
1176 
1177   // Install the new start limit.
1178   eden->set_soft_end(_icms_start_limit);
1179 
1180   if (CMSTraceIncrementalMode) {
1181     gclog_or_tty->print(" icms alloc limits:  "
1182                            PTR_FORMAT "," PTR_FORMAT
1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1184                            _icms_start_limit, _icms_stop_limit,
1185                            percent_of_space(eden, _icms_start_limit),
1186                            percent_of_space(eden, _icms_stop_limit));
1187     if (Verbose) {
1188       gclog_or_tty->print("eden:  ");
1189       eden->print_on(gclog_or_tty);
1190     }
1191   }
1192 }
1193 
1194 // Any changes here should try to maintain the invariant
1195 // that if this method is called with _icms_start_limit
1196 // and _icms_stop_limit both NULL, then it should return NULL
1197 // and not notify the icms thread.
1198 HeapWord*
1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1200                                        size_t word_size)
1201 {
1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1203   // nop.
1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1205     if (top <= _icms_start_limit) {
1206       if (CMSTraceIncrementalMode) {
1207         space->print_on(gclog_or_tty);
1208         gclog_or_tty->stamp();
1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1210                                ", new limit=" PTR_FORMAT
1211                                " (" SIZE_FORMAT "%%)",
1212                                top, _icms_stop_limit,
1213                                percent_of_space(space, _icms_stop_limit));
1214       }
1215       ConcurrentMarkSweepThread::start_icms();
1216       assert(top < _icms_stop_limit, "Tautology");
1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1218         return _icms_stop_limit;
1219       }
1220 
1221       // The allocation will cross both the _start and _stop limits, so do the
1222       // stop notification also and return end().
1223       if (CMSTraceIncrementalMode) {
1224         space->print_on(gclog_or_tty);
1225         gclog_or_tty->stamp();
1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1227                                ", new limit=" PTR_FORMAT
1228                                " (" SIZE_FORMAT "%%)",
1229                                top, space->end(),
1230                                percent_of_space(space, space->end()));
1231       }
1232       ConcurrentMarkSweepThread::stop_icms();
1233       return space->end();
1234     }
1235 
1236     if (top <= _icms_stop_limit) {
1237       if (CMSTraceIncrementalMode) {
1238         space->print_on(gclog_or_tty);
1239         gclog_or_tty->stamp();
1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1241                                ", new limit=" PTR_FORMAT
1242                                " (" SIZE_FORMAT "%%)",
1243                                top, space->end(),
1244                                percent_of_space(space, space->end()));
1245       }
1246       ConcurrentMarkSweepThread::stop_icms();
1247       return space->end();
1248     }
1249 
1250     if (CMSTraceIncrementalMode) {
1251       space->print_on(gclog_or_tty);
1252       gclog_or_tty->stamp();
1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1254                              ", new limit=" PTR_FORMAT,
1255                              top, NULL);
1256     }
1257   }
1258 
1259   return NULL;
1260 }
1261 
1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   // allocate, copy and if necessary update promoinfo --
1265   // delegate to underlying space.
1266   assert_lock_strong(freelistLock());
1267 
1268 #ifndef PRODUCT
1269   if (Universe::heap()->promotion_should_fail()) {
1270     return NULL;
1271   }
1272 #endif  // #ifndef PRODUCT
1273 
1274   oop res = _cmsSpace->promote(obj, obj_size);
1275   if (res == NULL) {
1276     // expand and retry
1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
1279       CMSExpansionCause::_satisfy_promotion);
1280     // Since there's currently no next generation, we don't try to promote
1281     // into a more senior generation.
1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1283                                "is made to pass on a possibly failing "
1284                                "promotion to next generation");
1285     res = _cmsSpace->promote(obj, obj_size);
1286   }
1287   if (res != NULL) {
1288     // See comment in allocate() about when objects should
1289     // be allocated live.
1290     assert(obj->is_oop(), "Will dereference klass pointer below");
1291     collector()->promoted(false,           // Not parallel
1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
1293     // promotion counters
1294     NOT_PRODUCT(
1295       _numObjectsPromoted++;
1296       _numWordsPromoted +=
1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1298     )
1299   }
1300   return res;
1301 }
1302 
1303 
1304 HeapWord*
1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1306                                              HeapWord* top,
1307                                              size_t word_sz)
1308 {
1309   return collector()->allocation_limit_reached(space, top, word_sz);
1310 }
1311 
1312 // IMPORTANT: Notes on object size recognition in CMS.
1313 // ---------------------------------------------------
1314 // A block of storage in the CMS generation is always in
1315 // one of three states. A free block (FREE), an allocated
1316 // object (OBJECT) whose size() method reports the correct size,
1317 // and an intermediate state (TRANSIENT) in which its size cannot
1318 // be accurately determined.
1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1320 // -----------------------------------------------------
1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
1322 //
1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1324 //            obj->size() computes correct size
1325 //
1326 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1327 //
1328 // STATE IDENTIFICATION: (64 bit+COOPS)
1329 // ------------------------------------
1330 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1331 //
1332 // OBJECT:    klass_word installed; klass_word != 0;
1333 //            obj->size() computes correct size
1334 //
1335 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1336 //
1337 //
1338 // STATE TRANSITION DIAGRAM
1339 //
1340 //        mut / parnew                     mut  /  parnew
1341 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1342 //  ^                                                                   |
1343 //  |------------------------ DEAD <------------------------------------|
1344 //         sweep                            mut
1345 //
1346 // While a block is in TRANSIENT state its size cannot be determined
1347 // so readers will either need to come back later or stall until
1348 // the size can be determined. Note that for the case of direct
1349 // allocation, P-bits, when available, may be used to determine the
1350 // size of an object that may not yet have been initialized.
1351 
1352 // Things to support parallel young-gen collection.
1353 oop
1354 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1355                                            oop old, markOop m,
1356                                            size_t word_sz) {
1357 #ifndef PRODUCT
1358   if (Universe::heap()->promotion_should_fail()) {
1359     return NULL;
1360   }
1361 #endif  // #ifndef PRODUCT
1362 
1363   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1364   PromotionInfo* promoInfo = &ps->promo;
1365   // if we are tracking promotions, then first ensure space for
1366   // promotion (including spooling space for saving header if necessary).
1367   // then allocate and copy, then track promoted info if needed.
1368   // When tracking (see PromotionInfo::track()), the mark word may
1369   // be displaced and in this case restoration of the mark word
1370   // occurs in the (oop_since_save_marks_)iterate phase.
1371   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1372     // Out of space for allocating spooling buffers;
1373     // try expanding and allocating spooling buffers.
1374     if (!expand_and_ensure_spooling_space(promoInfo)) {
1375       return NULL;
1376     }
1377   }
1378   assert(promoInfo->has_spooling_space(), "Control point invariant");
1379   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1380   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1381   if (obj_ptr == NULL) {
1382      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1383      if (obj_ptr == NULL) {
1384        return NULL;
1385      }
1386   }
1387   oop obj = oop(obj_ptr);
1388   OrderAccess::storestore();
1389   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1390   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1391   // IMPORTANT: See note on object initialization for CMS above.
1392   // Otherwise, copy the object.  Here we must be careful to insert the
1393   // klass pointer last, since this marks the block as an allocated object.
1394   // Except with compressed oops it's the mark word.
1395   HeapWord* old_ptr = (HeapWord*)old;
1396   // Restore the mark word copied above.
1397   obj->set_mark(m);
1398   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1399   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1400   OrderAccess::storestore();
1401 
1402   if (UseCompressedClassPointers) {
1403     // Copy gap missed by (aligned) header size calculation below
1404     obj->set_klass_gap(old->klass_gap());
1405   }
1406   if (word_sz > (size_t)oopDesc::header_size()) {
1407     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1408                                  obj_ptr + oopDesc::header_size(),
1409                                  word_sz - oopDesc::header_size());
1410   }
1411 
1412   // Now we can track the promoted object, if necessary.  We take care
1413   // to delay the transition from uninitialized to full object
1414   // (i.e., insertion of klass pointer) until after, so that it
1415   // atomically becomes a promoted object.
1416   if (promoInfo->tracking()) {
1417     promoInfo->track((PromotedObject*)obj, old->klass());
1418   }
1419   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1420   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1421   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1422 
1423   // Finally, install the klass pointer (this should be volatile).
1424   OrderAccess::storestore();
1425   obj->set_klass(old->klass());
1426   // We should now be able to calculate the right size for this object
1427   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1428 
1429   collector()->promoted(true,          // parallel
1430                         obj_ptr, old->is_objArray(), word_sz);
1431 
1432   NOT_PRODUCT(
1433     Atomic::inc_ptr(&_numObjectsPromoted);
1434     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1435   )
1436 
1437   return obj;
1438 }
1439 
1440 void
1441 ConcurrentMarkSweepGeneration::
1442 par_promote_alloc_undo(int thread_num,
1443                        HeapWord* obj, size_t word_sz) {
1444   // CMS does not support promotion undo.
1445   ShouldNotReachHere();
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_done(int thread_num) {
1451   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1452   ps->lab.retire(thread_num);
1453 }
1454 
1455 void
1456 ConcurrentMarkSweepGeneration::
1457 par_oop_since_save_marks_iterate_done(int thread_num) {
1458   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1459   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1460   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1461 }
1462 
1463 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1464                                                    size_t size,
1465                                                    bool   tlab)
1466 {
1467   // We allow a STW collection only if a full
1468   // collection was requested.
1469   return full || should_allocate(size, tlab); // FIX ME !!!
1470   // This and promotion failure handling are connected at the
1471   // hip and should be fixed by untying them.
1472 }
1473 
1474 bool CMSCollector::shouldConcurrentCollect() {
1475   if (_full_gc_requested) {
1476     if (Verbose && PrintGCDetails) {
1477       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1478                              " gc request (or gc_locker)");
1479     }
1480     return true;
1481   }
1482 
1483   // For debugging purposes, change the type of collection.
1484   // If the rotation is not on the concurrent collection
1485   // type, don't start a concurrent collection.
1486   NOT_PRODUCT(
1487     if (RotateCMSCollectionTypes &&
1488         (_cmsGen->debug_collection_type() !=
1489           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1490       assert(_cmsGen->debug_collection_type() !=
1491         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1492         "Bad cms collection type");
1493       return false;
1494     }
1495   )
1496 
1497   FreelistLocker x(this);
1498   // ------------------------------------------------------------------
1499   // Print out lots of information which affects the initiation of
1500   // a collection.
1501   if (PrintCMSInitiationStatistics && stats().valid()) {
1502     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1503     gclog_or_tty->stamp();
1504     gclog_or_tty->print_cr("");
1505     stats().print_on(gclog_or_tty);
1506     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1507       stats().time_until_cms_gen_full());
1508     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1509     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1510                            _cmsGen->contiguous_available());
1511     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1512     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1513     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1514     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1515     gclog_or_tty->print_cr("metadata initialized %d",
1516       MetaspaceGC::should_concurrent_collect());
1517   }
1518   // ------------------------------------------------------------------
1519 
1520   // If the estimated time to complete a cms collection (cms_duration())
1521   // is less than the estimated time remaining until the cms generation
1522   // is full, start a collection.
1523   if (!UseCMSInitiatingOccupancyOnly) {
1524     if (stats().valid()) {
1525       if (stats().time_until_cms_start() == 0.0) {
1526         return true;
1527       }
1528     } else {
1529       // We want to conservatively collect somewhat early in order
1530       // to try and "bootstrap" our CMS/promotion statistics;
1531       // this branch will not fire after the first successful CMS
1532       // collection because the stats should then be valid.
1533       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1534         if (Verbose && PrintGCDetails) {
1535           gclog_or_tty->print_cr(
1536             " CMSCollector: collect for bootstrapping statistics:"
1537             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1538             _bootstrap_occupancy);
1539         }
1540         return true;
1541       }
1542     }
1543   }
1544 
1545   // Otherwise, we start a collection cycle if
1546   // old gen want a collection cycle started. Each may use
1547   // an appropriate criterion for making this decision.
1548   // XXX We need to make sure that the gen expansion
1549   // criterion dovetails well with this. XXX NEED TO FIX THIS
1550   if (_cmsGen->should_concurrent_collect()) {
1551     if (Verbose && PrintGCDetails) {
1552       gclog_or_tty->print_cr("CMS old gen initiated");
1553     }
1554     return true;
1555   }
1556 
1557   // We start a collection if we believe an incremental collection may fail;
1558   // this is not likely to be productive in practice because it's probably too
1559   // late anyway.
1560   GenCollectedHeap* gch = GenCollectedHeap::heap();
1561   assert(gch->collector_policy()->is_two_generation_policy(),
1562          "You may want to check the correctness of the following");
1563   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1564     if (Verbose && PrintGCDetails) {
1565       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1566     }
1567     return true;
1568   }
1569 
1570   if (MetaspaceGC::should_concurrent_collect()) {
1571       if (Verbose && PrintGCDetails) {
1572       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1573       }
1574       return true;
1575     }
1576 
1577   return false;
1578 }
1579 
1580 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1581 
1582 // Clear _expansion_cause fields of constituent generations
1583 void CMSCollector::clear_expansion_cause() {
1584   _cmsGen->clear_expansion_cause();
1585 }
1586 
1587 // We should be conservative in starting a collection cycle.  To
1588 // start too eagerly runs the risk of collecting too often in the
1589 // extreme.  To collect too rarely falls back on full collections,
1590 // which works, even if not optimum in terms of concurrent work.
1591 // As a work around for too eagerly collecting, use the flag
1592 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1593 // giving the user an easily understandable way of controlling the
1594 // collections.
1595 // We want to start a new collection cycle if any of the following
1596 // conditions hold:
1597 // . our current occupancy exceeds the configured initiating occupancy
1598 //   for this generation, or
1599 // . we recently needed to expand this space and have not, since that
1600 //   expansion, done a collection of this generation, or
1601 // . the underlying space believes that it may be a good idea to initiate
1602 //   a concurrent collection (this may be based on criteria such as the
1603 //   following: the space uses linear allocation and linear allocation is
1604 //   going to fail, or there is believed to be excessive fragmentation in
1605 //   the generation, etc... or ...
1606 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1607 //   the case of the old generation; see CR 6543076):
1608 //   we may be approaching a point at which allocation requests may fail because
1609 //   we will be out of sufficient free space given allocation rate estimates.]
1610 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1611 
1612   assert_lock_strong(freelistLock());
1613   if (occupancy() > initiating_occupancy()) {
1614     if (PrintGCDetails && Verbose) {
1615       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1616         short_name(), occupancy(), initiating_occupancy());
1617     }
1618     return true;
1619   }
1620   if (UseCMSInitiatingOccupancyOnly) {
1621     return false;
1622   }
1623   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1624     if (PrintGCDetails && Verbose) {
1625       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1626         short_name());
1627     }
1628     return true;
1629   }
1630   if (_cmsSpace->should_concurrent_collect()) {
1631     if (PrintGCDetails && Verbose) {
1632       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1633         short_name());
1634     }
1635     return true;
1636   }
1637   return false;
1638 }
1639 
1640 void ConcurrentMarkSweepGeneration::collect(bool   full,
1641                                             bool   clear_all_soft_refs,
1642                                             size_t size,
1643                                             bool   tlab)
1644 {
1645   collector()->collect(full, clear_all_soft_refs, size, tlab);
1646 }
1647 
1648 void CMSCollector::collect(bool   full,
1649                            bool   clear_all_soft_refs,
1650                            size_t size,
1651                            bool   tlab)
1652 {
1653   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1654     // For debugging purposes skip the collection if the state
1655     // is not currently idle
1656     if (TraceCMSState) {
1657       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1658         Thread::current(), full, _collectorState);
1659     }
1660     return;
1661   }
1662 
1663   // The following "if" branch is present for defensive reasons.
1664   // In the current uses of this interface, it can be replaced with:
1665   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1666   // But I am not placing that assert here to allow future
1667   // generality in invoking this interface.
1668   if (GC_locker::is_active()) {
1669     // A consistency test for GC_locker
1670     assert(GC_locker::needs_gc(), "Should have been set already");
1671     // Skip this foreground collection, instead
1672     // expanding the heap if necessary.
1673     // Need the free list locks for the call to free() in compute_new_size()
1674     compute_new_size();
1675     return;
1676   }
1677   acquire_control_and_collect(full, clear_all_soft_refs);
1678   _full_gcs_since_conc_gc++;
1679 }
1680 
1681 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1682   GenCollectedHeap* gch = GenCollectedHeap::heap();
1683   unsigned int gc_count = gch->total_full_collections();
1684   if (gc_count == full_gc_count) {
1685     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1686     _full_gc_requested = true;
1687     _full_gc_cause = cause;
1688     CGC_lock->notify();   // nudge CMS thread
1689   } else {
1690     assert(gc_count > full_gc_count, "Error: causal loop");
1691   }
1692 }
1693 
1694 bool CMSCollector::is_external_interruption() {
1695   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1696   return GCCause::is_user_requested_gc(cause) ||
1697          GCCause::is_serviceability_requested_gc(cause);
1698 }
1699 
1700 void CMSCollector::report_concurrent_mode_interruption() {
1701   if (is_external_interruption()) {
1702     if (PrintGCDetails) {
1703       gclog_or_tty->print(" (concurrent mode interrupted)");
1704     }
1705   } else {
1706     if (PrintGCDetails) {
1707       gclog_or_tty->print(" (concurrent mode failure)");
1708     }
1709     _gc_tracer_cm->report_concurrent_mode_failure();
1710   }
1711 }
1712 
1713 
1714 // The foreground and background collectors need to coordinate in order
1715 // to make sure that they do not mutually interfere with CMS collections.
1716 // When a background collection is active,
1717 // the foreground collector may need to take over (preempt) and
1718 // synchronously complete an ongoing collection. Depending on the
1719 // frequency of the background collections and the heap usage
1720 // of the application, this preemption can be seldom or frequent.
1721 // There are only certain
1722 // points in the background collection that the "collection-baton"
1723 // can be passed to the foreground collector.
1724 //
1725 // The foreground collector will wait for the baton before
1726 // starting any part of the collection.  The foreground collector
1727 // will only wait at one location.
1728 //
1729 // The background collector will yield the baton before starting a new
1730 // phase of the collection (e.g., before initial marking, marking from roots,
1731 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1732 // of the loop which switches the phases. The background collector does some
1733 // of the phases (initial mark, final re-mark) with the world stopped.
1734 // Because of locking involved in stopping the world,
1735 // the foreground collector should not block waiting for the background
1736 // collector when it is doing a stop-the-world phase.  The background
1737 // collector will yield the baton at an additional point just before
1738 // it enters a stop-the-world phase.  Once the world is stopped, the
1739 // background collector checks the phase of the collection.  If the
1740 // phase has not changed, it proceeds with the collection.  If the
1741 // phase has changed, it skips that phase of the collection.  See
1742 // the comments on the use of the Heap_lock in collect_in_background().
1743 //
1744 // Variable used in baton passing.
1745 //   _foregroundGCIsActive - Set to true by the foreground collector when
1746 //      it wants the baton.  The foreground clears it when it has finished
1747 //      the collection.
1748 //   _foregroundGCShouldWait - Set to true by the background collector
1749 //        when it is running.  The foreground collector waits while
1750 //      _foregroundGCShouldWait is true.
1751 //  CGC_lock - monitor used to protect access to the above variables
1752 //      and to notify the foreground and background collectors.
1753 //  _collectorState - current state of the CMS collection.
1754 //
1755 // The foreground collector
1756 //   acquires the CGC_lock
1757 //   sets _foregroundGCIsActive
1758 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1759 //     various locks acquired in preparation for the collection
1760 //     are released so as not to block the background collector
1761 //     that is in the midst of a collection
1762 //   proceeds with the collection
1763 //   clears _foregroundGCIsActive
1764 //   returns
1765 //
1766 // The background collector in a loop iterating on the phases of the
1767 //      collection
1768 //   acquires the CGC_lock
1769 //   sets _foregroundGCShouldWait
1770 //   if _foregroundGCIsActive is set
1771 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1772 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1773 //     and exits the loop.
1774 //   otherwise
1775 //     proceed with that phase of the collection
1776 //     if the phase is a stop-the-world phase,
1777 //       yield the baton once more just before enqueueing
1778 //       the stop-world CMS operation (executed by the VM thread).
1779 //   returns after all phases of the collection are done
1780 //
1781 
1782 void CMSCollector::acquire_control_and_collect(bool full,
1783         bool clear_all_soft_refs) {
1784   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1785   assert(!Thread::current()->is_ConcurrentGC_thread(),
1786          "shouldn't try to acquire control from self!");
1787 
1788   // Start the protocol for acquiring control of the
1789   // collection from the background collector (aka CMS thread).
1790   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1791          "VM thread should have CMS token");
1792   // Remember the possibly interrupted state of an ongoing
1793   // concurrent collection
1794   CollectorState first_state = _collectorState;
1795 
1796   // Signal to a possibly ongoing concurrent collection that
1797   // we want to do a foreground collection.
1798   _foregroundGCIsActive = true;
1799 
1800   // Disable incremental mode during a foreground collection.
1801   ICMSDisabler icms_disabler;
1802 
1803   // release locks and wait for a notify from the background collector
1804   // releasing the locks in only necessary for phases which
1805   // do yields to improve the granularity of the collection.
1806   assert_lock_strong(bitMapLock());
1807   // We need to lock the Free list lock for the space that we are
1808   // currently collecting.
1809   assert(haveFreelistLocks(), "Must be holding free list locks");
1810   bitMapLock()->unlock();
1811   releaseFreelistLocks();
1812   {
1813     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1814     if (_foregroundGCShouldWait) {
1815       // We are going to be waiting for action for the CMS thread;
1816       // it had better not be gone (for instance at shutdown)!
1817       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1818              "CMS thread must be running");
1819       // Wait here until the background collector gives us the go-ahead
1820       ConcurrentMarkSweepThread::clear_CMS_flag(
1821         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1822       // Get a possibly blocked CMS thread going:
1823       //   Note that we set _foregroundGCIsActive true above,
1824       //   without protection of the CGC_lock.
1825       CGC_lock->notify();
1826       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1827              "Possible deadlock");
1828       while (_foregroundGCShouldWait) {
1829         // wait for notification
1830         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1831         // Possibility of delay/starvation here, since CMS token does
1832         // not know to give priority to VM thread? Actually, i think
1833         // there wouldn't be any delay/starvation, but the proof of
1834         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1835       }
1836       ConcurrentMarkSweepThread::set_CMS_flag(
1837         ConcurrentMarkSweepThread::CMS_vm_has_token);
1838     }
1839   }
1840   // The CMS_token is already held.  Get back the other locks.
1841   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1842          "VM thread should have CMS token");
1843   getFreelistLocks();
1844   bitMapLock()->lock_without_safepoint_check();
1845   if (TraceCMSState) {
1846     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1847       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1848     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1849   }
1850 
1851   // Check if we need to do a compaction, or if not, whether
1852   // we need to start the mark-sweep from scratch.
1853   bool should_compact    = false;
1854   bool should_start_over = false;
1855   decide_foreground_collection_type(clear_all_soft_refs,
1856     &should_compact, &should_start_over);
1857 
1858 NOT_PRODUCT(
1859   if (RotateCMSCollectionTypes) {
1860     if (_cmsGen->debug_collection_type() ==
1861         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1862       should_compact = true;
1863     } else if (_cmsGen->debug_collection_type() ==
1864                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1865       should_compact = false;
1866     }
1867   }
1868 )
1869 
1870   if (first_state > Idling) {
1871     report_concurrent_mode_interruption();
1872   }
1873 
1874   set_did_compact(should_compact);
1875   if (should_compact) {
1876     // If the collection is being acquired from the background
1877     // collector, there may be references on the discovered
1878     // references lists that have NULL referents (being those
1879     // that were concurrently cleared by a mutator) or
1880     // that are no longer active (having been enqueued concurrently
1881     // by the mutator).
1882     // Scrub the list of those references because Mark-Sweep-Compact
1883     // code assumes referents are not NULL and that all discovered
1884     // Reference objects are active.
1885     ref_processor()->clean_up_discovered_references();
1886 
1887     if (first_state > Idling) {
1888       save_heap_summary();
1889     }
1890 
1891     do_compaction_work(clear_all_soft_refs);
1892 
1893     // Has the GC time limit been exceeded?
1894     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1895     size_t max_eden_size = young_gen->max_capacity() -
1896                            young_gen->to()->capacity() -
1897                            young_gen->from()->capacity();
1898     GenCollectedHeap* gch = GenCollectedHeap::heap();
1899     GCCause::Cause gc_cause = gch->gc_cause();
1900     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1901                                            young_gen->eden()->used(),
1902                                            _cmsGen->max_capacity(),
1903                                            max_eden_size,
1904                                            full,
1905                                            gc_cause,
1906                                            gch->collector_policy());
1907   } else {
1908     do_mark_sweep_work(clear_all_soft_refs, first_state,
1909       should_start_over);
1910   }
1911   // Reset the expansion cause, now that we just completed
1912   // a collection cycle.
1913   clear_expansion_cause();
1914   _foregroundGCIsActive = false;
1915   return;
1916 }
1917 
1918 // Resize the tenured generation
1919 // after obtaining the free list locks for the
1920 // two generations.
1921 void CMSCollector::compute_new_size() {
1922   assert_locked_or_safepoint(Heap_lock);
1923   FreelistLocker z(this);
1924   MetaspaceGC::compute_new_size();
1925   _cmsGen->compute_new_size_free_list();
1926 }
1927 
1928 // A work method used by foreground collection to determine
1929 // what type of collection (compacting or not, continuing or fresh)
1930 // it should do.
1931 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1932 // and CMSCompactWhenClearAllSoftRefs the default in the future
1933 // and do away with the flags after a suitable period.
1934 void CMSCollector::decide_foreground_collection_type(
1935   bool clear_all_soft_refs, bool* should_compact,
1936   bool* should_start_over) {
1937   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1938   // flag is set, and we have either requested a System.gc() or
1939   // the number of full gc's since the last concurrent cycle
1940   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1941   // or if an incremental collection has failed
1942   GenCollectedHeap* gch = GenCollectedHeap::heap();
1943   assert(gch->collector_policy()->is_two_generation_policy(),
1944          "You may want to check the correctness of the following");
1945   // Inform cms gen if this was due to partial collection failing.
1946   // The CMS gen may use this fact to determine its expansion policy.
1947   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1948     assert(!_cmsGen->incremental_collection_failed(),
1949            "Should have been noticed, reacted to and cleared");
1950     _cmsGen->set_incremental_collection_failed();
1951   }
1952   *should_compact =
1953     UseCMSCompactAtFullCollection &&
1954     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1955      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1956      gch->incremental_collection_will_fail(true /* consult_young */));
1957   *should_start_over = false;
1958   if (clear_all_soft_refs && !*should_compact) {
1959     // We are about to do a last ditch collection attempt
1960     // so it would normally make sense to do a compaction
1961     // to reclaim as much space as possible.
1962     if (CMSCompactWhenClearAllSoftRefs) {
1963       // Default: The rationale is that in this case either
1964       // we are past the final marking phase, in which case
1965       // we'd have to start over, or so little has been done
1966       // that there's little point in saving that work. Compaction
1967       // appears to be the sensible choice in either case.
1968       *should_compact = true;
1969     } else {
1970       // We have been asked to clear all soft refs, but not to
1971       // compact. Make sure that we aren't past the final checkpoint
1972       // phase, for that is where we process soft refs. If we are already
1973       // past that phase, we'll need to redo the refs discovery phase and
1974       // if necessary clear soft refs that weren't previously
1975       // cleared. We do so by remembering the phase in which
1976       // we came in, and if we are past the refs processing
1977       // phase, we'll choose to just redo the mark-sweep
1978       // collection from scratch.
1979       if (_collectorState > FinalMarking) {
1980         // We are past the refs processing phase;
1981         // start over and do a fresh synchronous CMS cycle
1982         _collectorState = Resetting; // skip to reset to start new cycle
1983         reset(false /* == !asynch */);
1984         *should_start_over = true;
1985       } // else we can continue a possibly ongoing current cycle
1986     }
1987   }
1988 }
1989 
1990 // A work method used by the foreground collector to do
1991 // a mark-sweep-compact.
1992 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1993   GenCollectedHeap* gch = GenCollectedHeap::heap();
1994 
1995   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1996   gc_timer->register_gc_start();
1997 
1998   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1999   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2000 
2001   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2002   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2003     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2004       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2005   }
2006 
2007   // Sample collection interval time and reset for collection pause.
2008   if (UseAdaptiveSizePolicy) {
2009     size_policy()->msc_collection_begin();
2010   }
2011 
2012   // Temporarily widen the span of the weak reference processing to
2013   // the entire heap.
2014   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2015   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2016   // Temporarily, clear the "is_alive_non_header" field of the
2017   // reference processor.
2018   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2019   // Temporarily make reference _processing_ single threaded (non-MT).
2020   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2021   // Temporarily make refs discovery atomic
2022   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2023   // Temporarily make reference _discovery_ single threaded (non-MT)
2024   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2025 
2026   ref_processor()->set_enqueuing_is_done(false);
2027   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2028   ref_processor()->setup_policy(clear_all_soft_refs);
2029   // If an asynchronous collection finishes, the _modUnionTable is
2030   // all clear.  If we are assuming the collection from an asynchronous
2031   // collection, clear the _modUnionTable.
2032   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2033     "_modUnionTable should be clear if the baton was not passed");
2034   _modUnionTable.clear_all();
2035   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2036     "mod union for klasses should be clear if the baton was passed");
2037   _ct->klass_rem_set()->clear_mod_union();
2038 
2039   // We must adjust the allocation statistics being maintained
2040   // in the free list space. We do so by reading and clearing
2041   // the sweep timer and updating the block flux rate estimates below.
2042   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2043   if (_inter_sweep_timer.is_active()) {
2044     _inter_sweep_timer.stop();
2045     // Note that we do not use this sample to update the _inter_sweep_estimate.
2046     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2047                                             _inter_sweep_estimate.padded_average(),
2048                                             _intra_sweep_estimate.padded_average());
2049   }
2050 
2051   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2052     ref_processor(), clear_all_soft_refs);
2053   #ifdef ASSERT
2054     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2055     size_t free_size = cms_space->free();
2056     assert(free_size ==
2057            pointer_delta(cms_space->end(), cms_space->compaction_top())
2058            * HeapWordSize,
2059       "All the free space should be compacted into one chunk at top");
2060     assert(cms_space->dictionary()->total_chunk_size(
2061                                       debug_only(cms_space->freelistLock())) == 0 ||
2062            cms_space->totalSizeInIndexedFreeLists() == 0,
2063       "All the free space should be in a single chunk");
2064     size_t num = cms_space->totalCount();
2065     assert((free_size == 0 && num == 0) ||
2066            (free_size > 0  && (num == 1 || num == 2)),
2067          "There should be at most 2 free chunks after compaction");
2068   #endif // ASSERT
2069   _collectorState = Resetting;
2070   assert(_restart_addr == NULL,
2071          "Should have been NULL'd before baton was passed");
2072   reset(false /* == !asynch */);
2073   _cmsGen->reset_after_compaction();
2074   _concurrent_cycles_since_last_unload = 0;
2075 
2076   // Clear any data recorded in the PLAB chunk arrays.
2077   if (_survivor_plab_array != NULL) {
2078     reset_survivor_plab_arrays();
2079   }
2080 
2081   // Adjust the per-size allocation stats for the next epoch.
2082   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2083   // Restart the "inter sweep timer" for the next epoch.
2084   _inter_sweep_timer.reset();
2085   _inter_sweep_timer.start();
2086 
2087   // Sample collection pause time and reset for collection interval.
2088   if (UseAdaptiveSizePolicy) {
2089     size_policy()->msc_collection_end(gch->gc_cause());
2090   }
2091 
2092   gc_timer->register_gc_end();
2093 
2094   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2095 
2096   // For a mark-sweep-compact, compute_new_size() will be called
2097   // in the heap's do_collection() method.
2098 }
2099 
2100 // A work method used by the foreground collector to do
2101 // a mark-sweep, after taking over from a possibly on-going
2102 // concurrent mark-sweep collection.
2103 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2104   CollectorState first_state, bool should_start_over) {
2105   if (PrintGC && Verbose) {
2106     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2107       "collector with count %d",
2108       _full_gcs_since_conc_gc);
2109   }
2110   switch (_collectorState) {
2111     case Idling:
2112       if (first_state == Idling || should_start_over) {
2113         // The background GC was not active, or should
2114         // restarted from scratch;  start the cycle.
2115         _collectorState = InitialMarking;
2116       }
2117       // If first_state was not Idling, then a background GC
2118       // was in progress and has now finished.  No need to do it
2119       // again.  Leave the state as Idling.
2120       break;
2121     case Precleaning:
2122       // In the foreground case don't do the precleaning since
2123       // it is not done concurrently and there is extra work
2124       // required.
2125       _collectorState = FinalMarking;
2126   }
2127   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2128 
2129   // For a mark-sweep, compute_new_size() will be called
2130   // in the heap's do_collection() method.
2131 }
2132 
2133 
2134 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2135   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2136   EdenSpace* eden_space = dng->eden();
2137   ContiguousSpace* from_space = dng->from();
2138   ContiguousSpace* to_space   = dng->to();
2139   // Eden
2140   if (_eden_chunk_array != NULL) {
2141     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2142                            eden_space->bottom(), eden_space->top(),
2143                            eden_space->end(), eden_space->capacity());
2144     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2145                            "_eden_chunk_capacity=" SIZE_FORMAT,
2146                            _eden_chunk_index, _eden_chunk_capacity);
2147     for (size_t i = 0; i < _eden_chunk_index; i++) {
2148       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2149                              i, _eden_chunk_array[i]);
2150     }
2151   }
2152   // Survivor
2153   if (_survivor_chunk_array != NULL) {
2154     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2155                            from_space->bottom(), from_space->top(),
2156                            from_space->end(), from_space->capacity());
2157     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2158                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2159                            _survivor_chunk_index, _survivor_chunk_capacity);
2160     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2161       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2162                              i, _survivor_chunk_array[i]);
2163     }
2164   }
2165 }
2166 
2167 void CMSCollector::getFreelistLocks() const {
2168   // Get locks for all free lists in all generations that this
2169   // collector is responsible for
2170   _cmsGen->freelistLock()->lock_without_safepoint_check();
2171 }
2172 
2173 void CMSCollector::releaseFreelistLocks() const {
2174   // Release locks for all free lists in all generations that this
2175   // collector is responsible for
2176   _cmsGen->freelistLock()->unlock();
2177 }
2178 
2179 bool CMSCollector::haveFreelistLocks() const {
2180   // Check locks for all free lists in all generations that this
2181   // collector is responsible for
2182   assert_lock_strong(_cmsGen->freelistLock());
2183   PRODUCT_ONLY(ShouldNotReachHere());
2184   return true;
2185 }
2186 
2187 // A utility class that is used by the CMS collector to
2188 // temporarily "release" the foreground collector from its
2189 // usual obligation to wait for the background collector to
2190 // complete an ongoing phase before proceeding.
2191 class ReleaseForegroundGC: public StackObj {
2192  private:
2193   CMSCollector* _c;
2194  public:
2195   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2196     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2197     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2198     // allow a potentially blocked foreground collector to proceed
2199     _c->_foregroundGCShouldWait = false;
2200     if (_c->_foregroundGCIsActive) {
2201       CGC_lock->notify();
2202     }
2203     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2204            "Possible deadlock");
2205   }
2206 
2207   ~ReleaseForegroundGC() {
2208     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2209     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2210     _c->_foregroundGCShouldWait = true;
2211   }
2212 };
2213 
2214 // There are separate collect_in_background and collect_in_foreground because of
2215 // the different locking requirements of the background collector and the
2216 // foreground collector.  There was originally an attempt to share
2217 // one "collect" method between the background collector and the foreground
2218 // collector but the if-then-else required made it cleaner to have
2219 // separate methods.
2220 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2221   assert(Thread::current()->is_ConcurrentGC_thread(),
2222     "A CMS asynchronous collection is only allowed on a CMS thread.");
2223 
2224   GenCollectedHeap* gch = GenCollectedHeap::heap();
2225   {
2226     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2227     MutexLockerEx hl(Heap_lock, safepoint_check);
2228     FreelistLocker fll(this);
2229     MutexLockerEx x(CGC_lock, safepoint_check);
2230     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2231       // The foreground collector is active or we're
2232       // not using asynchronous collections.  Skip this
2233       // background collection.
2234       assert(!_foregroundGCShouldWait, "Should be clear");
2235       return;
2236     } else {
2237       assert(_collectorState == Idling, "Should be idling before start.");
2238       _collectorState = InitialMarking;
2239       register_gc_start(cause);
2240       // Reset the expansion cause, now that we are about to begin
2241       // a new cycle.
2242       clear_expansion_cause();
2243 
2244       // Clear the MetaspaceGC flag since a concurrent collection
2245       // is starting but also clear it after the collection.
2246       MetaspaceGC::set_should_concurrent_collect(false);
2247     }
2248     // Decide if we want to enable class unloading as part of the
2249     // ensuing concurrent GC cycle.
2250     update_should_unload_classes();
2251     _full_gc_requested = false;           // acks all outstanding full gc requests
2252     _full_gc_cause = GCCause::_no_gc;
2253     // Signal that we are about to start a collection
2254     gch->increment_total_full_collections();  // ... starting a collection cycle
2255     _collection_count_start = gch->total_full_collections();
2256   }
2257 
2258   // Used for PrintGC
2259   size_t prev_used;
2260   if (PrintGC && Verbose) {
2261     prev_used = _cmsGen->used(); // XXXPERM
2262   }
2263 
2264   // The change of the collection state is normally done at this level;
2265   // the exceptions are phases that are executed while the world is
2266   // stopped.  For those phases the change of state is done while the
2267   // world is stopped.  For baton passing purposes this allows the
2268   // background collector to finish the phase and change state atomically.
2269   // The foreground collector cannot wait on a phase that is done
2270   // while the world is stopped because the foreground collector already
2271   // has the world stopped and would deadlock.
2272   while (_collectorState != Idling) {
2273     if (TraceCMSState) {
2274       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2275         Thread::current(), _collectorState);
2276     }
2277     // The foreground collector
2278     //   holds the Heap_lock throughout its collection.
2279     //   holds the CMS token (but not the lock)
2280     //     except while it is waiting for the background collector to yield.
2281     //
2282     // The foreground collector should be blocked (not for long)
2283     //   if the background collector is about to start a phase
2284     //   executed with world stopped.  If the background
2285     //   collector has already started such a phase, the
2286     //   foreground collector is blocked waiting for the
2287     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2288     //   are executed in the VM thread.
2289     //
2290     // The locking order is
2291     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2292     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2293     //   CMS token  (claimed in
2294     //                stop_world_and_do() -->
2295     //                  safepoint_synchronize() -->
2296     //                    CMSThread::synchronize())
2297 
2298     {
2299       // Check if the FG collector wants us to yield.
2300       CMSTokenSync x(true); // is cms thread
2301       if (waitForForegroundGC()) {
2302         // We yielded to a foreground GC, nothing more to be
2303         // done this round.
2304         assert(_foregroundGCShouldWait == false, "We set it to false in "
2305                "waitForForegroundGC()");
2306         if (TraceCMSState) {
2307           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2308             " exiting collection CMS state %d",
2309             Thread::current(), _collectorState);
2310         }
2311         return;
2312       } else {
2313         // The background collector can run but check to see if the
2314         // foreground collector has done a collection while the
2315         // background collector was waiting to get the CGC_lock
2316         // above.  If yes, break so that _foregroundGCShouldWait
2317         // is cleared before returning.
2318         if (_collectorState == Idling) {
2319           break;
2320         }
2321       }
2322     }
2323 
2324     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2325       "should be waiting");
2326 
2327     switch (_collectorState) {
2328       case InitialMarking:
2329         {
2330           ReleaseForegroundGC x(this);
2331           stats().record_cms_begin();
2332           VM_CMS_Initial_Mark initial_mark_op(this);
2333           VMThread::execute(&initial_mark_op);
2334         }
2335         // The collector state may be any legal state at this point
2336         // since the background collector may have yielded to the
2337         // foreground collector.
2338         break;
2339       case Marking:
2340         // initial marking in checkpointRootsInitialWork has been completed
2341         if (markFromRoots(true)) { // we were successful
2342           assert(_collectorState == Precleaning, "Collector state should "
2343             "have changed");
2344         } else {
2345           assert(_foregroundGCIsActive, "Internal state inconsistency");
2346         }
2347         break;
2348       case Precleaning:
2349         if (UseAdaptiveSizePolicy) {
2350           size_policy()->concurrent_precleaning_begin();
2351         }
2352         // marking from roots in markFromRoots has been completed
2353         preclean();
2354         if (UseAdaptiveSizePolicy) {
2355           size_policy()->concurrent_precleaning_end();
2356         }
2357         assert(_collectorState == AbortablePreclean ||
2358                _collectorState == FinalMarking,
2359                "Collector state should have changed");
2360         break;
2361       case AbortablePreclean:
2362         if (UseAdaptiveSizePolicy) {
2363         size_policy()->concurrent_phases_resume();
2364         }
2365         abortable_preclean();
2366         if (UseAdaptiveSizePolicy) {
2367           size_policy()->concurrent_precleaning_end();
2368         }
2369         assert(_collectorState == FinalMarking, "Collector state should "
2370           "have changed");
2371         break;
2372       case FinalMarking:
2373         {
2374           ReleaseForegroundGC x(this);
2375 
2376           VM_CMS_Final_Remark final_remark_op(this);
2377           VMThread::execute(&final_remark_op);
2378         }
2379         assert(_foregroundGCShouldWait, "block post-condition");
2380         break;
2381       case Sweeping:
2382         if (UseAdaptiveSizePolicy) {
2383           size_policy()->concurrent_sweeping_begin();
2384         }
2385         // final marking in checkpointRootsFinal has been completed
2386         sweep(true);
2387         assert(_collectorState == Resizing, "Collector state change "
2388           "to Resizing must be done under the free_list_lock");
2389         _full_gcs_since_conc_gc = 0;
2390 
2391         // Stop the timers for adaptive size policy for the concurrent phases
2392         if (UseAdaptiveSizePolicy) {
2393           size_policy()->concurrent_sweeping_end();
2394           size_policy()->concurrent_phases_end(gch->gc_cause(),
2395                                              gch->prev_gen(_cmsGen)->capacity(),
2396                                              _cmsGen->free());
2397         }
2398 
2399       case Resizing: {
2400         // Sweeping has been completed...
2401         // At this point the background collection has completed.
2402         // Don't move the call to compute_new_size() down
2403         // into code that might be executed if the background
2404         // collection was preempted.
2405         {
2406           ReleaseForegroundGC x(this);   // unblock FG collection
2407           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2408           CMSTokenSync        z(true);   // not strictly needed.
2409           if (_collectorState == Resizing) {
2410             compute_new_size();
2411             save_heap_summary();
2412             _collectorState = Resetting;
2413           } else {
2414             assert(_collectorState == Idling, "The state should only change"
2415                    " because the foreground collector has finished the collection");
2416           }
2417         }
2418         break;
2419       }
2420       case Resetting:
2421         // CMS heap resizing has been completed
2422         reset(true);
2423         assert(_collectorState == Idling, "Collector state should "
2424           "have changed");
2425 
2426         MetaspaceGC::set_should_concurrent_collect(false);
2427 
2428         stats().record_cms_end();
2429         // Don't move the concurrent_phases_end() and compute_new_size()
2430         // calls to here because a preempted background collection
2431         // has it's state set to "Resetting".
2432         break;
2433       case Idling:
2434       default:
2435         ShouldNotReachHere();
2436         break;
2437     }
2438     if (TraceCMSState) {
2439       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2440         Thread::current(), _collectorState);
2441     }
2442     assert(_foregroundGCShouldWait, "block post-condition");
2443   }
2444 
2445   // Should this be in gc_epilogue?
2446   collector_policy()->counters()->update_counters();
2447 
2448   {
2449     // Clear _foregroundGCShouldWait and, in the event that the
2450     // foreground collector is waiting, notify it, before
2451     // returning.
2452     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2453     _foregroundGCShouldWait = false;
2454     if (_foregroundGCIsActive) {
2455       CGC_lock->notify();
2456     }
2457     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2458            "Possible deadlock");
2459   }
2460   if (TraceCMSState) {
2461     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2462       " exiting collection CMS state %d",
2463       Thread::current(), _collectorState);
2464   }
2465   if (PrintGC && Verbose) {
2466     _cmsGen->print_heap_change(prev_used);
2467   }
2468 }
2469 
2470 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2471   if (!_cms_start_registered) {
2472     register_gc_start(cause);
2473   }
2474 }
2475 
2476 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2477   _cms_start_registered = true;
2478   _gc_timer_cm->register_gc_start();
2479   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2480 }
2481 
2482 void CMSCollector::register_gc_end() {
2483   if (_cms_start_registered) {
2484     report_heap_summary(GCWhen::AfterGC);
2485 
2486     _gc_timer_cm->register_gc_end();
2487     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2488     _cms_start_registered = false;
2489   }
2490 }
2491 
2492 void CMSCollector::save_heap_summary() {
2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
2494   _last_heap_summary = gch->create_heap_summary();
2495   _last_metaspace_summary = gch->create_metaspace_summary();
2496 }
2497 
2498 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2499   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2500   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2501 }
2502 
2503 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2504   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2505          "Foreground collector should be waiting, not executing");
2506   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2507     "may only be done by the VM Thread with the world stopped");
2508   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2509          "VM thread should have CMS token");
2510 
2511   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2512     true, NULL);)
2513   if (UseAdaptiveSizePolicy) {
2514     size_policy()->ms_collection_begin();
2515   }
2516   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2517 
2518   HandleMark hm;  // Discard invalid handles created during verification
2519 
2520   if (VerifyBeforeGC &&
2521       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2522     Universe::verify();
2523   }
2524 
2525   // Snapshot the soft reference policy to be used in this collection cycle.
2526   ref_processor()->setup_policy(clear_all_soft_refs);
2527 
2528   // Decide if class unloading should be done
2529   update_should_unload_classes();
2530 
2531   bool init_mark_was_synchronous = false; // until proven otherwise
2532   while (_collectorState != Idling) {
2533     if (TraceCMSState) {
2534       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2535         Thread::current(), _collectorState);
2536     }
2537     switch (_collectorState) {
2538       case InitialMarking:
2539         register_foreground_gc_start(cause);
2540         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2541         checkpointRootsInitial(false);
2542         assert(_collectorState == Marking, "Collector state should have changed"
2543           " within checkpointRootsInitial()");
2544         break;
2545       case Marking:
2546         // initial marking in checkpointRootsInitialWork has been completed
2547         if (VerifyDuringGC &&
2548             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2549           Universe::verify("Verify before initial mark: ");
2550         }
2551         {
2552           bool res = markFromRoots(false);
2553           assert(res && _collectorState == FinalMarking, "Collector state should "
2554             "have changed");
2555           break;
2556         }
2557       case FinalMarking:
2558         if (VerifyDuringGC &&
2559             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2560           Universe::verify("Verify before re-mark: ");
2561         }
2562         checkpointRootsFinal(false, clear_all_soft_refs,
2563                              init_mark_was_synchronous);
2564         assert(_collectorState == Sweeping, "Collector state should not "
2565           "have changed within checkpointRootsFinal()");
2566         break;
2567       case Sweeping:
2568         // final marking in checkpointRootsFinal has been completed
2569         if (VerifyDuringGC &&
2570             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2571           Universe::verify("Verify before sweep: ");
2572         }
2573         sweep(false);
2574         assert(_collectorState == Resizing, "Incorrect state");
2575         break;
2576       case Resizing: {
2577         // Sweeping has been completed; the actual resize in this case
2578         // is done separately; nothing to be done in this state.
2579         _collectorState = Resetting;
2580         break;
2581       }
2582       case Resetting:
2583         // The heap has been resized.
2584         if (VerifyDuringGC &&
2585             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2586           Universe::verify("Verify before reset: ");
2587         }
2588         save_heap_summary();
2589         reset(false);
2590         assert(_collectorState == Idling, "Collector state should "
2591           "have changed");
2592         break;
2593       case Precleaning:
2594       case AbortablePreclean:
2595         // Elide the preclean phase
2596         _collectorState = FinalMarking;
2597         break;
2598       default:
2599         ShouldNotReachHere();
2600     }
2601     if (TraceCMSState) {
2602       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2603         Thread::current(), _collectorState);
2604     }
2605   }
2606 
2607   if (UseAdaptiveSizePolicy) {
2608     GenCollectedHeap* gch = GenCollectedHeap::heap();
2609     size_policy()->ms_collection_end(gch->gc_cause());
2610   }
2611 
2612   if (VerifyAfterGC &&
2613       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2614     Universe::verify();
2615   }
2616   if (TraceCMSState) {
2617     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2618       " exiting collection CMS state %d",
2619       Thread::current(), _collectorState);
2620   }
2621 }
2622 
2623 bool CMSCollector::waitForForegroundGC() {
2624   bool res = false;
2625   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2626          "CMS thread should have CMS token");
2627   // Block the foreground collector until the
2628   // background collectors decides whether to
2629   // yield.
2630   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2631   _foregroundGCShouldWait = true;
2632   if (_foregroundGCIsActive) {
2633     // The background collector yields to the
2634     // foreground collector and returns a value
2635     // indicating that it has yielded.  The foreground
2636     // collector can proceed.
2637     res = true;
2638     _foregroundGCShouldWait = false;
2639     ConcurrentMarkSweepThread::clear_CMS_flag(
2640       ConcurrentMarkSweepThread::CMS_cms_has_token);
2641     ConcurrentMarkSweepThread::set_CMS_flag(
2642       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2643     // Get a possibly blocked foreground thread going
2644     CGC_lock->notify();
2645     if (TraceCMSState) {
2646       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2647         Thread::current(), _collectorState);
2648     }
2649     while (_foregroundGCIsActive) {
2650       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2651     }
2652     ConcurrentMarkSweepThread::set_CMS_flag(
2653       ConcurrentMarkSweepThread::CMS_cms_has_token);
2654     ConcurrentMarkSweepThread::clear_CMS_flag(
2655       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2656   }
2657   if (TraceCMSState) {
2658     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2659       Thread::current(), _collectorState);
2660   }
2661   return res;
2662 }
2663 
2664 // Because of the need to lock the free lists and other structures in
2665 // the collector, common to all the generations that the collector is
2666 // collecting, we need the gc_prologues of individual CMS generations
2667 // delegate to their collector. It may have been simpler had the
2668 // current infrastructure allowed one to call a prologue on a
2669 // collector. In the absence of that we have the generation's
2670 // prologue delegate to the collector, which delegates back
2671 // some "local" work to a worker method in the individual generations
2672 // that it's responsible for collecting, while itself doing any
2673 // work common to all generations it's responsible for. A similar
2674 // comment applies to the  gc_epilogue()'s.
2675 // The role of the variable _between_prologue_and_epilogue is to
2676 // enforce the invocation protocol.
2677 void CMSCollector::gc_prologue(bool full) {
2678   // Call gc_prologue_work() for the CMSGen
2679   // we are responsible for.
2680 
2681   // The following locking discipline assumes that we are only called
2682   // when the world is stopped.
2683   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2684 
2685   // The CMSCollector prologue must call the gc_prologues for the
2686   // "generations" that it's responsible
2687   // for.
2688 
2689   assert(   Thread::current()->is_VM_thread()
2690          || (   CMSScavengeBeforeRemark
2691              && Thread::current()->is_ConcurrentGC_thread()),
2692          "Incorrect thread type for prologue execution");
2693 
2694   if (_between_prologue_and_epilogue) {
2695     // We have already been invoked; this is a gc_prologue delegation
2696     // from yet another CMS generation that we are responsible for, just
2697     // ignore it since all relevant work has already been done.
2698     return;
2699   }
2700 
2701   // set a bit saying prologue has been called; cleared in epilogue
2702   _between_prologue_and_epilogue = true;
2703   // Claim locks for common data structures, then call gc_prologue_work()
2704   // for each CMSGen.
2705 
2706   getFreelistLocks();   // gets free list locks on constituent spaces
2707   bitMapLock()->lock_without_safepoint_check();
2708 
2709   // Should call gc_prologue_work() for all cms gens we are responsible for
2710   bool duringMarking =    _collectorState >= Marking
2711                          && _collectorState < Sweeping;
2712 
2713   // The young collections clear the modified oops state, which tells if
2714   // there are any modified oops in the class. The remark phase also needs
2715   // that information. Tell the young collection to save the union of all
2716   // modified klasses.
2717   if (duringMarking) {
2718     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2719   }
2720 
2721   bool registerClosure = duringMarking;
2722 
2723   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2724                                                &_modUnionClosurePar
2725                                                : &_modUnionClosure;
2726   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2727 
2728   if (!full) {
2729     stats().record_gc0_begin();
2730   }
2731 }
2732 
2733 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2734 
2735   _capacity_at_prologue = capacity();
2736   _used_at_prologue = used();
2737 
2738   // Delegate to CMScollector which knows how to coordinate between
2739   // this and any other CMS generations that it is responsible for
2740   // collecting.
2741   collector()->gc_prologue(full);
2742 }
2743 
2744 // This is a "private" interface for use by this generation's CMSCollector.
2745 // Not to be called directly by any other entity (for instance,
2746 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2747 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2748   bool registerClosure, ModUnionClosure* modUnionClosure) {
2749   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2750   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2751     "Should be NULL");
2752   if (registerClosure) {
2753     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2754   }
2755   cmsSpace()->gc_prologue();
2756   // Clear stat counters
2757   NOT_PRODUCT(
2758     assert(_numObjectsPromoted == 0, "check");
2759     assert(_numWordsPromoted   == 0, "check");
2760     if (Verbose && PrintGC) {
2761       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2762                           SIZE_FORMAT" bytes concurrently",
2763       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2764     }
2765     _numObjectsAllocated = 0;
2766     _numWordsAllocated   = 0;
2767   )
2768 }
2769 
2770 void CMSCollector::gc_epilogue(bool full) {
2771   // The following locking discipline assumes that we are only called
2772   // when the world is stopped.
2773   assert(SafepointSynchronize::is_at_safepoint(),
2774          "world is stopped assumption");
2775 
2776   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2777   // if linear allocation blocks need to be appropriately marked to allow the
2778   // the blocks to be parsable. We also check here whether we need to nudge the
2779   // CMS collector thread to start a new cycle (if it's not already active).
2780   assert(   Thread::current()->is_VM_thread()
2781          || (   CMSScavengeBeforeRemark
2782              && Thread::current()->is_ConcurrentGC_thread()),
2783          "Incorrect thread type for epilogue execution");
2784 
2785   if (!_between_prologue_and_epilogue) {
2786     // We have already been invoked; this is a gc_epilogue delegation
2787     // from yet another CMS generation that we are responsible for, just
2788     // ignore it since all relevant work has already been done.
2789     return;
2790   }
2791   assert(haveFreelistLocks(), "must have freelist locks");
2792   assert_lock_strong(bitMapLock());
2793 
2794   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2795 
2796   _cmsGen->gc_epilogue_work(full);
2797 
2798   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2799     // in case sampling was not already enabled, enable it
2800     _start_sampling = true;
2801   }
2802   // reset _eden_chunk_array so sampling starts afresh
2803   _eden_chunk_index = 0;
2804 
2805   size_t cms_used   = _cmsGen->cmsSpace()->used();
2806 
2807   // update performance counters - this uses a special version of
2808   // update_counters() that allows the utilization to be passed as a
2809   // parameter, avoiding multiple calls to used().
2810   //
2811   _cmsGen->update_counters(cms_used);
2812 
2813   if (CMSIncrementalMode) {
2814     icms_update_allocation_limits();
2815   }
2816 
2817   bitMapLock()->unlock();
2818   releaseFreelistLocks();
2819 
2820   if (!CleanChunkPoolAsync) {
2821     Chunk::clean_chunk_pool();
2822   }
2823 
2824   set_did_compact(false);
2825   _between_prologue_and_epilogue = false;  // ready for next cycle
2826 }
2827 
2828 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2829   collector()->gc_epilogue(full);
2830 
2831   // Also reset promotion tracking in par gc thread states.
2832   if (CollectedHeap::use_parallel_gc_threads()) {
2833     for (uint i = 0; i < ParallelGCThreads; i++) {
2834       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2835     }
2836   }
2837 }
2838 
2839 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2840   assert(!incremental_collection_failed(), "Should have been cleared");
2841   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2842   cmsSpace()->gc_epilogue();
2843     // Print stat counters
2844   NOT_PRODUCT(
2845     assert(_numObjectsAllocated == 0, "check");
2846     assert(_numWordsAllocated == 0, "check");
2847     if (Verbose && PrintGC) {
2848       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2849                           SIZE_FORMAT" bytes",
2850                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2851     }
2852     _numObjectsPromoted = 0;
2853     _numWordsPromoted   = 0;
2854   )
2855 
2856   if (PrintGC && Verbose) {
2857     // Call down the chain in contiguous_available needs the freelistLock
2858     // so print this out before releasing the freeListLock.
2859     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2860                         contiguous_available());
2861   }
2862 }
2863 
2864 #ifndef PRODUCT
2865 bool CMSCollector::have_cms_token() {
2866   Thread* thr = Thread::current();
2867   if (thr->is_VM_thread()) {
2868     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2869   } else if (thr->is_ConcurrentGC_thread()) {
2870     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2871   } else if (thr->is_GC_task_thread()) {
2872     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2873            ParGCRareEvent_lock->owned_by_self();
2874   }
2875   return false;
2876 }
2877 #endif
2878 
2879 // Check reachability of the given heap address in CMS generation,
2880 // treating all other generations as roots.
2881 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2882   // We could "guarantee" below, rather than assert, but I'll
2883   // leave these as "asserts" so that an adventurous debugger
2884   // could try this in the product build provided some subset of
2885   // the conditions were met, provided they were interested in the
2886   // results and knew that the computation below wouldn't interfere
2887   // with other concurrent computations mutating the structures
2888   // being read or written.
2889   assert(SafepointSynchronize::is_at_safepoint(),
2890          "Else mutations in object graph will make answer suspect");
2891   assert(have_cms_token(), "Should hold cms token");
2892   assert(haveFreelistLocks(), "must hold free list locks");
2893   assert_lock_strong(bitMapLock());
2894 
2895   // Clear the marking bit map array before starting, but, just
2896   // for kicks, first report if the given address is already marked
2897   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", addr,
2898                 _markBitMap.isMarked(addr) ? "" : " not");
2899 
2900   if (verify_after_remark()) {
2901     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2902     bool result = verification_mark_bm()->isMarked(addr);
2903     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", addr,
2904                            result ? "IS" : "is NOT");
2905     return result;
2906   } else {
2907     gclog_or_tty->print_cr("Could not compute result");
2908     return false;
2909   }
2910 }
2911 
2912 
2913 void
2914 CMSCollector::print_on_error(outputStream* st) {
2915   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2916   if (collector != NULL) {
2917     CMSBitMap* bitmap = &collector->_markBitMap;
2918     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2919     bitmap->print_on_error(st, " Bits: ");
2920 
2921     st->cr();
2922 
2923     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2924     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2925     mut_bitmap->print_on_error(st, " Bits: ");
2926   }
2927 }
2928 
2929 ////////////////////////////////////////////////////////
2930 // CMS Verification Support
2931 ////////////////////////////////////////////////////////
2932 // Following the remark phase, the following invariant
2933 // should hold -- each object in the CMS heap which is
2934 // marked in markBitMap() should be marked in the verification_mark_bm().
2935 
2936 class VerifyMarkedClosure: public BitMapClosure {
2937   CMSBitMap* _marks;
2938   bool       _failed;
2939 
2940  public:
2941   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2942 
2943   bool do_bit(size_t offset) {
2944     HeapWord* addr = _marks->offsetToHeapWord(offset);
2945     if (!_marks->isMarked(addr)) {
2946       oop(addr)->print_on(gclog_or_tty);
2947       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2948       _failed = true;
2949     }
2950     return true;
2951   }
2952 
2953   bool failed() { return _failed; }
2954 };
2955 
2956 bool CMSCollector::verify_after_remark(bool silent) {
2957   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2958   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2959   static bool init = false;
2960 
2961   assert(SafepointSynchronize::is_at_safepoint(),
2962          "Else mutations in object graph will make answer suspect");
2963   assert(have_cms_token(),
2964          "Else there may be mutual interference in use of "
2965          " verification data structures");
2966   assert(_collectorState > Marking && _collectorState <= Sweeping,
2967          "Else marking info checked here may be obsolete");
2968   assert(haveFreelistLocks(), "must hold free list locks");
2969   assert_lock_strong(bitMapLock());
2970 
2971 
2972   // Allocate marking bit map if not already allocated
2973   if (!init) { // first time
2974     if (!verification_mark_bm()->allocate(_span)) {
2975       return false;
2976     }
2977     init = true;
2978   }
2979 
2980   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2981 
2982   // Turn off refs discovery -- so we will be tracing through refs.
2983   // This is as intended, because by this time
2984   // GC must already have cleared any refs that need to be cleared,
2985   // and traced those that need to be marked; moreover,
2986   // the marking done here is not going to interfere in any
2987   // way with the marking information used by GC.
2988   NoRefDiscovery no_discovery(ref_processor());
2989 
2990   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2991 
2992   // Clear any marks from a previous round
2993   verification_mark_bm()->clear_all();
2994   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2995   verify_work_stacks_empty();
2996 
2997   GenCollectedHeap* gch = GenCollectedHeap::heap();
2998   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2999   // Update the saved marks which may affect the root scans.
3000   gch->save_marks();
3001 
3002   if (CMSRemarkVerifyVariant == 1) {
3003     // In this first variant of verification, we complete
3004     // all marking, then check if the new marks-vector is
3005     // a subset of the CMS marks-vector.
3006     verify_after_remark_work_1();
3007   } else if (CMSRemarkVerifyVariant == 2) {
3008     // In this second variant of verification, we flag an error
3009     // (i.e. an object reachable in the new marks-vector not reachable
3010     // in the CMS marks-vector) immediately, also indicating the
3011     // identify of an object (A) that references the unmarked object (B) --
3012     // presumably, a mutation to A failed to be picked up by preclean/remark?
3013     verify_after_remark_work_2();
3014   } else {
3015     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3016             CMSRemarkVerifyVariant);
3017   }
3018   if (!silent) gclog_or_tty->print(" done] ");
3019   return true;
3020 }
3021 
3022 void CMSCollector::verify_after_remark_work_1() {
3023   ResourceMark rm;
3024   HandleMark  hm;
3025   GenCollectedHeap* gch = GenCollectedHeap::heap();
3026 
3027   // Get a clear set of claim bits for the strong roots processing to work with.
3028   ClassLoaderDataGraph::clear_claimed_marks();
3029 
3030   // Mark from roots one level into CMS
3031   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3032   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3033 
3034   gch->gen_process_strong_roots(_cmsGen->level(),
3035                                 true,   // younger gens are roots
3036                                 true,   // activate StrongRootsScope
3037                                 SharedHeap::ScanningOption(roots_scanning_options()),
3038                                 &notOlder,
3039                                 NULL,
3040                                 NULL); // SSS: Provide correct closure
3041 
3042   // Now mark from the roots
3043   MarkFromRootsClosure markFromRootsClosure(this, _span,
3044     verification_mark_bm(), verification_mark_stack(),
3045     false /* don't yield */, true /* verifying */);
3046   assert(_restart_addr == NULL, "Expected pre-condition");
3047   verification_mark_bm()->iterate(&markFromRootsClosure);
3048   while (_restart_addr != NULL) {
3049     // Deal with stack overflow: by restarting at the indicated
3050     // address.
3051     HeapWord* ra = _restart_addr;
3052     markFromRootsClosure.reset(ra);
3053     _restart_addr = NULL;
3054     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3055   }
3056   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3057   verify_work_stacks_empty();
3058 
3059   // Marking completed -- now verify that each bit marked in
3060   // verification_mark_bm() is also marked in markBitMap(); flag all
3061   // errors by printing corresponding objects.
3062   VerifyMarkedClosure vcl(markBitMap());
3063   verification_mark_bm()->iterate(&vcl);
3064   if (vcl.failed()) {
3065     gclog_or_tty->print("Verification failed");
3066     Universe::heap()->print_on(gclog_or_tty);
3067     fatal("CMS: failed marking verification after remark");
3068   }
3069 }
3070 
3071 class VerifyKlassOopsKlassClosure : public KlassClosure {
3072   class VerifyKlassOopsClosure : public OopClosure {
3073     CMSBitMap* _bitmap;
3074    public:
3075     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3076     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3077     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3078   } _oop_closure;
3079  public:
3080   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3081   void do_klass(Klass* k) {
3082     k->oops_do(&_oop_closure);
3083   }
3084 };
3085 
3086 void CMSCollector::verify_after_remark_work_2() {
3087   ResourceMark rm;
3088   HandleMark  hm;
3089   GenCollectedHeap* gch = GenCollectedHeap::heap();
3090 
3091   // Get a clear set of claim bits for the strong roots processing to work with.
3092   ClassLoaderDataGraph::clear_claimed_marks();
3093 
3094   // Mark from roots one level into CMS
3095   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3096                                      markBitMap());
3097   CMKlassClosure klass_closure(&notOlder);
3098 
3099   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3100   gch->gen_process_strong_roots(_cmsGen->level(),
3101                                 true,   // younger gens are roots
3102                                 true,   // activate StrongRootsScope
3103                                 SharedHeap::ScanningOption(roots_scanning_options()),
3104                                 &notOlder,
3105                                 NULL,
3106                                 &klass_closure);
3107 
3108   // Now mark from the roots
3109   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3110     verification_mark_bm(), markBitMap(), verification_mark_stack());
3111   assert(_restart_addr == NULL, "Expected pre-condition");
3112   verification_mark_bm()->iterate(&markFromRootsClosure);
3113   while (_restart_addr != NULL) {
3114     // Deal with stack overflow: by restarting at the indicated
3115     // address.
3116     HeapWord* ra = _restart_addr;
3117     markFromRootsClosure.reset(ra);
3118     _restart_addr = NULL;
3119     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3120   }
3121   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3122   verify_work_stacks_empty();
3123 
3124   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3125   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3126 
3127   // Marking completed -- now verify that each bit marked in
3128   // verification_mark_bm() is also marked in markBitMap(); flag all
3129   // errors by printing corresponding objects.
3130   VerifyMarkedClosure vcl(markBitMap());
3131   verification_mark_bm()->iterate(&vcl);
3132   assert(!vcl.failed(), "Else verification above should not have succeeded");
3133 }
3134 
3135 void ConcurrentMarkSweepGeneration::save_marks() {
3136   // delegate to CMS space
3137   cmsSpace()->save_marks();
3138   for (uint i = 0; i < ParallelGCThreads; i++) {
3139     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3140   }
3141 }
3142 
3143 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3144   return cmsSpace()->no_allocs_since_save_marks();
3145 }
3146 
3147 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3148                                                                 \
3149 void ConcurrentMarkSweepGeneration::                            \
3150 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3151   cl->set_generation(this);                                     \
3152   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3153   cl->reset_generation();                                       \
3154   save_marks();                                                 \
3155 }
3156 
3157 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3158 
3159 void
3160 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3161   cl->set_generation(this);
3162   younger_refs_in_space_iterate(_cmsSpace, cl);
3163   cl->reset_generation();
3164 }
3165 
3166 void
3167 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3168   if (freelistLock()->owned_by_self()) {
3169     Generation::oop_iterate(cl);
3170   } else {
3171     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3172     Generation::oop_iterate(cl);
3173   }
3174 }
3175 
3176 void
3177 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3178   if (freelistLock()->owned_by_self()) {
3179     Generation::object_iterate(cl);
3180   } else {
3181     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3182     Generation::object_iterate(cl);
3183   }
3184 }
3185 
3186 void
3187 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3188   if (freelistLock()->owned_by_self()) {
3189     Generation::safe_object_iterate(cl);
3190   } else {
3191     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3192     Generation::safe_object_iterate(cl);
3193   }
3194 }
3195 
3196 void
3197 ConcurrentMarkSweepGeneration::post_compact() {
3198 }
3199 
3200 void
3201 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3202   // Fix the linear allocation blocks to look like free blocks.
3203 
3204   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3205   // are not called when the heap is verified during universe initialization and
3206   // at vm shutdown.
3207   if (freelistLock()->owned_by_self()) {
3208     cmsSpace()->prepare_for_verify();
3209   } else {
3210     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3211     cmsSpace()->prepare_for_verify();
3212   }
3213 }
3214 
3215 void
3216 ConcurrentMarkSweepGeneration::verify() {
3217   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3218   // are not called when the heap is verified during universe initialization and
3219   // at vm shutdown.
3220   if (freelistLock()->owned_by_self()) {
3221     cmsSpace()->verify();
3222   } else {
3223     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3224     cmsSpace()->verify();
3225   }
3226 }
3227 
3228 void CMSCollector::verify() {
3229   _cmsGen->verify();
3230 }
3231 
3232 #ifndef PRODUCT
3233 bool CMSCollector::overflow_list_is_empty() const {
3234   assert(_num_par_pushes >= 0, "Inconsistency");
3235   if (_overflow_list == NULL) {
3236     assert(_num_par_pushes == 0, "Inconsistency");
3237   }
3238   return _overflow_list == NULL;
3239 }
3240 
3241 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3242 // merely consolidate assertion checks that appear to occur together frequently.
3243 void CMSCollector::verify_work_stacks_empty() const {
3244   assert(_markStack.isEmpty(), "Marking stack should be empty");
3245   assert(overflow_list_is_empty(), "Overflow list should be empty");
3246 }
3247 
3248 void CMSCollector::verify_overflow_empty() const {
3249   assert(overflow_list_is_empty(), "Overflow list should be empty");
3250   assert(no_preserved_marks(), "No preserved marks");
3251 }
3252 #endif // PRODUCT
3253 
3254 // Decide if we want to enable class unloading as part of the
3255 // ensuing concurrent GC cycle. We will collect and
3256 // unload classes if it's the case that:
3257 // (1) an explicit gc request has been made and the flag
3258 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3259 // (2) (a) class unloading is enabled at the command line, and
3260 //     (b) old gen is getting really full
3261 // NOTE: Provided there is no change in the state of the heap between
3262 // calls to this method, it should have idempotent results. Moreover,
3263 // its results should be monotonically increasing (i.e. going from 0 to 1,
3264 // but not 1 to 0) between successive calls between which the heap was
3265 // not collected. For the implementation below, it must thus rely on
3266 // the property that concurrent_cycles_since_last_unload()
3267 // will not decrease unless a collection cycle happened and that
3268 // _cmsGen->is_too_full() are
3269 // themselves also monotonic in that sense. See check_monotonicity()
3270 // below.
3271 void CMSCollector::update_should_unload_classes() {
3272   _should_unload_classes = false;
3273   // Condition 1 above
3274   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3275     _should_unload_classes = true;
3276   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3277     // Disjuncts 2.b.(i,ii,iii) above
3278     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3279                               CMSClassUnloadingMaxInterval)
3280                            || _cmsGen->is_too_full();
3281   }
3282 }
3283 
3284 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3285   bool res = should_concurrent_collect();
3286   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3287   return res;
3288 }
3289 
3290 void CMSCollector::setup_cms_unloading_and_verification_state() {
3291   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3292                              || VerifyBeforeExit;
3293   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache;
3294 
3295   // We set the proper root for this CMS cycle here.
3296   if (should_unload_classes()) {   // Should unload classes this cycle
3297     remove_root_scanning_option(SharedHeap::SO_AllClasses);
3298     add_root_scanning_option(SharedHeap::SO_SystemClasses);
3299     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3300     set_verifying(should_verify);    // Set verification state for this cycle
3301     return;                            // Nothing else needs to be done at this time
3302   }
3303 
3304   // Not unloading classes this cycle
3305   assert(!should_unload_classes(), "Inconsistency!");
3306   remove_root_scanning_option(SharedHeap::SO_SystemClasses);
3307   add_root_scanning_option(SharedHeap::SO_AllClasses);
3308 
3309   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3310     // Include symbols, strings and code cache elements to prevent their resurrection.
3311     add_root_scanning_option(rso);
3312     set_verifying(true);
3313   } else if (verifying() && !should_verify) {
3314     // We were verifying, but some verification flags got disabled.
3315     set_verifying(false);
3316     // Exclude symbols, strings and code cache elements from root scanning to
3317     // reduce IM and RM pauses.
3318     remove_root_scanning_option(rso);
3319   }
3320 }
3321 
3322 
3323 #ifndef PRODUCT
3324 HeapWord* CMSCollector::block_start(const void* p) const {
3325   const HeapWord* addr = (HeapWord*)p;
3326   if (_span.contains(p)) {
3327     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3328       return _cmsGen->cmsSpace()->block_start(p);
3329     }
3330   }
3331   return NULL;
3332 }
3333 #endif
3334 
3335 HeapWord*
3336 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3337                                                    bool   tlab,
3338                                                    bool   parallel) {
3339   CMSSynchronousYieldRequest yr;
3340   assert(!tlab, "Can't deal with TLAB allocation");
3341   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3342   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3343     CMSExpansionCause::_satisfy_allocation);
3344   if (GCExpandToAllocateDelayMillis > 0) {
3345     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3346   }
3347   return have_lock_and_allocate(word_size, tlab);
3348 }
3349 
3350 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3351 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3352 // to CardGeneration and share it...
3353 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3354   return CardGeneration::expand(bytes, expand_bytes);
3355 }
3356 
3357 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3358   CMSExpansionCause::Cause cause)
3359 {
3360 
3361   bool success = expand(bytes, expand_bytes);
3362 
3363   // remember why we expanded; this information is used
3364   // by shouldConcurrentCollect() when making decisions on whether to start
3365   // a new CMS cycle.
3366   if (success) {
3367     set_expansion_cause(cause);
3368     if (PrintGCDetails && Verbose) {
3369       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3370         CMSExpansionCause::to_string(cause));
3371     }
3372   }
3373 }
3374 
3375 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3376   HeapWord* res = NULL;
3377   MutexLocker x(ParGCRareEvent_lock);
3378   while (true) {
3379     // Expansion by some other thread might make alloc OK now:
3380     res = ps->lab.alloc(word_sz);
3381     if (res != NULL) return res;
3382     // If there's not enough expansion space available, give up.
3383     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3384       return NULL;
3385     }
3386     // Otherwise, we try expansion.
3387     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3388       CMSExpansionCause::_allocate_par_lab);
3389     // Now go around the loop and try alloc again;
3390     // A competing par_promote might beat us to the expansion space,
3391     // so we may go around the loop again if promotion fails again.
3392     if (GCExpandToAllocateDelayMillis > 0) {
3393       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3394     }
3395   }
3396 }
3397 
3398 
3399 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3400   PromotionInfo* promo) {
3401   MutexLocker x(ParGCRareEvent_lock);
3402   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3403   while (true) {
3404     // Expansion by some other thread might make alloc OK now:
3405     if (promo->ensure_spooling_space()) {
3406       assert(promo->has_spooling_space(),
3407              "Post-condition of successful ensure_spooling_space()");
3408       return true;
3409     }
3410     // If there's not enough expansion space available, give up.
3411     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3412       return false;
3413     }
3414     // Otherwise, we try expansion.
3415     expand(refill_size_bytes, MinHeapDeltaBytes,
3416       CMSExpansionCause::_allocate_par_spooling_space);
3417     // Now go around the loop and try alloc again;
3418     // A competing allocation might beat us to the expansion space,
3419     // so we may go around the loop again if allocation fails again.
3420     if (GCExpandToAllocateDelayMillis > 0) {
3421       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3422     }
3423   }
3424 }
3425 
3426 
3427 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3428   assert_locked_or_safepoint(ExpandHeap_lock);
3429   // Shrink committed space
3430   _virtual_space.shrink_by(bytes);
3431   // Shrink space; this also shrinks the space's BOT
3432   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3433   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3434   // Shrink the shared block offset array
3435   _bts->resize(new_word_size);
3436   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3437   // Shrink the card table
3438   Universe::heap()->barrier_set()->resize_covered_region(mr);
3439 
3440   if (Verbose && PrintGC) {
3441     size_t new_mem_size = _virtual_space.committed_size();
3442     size_t old_mem_size = new_mem_size + bytes;
3443     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3444                   name(), old_mem_size/K, new_mem_size/K);
3445   }
3446 }
3447 
3448 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3449   assert_locked_or_safepoint(Heap_lock);
3450   size_t size = ReservedSpace::page_align_size_down(bytes);
3451   // Only shrink if a compaction was done so that all the free space
3452   // in the generation is in a contiguous block at the end.
3453   if (size > 0 && did_compact()) {
3454     shrink_by(size);
3455   }
3456 }
3457 
3458 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3459   assert_locked_or_safepoint(Heap_lock);
3460   bool result = _virtual_space.expand_by(bytes);
3461   if (result) {
3462     size_t new_word_size =
3463       heap_word_size(_virtual_space.committed_size());
3464     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3465     _bts->resize(new_word_size);  // resize the block offset shared array
3466     Universe::heap()->barrier_set()->resize_covered_region(mr);
3467     // Hmmmm... why doesn't CFLS::set_end verify locking?
3468     // This is quite ugly; FIX ME XXX
3469     _cmsSpace->assert_locked(freelistLock());
3470     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3471 
3472     // update the space and generation capacity counters
3473     if (UsePerfData) {
3474       _space_counters->update_capacity();
3475       _gen_counters->update_all();
3476     }
3477 
3478     if (Verbose && PrintGC) {
3479       size_t new_mem_size = _virtual_space.committed_size();
3480       size_t old_mem_size = new_mem_size - bytes;
3481       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3482                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3483     }
3484   }
3485   return result;
3486 }
3487 
3488 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3489   assert_locked_or_safepoint(Heap_lock);
3490   bool success = true;
3491   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3492   if (remaining_bytes > 0) {
3493     success = grow_by(remaining_bytes);
3494     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3495   }
3496   return success;
3497 }
3498 
3499 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3500   assert_locked_or_safepoint(Heap_lock);
3501   assert_lock_strong(freelistLock());
3502   if (PrintGCDetails && Verbose) {
3503     warning("Shrinking of CMS not yet implemented");
3504   }
3505   return;
3506 }
3507 
3508 
3509 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3510 // phases.
3511 class CMSPhaseAccounting: public StackObj {
3512  public:
3513   CMSPhaseAccounting(CMSCollector *collector,
3514                      const char *phase,
3515                      bool print_cr = true);
3516   ~CMSPhaseAccounting();
3517 
3518  private:
3519   CMSCollector *_collector;
3520   const char *_phase;
3521   elapsedTimer _wallclock;
3522   bool _print_cr;
3523 
3524  public:
3525   // Not MT-safe; so do not pass around these StackObj's
3526   // where they may be accessed by other threads.
3527   jlong wallclock_millis() {
3528     assert(_wallclock.is_active(), "Wall clock should not stop");
3529     _wallclock.stop();  // to record time
3530     jlong ret = _wallclock.milliseconds();
3531     _wallclock.start(); // restart
3532     return ret;
3533   }
3534 };
3535 
3536 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3537                                        const char *phase,
3538                                        bool print_cr) :
3539   _collector(collector), _phase(phase), _print_cr(print_cr) {
3540 
3541   if (PrintCMSStatistics != 0) {
3542     _collector->resetYields();
3543   }
3544   if (PrintGCDetails) {
3545     gclog_or_tty->date_stamp(PrintGCDateStamps);
3546     gclog_or_tty->stamp(PrintGCTimeStamps);
3547     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3548       _collector->cmsGen()->short_name(), _phase);
3549   }
3550   _collector->resetTimer();
3551   _wallclock.start();
3552   _collector->startTimer();
3553 }
3554 
3555 CMSPhaseAccounting::~CMSPhaseAccounting() {
3556   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3557   _collector->stopTimer();
3558   _wallclock.stop();
3559   if (PrintGCDetails) {
3560     gclog_or_tty->date_stamp(PrintGCDateStamps);
3561     gclog_or_tty->stamp(PrintGCTimeStamps);
3562     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3563                  _collector->cmsGen()->short_name(),
3564                  _phase, _collector->timerValue(), _wallclock.seconds());
3565     if (_print_cr) {
3566       gclog_or_tty->print_cr("");
3567     }
3568     if (PrintCMSStatistics != 0) {
3569       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3570                     _collector->yields());
3571     }
3572   }
3573 }
3574 
3575 // CMS work
3576 
3577 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3578 class CMSParMarkTask : public AbstractGangTask {
3579  protected:
3580   CMSCollector*     _collector;
3581   int               _n_workers;
3582   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3583       AbstractGangTask(name),
3584       _collector(collector),
3585       _n_workers(n_workers) {}
3586   // Work method in support of parallel rescan ... of young gen spaces
3587   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3588                              ContiguousSpace* space,
3589                              HeapWord** chunk_array, size_t chunk_top);
3590   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3591 };
3592 
3593 // Parallel initial mark task
3594 class CMSParInitialMarkTask: public CMSParMarkTask {
3595  public:
3596   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3597       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3598                      collector, n_workers) {}
3599   void work(uint worker_id);
3600 };
3601 
3602 // Checkpoint the roots into this generation from outside
3603 // this generation. [Note this initial checkpoint need only
3604 // be approximate -- we'll do a catch up phase subsequently.]
3605 void CMSCollector::checkpointRootsInitial(bool asynch) {
3606   assert(_collectorState == InitialMarking, "Wrong collector state");
3607   check_correct_thread_executing();
3608   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3609 
3610   save_heap_summary();
3611   report_heap_summary(GCWhen::BeforeGC);
3612 
3613   ReferenceProcessor* rp = ref_processor();
3614   SpecializationStats::clear();
3615   assert(_restart_addr == NULL, "Control point invariant");
3616   if (asynch) {
3617     // acquire locks for subsequent manipulations
3618     MutexLockerEx x(bitMapLock(),
3619                     Mutex::_no_safepoint_check_flag);
3620     checkpointRootsInitialWork(asynch);
3621     // enable ("weak") refs discovery
3622     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3623     _collectorState = Marking;
3624   } else {
3625     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3626     // which recognizes if we are a CMS generation, and doesn't try to turn on
3627     // discovery; verify that they aren't meddling.
3628     assert(!rp->discovery_is_atomic(),
3629            "incorrect setting of discovery predicate");
3630     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3631            "ref discovery for this generation kind");
3632     // already have locks
3633     checkpointRootsInitialWork(asynch);
3634     // now enable ("weak") refs discovery
3635     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3636     _collectorState = Marking;
3637   }
3638   SpecializationStats::print();
3639 }
3640 
3641 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3642   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3643   assert(_collectorState == InitialMarking, "just checking");
3644 
3645   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3646   // precede our marking with a collection of all
3647   // younger generations to keep floating garbage to a minimum.
3648   // XXX: we won't do this for now -- it's an optimization to be done later.
3649 
3650   // already have locks
3651   assert_lock_strong(bitMapLock());
3652   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3653 
3654   // Setup the verification and class unloading state for this
3655   // CMS collection cycle.
3656   setup_cms_unloading_and_verification_state();
3657 
3658   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3659     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3660   if (UseAdaptiveSizePolicy) {
3661     size_policy()->checkpoint_roots_initial_begin();
3662   }
3663 
3664   // Reset all the PLAB chunk arrays if necessary.
3665   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3666     reset_survivor_plab_arrays();
3667   }
3668 
3669   ResourceMark rm;
3670   HandleMark  hm;
3671 
3672   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3673   GenCollectedHeap* gch = GenCollectedHeap::heap();
3674 
3675   verify_work_stacks_empty();
3676   verify_overflow_empty();
3677 
3678   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3679   // Update the saved marks which may affect the root scans.
3680   gch->save_marks();
3681 
3682   // weak reference processing has not started yet.
3683   ref_processor()->set_enqueuing_is_done(false);
3684 
3685   // Need to remember all newly created CLDs,
3686   // so that we can guarantee that the remark finds them.
3687   ClassLoaderDataGraph::remember_new_clds(true);
3688 
3689   // Whenever a CLD is found, it will be claimed before proceeding to mark
3690   // the klasses. The claimed marks need to be cleared before marking starts.
3691   ClassLoaderDataGraph::clear_claimed_marks();
3692 
3693   if (CMSPrintEdenSurvivorChunks) {
3694     print_eden_and_survivor_chunk_arrays();
3695   }
3696 
3697   {
3698     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3699     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3700       // The parallel version.
3701       FlexibleWorkGang* workers = gch->workers();
3702       assert(workers != NULL, "Need parallel worker threads.");
3703       int n_workers = workers->active_workers();
3704       CMSParInitialMarkTask tsk(this, n_workers);
3705       gch->set_par_threads(n_workers);
3706       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3707       if (n_workers > 1) {
3708         GenCollectedHeap::StrongRootsScope srs(gch);
3709         workers->run_task(&tsk);
3710       } else {
3711         GenCollectedHeap::StrongRootsScope srs(gch);
3712         tsk.work(0);
3713       }
3714       gch->set_par_threads(0);
3715     } else {
3716       // The serial version.
3717       CMKlassClosure klass_closure(&notOlder);
3718       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3719       gch->gen_process_strong_roots(_cmsGen->level(),
3720                                     true,   // younger gens are roots
3721                                     true,   // activate StrongRootsScope
3722                                     SharedHeap::ScanningOption(roots_scanning_options()),
3723                                     &notOlder,
3724                                     NULL,
3725                                     &klass_closure);
3726     }
3727   }
3728 
3729   // Clear mod-union table; it will be dirtied in the prologue of
3730   // CMS generation per each younger generation collection.
3731 
3732   assert(_modUnionTable.isAllClear(),
3733        "Was cleared in most recent final checkpoint phase"
3734        " or no bits are set in the gc_prologue before the start of the next "
3735        "subsequent marking phase.");
3736 
3737   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3738 
3739   // Save the end of the used_region of the constituent generations
3740   // to be used to limit the extent of sweep in each generation.
3741   save_sweep_limits();
3742   if (UseAdaptiveSizePolicy) {
3743     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3744   }
3745   verify_overflow_empty();
3746 }
3747 
3748 bool CMSCollector::markFromRoots(bool asynch) {
3749   // we might be tempted to assert that:
3750   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3751   //        "inconsistent argument?");
3752   // However that wouldn't be right, because it's possible that
3753   // a safepoint is indeed in progress as a younger generation
3754   // stop-the-world GC happens even as we mark in this generation.
3755   assert(_collectorState == Marking, "inconsistent state?");
3756   check_correct_thread_executing();
3757   verify_overflow_empty();
3758 
3759   bool res;
3760   if (asynch) {
3761 
3762     // Start the timers for adaptive size policy for the concurrent phases
3763     // Do it here so that the foreground MS can use the concurrent
3764     // timer since a foreground MS might has the sweep done concurrently
3765     // or STW.
3766     if (UseAdaptiveSizePolicy) {
3767       size_policy()->concurrent_marking_begin();
3768     }
3769 
3770     // Weak ref discovery note: We may be discovering weak
3771     // refs in this generation concurrent (but interleaved) with
3772     // weak ref discovery by a younger generation collector.
3773 
3774     CMSTokenSyncWithLocks ts(true, bitMapLock());
3775     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3776     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3777     res = markFromRootsWork(asynch);
3778     if (res) {
3779       _collectorState = Precleaning;
3780     } else { // We failed and a foreground collection wants to take over
3781       assert(_foregroundGCIsActive, "internal state inconsistency");
3782       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3783       if (PrintGCDetails) {
3784         gclog_or_tty->print_cr("bailing out to foreground collection");
3785       }
3786     }
3787     if (UseAdaptiveSizePolicy) {
3788       size_policy()->concurrent_marking_end();
3789     }
3790   } else {
3791     assert(SafepointSynchronize::is_at_safepoint(),
3792            "inconsistent with asynch == false");
3793     if (UseAdaptiveSizePolicy) {
3794       size_policy()->ms_collection_marking_begin();
3795     }
3796     // already have locks
3797     res = markFromRootsWork(asynch);
3798     _collectorState = FinalMarking;
3799     if (UseAdaptiveSizePolicy) {
3800       GenCollectedHeap* gch = GenCollectedHeap::heap();
3801       size_policy()->ms_collection_marking_end(gch->gc_cause());
3802     }
3803   }
3804   verify_overflow_empty();
3805   return res;
3806 }
3807 
3808 bool CMSCollector::markFromRootsWork(bool asynch) {
3809   // iterate over marked bits in bit map, doing a full scan and mark
3810   // from these roots using the following algorithm:
3811   // . if oop is to the right of the current scan pointer,
3812   //   mark corresponding bit (we'll process it later)
3813   // . else (oop is to left of current scan pointer)
3814   //   push oop on marking stack
3815   // . drain the marking stack
3816 
3817   // Note that when we do a marking step we need to hold the
3818   // bit map lock -- recall that direct allocation (by mutators)
3819   // and promotion (by younger generation collectors) is also
3820   // marking the bit map. [the so-called allocate live policy.]
3821   // Because the implementation of bit map marking is not
3822   // robust wrt simultaneous marking of bits in the same word,
3823   // we need to make sure that there is no such interference
3824   // between concurrent such updates.
3825 
3826   // already have locks
3827   assert_lock_strong(bitMapLock());
3828 
3829   verify_work_stacks_empty();
3830   verify_overflow_empty();
3831   bool result = false;
3832   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3833     result = do_marking_mt(asynch);
3834   } else {
3835     result = do_marking_st(asynch);
3836   }
3837   return result;
3838 }
3839 
3840 // Forward decl
3841 class CMSConcMarkingTask;
3842 
3843 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3844   CMSCollector*       _collector;
3845   CMSConcMarkingTask* _task;
3846  public:
3847   virtual void yield();
3848 
3849   // "n_threads" is the number of threads to be terminated.
3850   // "queue_set" is a set of work queues of other threads.
3851   // "collector" is the CMS collector associated with this task terminator.
3852   // "yield" indicates whether we need the gang as a whole to yield.
3853   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3854     ParallelTaskTerminator(n_threads, queue_set),
3855     _collector(collector) { }
3856 
3857   void set_task(CMSConcMarkingTask* task) {
3858     _task = task;
3859   }
3860 };
3861 
3862 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3863   CMSConcMarkingTask* _task;
3864  public:
3865   bool should_exit_termination();
3866   void set_task(CMSConcMarkingTask* task) {
3867     _task = task;
3868   }
3869 };
3870 
3871 // MT Concurrent Marking Task
3872 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3873   CMSCollector* _collector;
3874   int           _n_workers;                  // requested/desired # workers
3875   bool          _asynch;
3876   bool          _result;
3877   CompactibleFreeListSpace*  _cms_space;
3878   char          _pad_front[64];   // padding to ...
3879   HeapWord*     _global_finger;   // ... avoid sharing cache line
3880   char          _pad_back[64];
3881   HeapWord*     _restart_addr;
3882 
3883   //  Exposed here for yielding support
3884   Mutex* const _bit_map_lock;
3885 
3886   // The per thread work queues, available here for stealing
3887   OopTaskQueueSet*  _task_queues;
3888 
3889   // Termination (and yielding) support
3890   CMSConcMarkingTerminator _term;
3891   CMSConcMarkingTerminatorTerminator _term_term;
3892 
3893  public:
3894   CMSConcMarkingTask(CMSCollector* collector,
3895                  CompactibleFreeListSpace* cms_space,
3896                  bool asynch,
3897                  YieldingFlexibleWorkGang* workers,
3898                  OopTaskQueueSet* task_queues):
3899     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3900     _collector(collector),
3901     _cms_space(cms_space),
3902     _asynch(asynch), _n_workers(0), _result(true),
3903     _task_queues(task_queues),
3904     _term(_n_workers, task_queues, _collector),
3905     _bit_map_lock(collector->bitMapLock())
3906   {
3907     _requested_size = _n_workers;
3908     _term.set_task(this);
3909     _term_term.set_task(this);
3910     _restart_addr = _global_finger = _cms_space->bottom();
3911   }
3912 
3913 
3914   OopTaskQueueSet* task_queues()  { return _task_queues; }
3915 
3916   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3917 
3918   HeapWord** global_finger_addr() { return &_global_finger; }
3919 
3920   CMSConcMarkingTerminator* terminator() { return &_term; }
3921 
3922   virtual void set_for_termination(int active_workers) {
3923     terminator()->reset_for_reuse(active_workers);
3924   }
3925 
3926   void work(uint worker_id);
3927   bool should_yield() {
3928     return    ConcurrentMarkSweepThread::should_yield()
3929            && !_collector->foregroundGCIsActive()
3930            && _asynch;
3931   }
3932 
3933   virtual void coordinator_yield();  // stuff done by coordinator
3934   bool result() { return _result; }
3935 
3936   void reset(HeapWord* ra) {
3937     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3938     _restart_addr = _global_finger = ra;
3939     _term.reset_for_reuse();
3940   }
3941 
3942   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3943                                            OopTaskQueue* work_q);
3944 
3945  private:
3946   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3947   void do_work_steal(int i);
3948   void bump_global_finger(HeapWord* f);
3949 };
3950 
3951 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3952   assert(_task != NULL, "Error");
3953   return _task->yielding();
3954   // Note that we do not need the disjunct || _task->should_yield() above
3955   // because we want terminating threads to yield only if the task
3956   // is already in the midst of yielding, which happens only after at least one
3957   // thread has yielded.
3958 }
3959 
3960 void CMSConcMarkingTerminator::yield() {
3961   if (_task->should_yield()) {
3962     _task->yield();
3963   } else {
3964     ParallelTaskTerminator::yield();
3965   }
3966 }
3967 
3968 ////////////////////////////////////////////////////////////////
3969 // Concurrent Marking Algorithm Sketch
3970 ////////////////////////////////////////////////////////////////
3971 // Until all tasks exhausted (both spaces):
3972 // -- claim next available chunk
3973 // -- bump global finger via CAS
3974 // -- find first object that starts in this chunk
3975 //    and start scanning bitmap from that position
3976 // -- scan marked objects for oops
3977 // -- CAS-mark target, and if successful:
3978 //    . if target oop is above global finger (volatile read)
3979 //      nothing to do
3980 //    . if target oop is in chunk and above local finger
3981 //        then nothing to do
3982 //    . else push on work-queue
3983 // -- Deal with possible overflow issues:
3984 //    . local work-queue overflow causes stuff to be pushed on
3985 //      global (common) overflow queue
3986 //    . always first empty local work queue
3987 //    . then get a batch of oops from global work queue if any
3988 //    . then do work stealing
3989 // -- When all tasks claimed (both spaces)
3990 //    and local work queue empty,
3991 //    then in a loop do:
3992 //    . check global overflow stack; steal a batch of oops and trace
3993 //    . try to steal from other threads oif GOS is empty
3994 //    . if neither is available, offer termination
3995 // -- Terminate and return result
3996 //
3997 void CMSConcMarkingTask::work(uint worker_id) {
3998   elapsedTimer _timer;
3999   ResourceMark rm;
4000   HandleMark hm;
4001 
4002   DEBUG_ONLY(_collector->verify_overflow_empty();)
4003 
4004   // Before we begin work, our work queue should be empty
4005   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4006   // Scan the bitmap covering _cms_space, tracing through grey objects.
4007   _timer.start();
4008   do_scan_and_mark(worker_id, _cms_space);
4009   _timer.stop();
4010   if (PrintCMSStatistics != 0) {
4011     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4012       worker_id, _timer.seconds());
4013       // XXX: need xxx/xxx type of notation, two timers
4014   }
4015 
4016   // ... do work stealing
4017   _timer.reset();
4018   _timer.start();
4019   do_work_steal(worker_id);
4020   _timer.stop();
4021   if (PrintCMSStatistics != 0) {
4022     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4023       worker_id, _timer.seconds());
4024       // XXX: need xxx/xxx type of notation, two timers
4025   }
4026   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4027   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4028   // Note that under the current task protocol, the
4029   // following assertion is true even of the spaces
4030   // expanded since the completion of the concurrent
4031   // marking. XXX This will likely change under a strict
4032   // ABORT semantics.
4033   // After perm removal the comparison was changed to
4034   // greater than or equal to from strictly greater than.
4035   // Before perm removal the highest address sweep would
4036   // have been at the end of perm gen but now is at the
4037   // end of the tenured gen.
4038   assert(_global_finger >=  _cms_space->end(),
4039          "All tasks have been completed");
4040   DEBUG_ONLY(_collector->verify_overflow_empty();)
4041 }
4042 
4043 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4044   HeapWord* read = _global_finger;
4045   HeapWord* cur  = read;
4046   while (f > read) {
4047     cur = read;
4048     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4049     if (cur == read) {
4050       // our cas succeeded
4051       assert(_global_finger >= f, "protocol consistency");
4052       break;
4053     }
4054   }
4055 }
4056 
4057 // This is really inefficient, and should be redone by
4058 // using (not yet available) block-read and -write interfaces to the
4059 // stack and the work_queue. XXX FIX ME !!!
4060 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4061                                                       OopTaskQueue* work_q) {
4062   // Fast lock-free check
4063   if (ovflw_stk->length() == 0) {
4064     return false;
4065   }
4066   assert(work_q->size() == 0, "Shouldn't steal");
4067   MutexLockerEx ml(ovflw_stk->par_lock(),
4068                    Mutex::_no_safepoint_check_flag);
4069   // Grab up to 1/4 the size of the work queue
4070   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4071                     (size_t)ParGCDesiredObjsFromOverflowList);
4072   num = MIN2(num, ovflw_stk->length());
4073   for (int i = (int) num; i > 0; i--) {
4074     oop cur = ovflw_stk->pop();
4075     assert(cur != NULL, "Counted wrong?");
4076     work_q->push(cur);
4077   }
4078   return num > 0;
4079 }
4080 
4081 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4082   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4083   int n_tasks = pst->n_tasks();
4084   // We allow that there may be no tasks to do here because
4085   // we are restarting after a stack overflow.
4086   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4087   uint nth_task = 0;
4088 
4089   HeapWord* aligned_start = sp->bottom();
4090   if (sp->used_region().contains(_restart_addr)) {
4091     // Align down to a card boundary for the start of 0th task
4092     // for this space.
4093     aligned_start =
4094       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4095                                  CardTableModRefBS::card_size);
4096   }
4097 
4098   size_t chunk_size = sp->marking_task_size();
4099   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4100     // Having claimed the nth task in this space,
4101     // compute the chunk that it corresponds to:
4102     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4103                                aligned_start + (nth_task+1)*chunk_size);
4104     // Try and bump the global finger via a CAS;
4105     // note that we need to do the global finger bump
4106     // _before_ taking the intersection below, because
4107     // the task corresponding to that region will be
4108     // deemed done even if the used_region() expands
4109     // because of allocation -- as it almost certainly will
4110     // during start-up while the threads yield in the
4111     // closure below.
4112     HeapWord* finger = span.end();
4113     bump_global_finger(finger);   // atomically
4114     // There are null tasks here corresponding to chunks
4115     // beyond the "top" address of the space.
4116     span = span.intersection(sp->used_region());
4117     if (!span.is_empty()) {  // Non-null task
4118       HeapWord* prev_obj;
4119       assert(!span.contains(_restart_addr) || nth_task == 0,
4120              "Inconsistency");
4121       if (nth_task == 0) {
4122         // For the 0th task, we'll not need to compute a block_start.
4123         if (span.contains(_restart_addr)) {
4124           // In the case of a restart because of stack overflow,
4125           // we might additionally skip a chunk prefix.
4126           prev_obj = _restart_addr;
4127         } else {
4128           prev_obj = span.start();
4129         }
4130       } else {
4131         // We want to skip the first object because
4132         // the protocol is to scan any object in its entirety
4133         // that _starts_ in this span; a fortiori, any
4134         // object starting in an earlier span is scanned
4135         // as part of an earlier claimed task.
4136         // Below we use the "careful" version of block_start
4137         // so we do not try to navigate uninitialized objects.
4138         prev_obj = sp->block_start_careful(span.start());
4139         // Below we use a variant of block_size that uses the
4140         // Printezis bits to avoid waiting for allocated
4141         // objects to become initialized/parsable.
4142         while (prev_obj < span.start()) {
4143           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4144           if (sz > 0) {
4145             prev_obj += sz;
4146           } else {
4147             // In this case we may end up doing a bit of redundant
4148             // scanning, but that appears unavoidable, short of
4149             // locking the free list locks; see bug 6324141.
4150             break;
4151           }
4152         }
4153       }
4154       if (prev_obj < span.end()) {
4155         MemRegion my_span = MemRegion(prev_obj, span.end());
4156         // Do the marking work within a non-empty span --
4157         // the last argument to the constructor indicates whether the
4158         // iteration should be incremental with periodic yields.
4159         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4160                                     &_collector->_markBitMap,
4161                                     work_queue(i),
4162                                     &_collector->_markStack,
4163                                     _asynch);
4164         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4165       } // else nothing to do for this task
4166     }   // else nothing to do for this task
4167   }
4168   // We'd be tempted to assert here that since there are no
4169   // more tasks left to claim in this space, the global_finger
4170   // must exceed space->top() and a fortiori space->end(). However,
4171   // that would not quite be correct because the bumping of
4172   // global_finger occurs strictly after the claiming of a task,
4173   // so by the time we reach here the global finger may not yet
4174   // have been bumped up by the thread that claimed the last
4175   // task.
4176   pst->all_tasks_completed();
4177 }
4178 
4179 class Par_ConcMarkingClosure: public CMSOopClosure {
4180  private:
4181   CMSCollector* _collector;
4182   CMSConcMarkingTask* _task;
4183   MemRegion     _span;
4184   CMSBitMap*    _bit_map;
4185   CMSMarkStack* _overflow_stack;
4186   OopTaskQueue* _work_queue;
4187  protected:
4188   DO_OOP_WORK_DEFN
4189  public:
4190   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4191                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4192     CMSOopClosure(collector->ref_processor()),
4193     _collector(collector),
4194     _task(task),
4195     _span(collector->_span),
4196     _work_queue(work_queue),
4197     _bit_map(bit_map),
4198     _overflow_stack(overflow_stack)
4199   { }
4200   virtual void do_oop(oop* p);
4201   virtual void do_oop(narrowOop* p);
4202 
4203   void trim_queue(size_t max);
4204   void handle_stack_overflow(HeapWord* lost);
4205   void do_yield_check() {
4206     if (_task->should_yield()) {
4207       _task->yield();
4208     }
4209   }
4210 };
4211 
4212 // Grey object scanning during work stealing phase --
4213 // the salient assumption here is that any references
4214 // that are in these stolen objects being scanned must
4215 // already have been initialized (else they would not have
4216 // been published), so we do not need to check for
4217 // uninitialized objects before pushing here.
4218 void Par_ConcMarkingClosure::do_oop(oop obj) {
4219   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4220   HeapWord* addr = (HeapWord*)obj;
4221   // Check if oop points into the CMS generation
4222   // and is not marked
4223   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4224     // a white object ...
4225     // If we manage to "claim" the object, by being the
4226     // first thread to mark it, then we push it on our
4227     // marking stack
4228     if (_bit_map->par_mark(addr)) {     // ... now grey
4229       // push on work queue (grey set)
4230       bool simulate_overflow = false;
4231       NOT_PRODUCT(
4232         if (CMSMarkStackOverflowALot &&
4233             _collector->simulate_overflow()) {
4234           // simulate a stack overflow
4235           simulate_overflow = true;
4236         }
4237       )
4238       if (simulate_overflow ||
4239           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4240         // stack overflow
4241         if (PrintCMSStatistics != 0) {
4242           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4243                                  SIZE_FORMAT, _overflow_stack->capacity());
4244         }
4245         // We cannot assert that the overflow stack is full because
4246         // it may have been emptied since.
4247         assert(simulate_overflow ||
4248                _work_queue->size() == _work_queue->max_elems(),
4249               "Else push should have succeeded");
4250         handle_stack_overflow(addr);
4251       }
4252     } // Else, some other thread got there first
4253     do_yield_check();
4254   }
4255 }
4256 
4257 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4258 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4259 
4260 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4261   while (_work_queue->size() > max) {
4262     oop new_oop;
4263     if (_work_queue->pop_local(new_oop)) {
4264       assert(new_oop->is_oop(), "Should be an oop");
4265       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4266       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4267       new_oop->oop_iterate(this);  // do_oop() above
4268       do_yield_check();
4269     }
4270   }
4271 }
4272 
4273 // Upon stack overflow, we discard (part of) the stack,
4274 // remembering the least address amongst those discarded
4275 // in CMSCollector's _restart_address.
4276 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4277   // We need to do this under a mutex to prevent other
4278   // workers from interfering with the work done below.
4279   MutexLockerEx ml(_overflow_stack->par_lock(),
4280                    Mutex::_no_safepoint_check_flag);
4281   // Remember the least grey address discarded
4282   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4283   _collector->lower_restart_addr(ra);
4284   _overflow_stack->reset();  // discard stack contents
4285   _overflow_stack->expand(); // expand the stack if possible
4286 }
4287 
4288 
4289 void CMSConcMarkingTask::do_work_steal(int i) {
4290   OopTaskQueue* work_q = work_queue(i);
4291   oop obj_to_scan;
4292   CMSBitMap* bm = &(_collector->_markBitMap);
4293   CMSMarkStack* ovflw = &(_collector->_markStack);
4294   int* seed = _collector->hash_seed(i);
4295   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4296   while (true) {
4297     cl.trim_queue(0);
4298     assert(work_q->size() == 0, "Should have been emptied above");
4299     if (get_work_from_overflow_stack(ovflw, work_q)) {
4300       // Can't assert below because the work obtained from the
4301       // overflow stack may already have been stolen from us.
4302       // assert(work_q->size() > 0, "Work from overflow stack");
4303       continue;
4304     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4305       assert(obj_to_scan->is_oop(), "Should be an oop");
4306       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4307       obj_to_scan->oop_iterate(&cl);
4308     } else if (terminator()->offer_termination(&_term_term)) {
4309       assert(work_q->size() == 0, "Impossible!");
4310       break;
4311     } else if (yielding() || should_yield()) {
4312       yield();
4313     }
4314   }
4315 }
4316 
4317 // This is run by the CMS (coordinator) thread.
4318 void CMSConcMarkingTask::coordinator_yield() {
4319   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4320          "CMS thread should hold CMS token");
4321   // First give up the locks, then yield, then re-lock
4322   // We should probably use a constructor/destructor idiom to
4323   // do this unlock/lock or modify the MutexUnlocker class to
4324   // serve our purpose. XXX
4325   assert_lock_strong(_bit_map_lock);
4326   _bit_map_lock->unlock();
4327   ConcurrentMarkSweepThread::desynchronize(true);
4328   ConcurrentMarkSweepThread::acknowledge_yield_request();
4329   _collector->stopTimer();
4330   if (PrintCMSStatistics != 0) {
4331     _collector->incrementYields();
4332   }
4333   _collector->icms_wait();
4334 
4335   // It is possible for whichever thread initiated the yield request
4336   // not to get a chance to wake up and take the bitmap lock between
4337   // this thread releasing it and reacquiring it. So, while the
4338   // should_yield() flag is on, let's sleep for a bit to give the
4339   // other thread a chance to wake up. The limit imposed on the number
4340   // of iterations is defensive, to avoid any unforseen circumstances
4341   // putting us into an infinite loop. Since it's always been this
4342   // (coordinator_yield()) method that was observed to cause the
4343   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4344   // which is by default non-zero. For the other seven methods that
4345   // also perform the yield operation, as are using a different
4346   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4347   // can enable the sleeping for those methods too, if necessary.
4348   // See 6442774.
4349   //
4350   // We really need to reconsider the synchronization between the GC
4351   // thread and the yield-requesting threads in the future and we
4352   // should really use wait/notify, which is the recommended
4353   // way of doing this type of interaction. Additionally, we should
4354   // consolidate the eight methods that do the yield operation and they
4355   // are almost identical into one for better maintainability and
4356   // readability. See 6445193.
4357   //
4358   // Tony 2006.06.29
4359   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4360                    ConcurrentMarkSweepThread::should_yield() &&
4361                    !CMSCollector::foregroundGCIsActive(); ++i) {
4362     os::sleep(Thread::current(), 1, false);
4363     ConcurrentMarkSweepThread::acknowledge_yield_request();
4364   }
4365 
4366   ConcurrentMarkSweepThread::synchronize(true);
4367   _bit_map_lock->lock_without_safepoint_check();
4368   _collector->startTimer();
4369 }
4370 
4371 bool CMSCollector::do_marking_mt(bool asynch) {
4372   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4373   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4374                                        conc_workers()->total_workers(),
4375                                        conc_workers()->active_workers(),
4376                                        Threads::number_of_non_daemon_threads());
4377   conc_workers()->set_active_workers(num_workers);
4378 
4379   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4380 
4381   CMSConcMarkingTask tsk(this,
4382                          cms_space,
4383                          asynch,
4384                          conc_workers(),
4385                          task_queues());
4386 
4387   // Since the actual number of workers we get may be different
4388   // from the number we requested above, do we need to do anything different
4389   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4390   // class?? XXX
4391   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4392 
4393   // Refs discovery is already non-atomic.
4394   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4395   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4396   conc_workers()->start_task(&tsk);
4397   while (tsk.yielded()) {
4398     tsk.coordinator_yield();
4399     conc_workers()->continue_task(&tsk);
4400   }
4401   // If the task was aborted, _restart_addr will be non-NULL
4402   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4403   while (_restart_addr != NULL) {
4404     // XXX For now we do not make use of ABORTED state and have not
4405     // yet implemented the right abort semantics (even in the original
4406     // single-threaded CMS case). That needs some more investigation
4407     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4408     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4409     // If _restart_addr is non-NULL, a marking stack overflow
4410     // occurred; we need to do a fresh marking iteration from the
4411     // indicated restart address.
4412     if (_foregroundGCIsActive && asynch) {
4413       // We may be running into repeated stack overflows, having
4414       // reached the limit of the stack size, while making very
4415       // slow forward progress. It may be best to bail out and
4416       // let the foreground collector do its job.
4417       // Clear _restart_addr, so that foreground GC
4418       // works from scratch. This avoids the headache of
4419       // a "rescan" which would otherwise be needed because
4420       // of the dirty mod union table & card table.
4421       _restart_addr = NULL;
4422       return false;
4423     }
4424     // Adjust the task to restart from _restart_addr
4425     tsk.reset(_restart_addr);
4426     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4427                   _restart_addr);
4428     _restart_addr = NULL;
4429     // Get the workers going again
4430     conc_workers()->start_task(&tsk);
4431     while (tsk.yielded()) {
4432       tsk.coordinator_yield();
4433       conc_workers()->continue_task(&tsk);
4434     }
4435   }
4436   assert(tsk.completed(), "Inconsistency");
4437   assert(tsk.result() == true, "Inconsistency");
4438   return true;
4439 }
4440 
4441 bool CMSCollector::do_marking_st(bool asynch) {
4442   ResourceMark rm;
4443   HandleMark   hm;
4444 
4445   // Temporarily make refs discovery single threaded (non-MT)
4446   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4447   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4448     &_markStack, CMSYield && asynch);
4449   // the last argument to iterate indicates whether the iteration
4450   // should be incremental with periodic yields.
4451   _markBitMap.iterate(&markFromRootsClosure);
4452   // If _restart_addr is non-NULL, a marking stack overflow
4453   // occurred; we need to do a fresh iteration from the
4454   // indicated restart address.
4455   while (_restart_addr != NULL) {
4456     if (_foregroundGCIsActive && asynch) {
4457       // We may be running into repeated stack overflows, having
4458       // reached the limit of the stack size, while making very
4459       // slow forward progress. It may be best to bail out and
4460       // let the foreground collector do its job.
4461       // Clear _restart_addr, so that foreground GC
4462       // works from scratch. This avoids the headache of
4463       // a "rescan" which would otherwise be needed because
4464       // of the dirty mod union table & card table.
4465       _restart_addr = NULL;
4466       return false;  // indicating failure to complete marking
4467     }
4468     // Deal with stack overflow:
4469     // we restart marking from _restart_addr
4470     HeapWord* ra = _restart_addr;
4471     markFromRootsClosure.reset(ra);
4472     _restart_addr = NULL;
4473     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4474   }
4475   return true;
4476 }
4477 
4478 void CMSCollector::preclean() {
4479   check_correct_thread_executing();
4480   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4481   verify_work_stacks_empty();
4482   verify_overflow_empty();
4483   _abort_preclean = false;
4484   if (CMSPrecleaningEnabled) {
4485     if (!CMSEdenChunksRecordAlways) {
4486       _eden_chunk_index = 0;
4487     }
4488     size_t used = get_eden_used();
4489     size_t capacity = get_eden_capacity();
4490     // Don't start sampling unless we will get sufficiently
4491     // many samples.
4492     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4493                 * CMSScheduleRemarkEdenPenetration)) {
4494       _start_sampling = true;
4495     } else {
4496       _start_sampling = false;
4497     }
4498     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4499     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4500     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4501   }
4502   CMSTokenSync x(true); // is cms thread
4503   if (CMSPrecleaningEnabled) {
4504     sample_eden();
4505     _collectorState = AbortablePreclean;
4506   } else {
4507     _collectorState = FinalMarking;
4508   }
4509   verify_work_stacks_empty();
4510   verify_overflow_empty();
4511 }
4512 
4513 // Try and schedule the remark such that young gen
4514 // occupancy is CMSScheduleRemarkEdenPenetration %.
4515 void CMSCollector::abortable_preclean() {
4516   check_correct_thread_executing();
4517   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4518   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4519 
4520   // If Eden's current occupancy is below this threshold,
4521   // immediately schedule the remark; else preclean
4522   // past the next scavenge in an effort to
4523   // schedule the pause as described above. By choosing
4524   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4525   // we will never do an actual abortable preclean cycle.
4526   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4527     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4528     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4529     // We need more smarts in the abortable preclean
4530     // loop below to deal with cases where allocation
4531     // in young gen is very very slow, and our precleaning
4532     // is running a losing race against a horde of
4533     // mutators intent on flooding us with CMS updates
4534     // (dirty cards).
4535     // One, admittedly dumb, strategy is to give up
4536     // after a certain number of abortable precleaning loops
4537     // or after a certain maximum time. We want to make
4538     // this smarter in the next iteration.
4539     // XXX FIX ME!!! YSR
4540     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4541     while (!(should_abort_preclean() ||
4542              ConcurrentMarkSweepThread::should_terminate())) {
4543       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4544       cumworkdone += workdone;
4545       loops++;
4546       // Voluntarily terminate abortable preclean phase if we have
4547       // been at it for too long.
4548       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4549           loops >= CMSMaxAbortablePrecleanLoops) {
4550         if (PrintGCDetails) {
4551           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4552         }
4553         break;
4554       }
4555       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4556         if (PrintGCDetails) {
4557           gclog_or_tty->print(" CMS: abort preclean due to time ");
4558         }
4559         break;
4560       }
4561       // If we are doing little work each iteration, we should
4562       // take a short break.
4563       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4564         // Sleep for some time, waiting for work to accumulate
4565         stopTimer();
4566         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4567         startTimer();
4568         waited++;
4569       }
4570     }
4571     if (PrintCMSStatistics > 0) {
4572       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
4573                           loops, waited, cumworkdone);
4574     }
4575   }
4576   CMSTokenSync x(true); // is cms thread
4577   if (_collectorState != Idling) {
4578     assert(_collectorState == AbortablePreclean,
4579            "Spontaneous state transition?");
4580     _collectorState = FinalMarking;
4581   } // Else, a foreground collection completed this CMS cycle.
4582   return;
4583 }
4584 
4585 // Respond to an Eden sampling opportunity
4586 void CMSCollector::sample_eden() {
4587   // Make sure a young gc cannot sneak in between our
4588   // reading and recording of a sample.
4589   assert(Thread::current()->is_ConcurrentGC_thread(),
4590          "Only the cms thread may collect Eden samples");
4591   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4592          "Should collect samples while holding CMS token");
4593   if (!_start_sampling) {
4594     return;
4595   }
4596   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4597   // is populated by the young generation.
4598   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4599     if (_eden_chunk_index < _eden_chunk_capacity) {
4600       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4601       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4602              "Unexpected state of Eden");
4603       // We'd like to check that what we just sampled is an oop-start address;
4604       // however, we cannot do that here since the object may not yet have been
4605       // initialized. So we'll instead do the check when we _use_ this sample
4606       // later.
4607       if (_eden_chunk_index == 0 ||
4608           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4609                          _eden_chunk_array[_eden_chunk_index-1])
4610            >= CMSSamplingGrain)) {
4611         _eden_chunk_index++;  // commit sample
4612       }
4613     }
4614   }
4615   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4616     size_t used = get_eden_used();
4617     size_t capacity = get_eden_capacity();
4618     assert(used <= capacity, "Unexpected state of Eden");
4619     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4620       _abort_preclean = true;
4621     }
4622   }
4623 }
4624 
4625 
4626 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4627   assert(_collectorState == Precleaning ||
4628          _collectorState == AbortablePreclean, "incorrect state");
4629   ResourceMark rm;
4630   HandleMark   hm;
4631 
4632   // Precleaning is currently not MT but the reference processor
4633   // may be set for MT.  Disable it temporarily here.
4634   ReferenceProcessor* rp = ref_processor();
4635   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4636 
4637   // Do one pass of scrubbing the discovered reference lists
4638   // to remove any reference objects with strongly-reachable
4639   // referents.
4640   if (clean_refs) {
4641     CMSPrecleanRefsYieldClosure yield_cl(this);
4642     assert(rp->span().equals(_span), "Spans should be equal");
4643     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4644                                    &_markStack, true /* preclean */);
4645     CMSDrainMarkingStackClosure complete_trace(this,
4646                                    _span, &_markBitMap, &_markStack,
4647                                    &keep_alive, true /* preclean */);
4648 
4649     // We don't want this step to interfere with a young
4650     // collection because we don't want to take CPU
4651     // or memory bandwidth away from the young GC threads
4652     // (which may be as many as there are CPUs).
4653     // Note that we don't need to protect ourselves from
4654     // interference with mutators because they can't
4655     // manipulate the discovered reference lists nor affect
4656     // the computed reachability of the referents, the
4657     // only properties manipulated by the precleaning
4658     // of these reference lists.
4659     stopTimer();
4660     CMSTokenSyncWithLocks x(true /* is cms thread */,
4661                             bitMapLock());
4662     startTimer();
4663     sample_eden();
4664 
4665     // The following will yield to allow foreground
4666     // collection to proceed promptly. XXX YSR:
4667     // The code in this method may need further
4668     // tweaking for better performance and some restructuring
4669     // for cleaner interfaces.
4670     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4671     rp->preclean_discovered_references(
4672           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4673           gc_timer);
4674   }
4675 
4676   if (clean_survivor) {  // preclean the active survivor space(s)
4677     assert(_young_gen->kind() == Generation::DefNew ||
4678            _young_gen->kind() == Generation::ParNew ||
4679            _young_gen->kind() == Generation::ASParNew,
4680          "incorrect type for cast");
4681     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4682     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4683                              &_markBitMap, &_modUnionTable,
4684                              &_markStack, true /* precleaning phase */);
4685     stopTimer();
4686     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4687                              bitMapLock());
4688     startTimer();
4689     unsigned int before_count =
4690       GenCollectedHeap::heap()->total_collections();
4691     SurvivorSpacePrecleanClosure
4692       sss_cl(this, _span, &_markBitMap, &_markStack,
4693              &pam_cl, before_count, CMSYield);
4694     dng->from()->object_iterate_careful(&sss_cl);
4695     dng->to()->object_iterate_careful(&sss_cl);
4696   }
4697   MarkRefsIntoAndScanClosure
4698     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4699              &_markStack, this, CMSYield,
4700              true /* precleaning phase */);
4701   // CAUTION: The following closure has persistent state that may need to
4702   // be reset upon a decrease in the sequence of addresses it
4703   // processes.
4704   ScanMarkedObjectsAgainCarefullyClosure
4705     smoac_cl(this, _span,
4706       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4707 
4708   // Preclean dirty cards in ModUnionTable and CardTable using
4709   // appropriate convergence criterion;
4710   // repeat CMSPrecleanIter times unless we find that
4711   // we are losing.
4712   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4713   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4714          "Bad convergence multiplier");
4715   assert(CMSPrecleanThreshold >= 100,
4716          "Unreasonably low CMSPrecleanThreshold");
4717 
4718   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4719   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4720        numIter < CMSPrecleanIter;
4721        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4722     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4723     if (Verbose && PrintGCDetails) {
4724       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
4725     }
4726     // Either there are very few dirty cards, so re-mark
4727     // pause will be small anyway, or our pre-cleaning isn't
4728     // that much faster than the rate at which cards are being
4729     // dirtied, so we might as well stop and re-mark since
4730     // precleaning won't improve our re-mark time by much.
4731     if (curNumCards <= CMSPrecleanThreshold ||
4732         (numIter > 0 &&
4733          (curNumCards * CMSPrecleanDenominator >
4734          lastNumCards * CMSPrecleanNumerator))) {
4735       numIter++;
4736       cumNumCards += curNumCards;
4737       break;
4738     }
4739   }
4740 
4741   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4742 
4743   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4744   cumNumCards += curNumCards;
4745   if (PrintGCDetails && PrintCMSStatistics != 0) {
4746     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4747                   curNumCards, cumNumCards, numIter);
4748   }
4749   return cumNumCards;   // as a measure of useful work done
4750 }
4751 
4752 // PRECLEANING NOTES:
4753 // Precleaning involves:
4754 // . reading the bits of the modUnionTable and clearing the set bits.
4755 // . For the cards corresponding to the set bits, we scan the
4756 //   objects on those cards. This means we need the free_list_lock
4757 //   so that we can safely iterate over the CMS space when scanning
4758 //   for oops.
4759 // . When we scan the objects, we'll be both reading and setting
4760 //   marks in the marking bit map, so we'll need the marking bit map.
4761 // . For protecting _collector_state transitions, we take the CGC_lock.
4762 //   Note that any races in the reading of of card table entries by the
4763 //   CMS thread on the one hand and the clearing of those entries by the
4764 //   VM thread or the setting of those entries by the mutator threads on the
4765 //   other are quite benign. However, for efficiency it makes sense to keep
4766 //   the VM thread from racing with the CMS thread while the latter is
4767 //   dirty card info to the modUnionTable. We therefore also use the
4768 //   CGC_lock to protect the reading of the card table and the mod union
4769 //   table by the CM thread.
4770 // . We run concurrently with mutator updates, so scanning
4771 //   needs to be done carefully  -- we should not try to scan
4772 //   potentially uninitialized objects.
4773 //
4774 // Locking strategy: While holding the CGC_lock, we scan over and
4775 // reset a maximal dirty range of the mod union / card tables, then lock
4776 // the free_list_lock and bitmap lock to do a full marking, then
4777 // release these locks; and repeat the cycle. This allows for a
4778 // certain amount of fairness in the sharing of these locks between
4779 // the CMS collector on the one hand, and the VM thread and the
4780 // mutators on the other.
4781 
4782 // NOTE: preclean_mod_union_table() and preclean_card_table()
4783 // further below are largely identical; if you need to modify
4784 // one of these methods, please check the other method too.
4785 
4786 size_t CMSCollector::preclean_mod_union_table(
4787   ConcurrentMarkSweepGeneration* gen,
4788   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4789   verify_work_stacks_empty();
4790   verify_overflow_empty();
4791 
4792   // strategy: starting with the first card, accumulate contiguous
4793   // ranges of dirty cards; clear these cards, then scan the region
4794   // covered by these cards.
4795 
4796   // Since all of the MUT is committed ahead, we can just use
4797   // that, in case the generations expand while we are precleaning.
4798   // It might also be fine to just use the committed part of the
4799   // generation, but we might potentially miss cards when the
4800   // generation is rapidly expanding while we are in the midst
4801   // of precleaning.
4802   HeapWord* startAddr = gen->reserved().start();
4803   HeapWord* endAddr   = gen->reserved().end();
4804 
4805   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4806 
4807   size_t numDirtyCards, cumNumDirtyCards;
4808   HeapWord *nextAddr, *lastAddr;
4809   for (cumNumDirtyCards = numDirtyCards = 0,
4810        nextAddr = lastAddr = startAddr;
4811        nextAddr < endAddr;
4812        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4813 
4814     ResourceMark rm;
4815     HandleMark   hm;
4816 
4817     MemRegion dirtyRegion;
4818     {
4819       stopTimer();
4820       // Potential yield point
4821       CMSTokenSync ts(true);
4822       startTimer();
4823       sample_eden();
4824       // Get dirty region starting at nextOffset (inclusive),
4825       // simultaneously clearing it.
4826       dirtyRegion =
4827         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4828       assert(dirtyRegion.start() >= nextAddr,
4829              "returned region inconsistent?");
4830     }
4831     // Remember where the next search should begin.
4832     // The returned region (if non-empty) is a right open interval,
4833     // so lastOffset is obtained from the right end of that
4834     // interval.
4835     lastAddr = dirtyRegion.end();
4836     // Should do something more transparent and less hacky XXX
4837     numDirtyCards =
4838       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4839 
4840     // We'll scan the cards in the dirty region (with periodic
4841     // yields for foreground GC as needed).
4842     if (!dirtyRegion.is_empty()) {
4843       assert(numDirtyCards > 0, "consistency check");
4844       HeapWord* stop_point = NULL;
4845       stopTimer();
4846       // Potential yield point
4847       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4848                                bitMapLock());
4849       startTimer();
4850       {
4851         verify_work_stacks_empty();
4852         verify_overflow_empty();
4853         sample_eden();
4854         stop_point =
4855           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4856       }
4857       if (stop_point != NULL) {
4858         // The careful iteration stopped early either because it found an
4859         // uninitialized object, or because we were in the midst of an
4860         // "abortable preclean", which should now be aborted. Redirty
4861         // the bits corresponding to the partially-scanned or unscanned
4862         // cards. We'll either restart at the next block boundary or
4863         // abort the preclean.
4864         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4865                "Should only be AbortablePreclean.");
4866         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4867         if (should_abort_preclean()) {
4868           break; // out of preclean loop
4869         } else {
4870           // Compute the next address at which preclean should pick up;
4871           // might need bitMapLock in order to read P-bits.
4872           lastAddr = next_card_start_after_block(stop_point);
4873         }
4874       }
4875     } else {
4876       assert(lastAddr == endAddr, "consistency check");
4877       assert(numDirtyCards == 0, "consistency check");
4878       break;
4879     }
4880   }
4881   verify_work_stacks_empty();
4882   verify_overflow_empty();
4883   return cumNumDirtyCards;
4884 }
4885 
4886 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4887 // below are largely identical; if you need to modify
4888 // one of these methods, please check the other method too.
4889 
4890 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4891   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4892   // strategy: it's similar to precleamModUnionTable above, in that
4893   // we accumulate contiguous ranges of dirty cards, mark these cards
4894   // precleaned, then scan the region covered by these cards.
4895   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4896   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4897 
4898   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4899 
4900   size_t numDirtyCards, cumNumDirtyCards;
4901   HeapWord *lastAddr, *nextAddr;
4902 
4903   for (cumNumDirtyCards = numDirtyCards = 0,
4904        nextAddr = lastAddr = startAddr;
4905        nextAddr < endAddr;
4906        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4907 
4908     ResourceMark rm;
4909     HandleMark   hm;
4910 
4911     MemRegion dirtyRegion;
4912     {
4913       // See comments in "Precleaning notes" above on why we
4914       // do this locking. XXX Could the locking overheads be
4915       // too high when dirty cards are sparse? [I don't think so.]
4916       stopTimer();
4917       CMSTokenSync x(true); // is cms thread
4918       startTimer();
4919       sample_eden();
4920       // Get and clear dirty region from card table
4921       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4922                                     MemRegion(nextAddr, endAddr),
4923                                     true,
4924                                     CardTableModRefBS::precleaned_card_val());
4925 
4926       assert(dirtyRegion.start() >= nextAddr,
4927              "returned region inconsistent?");
4928     }
4929     lastAddr = dirtyRegion.end();
4930     numDirtyCards =
4931       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4932 
4933     if (!dirtyRegion.is_empty()) {
4934       stopTimer();
4935       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4936       startTimer();
4937       sample_eden();
4938       verify_work_stacks_empty();
4939       verify_overflow_empty();
4940       HeapWord* stop_point =
4941         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4942       if (stop_point != NULL) {
4943         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4944                "Should only be AbortablePreclean.");
4945         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4946         if (should_abort_preclean()) {
4947           break; // out of preclean loop
4948         } else {
4949           // Compute the next address at which preclean should pick up.
4950           lastAddr = next_card_start_after_block(stop_point);
4951         }
4952       }
4953     } else {
4954       break;
4955     }
4956   }
4957   verify_work_stacks_empty();
4958   verify_overflow_empty();
4959   return cumNumDirtyCards;
4960 }
4961 
4962 class PrecleanKlassClosure : public KlassClosure {
4963   CMKlassClosure _cm_klass_closure;
4964  public:
4965   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4966   void do_klass(Klass* k) {
4967     if (k->has_accumulated_modified_oops()) {
4968       k->clear_accumulated_modified_oops();
4969 
4970       _cm_klass_closure.do_klass(k);
4971     }
4972   }
4973 };
4974 
4975 // The freelist lock is needed to prevent asserts, is it really needed?
4976 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4977 
4978   cl->set_freelistLock(freelistLock);
4979 
4980   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4981 
4982   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4983   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4984   PrecleanKlassClosure preclean_klass_closure(cl);
4985   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4986 
4987   verify_work_stacks_empty();
4988   verify_overflow_empty();
4989 }
4990 
4991 void CMSCollector::checkpointRootsFinal(bool asynch,
4992   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4993   assert(_collectorState == FinalMarking, "incorrect state transition?");
4994   check_correct_thread_executing();
4995   // world is stopped at this checkpoint
4996   assert(SafepointSynchronize::is_at_safepoint(),
4997          "world should be stopped");
4998   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4999 
5000   verify_work_stacks_empty();
5001   verify_overflow_empty();
5002 
5003   SpecializationStats::clear();
5004   if (PrintGCDetails) {
5005     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
5006                         _young_gen->used() / K,
5007                         _young_gen->capacity() / K);
5008   }
5009   if (asynch) {
5010     if (CMSScavengeBeforeRemark) {
5011       GenCollectedHeap* gch = GenCollectedHeap::heap();
5012       // Temporarily set flag to false, GCH->do_collection will
5013       // expect it to be false and set to true
5014       FlagSetting fl(gch->_is_gc_active, false);
5015       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5016         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5017       int level = _cmsGen->level() - 1;
5018       if (level >= 0) {
5019         gch->do_collection(true,        // full (i.e. force, see below)
5020                            false,       // !clear_all_soft_refs
5021                            0,           // size
5022                            false,       // is_tlab
5023                            level        // max_level
5024                           );
5025       }
5026     }
5027     FreelistLocker x(this);
5028     MutexLockerEx y(bitMapLock(),
5029                     Mutex::_no_safepoint_check_flag);
5030     assert(!init_mark_was_synchronous, "but that's impossible!");
5031     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5032   } else {
5033     // already have all the locks
5034     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5035                              init_mark_was_synchronous);
5036   }
5037   verify_work_stacks_empty();
5038   verify_overflow_empty();
5039   SpecializationStats::print();
5040 }
5041 
5042 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5043   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5044 
5045   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5046 
5047   assert(haveFreelistLocks(), "must have free list locks");
5048   assert_lock_strong(bitMapLock());
5049 
5050   if (UseAdaptiveSizePolicy) {
5051     size_policy()->checkpoint_roots_final_begin();
5052   }
5053 
5054   ResourceMark rm;
5055   HandleMark   hm;
5056 
5057   GenCollectedHeap* gch = GenCollectedHeap::heap();
5058 
5059   if (should_unload_classes()) {
5060     CodeCache::gc_prologue();
5061   }
5062   assert(haveFreelistLocks(), "must have free list locks");
5063   assert_lock_strong(bitMapLock());
5064 
5065   if (!init_mark_was_synchronous) {
5066     // We might assume that we need not fill TLAB's when
5067     // CMSScavengeBeforeRemark is set, because we may have just done
5068     // a scavenge which would have filled all TLAB's -- and besides
5069     // Eden would be empty. This however may not always be the case --
5070     // for instance although we asked for a scavenge, it may not have
5071     // happened because of a JNI critical section. We probably need
5072     // a policy for deciding whether we can in that case wait until
5073     // the critical section releases and then do the remark following
5074     // the scavenge, and skip it here. In the absence of that policy,
5075     // or of an indication of whether the scavenge did indeed occur,
5076     // we cannot rely on TLAB's having been filled and must do
5077     // so here just in case a scavenge did not happen.
5078     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5079     // Update the saved marks which may affect the root scans.
5080     gch->save_marks();
5081 
5082     if (CMSPrintEdenSurvivorChunks) {
5083       print_eden_and_survivor_chunk_arrays();
5084     }
5085 
5086     {
5087       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5088 
5089       // Note on the role of the mod union table:
5090       // Since the marker in "markFromRoots" marks concurrently with
5091       // mutators, it is possible for some reachable objects not to have been
5092       // scanned. For instance, an only reference to an object A was
5093       // placed in object B after the marker scanned B. Unless B is rescanned,
5094       // A would be collected. Such updates to references in marked objects
5095       // are detected via the mod union table which is the set of all cards
5096       // dirtied since the first checkpoint in this GC cycle and prior to
5097       // the most recent young generation GC, minus those cleaned up by the
5098       // concurrent precleaning.
5099       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5100         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5101         do_remark_parallel();
5102       } else {
5103         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5104                     _gc_timer_cm);
5105         do_remark_non_parallel();
5106       }
5107     }
5108   } else {
5109     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5110     // The initial mark was stop-world, so there's no rescanning to
5111     // do; go straight on to the next step below.
5112   }
5113   verify_work_stacks_empty();
5114   verify_overflow_empty();
5115 
5116   {
5117     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5118     refProcessingWork(asynch, clear_all_soft_refs);
5119   }
5120   verify_work_stacks_empty();
5121   verify_overflow_empty();
5122 
5123   if (should_unload_classes()) {
5124     CodeCache::gc_epilogue();
5125   }
5126   JvmtiExport::gc_epilogue();
5127 
5128   // If we encountered any (marking stack / work queue) overflow
5129   // events during the current CMS cycle, take appropriate
5130   // remedial measures, where possible, so as to try and avoid
5131   // recurrence of that condition.
5132   assert(_markStack.isEmpty(), "No grey objects");
5133   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5134                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5135   if (ser_ovflw > 0) {
5136     if (PrintCMSStatistics != 0) {
5137       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5138         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5139         ", kac_preclean="SIZE_FORMAT")",
5140         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5141         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5142     }
5143     _markStack.expand();
5144     _ser_pmc_remark_ovflw = 0;
5145     _ser_pmc_preclean_ovflw = 0;
5146     _ser_kac_preclean_ovflw = 0;
5147     _ser_kac_ovflw = 0;
5148   }
5149   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5150     if (PrintCMSStatistics != 0) {
5151       gclog_or_tty->print_cr("Work queue overflow (benign) "
5152         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5153         _par_pmc_remark_ovflw, _par_kac_ovflw);
5154     }
5155     _par_pmc_remark_ovflw = 0;
5156     _par_kac_ovflw = 0;
5157   }
5158   if (PrintCMSStatistics != 0) {
5159      if (_markStack._hit_limit > 0) {
5160        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5161                               _markStack._hit_limit);
5162      }
5163      if (_markStack._failed_double > 0) {
5164        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5165                               " current capacity "SIZE_FORMAT,
5166                               _markStack._failed_double,
5167                               _markStack.capacity());
5168      }
5169   }
5170   _markStack._hit_limit = 0;
5171   _markStack._failed_double = 0;
5172 
5173   if ((VerifyAfterGC || VerifyDuringGC) &&
5174       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5175     verify_after_remark();
5176   }
5177 
5178   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5179 
5180   // Change under the freelistLocks.
5181   _collectorState = Sweeping;
5182   // Call isAllClear() under bitMapLock
5183   assert(_modUnionTable.isAllClear(),
5184       "Should be clear by end of the final marking");
5185   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5186       "Should be clear by end of the final marking");
5187   if (UseAdaptiveSizePolicy) {
5188     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5189   }
5190 }
5191 
5192 void CMSParInitialMarkTask::work(uint worker_id) {
5193   elapsedTimer _timer;
5194   ResourceMark rm;
5195   HandleMark   hm;
5196 
5197   // ---------- scan from roots --------------
5198   _timer.start();
5199   GenCollectedHeap* gch = GenCollectedHeap::heap();
5200   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5201   CMKlassClosure klass_closure(&par_mri_cl);
5202 
5203   // ---------- young gen roots --------------
5204   {
5205     work_on_young_gen_roots(worker_id, &par_mri_cl);
5206     _timer.stop();
5207     if (PrintCMSStatistics != 0) {
5208       gclog_or_tty->print_cr(
5209         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5210         worker_id, _timer.seconds());
5211     }
5212   }
5213 
5214   // ---------- remaining roots --------------
5215   _timer.reset();
5216   _timer.start();
5217   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5218                                 false,     // yg was scanned above
5219                                 false,     // this is parallel code
5220                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5221                                 &par_mri_cl,
5222                                 NULL,
5223                                 &klass_closure);
5224   assert(_collector->should_unload_classes()
5225          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5226          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5227   _timer.stop();
5228   if (PrintCMSStatistics != 0) {
5229     gclog_or_tty->print_cr(
5230       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5231       worker_id, _timer.seconds());
5232   }
5233 }
5234 
5235 // Parallel remark task
5236 class CMSParRemarkTask: public CMSParMarkTask {
5237   CompactibleFreeListSpace* _cms_space;
5238 
5239   // The per-thread work queues, available here for stealing.
5240   OopTaskQueueSet*       _task_queues;
5241   ParallelTaskTerminator _term;
5242 
5243  public:
5244   // A value of 0 passed to n_workers will cause the number of
5245   // workers to be taken from the active workers in the work gang.
5246   CMSParRemarkTask(CMSCollector* collector,
5247                    CompactibleFreeListSpace* cms_space,
5248                    int n_workers, FlexibleWorkGang* workers,
5249                    OopTaskQueueSet* task_queues):
5250     CMSParMarkTask("Rescan roots and grey objects in parallel",
5251                    collector, n_workers),
5252     _cms_space(cms_space),
5253     _task_queues(task_queues),
5254     _term(n_workers, task_queues) { }
5255 
5256   OopTaskQueueSet* task_queues() { return _task_queues; }
5257 
5258   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5259 
5260   ParallelTaskTerminator* terminator() { return &_term; }
5261   int n_workers() { return _n_workers; }
5262 
5263   void work(uint worker_id);
5264 
5265  private:
5266   // ... of  dirty cards in old space
5267   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5268                                   Par_MarkRefsIntoAndScanClosure* cl);
5269 
5270   // ... work stealing for the above
5271   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5272 };
5273 
5274 class RemarkKlassClosure : public KlassClosure {
5275   CMKlassClosure _cm_klass_closure;
5276  public:
5277   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5278   void do_klass(Klass* k) {
5279     // Check if we have modified any oops in the Klass during the concurrent marking.
5280     if (k->has_accumulated_modified_oops()) {
5281       k->clear_accumulated_modified_oops();
5282 
5283       // We could have transfered the current modified marks to the accumulated marks,
5284       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5285     } else if (k->has_modified_oops()) {
5286       // Don't clear anything, this info is needed by the next young collection.
5287     } else {
5288       // No modified oops in the Klass.
5289       return;
5290     }
5291 
5292     // The klass has modified fields, need to scan the klass.
5293     _cm_klass_closure.do_klass(k);
5294   }
5295 };
5296 
5297 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5298   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5299   EdenSpace* eden_space = dng->eden();
5300   ContiguousSpace* from_space = dng->from();
5301   ContiguousSpace* to_space   = dng->to();
5302 
5303   HeapWord** eca = _collector->_eden_chunk_array;
5304   size_t     ect = _collector->_eden_chunk_index;
5305   HeapWord** sca = _collector->_survivor_chunk_array;
5306   size_t     sct = _collector->_survivor_chunk_index;
5307 
5308   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5309   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5310 
5311   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5312   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5313   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5314 }
5315 
5316 // work_queue(i) is passed to the closure
5317 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5318 // also is passed to do_dirty_card_rescan_tasks() and to
5319 // do_work_steal() to select the i-th task_queue.
5320 
5321 void CMSParRemarkTask::work(uint worker_id) {
5322   elapsedTimer _timer;
5323   ResourceMark rm;
5324   HandleMark   hm;
5325 
5326   // ---------- rescan from roots --------------
5327   _timer.start();
5328   GenCollectedHeap* gch = GenCollectedHeap::heap();
5329   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5330     _collector->_span, _collector->ref_processor(),
5331     &(_collector->_markBitMap),
5332     work_queue(worker_id));
5333 
5334   // Rescan young gen roots first since these are likely
5335   // coarsely partitioned and may, on that account, constitute
5336   // the critical path; thus, it's best to start off that
5337   // work first.
5338   // ---------- young gen roots --------------
5339   {
5340     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5341     _timer.stop();
5342     if (PrintCMSStatistics != 0) {
5343       gclog_or_tty->print_cr(
5344         "Finished young gen rescan work in %dth thread: %3.3f sec",
5345         worker_id, _timer.seconds());
5346     }
5347   }
5348 
5349   // ---------- remaining roots --------------
5350   _timer.reset();
5351   _timer.start();
5352   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5353                                 false,     // yg was scanned above
5354                                 false,     // this is parallel code
5355                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5356                                 &par_mrias_cl,
5357                                 NULL,
5358                                 NULL);     // The dirty klasses will be handled below
5359   assert(_collector->should_unload_classes()
5360          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5361          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5362   _timer.stop();
5363   if (PrintCMSStatistics != 0) {
5364     gclog_or_tty->print_cr(
5365       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5366       worker_id, _timer.seconds());
5367   }
5368 
5369   // ---------- unhandled CLD scanning ----------
5370   if (worker_id == 0) { // Single threaded at the moment.
5371     _timer.reset();
5372     _timer.start();
5373 
5374     // Scan all new class loader data objects and new dependencies that were
5375     // introduced during concurrent marking.
5376     ResourceMark rm;
5377     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5378     for (int i = 0; i < array->length(); i++) {
5379       par_mrias_cl.do_class_loader_data(array->at(i));
5380     }
5381 
5382     // We don't need to keep track of new CLDs anymore.
5383     ClassLoaderDataGraph::remember_new_clds(false);
5384 
5385     _timer.stop();
5386     if (PrintCMSStatistics != 0) {
5387       gclog_or_tty->print_cr(
5388           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5389           worker_id, _timer.seconds());
5390     }
5391   }
5392 
5393   // ---------- dirty klass scanning ----------
5394   if (worker_id == 0) { // Single threaded at the moment.
5395     _timer.reset();
5396     _timer.start();
5397 
5398     // Scan all classes that was dirtied during the concurrent marking phase.
5399     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5400     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5401 
5402     _timer.stop();
5403     if (PrintCMSStatistics != 0) {
5404       gclog_or_tty->print_cr(
5405           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5406           worker_id, _timer.seconds());
5407     }
5408   }
5409 
5410   // We might have added oops to ClassLoaderData::_handles during the
5411   // concurrent marking phase. These oops point to newly allocated objects
5412   // that are guaranteed to be kept alive. Either by the direct allocation
5413   // code, or when the young collector processes the strong roots. Hence,
5414   // we don't have to revisit the _handles block during the remark phase.
5415 
5416   // ---------- rescan dirty cards ------------
5417   _timer.reset();
5418   _timer.start();
5419 
5420   // Do the rescan tasks for each of the two spaces
5421   // (cms_space) in turn.
5422   // "worker_id" is passed to select the task_queue for "worker_id"
5423   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5424   _timer.stop();
5425   if (PrintCMSStatistics != 0) {
5426     gclog_or_tty->print_cr(
5427       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5428       worker_id, _timer.seconds());
5429   }
5430 
5431   // ---------- steal work from other threads ...
5432   // ---------- ... and drain overflow list.
5433   _timer.reset();
5434   _timer.start();
5435   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5436   _timer.stop();
5437   if (PrintCMSStatistics != 0) {
5438     gclog_or_tty->print_cr(
5439       "Finished work stealing in %dth thread: %3.3f sec",
5440       worker_id, _timer.seconds());
5441   }
5442 }
5443 
5444 // Note that parameter "i" is not used.
5445 void
5446 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5447   OopsInGenClosure* cl, ContiguousSpace* space,
5448   HeapWord** chunk_array, size_t chunk_top) {
5449   // Until all tasks completed:
5450   // . claim an unclaimed task
5451   // . compute region boundaries corresponding to task claimed
5452   //   using chunk_array
5453   // . par_oop_iterate(cl) over that region
5454 
5455   ResourceMark rm;
5456   HandleMark   hm;
5457 
5458   SequentialSubTasksDone* pst = space->par_seq_tasks();
5459 
5460   uint nth_task = 0;
5461   uint n_tasks  = pst->n_tasks();
5462 
5463   if (n_tasks > 0) {
5464     assert(pst->valid(), "Uninitialized use?");
5465     HeapWord *start, *end;
5466     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5467       // We claimed task # nth_task; compute its boundaries.
5468       if (chunk_top == 0) {  // no samples were taken
5469         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5470         start = space->bottom();
5471         end   = space->top();
5472       } else if (nth_task == 0) {
5473         start = space->bottom();
5474         end   = chunk_array[nth_task];
5475       } else if (nth_task < (uint)chunk_top) {
5476         assert(nth_task >= 1, "Control point invariant");
5477         start = chunk_array[nth_task - 1];
5478         end   = chunk_array[nth_task];
5479       } else {
5480         assert(nth_task == (uint)chunk_top, "Control point invariant");
5481         start = chunk_array[chunk_top - 1];
5482         end   = space->top();
5483       }
5484       MemRegion mr(start, end);
5485       // Verify that mr is in space
5486       assert(mr.is_empty() || space->used_region().contains(mr),
5487              "Should be in space");
5488       // Verify that "start" is an object boundary
5489       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5490              "Should be an oop");
5491       space->par_oop_iterate(mr, cl);
5492     }
5493     pst->all_tasks_completed();
5494   }
5495 }
5496 
5497 void
5498 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5499   CompactibleFreeListSpace* sp, int i,
5500   Par_MarkRefsIntoAndScanClosure* cl) {
5501   // Until all tasks completed:
5502   // . claim an unclaimed task
5503   // . compute region boundaries corresponding to task claimed
5504   // . transfer dirty bits ct->mut for that region
5505   // . apply rescanclosure to dirty mut bits for that region
5506 
5507   ResourceMark rm;
5508   HandleMark   hm;
5509 
5510   OopTaskQueue* work_q = work_queue(i);
5511   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5512   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5513   // CAUTION: This closure has state that persists across calls to
5514   // the work method dirty_range_iterate_clear() in that it has
5515   // embedded in it a (subtype of) UpwardsObjectClosure. The
5516   // use of that state in the embedded UpwardsObjectClosure instance
5517   // assumes that the cards are always iterated (even if in parallel
5518   // by several threads) in monotonically increasing order per each
5519   // thread. This is true of the implementation below which picks
5520   // card ranges (chunks) in monotonically increasing order globally
5521   // and, a-fortiori, in monotonically increasing order per thread
5522   // (the latter order being a subsequence of the former).
5523   // If the work code below is ever reorganized into a more chaotic
5524   // work-partitioning form than the current "sequential tasks"
5525   // paradigm, the use of that persistent state will have to be
5526   // revisited and modified appropriately. See also related
5527   // bug 4756801 work on which should examine this code to make
5528   // sure that the changes there do not run counter to the
5529   // assumptions made here and necessary for correctness and
5530   // efficiency. Note also that this code might yield inefficient
5531   // behavior in the case of very large objects that span one or
5532   // more work chunks. Such objects would potentially be scanned
5533   // several times redundantly. Work on 4756801 should try and
5534   // address that performance anomaly if at all possible. XXX
5535   MemRegion  full_span  = _collector->_span;
5536   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5537   MarkFromDirtyCardsClosure
5538     greyRescanClosure(_collector, full_span, // entire span of interest
5539                       sp, bm, work_q, cl);
5540 
5541   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5542   assert(pst->valid(), "Uninitialized use?");
5543   uint nth_task = 0;
5544   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5545   MemRegion span = sp->used_region();
5546   HeapWord* start_addr = span.start();
5547   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5548                                            alignment);
5549   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5550   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5551          start_addr, "Check alignment");
5552   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5553          chunk_size, "Check alignment");
5554 
5555   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5556     // Having claimed the nth_task, compute corresponding mem-region,
5557     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5558     // The alignment restriction ensures that we do not need any
5559     // synchronization with other gang-workers while setting or
5560     // clearing bits in thus chunk of the MUT.
5561     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5562                                     start_addr + (nth_task+1)*chunk_size);
5563     // The last chunk's end might be way beyond end of the
5564     // used region. In that case pull back appropriately.
5565     if (this_span.end() > end_addr) {
5566       this_span.set_end(end_addr);
5567       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5568     }
5569     // Iterate over the dirty cards covering this chunk, marking them
5570     // precleaned, and setting the corresponding bits in the mod union
5571     // table. Since we have been careful to partition at Card and MUT-word
5572     // boundaries no synchronization is needed between parallel threads.
5573     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5574                                                  &modUnionClosure);
5575 
5576     // Having transferred these marks into the modUnionTable,
5577     // rescan the marked objects on the dirty cards in the modUnionTable.
5578     // Even if this is at a synchronous collection, the initial marking
5579     // may have been done during an asynchronous collection so there
5580     // may be dirty bits in the mod-union table.
5581     _collector->_modUnionTable.dirty_range_iterate_clear(
5582                   this_span, &greyRescanClosure);
5583     _collector->_modUnionTable.verifyNoOneBitsInRange(
5584                                  this_span.start(),
5585                                  this_span.end());
5586   }
5587   pst->all_tasks_completed();  // declare that i am done
5588 }
5589 
5590 // . see if we can share work_queues with ParNew? XXX
5591 void
5592 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5593                                 int* seed) {
5594   OopTaskQueue* work_q = work_queue(i);
5595   NOT_PRODUCT(int num_steals = 0;)
5596   oop obj_to_scan;
5597   CMSBitMap* bm = &(_collector->_markBitMap);
5598 
5599   while (true) {
5600     // Completely finish any left over work from (an) earlier round(s)
5601     cl->trim_queue(0);
5602     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5603                                          (size_t)ParGCDesiredObjsFromOverflowList);
5604     // Now check if there's any work in the overflow list
5605     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5606     // only affects the number of attempts made to get work from the
5607     // overflow list and does not affect the number of workers.  Just
5608     // pass ParallelGCThreads so this behavior is unchanged.
5609     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5610                                                 work_q,
5611                                                 ParallelGCThreads)) {
5612       // found something in global overflow list;
5613       // not yet ready to go stealing work from others.
5614       // We'd like to assert(work_q->size() != 0, ...)
5615       // because we just took work from the overflow list,
5616       // but of course we can't since all of that could have
5617       // been already stolen from us.
5618       // "He giveth and He taketh away."
5619       continue;
5620     }
5621     // Verify that we have no work before we resort to stealing
5622     assert(work_q->size() == 0, "Have work, shouldn't steal");
5623     // Try to steal from other queues that have work
5624     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5625       NOT_PRODUCT(num_steals++;)
5626       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5627       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5628       // Do scanning work
5629       obj_to_scan->oop_iterate(cl);
5630       // Loop around, finish this work, and try to steal some more
5631     } else if (terminator()->offer_termination()) {
5632         break;  // nirvana from the infinite cycle
5633     }
5634   }
5635   NOT_PRODUCT(
5636     if (PrintCMSStatistics != 0) {
5637       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5638     }
5639   )
5640   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5641          "Else our work is not yet done");
5642 }
5643 
5644 // Record object boundaries in _eden_chunk_array by sampling the eden
5645 // top in the slow-path eden object allocation code path and record
5646 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5647 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5648 // sampling in sample_eden() that activates during the part of the
5649 // preclean phase.
5650 void CMSCollector::sample_eden_chunk() {
5651   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5652     if (_eden_chunk_lock->try_lock()) {
5653       // Record a sample. This is the critical section. The contents
5654       // of the _eden_chunk_array have to be non-decreasing in the
5655       // address order.
5656       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5657       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5658              "Unexpected state of Eden");
5659       if (_eden_chunk_index == 0 ||
5660           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5661            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5662                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5663         _eden_chunk_index++;  // commit sample
5664       }
5665       _eden_chunk_lock->unlock();
5666     }
5667   }
5668 }
5669 
5670 // Return a thread-local PLAB recording array, as appropriate.
5671 void* CMSCollector::get_data_recorder(int thr_num) {
5672   if (_survivor_plab_array != NULL &&
5673       (CMSPLABRecordAlways ||
5674        (_collectorState > Marking && _collectorState < FinalMarking))) {
5675     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5676     ChunkArray* ca = &_survivor_plab_array[thr_num];
5677     ca->reset();   // clear it so that fresh data is recorded
5678     return (void*) ca;
5679   } else {
5680     return NULL;
5681   }
5682 }
5683 
5684 // Reset all the thread-local PLAB recording arrays
5685 void CMSCollector::reset_survivor_plab_arrays() {
5686   for (uint i = 0; i < ParallelGCThreads; i++) {
5687     _survivor_plab_array[i].reset();
5688   }
5689 }
5690 
5691 // Merge the per-thread plab arrays into the global survivor chunk
5692 // array which will provide the partitioning of the survivor space
5693 // for CMS initial scan and rescan.
5694 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5695                                               int no_of_gc_threads) {
5696   assert(_survivor_plab_array  != NULL, "Error");
5697   assert(_survivor_chunk_array != NULL, "Error");
5698   assert(_collectorState == FinalMarking ||
5699          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5700   for (int j = 0; j < no_of_gc_threads; j++) {
5701     _cursor[j] = 0;
5702   }
5703   HeapWord* top = surv->top();
5704   size_t i;
5705   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5706     HeapWord* min_val = top;          // Higher than any PLAB address
5707     uint      min_tid = 0;            // position of min_val this round
5708     for (int j = 0; j < no_of_gc_threads; j++) {
5709       ChunkArray* cur_sca = &_survivor_plab_array[j];
5710       if (_cursor[j] == cur_sca->end()) {
5711         continue;
5712       }
5713       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5714       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5715       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5716       if (cur_val < min_val) {
5717         min_tid = j;
5718         min_val = cur_val;
5719       } else {
5720         assert(cur_val < top, "All recorded addresses should be less");
5721       }
5722     }
5723     // At this point min_val and min_tid are respectively
5724     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5725     // and the thread (j) that witnesses that address.
5726     // We record this address in the _survivor_chunk_array[i]
5727     // and increment _cursor[min_tid] prior to the next round i.
5728     if (min_val == top) {
5729       break;
5730     }
5731     _survivor_chunk_array[i] = min_val;
5732     _cursor[min_tid]++;
5733   }
5734   // We are all done; record the size of the _survivor_chunk_array
5735   _survivor_chunk_index = i; // exclusive: [0, i)
5736   if (PrintCMSStatistics > 0) {
5737     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5738   }
5739   // Verify that we used up all the recorded entries
5740   #ifdef ASSERT
5741     size_t total = 0;
5742     for (int j = 0; j < no_of_gc_threads; j++) {
5743       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5744       total += _cursor[j];
5745     }
5746     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5747     // Check that the merged array is in sorted order
5748     if (total > 0) {
5749       for (size_t i = 0; i < total - 1; i++) {
5750         if (PrintCMSStatistics > 0) {
5751           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5752                               i, _survivor_chunk_array[i]);
5753         }
5754         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5755                "Not sorted");
5756       }
5757     }
5758   #endif // ASSERT
5759 }
5760 
5761 // Set up the space's par_seq_tasks structure for work claiming
5762 // for parallel initial scan and rescan of young gen.
5763 // See ParRescanTask where this is currently used.
5764 void
5765 CMSCollector::
5766 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5767   assert(n_threads > 0, "Unexpected n_threads argument");
5768   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5769 
5770   // Eden space
5771   if (!dng->eden()->is_empty()) {
5772     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5773     assert(!pst->valid(), "Clobbering existing data?");
5774     // Each valid entry in [0, _eden_chunk_index) represents a task.
5775     size_t n_tasks = _eden_chunk_index + 1;
5776     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5777     // Sets the condition for completion of the subtask (how many threads
5778     // need to finish in order to be done).
5779     pst->set_n_threads(n_threads);
5780     pst->set_n_tasks((int)n_tasks);
5781   }
5782 
5783   // Merge the survivor plab arrays into _survivor_chunk_array
5784   if (_survivor_plab_array != NULL) {
5785     merge_survivor_plab_arrays(dng->from(), n_threads);
5786   } else {
5787     assert(_survivor_chunk_index == 0, "Error");
5788   }
5789 
5790   // To space
5791   {
5792     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5793     assert(!pst->valid(), "Clobbering existing data?");
5794     // Sets the condition for completion of the subtask (how many threads
5795     // need to finish in order to be done).
5796     pst->set_n_threads(n_threads);
5797     pst->set_n_tasks(1);
5798     assert(pst->valid(), "Error");
5799   }
5800 
5801   // From space
5802   {
5803     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5804     assert(!pst->valid(), "Clobbering existing data?");
5805     size_t n_tasks = _survivor_chunk_index + 1;
5806     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5807     // Sets the condition for completion of the subtask (how many threads
5808     // need to finish in order to be done).
5809     pst->set_n_threads(n_threads);
5810     pst->set_n_tasks((int)n_tasks);
5811     assert(pst->valid(), "Error");
5812   }
5813 }
5814 
5815 // Parallel version of remark
5816 void CMSCollector::do_remark_parallel() {
5817   GenCollectedHeap* gch = GenCollectedHeap::heap();
5818   FlexibleWorkGang* workers = gch->workers();
5819   assert(workers != NULL, "Need parallel worker threads.");
5820   // Choose to use the number of GC workers most recently set
5821   // into "active_workers".  If active_workers is not set, set it
5822   // to ParallelGCThreads.
5823   int n_workers = workers->active_workers();
5824   if (n_workers == 0) {
5825     assert(n_workers > 0, "Should have been set during scavenge");
5826     n_workers = ParallelGCThreads;
5827     workers->set_active_workers(n_workers);
5828   }
5829   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5830 
5831   CMSParRemarkTask tsk(this,
5832     cms_space,
5833     n_workers, workers, task_queues());
5834 
5835   // Set up for parallel process_strong_roots work.
5836   gch->set_par_threads(n_workers);
5837   // We won't be iterating over the cards in the card table updating
5838   // the younger_gen cards, so we shouldn't call the following else
5839   // the verification code as well as subsequent younger_refs_iterate
5840   // code would get confused. XXX
5841   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5842 
5843   // The young gen rescan work will not be done as part of
5844   // process_strong_roots (which currently doesn't knw how to
5845   // parallelize such a scan), but rather will be broken up into
5846   // a set of parallel tasks (via the sampling that the [abortable]
5847   // preclean phase did of EdenSpace, plus the [two] tasks of
5848   // scanning the [two] survivor spaces. Further fine-grain
5849   // parallelization of the scanning of the survivor spaces
5850   // themselves, and of precleaning of the younger gen itself
5851   // is deferred to the future.
5852   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5853 
5854   // The dirty card rescan work is broken up into a "sequence"
5855   // of parallel tasks (per constituent space) that are dynamically
5856   // claimed by the parallel threads.
5857   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5858 
5859   // It turns out that even when we're using 1 thread, doing the work in a
5860   // separate thread causes wide variance in run times.  We can't help this
5861   // in the multi-threaded case, but we special-case n=1 here to get
5862   // repeatable measurements of the 1-thread overhead of the parallel code.
5863   if (n_workers > 1) {
5864     // Make refs discovery MT-safe, if it isn't already: it may not
5865     // necessarily be so, since it's possible that we are doing
5866     // ST marking.
5867     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5868     GenCollectedHeap::StrongRootsScope srs(gch);
5869     workers->run_task(&tsk);
5870   } else {
5871     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5872     GenCollectedHeap::StrongRootsScope srs(gch);
5873     tsk.work(0);
5874   }
5875 
5876   gch->set_par_threads(0);  // 0 ==> non-parallel.
5877   // restore, single-threaded for now, any preserved marks
5878   // as a result of work_q overflow
5879   restore_preserved_marks_if_any();
5880 }
5881 
5882 // Non-parallel version of remark
5883 void CMSCollector::do_remark_non_parallel() {
5884   ResourceMark rm;
5885   HandleMark   hm;
5886   GenCollectedHeap* gch = GenCollectedHeap::heap();
5887   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5888 
5889   MarkRefsIntoAndScanClosure
5890     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5891              &_markStack, this,
5892              false /* should_yield */, false /* not precleaning */);
5893   MarkFromDirtyCardsClosure
5894     markFromDirtyCardsClosure(this, _span,
5895                               NULL,  // space is set further below
5896                               &_markBitMap, &_markStack, &mrias_cl);
5897   {
5898     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5899     // Iterate over the dirty cards, setting the corresponding bits in the
5900     // mod union table.
5901     {
5902       ModUnionClosure modUnionClosure(&_modUnionTable);
5903       _ct->ct_bs()->dirty_card_iterate(
5904                       _cmsGen->used_region(),
5905                       &modUnionClosure);
5906     }
5907     // Having transferred these marks into the modUnionTable, we just need
5908     // to rescan the marked objects on the dirty cards in the modUnionTable.
5909     // The initial marking may have been done during an asynchronous
5910     // collection so there may be dirty bits in the mod-union table.
5911     const int alignment =
5912       CardTableModRefBS::card_size * BitsPerWord;
5913     {
5914       // ... First handle dirty cards in CMS gen
5915       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5916       MemRegion ur = _cmsGen->used_region();
5917       HeapWord* lb = ur.start();
5918       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5919       MemRegion cms_span(lb, ub);
5920       _modUnionTable.dirty_range_iterate_clear(cms_span,
5921                                                &markFromDirtyCardsClosure);
5922       verify_work_stacks_empty();
5923       if (PrintCMSStatistics != 0) {
5924         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5925           markFromDirtyCardsClosure.num_dirty_cards());
5926       }
5927     }
5928   }
5929   if (VerifyDuringGC &&
5930       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5931     HandleMark hm;  // Discard invalid handles created during verification
5932     Universe::verify();
5933   }
5934   {
5935     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5936 
5937     verify_work_stacks_empty();
5938 
5939     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5940     GenCollectedHeap::StrongRootsScope srs(gch);
5941     gch->gen_process_strong_roots(_cmsGen->level(),
5942                                   true,  // younger gens as roots
5943                                   false, // use the local StrongRootsScope
5944                                   SharedHeap::ScanningOption(roots_scanning_options()),
5945                                   &mrias_cl,
5946                                   NULL,
5947                                   NULL);  // The dirty klasses will be handled below
5948 
5949     assert(should_unload_classes()
5950            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5951            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5952   }
5953 
5954   {
5955     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5956 
5957     verify_work_stacks_empty();
5958 
5959     // Scan all class loader data objects that might have been introduced
5960     // during concurrent marking.
5961     ResourceMark rm;
5962     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5963     for (int i = 0; i < array->length(); i++) {
5964       mrias_cl.do_class_loader_data(array->at(i));
5965     }
5966 
5967     // We don't need to keep track of new CLDs anymore.
5968     ClassLoaderDataGraph::remember_new_clds(false);
5969 
5970     verify_work_stacks_empty();
5971   }
5972 
5973   {
5974     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5975 
5976     verify_work_stacks_empty();
5977 
5978     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5979     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5980 
5981     verify_work_stacks_empty();
5982   }
5983 
5984   // We might have added oops to ClassLoaderData::_handles during the
5985   // concurrent marking phase. These oops point to newly allocated objects
5986   // that are guaranteed to be kept alive. Either by the direct allocation
5987   // code, or when the young collector processes the strong roots. Hence,
5988   // we don't have to revisit the _handles block during the remark phase.
5989 
5990   verify_work_stacks_empty();
5991   // Restore evacuated mark words, if any, used for overflow list links
5992   if (!CMSOverflowEarlyRestoration) {
5993     restore_preserved_marks_if_any();
5994   }
5995   verify_overflow_empty();
5996 }
5997 
5998 ////////////////////////////////////////////////////////
5999 // Parallel Reference Processing Task Proxy Class
6000 ////////////////////////////////////////////////////////
6001 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6002   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6003   CMSCollector*          _collector;
6004   CMSBitMap*             _mark_bit_map;
6005   const MemRegion        _span;
6006   ProcessTask&           _task;
6007 
6008 public:
6009   CMSRefProcTaskProxy(ProcessTask&     task,
6010                       CMSCollector*    collector,
6011                       const MemRegion& span,
6012                       CMSBitMap*       mark_bit_map,
6013                       AbstractWorkGang* workers,
6014                       OopTaskQueueSet* task_queues):
6015     // XXX Should superclass AGTWOQ also know about AWG since it knows
6016     // about the task_queues used by the AWG? Then it could initialize
6017     // the terminator() object. See 6984287. The set_for_termination()
6018     // below is a temporary band-aid for the regression in 6984287.
6019     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6020       task_queues),
6021     _task(task),
6022     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6023   {
6024     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6025            "Inconsistency in _span");
6026     set_for_termination(workers->active_workers());
6027   }
6028 
6029   OopTaskQueueSet* task_queues() { return queues(); }
6030 
6031   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6032 
6033   void do_work_steal(int i,
6034                      CMSParDrainMarkingStackClosure* drain,
6035                      CMSParKeepAliveClosure* keep_alive,
6036                      int* seed);
6037 
6038   virtual void work(uint worker_id);
6039 };
6040 
6041 void CMSRefProcTaskProxy::work(uint worker_id) {
6042   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6043   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6044                                         _mark_bit_map,
6045                                         work_queue(worker_id));
6046   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6047                                                  _mark_bit_map,
6048                                                  work_queue(worker_id));
6049   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6050   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6051   if (_task.marks_oops_alive()) {
6052     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6053                   _collector->hash_seed(worker_id));
6054   }
6055   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6056   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6057 }
6058 
6059 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6060   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6061   EnqueueTask& _task;
6062 
6063 public:
6064   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6065     : AbstractGangTask("Enqueue reference objects in parallel"),
6066       _task(task)
6067   { }
6068 
6069   virtual void work(uint worker_id)
6070   {
6071     _task.work(worker_id);
6072   }
6073 };
6074 
6075 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6076   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6077    _span(span),
6078    _bit_map(bit_map),
6079    _work_queue(work_queue),
6080    _mark_and_push(collector, span, bit_map, work_queue),
6081    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6082                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6083 { }
6084 
6085 // . see if we can share work_queues with ParNew? XXX
6086 void CMSRefProcTaskProxy::do_work_steal(int i,
6087   CMSParDrainMarkingStackClosure* drain,
6088   CMSParKeepAliveClosure* keep_alive,
6089   int* seed) {
6090   OopTaskQueue* work_q = work_queue(i);
6091   NOT_PRODUCT(int num_steals = 0;)
6092   oop obj_to_scan;
6093 
6094   while (true) {
6095     // Completely finish any left over work from (an) earlier round(s)
6096     drain->trim_queue(0);
6097     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6098                                          (size_t)ParGCDesiredObjsFromOverflowList);
6099     // Now check if there's any work in the overflow list
6100     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6101     // only affects the number of attempts made to get work from the
6102     // overflow list and does not affect the number of workers.  Just
6103     // pass ParallelGCThreads so this behavior is unchanged.
6104     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6105                                                 work_q,
6106                                                 ParallelGCThreads)) {
6107       // Found something in global overflow list;
6108       // not yet ready to go stealing work from others.
6109       // We'd like to assert(work_q->size() != 0, ...)
6110       // because we just took work from the overflow list,
6111       // but of course we can't, since all of that might have
6112       // been already stolen from us.
6113       continue;
6114     }
6115     // Verify that we have no work before we resort to stealing
6116     assert(work_q->size() == 0, "Have work, shouldn't steal");
6117     // Try to steal from other queues that have work
6118     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6119       NOT_PRODUCT(num_steals++;)
6120       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6121       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6122       // Do scanning work
6123       obj_to_scan->oop_iterate(keep_alive);
6124       // Loop around, finish this work, and try to steal some more
6125     } else if (terminator()->offer_termination()) {
6126       break;  // nirvana from the infinite cycle
6127     }
6128   }
6129   NOT_PRODUCT(
6130     if (PrintCMSStatistics != 0) {
6131       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6132     }
6133   )
6134 }
6135 
6136 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6137 {
6138   GenCollectedHeap* gch = GenCollectedHeap::heap();
6139   FlexibleWorkGang* workers = gch->workers();
6140   assert(workers != NULL, "Need parallel worker threads.");
6141   CMSRefProcTaskProxy rp_task(task, &_collector,
6142                               _collector.ref_processor()->span(),
6143                               _collector.markBitMap(),
6144                               workers, _collector.task_queues());
6145   workers->run_task(&rp_task);
6146 }
6147 
6148 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6149 {
6150 
6151   GenCollectedHeap* gch = GenCollectedHeap::heap();
6152   FlexibleWorkGang* workers = gch->workers();
6153   assert(workers != NULL, "Need parallel worker threads.");
6154   CMSRefEnqueueTaskProxy enq_task(task);
6155   workers->run_task(&enq_task);
6156 }
6157 
6158 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6159 
6160   ResourceMark rm;
6161   HandleMark   hm;
6162 
6163   ReferenceProcessor* rp = ref_processor();
6164   assert(rp->span().equals(_span), "Spans should be equal");
6165   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6166   // Process weak references.
6167   rp->setup_policy(clear_all_soft_refs);
6168   verify_work_stacks_empty();
6169 
6170   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6171                                           &_markStack, false /* !preclean */);
6172   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6173                                 _span, &_markBitMap, &_markStack,
6174                                 &cmsKeepAliveClosure, false /* !preclean */);
6175   {
6176     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6177 
6178     ReferenceProcessorStats stats;
6179     if (rp->processing_is_mt()) {
6180       // Set the degree of MT here.  If the discovery is done MT, there
6181       // may have been a different number of threads doing the discovery
6182       // and a different number of discovered lists may have Ref objects.
6183       // That is OK as long as the Reference lists are balanced (see
6184       // balance_all_queues() and balance_queues()).
6185       GenCollectedHeap* gch = GenCollectedHeap::heap();
6186       int active_workers = ParallelGCThreads;
6187       FlexibleWorkGang* workers = gch->workers();
6188       if (workers != NULL) {
6189         active_workers = workers->active_workers();
6190         // The expectation is that active_workers will have already
6191         // been set to a reasonable value.  If it has not been set,
6192         // investigate.
6193         assert(active_workers > 0, "Should have been set during scavenge");
6194       }
6195       rp->set_active_mt_degree(active_workers);
6196       CMSRefProcTaskExecutor task_executor(*this);
6197       stats = rp->process_discovered_references(&_is_alive_closure,
6198                                         &cmsKeepAliveClosure,
6199                                         &cmsDrainMarkingStackClosure,
6200                                         &task_executor,
6201                                         _gc_timer_cm);
6202     } else {
6203       stats = rp->process_discovered_references(&_is_alive_closure,
6204                                         &cmsKeepAliveClosure,
6205                                         &cmsDrainMarkingStackClosure,
6206                                         NULL,
6207                                         _gc_timer_cm);
6208     }
6209     _gc_tracer_cm->report_gc_reference_stats(stats);
6210 
6211   }
6212 
6213   // This is the point where the entire marking should have completed.
6214   verify_work_stacks_empty();
6215 
6216   if (should_unload_classes()) {
6217     {
6218       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6219 
6220       // Unload classes and purge the SystemDictionary.
6221       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6222 
6223       // Unload nmethods.
6224       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6225 
6226       // Prune dead klasses from subklass/sibling/implementor lists.
6227       Klass::clean_weak_klass_links(&_is_alive_closure);
6228     }
6229 
6230     {
6231       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6232       // Clean up unreferenced symbols in symbol table.
6233       SymbolTable::unlink();
6234     }
6235   }
6236 
6237   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6238   // Need to check if we really scanned the StringTable.
6239   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6240     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6241     // Delete entries for dead interned strings.
6242     StringTable::unlink(&_is_alive_closure);
6243   }
6244 
6245   // Restore any preserved marks as a result of mark stack or
6246   // work queue overflow
6247   restore_preserved_marks_if_any();  // done single-threaded for now
6248 
6249   rp->set_enqueuing_is_done(true);
6250   if (rp->processing_is_mt()) {
6251     rp->balance_all_queues();
6252     CMSRefProcTaskExecutor task_executor(*this);
6253     rp->enqueue_discovered_references(&task_executor);
6254   } else {
6255     rp->enqueue_discovered_references(NULL);
6256   }
6257   rp->verify_no_references_recorded();
6258   assert(!rp->discovery_enabled(), "should have been disabled");
6259 }
6260 
6261 #ifndef PRODUCT
6262 void CMSCollector::check_correct_thread_executing() {
6263   Thread* t = Thread::current();
6264   // Only the VM thread or the CMS thread should be here.
6265   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6266          "Unexpected thread type");
6267   // If this is the vm thread, the foreground process
6268   // should not be waiting.  Note that _foregroundGCIsActive is
6269   // true while the foreground collector is waiting.
6270   if (_foregroundGCShouldWait) {
6271     // We cannot be the VM thread
6272     assert(t->is_ConcurrentGC_thread(),
6273            "Should be CMS thread");
6274   } else {
6275     // We can be the CMS thread only if we are in a stop-world
6276     // phase of CMS collection.
6277     if (t->is_ConcurrentGC_thread()) {
6278       assert(_collectorState == InitialMarking ||
6279              _collectorState == FinalMarking,
6280              "Should be a stop-world phase");
6281       // The CMS thread should be holding the CMS_token.
6282       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6283              "Potential interference with concurrently "
6284              "executing VM thread");
6285     }
6286   }
6287 }
6288 #endif
6289 
6290 void CMSCollector::sweep(bool asynch) {
6291   assert(_collectorState == Sweeping, "just checking");
6292   check_correct_thread_executing();
6293   verify_work_stacks_empty();
6294   verify_overflow_empty();
6295   increment_sweep_count();
6296   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6297 
6298   _inter_sweep_timer.stop();
6299   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6300   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6301 
6302   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6303   _intra_sweep_timer.reset();
6304   _intra_sweep_timer.start();
6305   if (asynch) {
6306     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6307     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6308     // First sweep the old gen
6309     {
6310       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6311                                bitMapLock());
6312       sweepWork(_cmsGen, asynch);
6313     }
6314 
6315     // Update Universe::_heap_*_at_gc figures.
6316     // We need all the free list locks to make the abstract state
6317     // transition from Sweeping to Resetting. See detailed note
6318     // further below.
6319     {
6320       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6321       // Update heap occupancy information which is used as
6322       // input to soft ref clearing policy at the next gc.
6323       Universe::update_heap_info_at_gc();
6324       _collectorState = Resizing;
6325     }
6326   } else {
6327     // already have needed locks
6328     sweepWork(_cmsGen,  asynch);
6329     // Update heap occupancy information which is used as
6330     // input to soft ref clearing policy at the next gc.
6331     Universe::update_heap_info_at_gc();
6332     _collectorState = Resizing;
6333   }
6334   verify_work_stacks_empty();
6335   verify_overflow_empty();
6336 
6337   if (should_unload_classes()) {
6338     ClassLoaderDataGraph::purge();
6339   }
6340 
6341   _intra_sweep_timer.stop();
6342   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6343 
6344   _inter_sweep_timer.reset();
6345   _inter_sweep_timer.start();
6346 
6347   // We need to use a monotonically non-decreasing time in ms
6348   // or we will see time-warp warnings and os::javaTimeMillis()
6349   // does not guarantee monotonicity.
6350   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6351   update_time_of_last_gc(now);
6352 
6353   // NOTE on abstract state transitions:
6354   // Mutators allocate-live and/or mark the mod-union table dirty
6355   // based on the state of the collection.  The former is done in
6356   // the interval [Marking, Sweeping] and the latter in the interval
6357   // [Marking, Sweeping).  Thus the transitions into the Marking state
6358   // and out of the Sweeping state must be synchronously visible
6359   // globally to the mutators.
6360   // The transition into the Marking state happens with the world
6361   // stopped so the mutators will globally see it.  Sweeping is
6362   // done asynchronously by the background collector so the transition
6363   // from the Sweeping state to the Resizing state must be done
6364   // under the freelistLock (as is the check for whether to
6365   // allocate-live and whether to dirty the mod-union table).
6366   assert(_collectorState == Resizing, "Change of collector state to"
6367     " Resizing must be done under the freelistLocks (plural)");
6368 
6369   // Now that sweeping has been completed, we clear
6370   // the incremental_collection_failed flag,
6371   // thus inviting a younger gen collection to promote into
6372   // this generation. If such a promotion may still fail,
6373   // the flag will be set again when a young collection is
6374   // attempted.
6375   GenCollectedHeap* gch = GenCollectedHeap::heap();
6376   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6377   gch->update_full_collections_completed(_collection_count_start);
6378 }
6379 
6380 // FIX ME!!! Looks like this belongs in CFLSpace, with
6381 // CMSGen merely delegating to it.
6382 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6383   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6384   HeapWord*  minAddr        = _cmsSpace->bottom();
6385   HeapWord*  largestAddr    =
6386     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6387   if (largestAddr == NULL) {
6388     // The dictionary appears to be empty.  In this case
6389     // try to coalesce at the end of the heap.
6390     largestAddr = _cmsSpace->end();
6391   }
6392   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6393   size_t nearLargestOffset =
6394     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6395   if (PrintFLSStatistics != 0) {
6396     gclog_or_tty->print_cr(
6397       "CMS: Large Block: " PTR_FORMAT ";"
6398       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6399       largestAddr,
6400       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6401   }
6402   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6403 }
6404 
6405 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6406   return addr >= _cmsSpace->nearLargestChunk();
6407 }
6408 
6409 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6410   return _cmsSpace->find_chunk_at_end();
6411 }
6412 
6413 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6414                                                     bool full) {
6415   // The next lower level has been collected.  Gather any statistics
6416   // that are of interest at this point.
6417   if (!full && (current_level + 1) == level()) {
6418     // Gather statistics on the young generation collection.
6419     collector()->stats().record_gc0_end(used());
6420   }
6421 }
6422 
6423 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6424   GenCollectedHeap* gch = GenCollectedHeap::heap();
6425   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6426     "Wrong type of heap");
6427   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6428     gch->gen_policy()->size_policy();
6429   assert(sp->is_gc_cms_adaptive_size_policy(),
6430     "Wrong type of size policy");
6431   return sp;
6432 }
6433 
6434 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6435   if (PrintGCDetails && Verbose) {
6436     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6437   }
6438   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6439   _debug_collection_type =
6440     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6441   if (PrintGCDetails && Verbose) {
6442     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6443   }
6444 }
6445 
6446 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6447   bool asynch) {
6448   // We iterate over the space(s) underlying this generation,
6449   // checking the mark bit map to see if the bits corresponding
6450   // to specific blocks are marked or not. Blocks that are
6451   // marked are live and are not swept up. All remaining blocks
6452   // are swept up, with coalescing on-the-fly as we sweep up
6453   // contiguous free and/or garbage blocks:
6454   // We need to ensure that the sweeper synchronizes with allocators
6455   // and stop-the-world collectors. In particular, the following
6456   // locks are used:
6457   // . CMS token: if this is held, a stop the world collection cannot occur
6458   // . freelistLock: if this is held no allocation can occur from this
6459   //                 generation by another thread
6460   // . bitMapLock: if this is held, no other thread can access or update
6461   //
6462 
6463   // Note that we need to hold the freelistLock if we use
6464   // block iterate below; else the iterator might go awry if
6465   // a mutator (or promotion) causes block contents to change
6466   // (for instance if the allocator divvies up a block).
6467   // If we hold the free list lock, for all practical purposes
6468   // young generation GC's can't occur (they'll usually need to
6469   // promote), so we might as well prevent all young generation
6470   // GC's while we do a sweeping step. For the same reason, we might
6471   // as well take the bit map lock for the entire duration
6472 
6473   // check that we hold the requisite locks
6474   assert(have_cms_token(), "Should hold cms token");
6475   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6476          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6477         "Should possess CMS token to sweep");
6478   assert_lock_strong(gen->freelistLock());
6479   assert_lock_strong(bitMapLock());
6480 
6481   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6482   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6483   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6484                                       _inter_sweep_estimate.padded_average(),
6485                                       _intra_sweep_estimate.padded_average());
6486   gen->setNearLargestChunk();
6487 
6488   {
6489     SweepClosure sweepClosure(this, gen, &_markBitMap,
6490                             CMSYield && asynch);
6491     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6492     // We need to free-up/coalesce garbage/blocks from a
6493     // co-terminal free run. This is done in the SweepClosure
6494     // destructor; so, do not remove this scope, else the
6495     // end-of-sweep-census below will be off by a little bit.
6496   }
6497   gen->cmsSpace()->sweep_completed();
6498   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6499   if (should_unload_classes()) {                // unloaded classes this cycle,
6500     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6501   } else {                                      // did not unload classes,
6502     _concurrent_cycles_since_last_unload++;     // ... increment count
6503   }
6504 }
6505 
6506 // Reset CMS data structures (for now just the marking bit map)
6507 // preparatory for the next cycle.
6508 void CMSCollector::reset(bool asynch) {
6509   GenCollectedHeap* gch = GenCollectedHeap::heap();
6510   CMSAdaptiveSizePolicy* sp = size_policy();
6511   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6512   if (asynch) {
6513     CMSTokenSyncWithLocks ts(true, bitMapLock());
6514 
6515     // If the state is not "Resetting", the foreground  thread
6516     // has done a collection and the resetting.
6517     if (_collectorState != Resetting) {
6518       assert(_collectorState == Idling, "The state should only change"
6519         " because the foreground collector has finished the collection");
6520       return;
6521     }
6522 
6523     // Clear the mark bitmap (no grey objects to start with)
6524     // for the next cycle.
6525     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6526     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6527 
6528     HeapWord* curAddr = _markBitMap.startWord();
6529     while (curAddr < _markBitMap.endWord()) {
6530       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6531       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6532       _markBitMap.clear_large_range(chunk);
6533       if (ConcurrentMarkSweepThread::should_yield() &&
6534           !foregroundGCIsActive() &&
6535           CMSYield) {
6536         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6537                "CMS thread should hold CMS token");
6538         assert_lock_strong(bitMapLock());
6539         bitMapLock()->unlock();
6540         ConcurrentMarkSweepThread::desynchronize(true);
6541         ConcurrentMarkSweepThread::acknowledge_yield_request();
6542         stopTimer();
6543         if (PrintCMSStatistics != 0) {
6544           incrementYields();
6545         }
6546         icms_wait();
6547 
6548         // See the comment in coordinator_yield()
6549         for (unsigned i = 0; i < CMSYieldSleepCount &&
6550                          ConcurrentMarkSweepThread::should_yield() &&
6551                          !CMSCollector::foregroundGCIsActive(); ++i) {
6552           os::sleep(Thread::current(), 1, false);
6553           ConcurrentMarkSweepThread::acknowledge_yield_request();
6554         }
6555 
6556         ConcurrentMarkSweepThread::synchronize(true);
6557         bitMapLock()->lock_without_safepoint_check();
6558         startTimer();
6559       }
6560       curAddr = chunk.end();
6561     }
6562     // A successful mostly concurrent collection has been done.
6563     // Because only the full (i.e., concurrent mode failure) collections
6564     // are being measured for gc overhead limits, clean the "near" flag
6565     // and count.
6566     sp->reset_gc_overhead_limit_count();
6567     _collectorState = Idling;
6568   } else {
6569     // already have the lock
6570     assert(_collectorState == Resetting, "just checking");
6571     assert_lock_strong(bitMapLock());
6572     _markBitMap.clear_all();
6573     _collectorState = Idling;
6574   }
6575 
6576   // Stop incremental mode after a cycle completes, so that any future cycles
6577   // are triggered by allocation.
6578   stop_icms();
6579 
6580   NOT_PRODUCT(
6581     if (RotateCMSCollectionTypes) {
6582       _cmsGen->rotate_debug_collection_type();
6583     }
6584   )
6585 
6586   register_gc_end();
6587 }
6588 
6589 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6590   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6591   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6592   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6593   TraceCollectorStats tcs(counters());
6594 
6595   switch (op) {
6596     case CMS_op_checkpointRootsInitial: {
6597       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6598       checkpointRootsInitial(true);       // asynch
6599       if (PrintGC) {
6600         _cmsGen->printOccupancy("initial-mark");
6601       }
6602       break;
6603     }
6604     case CMS_op_checkpointRootsFinal: {
6605       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6606       checkpointRootsFinal(true,    // asynch
6607                            false,   // !clear_all_soft_refs
6608                            false);  // !init_mark_was_synchronous
6609       if (PrintGC) {
6610         _cmsGen->printOccupancy("remark");
6611       }
6612       break;
6613     }
6614     default:
6615       fatal("No such CMS_op");
6616   }
6617 }
6618 
6619 #ifndef PRODUCT
6620 size_t const CMSCollector::skip_header_HeapWords() {
6621   return FreeChunk::header_size();
6622 }
6623 
6624 // Try and collect here conditions that should hold when
6625 // CMS thread is exiting. The idea is that the foreground GC
6626 // thread should not be blocked if it wants to terminate
6627 // the CMS thread and yet continue to run the VM for a while
6628 // after that.
6629 void CMSCollector::verify_ok_to_terminate() const {
6630   assert(Thread::current()->is_ConcurrentGC_thread(),
6631          "should be called by CMS thread");
6632   assert(!_foregroundGCShouldWait, "should be false");
6633   // We could check here that all the various low-level locks
6634   // are not held by the CMS thread, but that is overkill; see
6635   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6636   // is checked.
6637 }
6638 #endif
6639 
6640 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6641    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6642           "missing Printezis mark?");
6643   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6644   size_t size = pointer_delta(nextOneAddr + 1, addr);
6645   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6646          "alignment problem");
6647   assert(size >= 3, "Necessary for Printezis marks to work");
6648   return size;
6649 }
6650 
6651 // A variant of the above (block_size_using_printezis_bits()) except
6652 // that we return 0 if the P-bits are not yet set.
6653 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6654   if (_markBitMap.isMarked(addr + 1)) {
6655     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6656     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6657     size_t size = pointer_delta(nextOneAddr + 1, addr);
6658     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6659            "alignment problem");
6660     assert(size >= 3, "Necessary for Printezis marks to work");
6661     return size;
6662   }
6663   return 0;
6664 }
6665 
6666 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6667   size_t sz = 0;
6668   oop p = (oop)addr;
6669   if (p->klass_or_null() != NULL) {
6670     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6671   } else {
6672     sz = block_size_using_printezis_bits(addr);
6673   }
6674   assert(sz > 0, "size must be nonzero");
6675   HeapWord* next_block = addr + sz;
6676   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6677                                              CardTableModRefBS::card_size);
6678   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6679          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6680          "must be different cards");
6681   return next_card;
6682 }
6683 
6684 
6685 // CMS Bit Map Wrapper /////////////////////////////////////////
6686 
6687 // Construct a CMS bit map infrastructure, but don't create the
6688 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6689 // further below.
6690 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6691   _bm(),
6692   _shifter(shifter),
6693   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6694 {
6695   _bmStartWord = 0;
6696   _bmWordSize  = 0;
6697 }
6698 
6699 bool CMSBitMap::allocate(MemRegion mr) {
6700   _bmStartWord = mr.start();
6701   _bmWordSize  = mr.word_size();
6702   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6703                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6704   if (!brs.is_reserved()) {
6705     warning("CMS bit map allocation failure");
6706     return false;
6707   }
6708   // For now we'll just commit all of the bit map up front.
6709   // Later on we'll try to be more parsimonious with swap.
6710   if (!_virtual_space.initialize(brs, brs.size())) {
6711     warning("CMS bit map backing store failure");
6712     return false;
6713   }
6714   assert(_virtual_space.committed_size() == brs.size(),
6715          "didn't reserve backing store for all of CMS bit map?");
6716   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6717   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6718          _bmWordSize, "inconsistency in bit map sizing");
6719   _bm.set_size(_bmWordSize >> _shifter);
6720 
6721   // bm.clear(); // can we rely on getting zero'd memory? verify below
6722   assert(isAllClear(),
6723          "Expected zero'd memory from ReservedSpace constructor");
6724   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6725          "consistency check");
6726   return true;
6727 }
6728 
6729 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6730   HeapWord *next_addr, *end_addr, *last_addr;
6731   assert_locked();
6732   assert(covers(mr), "out-of-range error");
6733   // XXX assert that start and end are appropriately aligned
6734   for (next_addr = mr.start(), end_addr = mr.end();
6735        next_addr < end_addr; next_addr = last_addr) {
6736     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6737     last_addr = dirty_region.end();
6738     if (!dirty_region.is_empty()) {
6739       cl->do_MemRegion(dirty_region);
6740     } else {
6741       assert(last_addr == end_addr, "program logic");
6742       return;
6743     }
6744   }
6745 }
6746 
6747 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6748   _bm.print_on_error(st, prefix);
6749 }
6750 
6751 #ifndef PRODUCT
6752 void CMSBitMap::assert_locked() const {
6753   CMSLockVerifier::assert_locked(lock());
6754 }
6755 
6756 bool CMSBitMap::covers(MemRegion mr) const {
6757   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6758   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6759          "size inconsistency");
6760   return (mr.start() >= _bmStartWord) &&
6761          (mr.end()   <= endWord());
6762 }
6763 
6764 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6765     return (start >= _bmStartWord && (start + size) <= endWord());
6766 }
6767 
6768 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6769   // verify that there are no 1 bits in the interval [left, right)
6770   FalseBitMapClosure falseBitMapClosure;
6771   iterate(&falseBitMapClosure, left, right);
6772 }
6773 
6774 void CMSBitMap::region_invariant(MemRegion mr)
6775 {
6776   assert_locked();
6777   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6778   assert(!mr.is_empty(), "unexpected empty region");
6779   assert(covers(mr), "mr should be covered by bit map");
6780   // convert address range into offset range
6781   size_t start_ofs = heapWordToOffset(mr.start());
6782   // Make sure that end() is appropriately aligned
6783   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6784                         (1 << (_shifter+LogHeapWordSize))),
6785          "Misaligned mr.end()");
6786   size_t end_ofs   = heapWordToOffset(mr.end());
6787   assert(end_ofs > start_ofs, "Should mark at least one bit");
6788 }
6789 
6790 #endif
6791 
6792 bool CMSMarkStack::allocate(size_t size) {
6793   // allocate a stack of the requisite depth
6794   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6795                    size * sizeof(oop)));
6796   if (!rs.is_reserved()) {
6797     warning("CMSMarkStack allocation failure");
6798     return false;
6799   }
6800   if (!_virtual_space.initialize(rs, rs.size())) {
6801     warning("CMSMarkStack backing store failure");
6802     return false;
6803   }
6804   assert(_virtual_space.committed_size() == rs.size(),
6805          "didn't reserve backing store for all of CMS stack?");
6806   _base = (oop*)(_virtual_space.low());
6807   _index = 0;
6808   _capacity = size;
6809   NOT_PRODUCT(_max_depth = 0);
6810   return true;
6811 }
6812 
6813 // XXX FIX ME !!! In the MT case we come in here holding a
6814 // leaf lock. For printing we need to take a further lock
6815 // which has lower rank. We need to recalibrate the two
6816 // lock-ranks involved in order to be able to print the
6817 // messages below. (Or defer the printing to the caller.
6818 // For now we take the expedient path of just disabling the
6819 // messages for the problematic case.)
6820 void CMSMarkStack::expand() {
6821   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6822   if (_capacity == MarkStackSizeMax) {
6823     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6824       // We print a warning message only once per CMS cycle.
6825       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6826     }
6827     return;
6828   }
6829   // Double capacity if possible
6830   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6831   // Do not give up existing stack until we have managed to
6832   // get the double capacity that we desired.
6833   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6834                    new_capacity * sizeof(oop)));
6835   if (rs.is_reserved()) {
6836     // Release the backing store associated with old stack
6837     _virtual_space.release();
6838     // Reinitialize virtual space for new stack
6839     if (!_virtual_space.initialize(rs, rs.size())) {
6840       fatal("Not enough swap for expanded marking stack");
6841     }
6842     _base = (oop*)(_virtual_space.low());
6843     _index = 0;
6844     _capacity = new_capacity;
6845   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6846     // Failed to double capacity, continue;
6847     // we print a detail message only once per CMS cycle.
6848     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6849             SIZE_FORMAT"K",
6850             _capacity / K, new_capacity / K);
6851   }
6852 }
6853 
6854 
6855 // Closures
6856 // XXX: there seems to be a lot of code  duplication here;
6857 // should refactor and consolidate common code.
6858 
6859 // This closure is used to mark refs into the CMS generation in
6860 // the CMS bit map. Called at the first checkpoint. This closure
6861 // assumes that we do not need to re-mark dirty cards; if the CMS
6862 // generation on which this is used is not an oldest
6863 // generation then this will lose younger_gen cards!
6864 
6865 MarkRefsIntoClosure::MarkRefsIntoClosure(
6866   MemRegion span, CMSBitMap* bitMap):
6867     _span(span),
6868     _bitMap(bitMap)
6869 {
6870     assert(_ref_processor == NULL, "deliberately left NULL");
6871     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6872 }
6873 
6874 void MarkRefsIntoClosure::do_oop(oop obj) {
6875   // if p points into _span, then mark corresponding bit in _markBitMap
6876   assert(obj->is_oop(), "expected an oop");
6877   HeapWord* addr = (HeapWord*)obj;
6878   if (_span.contains(addr)) {
6879     // this should be made more efficient
6880     _bitMap->mark(addr);
6881   }
6882 }
6883 
6884 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6885 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6886 
6887 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6888   MemRegion span, CMSBitMap* bitMap):
6889     _span(span),
6890     _bitMap(bitMap)
6891 {
6892     assert(_ref_processor == NULL, "deliberately left NULL");
6893     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6894 }
6895 
6896 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6897   // if p points into _span, then mark corresponding bit in _markBitMap
6898   assert(obj->is_oop(), "expected an oop");
6899   HeapWord* addr = (HeapWord*)obj;
6900   if (_span.contains(addr)) {
6901     // this should be made more efficient
6902     _bitMap->par_mark(addr);
6903   }
6904 }
6905 
6906 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6907 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6908 
6909 // A variant of the above, used for CMS marking verification.
6910 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6911   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6912     _span(span),
6913     _verification_bm(verification_bm),
6914     _cms_bm(cms_bm)
6915 {
6916     assert(_ref_processor == NULL, "deliberately left NULL");
6917     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6918 }
6919 
6920 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6921   // if p points into _span, then mark corresponding bit in _markBitMap
6922   assert(obj->is_oop(), "expected an oop");
6923   HeapWord* addr = (HeapWord*)obj;
6924   if (_span.contains(addr)) {
6925     _verification_bm->mark(addr);
6926     if (!_cms_bm->isMarked(addr)) {
6927       oop(addr)->print();
6928       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6929       fatal("... aborting");
6930     }
6931   }
6932 }
6933 
6934 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6935 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6936 
6937 //////////////////////////////////////////////////
6938 // MarkRefsIntoAndScanClosure
6939 //////////////////////////////////////////////////
6940 
6941 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6942                                                        ReferenceProcessor* rp,
6943                                                        CMSBitMap* bit_map,
6944                                                        CMSBitMap* mod_union_table,
6945                                                        CMSMarkStack*  mark_stack,
6946                                                        CMSCollector* collector,
6947                                                        bool should_yield,
6948                                                        bool concurrent_precleaning):
6949   _collector(collector),
6950   _span(span),
6951   _bit_map(bit_map),
6952   _mark_stack(mark_stack),
6953   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6954                       mark_stack, concurrent_precleaning),
6955   _yield(should_yield),
6956   _concurrent_precleaning(concurrent_precleaning),
6957   _freelistLock(NULL)
6958 {
6959   _ref_processor = rp;
6960   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6961 }
6962 
6963 // This closure is used to mark refs into the CMS generation at the
6964 // second (final) checkpoint, and to scan and transitively follow
6965 // the unmarked oops. It is also used during the concurrent precleaning
6966 // phase while scanning objects on dirty cards in the CMS generation.
6967 // The marks are made in the marking bit map and the marking stack is
6968 // used for keeping the (newly) grey objects during the scan.
6969 // The parallel version (Par_...) appears further below.
6970 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6971   if (obj != NULL) {
6972     assert(obj->is_oop(), "expected an oop");
6973     HeapWord* addr = (HeapWord*)obj;
6974     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6975     assert(_collector->overflow_list_is_empty(),
6976            "overflow list should be empty");
6977     if (_span.contains(addr) &&
6978         !_bit_map->isMarked(addr)) {
6979       // mark bit map (object is now grey)
6980       _bit_map->mark(addr);
6981       // push on marking stack (stack should be empty), and drain the
6982       // stack by applying this closure to the oops in the oops popped
6983       // from the stack (i.e. blacken the grey objects)
6984       bool res = _mark_stack->push(obj);
6985       assert(res, "Should have space to push on empty stack");
6986       do {
6987         oop new_oop = _mark_stack->pop();
6988         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6989         assert(_bit_map->isMarked((HeapWord*)new_oop),
6990                "only grey objects on this stack");
6991         // iterate over the oops in this oop, marking and pushing
6992         // the ones in CMS heap (i.e. in _span).
6993         new_oop->oop_iterate(&_pushAndMarkClosure);
6994         // check if it's time to yield
6995         do_yield_check();
6996       } while (!_mark_stack->isEmpty() ||
6997                (!_concurrent_precleaning && take_from_overflow_list()));
6998         // if marking stack is empty, and we are not doing this
6999         // during precleaning, then check the overflow list
7000     }
7001     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7002     assert(_collector->overflow_list_is_empty(),
7003            "overflow list was drained above");
7004     // We could restore evacuated mark words, if any, used for
7005     // overflow list links here because the overflow list is
7006     // provably empty here. That would reduce the maximum
7007     // size requirements for preserved_{oop,mark}_stack.
7008     // But we'll just postpone it until we are all done
7009     // so we can just stream through.
7010     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7011       _collector->restore_preserved_marks_if_any();
7012       assert(_collector->no_preserved_marks(), "No preserved marks");
7013     }
7014     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7015            "All preserved marks should have been restored above");
7016   }
7017 }
7018 
7019 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7020 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7021 
7022 void MarkRefsIntoAndScanClosure::do_yield_work() {
7023   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7024          "CMS thread should hold CMS token");
7025   assert_lock_strong(_freelistLock);
7026   assert_lock_strong(_bit_map->lock());
7027   // relinquish the free_list_lock and bitMaplock()
7028   _bit_map->lock()->unlock();
7029   _freelistLock->unlock();
7030   ConcurrentMarkSweepThread::desynchronize(true);
7031   ConcurrentMarkSweepThread::acknowledge_yield_request();
7032   _collector->stopTimer();
7033   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7034   if (PrintCMSStatistics != 0) {
7035     _collector->incrementYields();
7036   }
7037   _collector->icms_wait();
7038 
7039   // See the comment in coordinator_yield()
7040   for (unsigned i = 0;
7041        i < CMSYieldSleepCount &&
7042        ConcurrentMarkSweepThread::should_yield() &&
7043        !CMSCollector::foregroundGCIsActive();
7044        ++i) {
7045     os::sleep(Thread::current(), 1, false);
7046     ConcurrentMarkSweepThread::acknowledge_yield_request();
7047   }
7048 
7049   ConcurrentMarkSweepThread::synchronize(true);
7050   _freelistLock->lock_without_safepoint_check();
7051   _bit_map->lock()->lock_without_safepoint_check();
7052   _collector->startTimer();
7053 }
7054 
7055 ///////////////////////////////////////////////////////////
7056 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7057 //                                 MarkRefsIntoAndScanClosure
7058 ///////////////////////////////////////////////////////////
7059 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7060   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7061   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7062   _span(span),
7063   _bit_map(bit_map),
7064   _work_queue(work_queue),
7065   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7066                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7067   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7068 {
7069   _ref_processor = rp;
7070   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7071 }
7072 
7073 // This closure is used to mark refs into the CMS generation at the
7074 // second (final) checkpoint, and to scan and transitively follow
7075 // the unmarked oops. The marks are made in the marking bit map and
7076 // the work_queue is used for keeping the (newly) grey objects during
7077 // the scan phase whence they are also available for stealing by parallel
7078 // threads. Since the marking bit map is shared, updates are
7079 // synchronized (via CAS).
7080 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7081   if (obj != NULL) {
7082     // Ignore mark word because this could be an already marked oop
7083     // that may be chained at the end of the overflow list.
7084     assert(obj->is_oop(true), "expected an oop");
7085     HeapWord* addr = (HeapWord*)obj;
7086     if (_span.contains(addr) &&
7087         !_bit_map->isMarked(addr)) {
7088       // mark bit map (object will become grey):
7089       // It is possible for several threads to be
7090       // trying to "claim" this object concurrently;
7091       // the unique thread that succeeds in marking the
7092       // object first will do the subsequent push on
7093       // to the work queue (or overflow list).
7094       if (_bit_map->par_mark(addr)) {
7095         // push on work_queue (which may not be empty), and trim the
7096         // queue to an appropriate length by applying this closure to
7097         // the oops in the oops popped from the stack (i.e. blacken the
7098         // grey objects)
7099         bool res = _work_queue->push(obj);
7100         assert(res, "Low water mark should be less than capacity?");
7101         trim_queue(_low_water_mark);
7102       } // Else, another thread claimed the object
7103     }
7104   }
7105 }
7106 
7107 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7108 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7109 
7110 // This closure is used to rescan the marked objects on the dirty cards
7111 // in the mod union table and the card table proper.
7112 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7113   oop p, MemRegion mr) {
7114 
7115   size_t size = 0;
7116   HeapWord* addr = (HeapWord*)p;
7117   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7118   assert(_span.contains(addr), "we are scanning the CMS generation");
7119   // check if it's time to yield
7120   if (do_yield_check()) {
7121     // We yielded for some foreground stop-world work,
7122     // and we have been asked to abort this ongoing preclean cycle.
7123     return 0;
7124   }
7125   if (_bitMap->isMarked(addr)) {
7126     // it's marked; is it potentially uninitialized?
7127     if (p->klass_or_null() != NULL) {
7128         // an initialized object; ignore mark word in verification below
7129         // since we are running concurrent with mutators
7130         assert(p->is_oop(true), "should be an oop");
7131         if (p->is_objArray()) {
7132           // objArrays are precisely marked; restrict scanning
7133           // to dirty cards only.
7134           size = CompactibleFreeListSpace::adjustObjectSize(
7135                    p->oop_iterate(_scanningClosure, mr));
7136         } else {
7137           // A non-array may have been imprecisely marked; we need
7138           // to scan object in its entirety.
7139           size = CompactibleFreeListSpace::adjustObjectSize(
7140                    p->oop_iterate(_scanningClosure));
7141         }
7142         #ifdef ASSERT
7143           size_t direct_size =
7144             CompactibleFreeListSpace::adjustObjectSize(p->size());
7145           assert(size == direct_size, "Inconsistency in size");
7146           assert(size >= 3, "Necessary for Printezis marks to work");
7147           if (!_bitMap->isMarked(addr+1)) {
7148             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7149           } else {
7150             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7151             assert(_bitMap->isMarked(addr+size-1),
7152                    "inconsistent Printezis mark");
7153           }
7154         #endif // ASSERT
7155     } else {
7156       // An uninitialized object.
7157       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7158       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7159       size = pointer_delta(nextOneAddr + 1, addr);
7160       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7161              "alignment problem");
7162       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7163       // will dirty the card when the klass pointer is installed in the
7164       // object (signaling the completion of initialization).
7165     }
7166   } else {
7167     // Either a not yet marked object or an uninitialized object
7168     if (p->klass_or_null() == NULL) {
7169       // An uninitialized object, skip to the next card, since
7170       // we may not be able to read its P-bits yet.
7171       assert(size == 0, "Initial value");
7172     } else {
7173       // An object not (yet) reached by marking: we merely need to
7174       // compute its size so as to go look at the next block.
7175       assert(p->is_oop(true), "should be an oop");
7176       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7177     }
7178   }
7179   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7180   return size;
7181 }
7182 
7183 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7184   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7185          "CMS thread should hold CMS token");
7186   assert_lock_strong(_freelistLock);
7187   assert_lock_strong(_bitMap->lock());
7188   // relinquish the free_list_lock and bitMaplock()
7189   _bitMap->lock()->unlock();
7190   _freelistLock->unlock();
7191   ConcurrentMarkSweepThread::desynchronize(true);
7192   ConcurrentMarkSweepThread::acknowledge_yield_request();
7193   _collector->stopTimer();
7194   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7195   if (PrintCMSStatistics != 0) {
7196     _collector->incrementYields();
7197   }
7198   _collector->icms_wait();
7199 
7200   // See the comment in coordinator_yield()
7201   for (unsigned i = 0; i < CMSYieldSleepCount &&
7202                    ConcurrentMarkSweepThread::should_yield() &&
7203                    !CMSCollector::foregroundGCIsActive(); ++i) {
7204     os::sleep(Thread::current(), 1, false);
7205     ConcurrentMarkSweepThread::acknowledge_yield_request();
7206   }
7207 
7208   ConcurrentMarkSweepThread::synchronize(true);
7209   _freelistLock->lock_without_safepoint_check();
7210   _bitMap->lock()->lock_without_safepoint_check();
7211   _collector->startTimer();
7212 }
7213 
7214 
7215 //////////////////////////////////////////////////////////////////
7216 // SurvivorSpacePrecleanClosure
7217 //////////////////////////////////////////////////////////////////
7218 // This (single-threaded) closure is used to preclean the oops in
7219 // the survivor spaces.
7220 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7221 
7222   HeapWord* addr = (HeapWord*)p;
7223   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7224   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7225   assert(p->klass_or_null() != NULL, "object should be initialized");
7226   // an initialized object; ignore mark word in verification below
7227   // since we are running concurrent with mutators
7228   assert(p->is_oop(true), "should be an oop");
7229   // Note that we do not yield while we iterate over
7230   // the interior oops of p, pushing the relevant ones
7231   // on our marking stack.
7232   size_t size = p->oop_iterate(_scanning_closure);
7233   do_yield_check();
7234   // Observe that below, we do not abandon the preclean
7235   // phase as soon as we should; rather we empty the
7236   // marking stack before returning. This is to satisfy
7237   // some existing assertions. In general, it may be a
7238   // good idea to abort immediately and complete the marking
7239   // from the grey objects at a later time.
7240   while (!_mark_stack->isEmpty()) {
7241     oop new_oop = _mark_stack->pop();
7242     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7243     assert(_bit_map->isMarked((HeapWord*)new_oop),
7244            "only grey objects on this stack");
7245     // iterate over the oops in this oop, marking and pushing
7246     // the ones in CMS heap (i.e. in _span).
7247     new_oop->oop_iterate(_scanning_closure);
7248     // check if it's time to yield
7249     do_yield_check();
7250   }
7251   unsigned int after_count =
7252     GenCollectedHeap::heap()->total_collections();
7253   bool abort = (_before_count != after_count) ||
7254                _collector->should_abort_preclean();
7255   return abort ? 0 : size;
7256 }
7257 
7258 void SurvivorSpacePrecleanClosure::do_yield_work() {
7259   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7260          "CMS thread should hold CMS token");
7261   assert_lock_strong(_bit_map->lock());
7262   // Relinquish the bit map lock
7263   _bit_map->lock()->unlock();
7264   ConcurrentMarkSweepThread::desynchronize(true);
7265   ConcurrentMarkSweepThread::acknowledge_yield_request();
7266   _collector->stopTimer();
7267   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7268   if (PrintCMSStatistics != 0) {
7269     _collector->incrementYields();
7270   }
7271   _collector->icms_wait();
7272 
7273   // See the comment in coordinator_yield()
7274   for (unsigned i = 0; i < CMSYieldSleepCount &&
7275                        ConcurrentMarkSweepThread::should_yield() &&
7276                        !CMSCollector::foregroundGCIsActive(); ++i) {
7277     os::sleep(Thread::current(), 1, false);
7278     ConcurrentMarkSweepThread::acknowledge_yield_request();
7279   }
7280 
7281   ConcurrentMarkSweepThread::synchronize(true);
7282   _bit_map->lock()->lock_without_safepoint_check();
7283   _collector->startTimer();
7284 }
7285 
7286 // This closure is used to rescan the marked objects on the dirty cards
7287 // in the mod union table and the card table proper. In the parallel
7288 // case, although the bitMap is shared, we do a single read so the
7289 // isMarked() query is "safe".
7290 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7291   // Ignore mark word because we are running concurrent with mutators
7292   assert(p->is_oop_or_null(true), "expected an oop or null");
7293   HeapWord* addr = (HeapWord*)p;
7294   assert(_span.contains(addr), "we are scanning the CMS generation");
7295   bool is_obj_array = false;
7296   #ifdef ASSERT
7297     if (!_parallel) {
7298       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7299       assert(_collector->overflow_list_is_empty(),
7300              "overflow list should be empty");
7301 
7302     }
7303   #endif // ASSERT
7304   if (_bit_map->isMarked(addr)) {
7305     // Obj arrays are precisely marked, non-arrays are not;
7306     // so we scan objArrays precisely and non-arrays in their
7307     // entirety.
7308     if (p->is_objArray()) {
7309       is_obj_array = true;
7310       if (_parallel) {
7311         p->oop_iterate(_par_scan_closure, mr);
7312       } else {
7313         p->oop_iterate(_scan_closure, mr);
7314       }
7315     } else {
7316       if (_parallel) {
7317         p->oop_iterate(_par_scan_closure);
7318       } else {
7319         p->oop_iterate(_scan_closure);
7320       }
7321     }
7322   }
7323   #ifdef ASSERT
7324     if (!_parallel) {
7325       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7326       assert(_collector->overflow_list_is_empty(),
7327              "overflow list should be empty");
7328 
7329     }
7330   #endif // ASSERT
7331   return is_obj_array;
7332 }
7333 
7334 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7335                         MemRegion span,
7336                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7337                         bool should_yield, bool verifying):
7338   _collector(collector),
7339   _span(span),
7340   _bitMap(bitMap),
7341   _mut(&collector->_modUnionTable),
7342   _markStack(markStack),
7343   _yield(should_yield),
7344   _skipBits(0)
7345 {
7346   assert(_markStack->isEmpty(), "stack should be empty");
7347   _finger = _bitMap->startWord();
7348   _threshold = _finger;
7349   assert(_collector->_restart_addr == NULL, "Sanity check");
7350   assert(_span.contains(_finger), "Out of bounds _finger?");
7351   DEBUG_ONLY(_verifying = verifying;)
7352 }
7353 
7354 void MarkFromRootsClosure::reset(HeapWord* addr) {
7355   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7356   assert(_span.contains(addr), "Out of bounds _finger?");
7357   _finger = addr;
7358   _threshold = (HeapWord*)round_to(
7359                  (intptr_t)_finger, CardTableModRefBS::card_size);
7360 }
7361 
7362 // Should revisit to see if this should be restructured for
7363 // greater efficiency.
7364 bool MarkFromRootsClosure::do_bit(size_t offset) {
7365   if (_skipBits > 0) {
7366     _skipBits--;
7367     return true;
7368   }
7369   // convert offset into a HeapWord*
7370   HeapWord* addr = _bitMap->startWord() + offset;
7371   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7372          "address out of range");
7373   assert(_bitMap->isMarked(addr), "tautology");
7374   if (_bitMap->isMarked(addr+1)) {
7375     // this is an allocated but not yet initialized object
7376     assert(_skipBits == 0, "tautology");
7377     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7378     oop p = oop(addr);
7379     if (p->klass_or_null() == NULL) {
7380       DEBUG_ONLY(if (!_verifying) {)
7381         // We re-dirty the cards on which this object lies and increase
7382         // the _threshold so that we'll come back to scan this object
7383         // during the preclean or remark phase. (CMSCleanOnEnter)
7384         if (CMSCleanOnEnter) {
7385           size_t sz = _collector->block_size_using_printezis_bits(addr);
7386           HeapWord* end_card_addr   = (HeapWord*)round_to(
7387                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7388           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7389           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7390           // Bump _threshold to end_card_addr; note that
7391           // _threshold cannot possibly exceed end_card_addr, anyhow.
7392           // This prevents future clearing of the card as the scan proceeds
7393           // to the right.
7394           assert(_threshold <= end_card_addr,
7395                  "Because we are just scanning into this object");
7396           if (_threshold < end_card_addr) {
7397             _threshold = end_card_addr;
7398           }
7399           if (p->klass_or_null() != NULL) {
7400             // Redirty the range of cards...
7401             _mut->mark_range(redirty_range);
7402           } // ...else the setting of klass will dirty the card anyway.
7403         }
7404       DEBUG_ONLY(})
7405       return true;
7406     }
7407   }
7408   scanOopsInOop(addr);
7409   return true;
7410 }
7411 
7412 // We take a break if we've been at this for a while,
7413 // so as to avoid monopolizing the locks involved.
7414 void MarkFromRootsClosure::do_yield_work() {
7415   // First give up the locks, then yield, then re-lock
7416   // We should probably use a constructor/destructor idiom to
7417   // do this unlock/lock or modify the MutexUnlocker class to
7418   // serve our purpose. XXX
7419   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7420          "CMS thread should hold CMS token");
7421   assert_lock_strong(_bitMap->lock());
7422   _bitMap->lock()->unlock();
7423   ConcurrentMarkSweepThread::desynchronize(true);
7424   ConcurrentMarkSweepThread::acknowledge_yield_request();
7425   _collector->stopTimer();
7426   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7427   if (PrintCMSStatistics != 0) {
7428     _collector->incrementYields();
7429   }
7430   _collector->icms_wait();
7431 
7432   // See the comment in coordinator_yield()
7433   for (unsigned i = 0; i < CMSYieldSleepCount &&
7434                        ConcurrentMarkSweepThread::should_yield() &&
7435                        !CMSCollector::foregroundGCIsActive(); ++i) {
7436     os::sleep(Thread::current(), 1, false);
7437     ConcurrentMarkSweepThread::acknowledge_yield_request();
7438   }
7439 
7440   ConcurrentMarkSweepThread::synchronize(true);
7441   _bitMap->lock()->lock_without_safepoint_check();
7442   _collector->startTimer();
7443 }
7444 
7445 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7446   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7447   assert(_markStack->isEmpty(),
7448          "should drain stack to limit stack usage");
7449   // convert ptr to an oop preparatory to scanning
7450   oop obj = oop(ptr);
7451   // Ignore mark word in verification below, since we
7452   // may be running concurrent with mutators.
7453   assert(obj->is_oop(true), "should be an oop");
7454   assert(_finger <= ptr, "_finger runneth ahead");
7455   // advance the finger to right end of this object
7456   _finger = ptr + obj->size();
7457   assert(_finger > ptr, "we just incremented it above");
7458   // On large heaps, it may take us some time to get through
7459   // the marking phase (especially if running iCMS). During
7460   // this time it's possible that a lot of mutations have
7461   // accumulated in the card table and the mod union table --
7462   // these mutation records are redundant until we have
7463   // actually traced into the corresponding card.
7464   // Here, we check whether advancing the finger would make
7465   // us cross into a new card, and if so clear corresponding
7466   // cards in the MUT (preclean them in the card-table in the
7467   // future).
7468 
7469   DEBUG_ONLY(if (!_verifying) {)
7470     // The clean-on-enter optimization is disabled by default,
7471     // until we fix 6178663.
7472     if (CMSCleanOnEnter && (_finger > _threshold)) {
7473       // [_threshold, _finger) represents the interval
7474       // of cards to be cleared  in MUT (or precleaned in card table).
7475       // The set of cards to be cleared is all those that overlap
7476       // with the interval [_threshold, _finger); note that
7477       // _threshold is always kept card-aligned but _finger isn't
7478       // always card-aligned.
7479       HeapWord* old_threshold = _threshold;
7480       assert(old_threshold == (HeapWord*)round_to(
7481               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7482              "_threshold should always be card-aligned");
7483       _threshold = (HeapWord*)round_to(
7484                      (intptr_t)_finger, CardTableModRefBS::card_size);
7485       MemRegion mr(old_threshold, _threshold);
7486       assert(!mr.is_empty(), "Control point invariant");
7487       assert(_span.contains(mr), "Should clear within span");
7488       _mut->clear_range(mr);
7489     }
7490   DEBUG_ONLY(})
7491   // Note: the finger doesn't advance while we drain
7492   // the stack below.
7493   PushOrMarkClosure pushOrMarkClosure(_collector,
7494                                       _span, _bitMap, _markStack,
7495                                       _finger, this);
7496   bool res = _markStack->push(obj);
7497   assert(res, "Empty non-zero size stack should have space for single push");
7498   while (!_markStack->isEmpty()) {
7499     oop new_oop = _markStack->pop();
7500     // Skip verifying header mark word below because we are
7501     // running concurrent with mutators.
7502     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7503     // now scan this oop's oops
7504     new_oop->oop_iterate(&pushOrMarkClosure);
7505     do_yield_check();
7506   }
7507   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7508 }
7509 
7510 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7511                        CMSCollector* collector, MemRegion span,
7512                        CMSBitMap* bit_map,
7513                        OopTaskQueue* work_queue,
7514                        CMSMarkStack*  overflow_stack,
7515                        bool should_yield):
7516   _collector(collector),
7517   _whole_span(collector->_span),
7518   _span(span),
7519   _bit_map(bit_map),
7520   _mut(&collector->_modUnionTable),
7521   _work_queue(work_queue),
7522   _overflow_stack(overflow_stack),
7523   _yield(should_yield),
7524   _skip_bits(0),
7525   _task(task)
7526 {
7527   assert(_work_queue->size() == 0, "work_queue should be empty");
7528   _finger = span.start();
7529   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7530   assert(_span.contains(_finger), "Out of bounds _finger?");
7531 }
7532 
7533 // Should revisit to see if this should be restructured for
7534 // greater efficiency.
7535 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7536   if (_skip_bits > 0) {
7537     _skip_bits--;
7538     return true;
7539   }
7540   // convert offset into a HeapWord*
7541   HeapWord* addr = _bit_map->startWord() + offset;
7542   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7543          "address out of range");
7544   assert(_bit_map->isMarked(addr), "tautology");
7545   if (_bit_map->isMarked(addr+1)) {
7546     // this is an allocated object that might not yet be initialized
7547     assert(_skip_bits == 0, "tautology");
7548     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7549     oop p = oop(addr);
7550     if (p->klass_or_null() == NULL) {
7551       // in the case of Clean-on-Enter optimization, redirty card
7552       // and avoid clearing card by increasing  the threshold.
7553       return true;
7554     }
7555   }
7556   scan_oops_in_oop(addr);
7557   return true;
7558 }
7559 
7560 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7561   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7562   // Should we assert that our work queue is empty or
7563   // below some drain limit?
7564   assert(_work_queue->size() == 0,
7565          "should drain stack to limit stack usage");
7566   // convert ptr to an oop preparatory to scanning
7567   oop obj = oop(ptr);
7568   // Ignore mark word in verification below, since we
7569   // may be running concurrent with mutators.
7570   assert(obj->is_oop(true), "should be an oop");
7571   assert(_finger <= ptr, "_finger runneth ahead");
7572   // advance the finger to right end of this object
7573   _finger = ptr + obj->size();
7574   assert(_finger > ptr, "we just incremented it above");
7575   // On large heaps, it may take us some time to get through
7576   // the marking phase (especially if running iCMS). During
7577   // this time it's possible that a lot of mutations have
7578   // accumulated in the card table and the mod union table --
7579   // these mutation records are redundant until we have
7580   // actually traced into the corresponding card.
7581   // Here, we check whether advancing the finger would make
7582   // us cross into a new card, and if so clear corresponding
7583   // cards in the MUT (preclean them in the card-table in the
7584   // future).
7585 
7586   // The clean-on-enter optimization is disabled by default,
7587   // until we fix 6178663.
7588   if (CMSCleanOnEnter && (_finger > _threshold)) {
7589     // [_threshold, _finger) represents the interval
7590     // of cards to be cleared  in MUT (or precleaned in card table).
7591     // The set of cards to be cleared is all those that overlap
7592     // with the interval [_threshold, _finger); note that
7593     // _threshold is always kept card-aligned but _finger isn't
7594     // always card-aligned.
7595     HeapWord* old_threshold = _threshold;
7596     assert(old_threshold == (HeapWord*)round_to(
7597             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7598            "_threshold should always be card-aligned");
7599     _threshold = (HeapWord*)round_to(
7600                    (intptr_t)_finger, CardTableModRefBS::card_size);
7601     MemRegion mr(old_threshold, _threshold);
7602     assert(!mr.is_empty(), "Control point invariant");
7603     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7604     _mut->clear_range(mr);
7605   }
7606 
7607   // Note: the local finger doesn't advance while we drain
7608   // the stack below, but the global finger sure can and will.
7609   HeapWord** gfa = _task->global_finger_addr();
7610   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7611                                       _span, _bit_map,
7612                                       _work_queue,
7613                                       _overflow_stack,
7614                                       _finger,
7615                                       gfa, this);
7616   bool res = _work_queue->push(obj);   // overflow could occur here
7617   assert(res, "Will hold once we use workqueues");
7618   while (true) {
7619     oop new_oop;
7620     if (!_work_queue->pop_local(new_oop)) {
7621       // We emptied our work_queue; check if there's stuff that can
7622       // be gotten from the overflow stack.
7623       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7624             _overflow_stack, _work_queue)) {
7625         do_yield_check();
7626         continue;
7627       } else {  // done
7628         break;
7629       }
7630     }
7631     // Skip verifying header mark word below because we are
7632     // running concurrent with mutators.
7633     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7634     // now scan this oop's oops
7635     new_oop->oop_iterate(&pushOrMarkClosure);
7636     do_yield_check();
7637   }
7638   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7639 }
7640 
7641 // Yield in response to a request from VM Thread or
7642 // from mutators.
7643 void Par_MarkFromRootsClosure::do_yield_work() {
7644   assert(_task != NULL, "sanity");
7645   _task->yield();
7646 }
7647 
7648 // A variant of the above used for verifying CMS marking work.
7649 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7650                         MemRegion span,
7651                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7652                         CMSMarkStack*  mark_stack):
7653   _collector(collector),
7654   _span(span),
7655   _verification_bm(verification_bm),
7656   _cms_bm(cms_bm),
7657   _mark_stack(mark_stack),
7658   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7659                       mark_stack)
7660 {
7661   assert(_mark_stack->isEmpty(), "stack should be empty");
7662   _finger = _verification_bm->startWord();
7663   assert(_collector->_restart_addr == NULL, "Sanity check");
7664   assert(_span.contains(_finger), "Out of bounds _finger?");
7665 }
7666 
7667 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7668   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7669   assert(_span.contains(addr), "Out of bounds _finger?");
7670   _finger = addr;
7671 }
7672 
7673 // Should revisit to see if this should be restructured for
7674 // greater efficiency.
7675 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7676   // convert offset into a HeapWord*
7677   HeapWord* addr = _verification_bm->startWord() + offset;
7678   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7679          "address out of range");
7680   assert(_verification_bm->isMarked(addr), "tautology");
7681   assert(_cms_bm->isMarked(addr), "tautology");
7682 
7683   assert(_mark_stack->isEmpty(),
7684          "should drain stack to limit stack usage");
7685   // convert addr to an oop preparatory to scanning
7686   oop obj = oop(addr);
7687   assert(obj->is_oop(), "should be an oop");
7688   assert(_finger <= addr, "_finger runneth ahead");
7689   // advance the finger to right end of this object
7690   _finger = addr + obj->size();
7691   assert(_finger > addr, "we just incremented it above");
7692   // Note: the finger doesn't advance while we drain
7693   // the stack below.
7694   bool res = _mark_stack->push(obj);
7695   assert(res, "Empty non-zero size stack should have space for single push");
7696   while (!_mark_stack->isEmpty()) {
7697     oop new_oop = _mark_stack->pop();
7698     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7699     // now scan this oop's oops
7700     new_oop->oop_iterate(&_pam_verify_closure);
7701   }
7702   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7703   return true;
7704 }
7705 
7706 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7707   CMSCollector* collector, MemRegion span,
7708   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7709   CMSMarkStack*  mark_stack):
7710   CMSOopClosure(collector->ref_processor()),
7711   _collector(collector),
7712   _span(span),
7713   _verification_bm(verification_bm),
7714   _cms_bm(cms_bm),
7715   _mark_stack(mark_stack)
7716 { }
7717 
7718 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7719 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7720 
7721 // Upon stack overflow, we discard (part of) the stack,
7722 // remembering the least address amongst those discarded
7723 // in CMSCollector's _restart_address.
7724 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7725   // Remember the least grey address discarded
7726   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7727   _collector->lower_restart_addr(ra);
7728   _mark_stack->reset();  // discard stack contents
7729   _mark_stack->expand(); // expand the stack if possible
7730 }
7731 
7732 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7733   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7734   HeapWord* addr = (HeapWord*)obj;
7735   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7736     // Oop lies in _span and isn't yet grey or black
7737     _verification_bm->mark(addr);            // now grey
7738     if (!_cms_bm->isMarked(addr)) {
7739       oop(addr)->print();
7740       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7741                              addr);
7742       fatal("... aborting");
7743     }
7744 
7745     if (!_mark_stack->push(obj)) { // stack overflow
7746       if (PrintCMSStatistics != 0) {
7747         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7748                                SIZE_FORMAT, _mark_stack->capacity());
7749       }
7750       assert(_mark_stack->isFull(), "Else push should have succeeded");
7751       handle_stack_overflow(addr);
7752     }
7753     // anything including and to the right of _finger
7754     // will be scanned as we iterate over the remainder of the
7755     // bit map
7756   }
7757 }
7758 
7759 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7760                      MemRegion span,
7761                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7762                      HeapWord* finger, MarkFromRootsClosure* parent) :
7763   CMSOopClosure(collector->ref_processor()),
7764   _collector(collector),
7765   _span(span),
7766   _bitMap(bitMap),
7767   _markStack(markStack),
7768   _finger(finger),
7769   _parent(parent)
7770 { }
7771 
7772 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7773                      MemRegion span,
7774                      CMSBitMap* bit_map,
7775                      OopTaskQueue* work_queue,
7776                      CMSMarkStack*  overflow_stack,
7777                      HeapWord* finger,
7778                      HeapWord** global_finger_addr,
7779                      Par_MarkFromRootsClosure* parent) :
7780   CMSOopClosure(collector->ref_processor()),
7781   _collector(collector),
7782   _whole_span(collector->_span),
7783   _span(span),
7784   _bit_map(bit_map),
7785   _work_queue(work_queue),
7786   _overflow_stack(overflow_stack),
7787   _finger(finger),
7788   _global_finger_addr(global_finger_addr),
7789   _parent(parent)
7790 { }
7791 
7792 // Assumes thread-safe access by callers, who are
7793 // responsible for mutual exclusion.
7794 void CMSCollector::lower_restart_addr(HeapWord* low) {
7795   assert(_span.contains(low), "Out of bounds addr");
7796   if (_restart_addr == NULL) {
7797     _restart_addr = low;
7798   } else {
7799     _restart_addr = MIN2(_restart_addr, low);
7800   }
7801 }
7802 
7803 // Upon stack overflow, we discard (part of) the stack,
7804 // remembering the least address amongst those discarded
7805 // in CMSCollector's _restart_address.
7806 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7807   // Remember the least grey address discarded
7808   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7809   _collector->lower_restart_addr(ra);
7810   _markStack->reset();  // discard stack contents
7811   _markStack->expand(); // expand the stack if possible
7812 }
7813 
7814 // Upon stack overflow, we discard (part of) the stack,
7815 // remembering the least address amongst those discarded
7816 // in CMSCollector's _restart_address.
7817 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7818   // We need to do this under a mutex to prevent other
7819   // workers from interfering with the work done below.
7820   MutexLockerEx ml(_overflow_stack->par_lock(),
7821                    Mutex::_no_safepoint_check_flag);
7822   // Remember the least grey address discarded
7823   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7824   _collector->lower_restart_addr(ra);
7825   _overflow_stack->reset();  // discard stack contents
7826   _overflow_stack->expand(); // expand the stack if possible
7827 }
7828 
7829 void CMKlassClosure::do_klass(Klass* k) {
7830   assert(_oop_closure != NULL, "Not initialized?");
7831   k->oops_do(_oop_closure);
7832 }
7833 
7834 void PushOrMarkClosure::do_oop(oop obj) {
7835   // Ignore mark word because we are running concurrent with mutators.
7836   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7837   HeapWord* addr = (HeapWord*)obj;
7838   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7839     // Oop lies in _span and isn't yet grey or black
7840     _bitMap->mark(addr);            // now grey
7841     if (addr < _finger) {
7842       // the bit map iteration has already either passed, or
7843       // sampled, this bit in the bit map; we'll need to
7844       // use the marking stack to scan this oop's oops.
7845       bool simulate_overflow = false;
7846       NOT_PRODUCT(
7847         if (CMSMarkStackOverflowALot &&
7848             _collector->simulate_overflow()) {
7849           // simulate a stack overflow
7850           simulate_overflow = true;
7851         }
7852       )
7853       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7854         if (PrintCMSStatistics != 0) {
7855           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7856                                  SIZE_FORMAT, _markStack->capacity());
7857         }
7858         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7859         handle_stack_overflow(addr);
7860       }
7861     }
7862     // anything including and to the right of _finger
7863     // will be scanned as we iterate over the remainder of the
7864     // bit map
7865     do_yield_check();
7866   }
7867 }
7868 
7869 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7870 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7871 
7872 void Par_PushOrMarkClosure::do_oop(oop obj) {
7873   // Ignore mark word because we are running concurrent with mutators.
7874   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7875   HeapWord* addr = (HeapWord*)obj;
7876   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7877     // Oop lies in _span and isn't yet grey or black
7878     // We read the global_finger (volatile read) strictly after marking oop
7879     bool res = _bit_map->par_mark(addr);    // now grey
7880     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7881     // Should we push this marked oop on our stack?
7882     // -- if someone else marked it, nothing to do
7883     // -- if target oop is above global finger nothing to do
7884     // -- if target oop is in chunk and above local finger
7885     //      then nothing to do
7886     // -- else push on work queue
7887     if (   !res       // someone else marked it, they will deal with it
7888         || (addr >= *gfa)  // will be scanned in a later task
7889         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7890       return;
7891     }
7892     // the bit map iteration has already either passed, or
7893     // sampled, this bit in the bit map; we'll need to
7894     // use the marking stack to scan this oop's oops.
7895     bool simulate_overflow = false;
7896     NOT_PRODUCT(
7897       if (CMSMarkStackOverflowALot &&
7898           _collector->simulate_overflow()) {
7899         // simulate a stack overflow
7900         simulate_overflow = true;
7901       }
7902     )
7903     if (simulate_overflow ||
7904         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7905       // stack overflow
7906       if (PrintCMSStatistics != 0) {
7907         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7908                                SIZE_FORMAT, _overflow_stack->capacity());
7909       }
7910       // We cannot assert that the overflow stack is full because
7911       // it may have been emptied since.
7912       assert(simulate_overflow ||
7913              _work_queue->size() == _work_queue->max_elems(),
7914             "Else push should have succeeded");
7915       handle_stack_overflow(addr);
7916     }
7917     do_yield_check();
7918   }
7919 }
7920 
7921 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7922 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7923 
7924 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7925                                        MemRegion span,
7926                                        ReferenceProcessor* rp,
7927                                        CMSBitMap* bit_map,
7928                                        CMSBitMap* mod_union_table,
7929                                        CMSMarkStack*  mark_stack,
7930                                        bool           concurrent_precleaning):
7931   CMSOopClosure(rp),
7932   _collector(collector),
7933   _span(span),
7934   _bit_map(bit_map),
7935   _mod_union_table(mod_union_table),
7936   _mark_stack(mark_stack),
7937   _concurrent_precleaning(concurrent_precleaning)
7938 {
7939   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7940 }
7941 
7942 // Grey object rescan during pre-cleaning and second checkpoint phases --
7943 // the non-parallel version (the parallel version appears further below.)
7944 void PushAndMarkClosure::do_oop(oop obj) {
7945   // Ignore mark word verification. If during concurrent precleaning,
7946   // the object monitor may be locked. If during the checkpoint
7947   // phases, the object may already have been reached by a  different
7948   // path and may be at the end of the global overflow list (so
7949   // the mark word may be NULL).
7950   assert(obj->is_oop_or_null(true /* ignore mark word */),
7951          "expected an oop or NULL");
7952   HeapWord* addr = (HeapWord*)obj;
7953   // Check if oop points into the CMS generation
7954   // and is not marked
7955   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7956     // a white object ...
7957     _bit_map->mark(addr);         // ... now grey
7958     // push on the marking stack (grey set)
7959     bool simulate_overflow = false;
7960     NOT_PRODUCT(
7961       if (CMSMarkStackOverflowALot &&
7962           _collector->simulate_overflow()) {
7963         // simulate a stack overflow
7964         simulate_overflow = true;
7965       }
7966     )
7967     if (simulate_overflow || !_mark_stack->push(obj)) {
7968       if (_concurrent_precleaning) {
7969          // During precleaning we can just dirty the appropriate card(s)
7970          // in the mod union table, thus ensuring that the object remains
7971          // in the grey set  and continue. In the case of object arrays
7972          // we need to dirty all of the cards that the object spans,
7973          // since the rescan of object arrays will be limited to the
7974          // dirty cards.
7975          // Note that no one can be interfering with us in this action
7976          // of dirtying the mod union table, so no locking or atomics
7977          // are required.
7978          if (obj->is_objArray()) {
7979            size_t sz = obj->size();
7980            HeapWord* end_card_addr = (HeapWord*)round_to(
7981                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7982            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7983            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7984            _mod_union_table->mark_range(redirty_range);
7985          } else {
7986            _mod_union_table->mark(addr);
7987          }
7988          _collector->_ser_pmc_preclean_ovflw++;
7989       } else {
7990          // During the remark phase, we need to remember this oop
7991          // in the overflow list.
7992          _collector->push_on_overflow_list(obj);
7993          _collector->_ser_pmc_remark_ovflw++;
7994       }
7995     }
7996   }
7997 }
7998 
7999 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8000                                                MemRegion span,
8001                                                ReferenceProcessor* rp,
8002                                                CMSBitMap* bit_map,
8003                                                OopTaskQueue* work_queue):
8004   CMSOopClosure(rp),
8005   _collector(collector),
8006   _span(span),
8007   _bit_map(bit_map),
8008   _work_queue(work_queue)
8009 {
8010   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8011 }
8012 
8013 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8014 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8015 
8016 // Grey object rescan during second checkpoint phase --
8017 // the parallel version.
8018 void Par_PushAndMarkClosure::do_oop(oop obj) {
8019   // In the assert below, we ignore the mark word because
8020   // this oop may point to an already visited object that is
8021   // on the overflow stack (in which case the mark word has
8022   // been hijacked for chaining into the overflow stack --
8023   // if this is the last object in the overflow stack then
8024   // its mark word will be NULL). Because this object may
8025   // have been subsequently popped off the global overflow
8026   // stack, and the mark word possibly restored to the prototypical
8027   // value, by the time we get to examined this failing assert in
8028   // the debugger, is_oop_or_null(false) may subsequently start
8029   // to hold.
8030   assert(obj->is_oop_or_null(true),
8031          "expected an oop or NULL");
8032   HeapWord* addr = (HeapWord*)obj;
8033   // Check if oop points into the CMS generation
8034   // and is not marked
8035   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8036     // a white object ...
8037     // If we manage to "claim" the object, by being the
8038     // first thread to mark it, then we push it on our
8039     // marking stack
8040     if (_bit_map->par_mark(addr)) {     // ... now grey
8041       // push on work queue (grey set)
8042       bool simulate_overflow = false;
8043       NOT_PRODUCT(
8044         if (CMSMarkStackOverflowALot &&
8045             _collector->par_simulate_overflow()) {
8046           // simulate a stack overflow
8047           simulate_overflow = true;
8048         }
8049       )
8050       if (simulate_overflow || !_work_queue->push(obj)) {
8051         _collector->par_push_on_overflow_list(obj);
8052         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8053       }
8054     } // Else, some other thread got there first
8055   }
8056 }
8057 
8058 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8059 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8060 
8061 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8062   Mutex* bml = _collector->bitMapLock();
8063   assert_lock_strong(bml);
8064   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8065          "CMS thread should hold CMS token");
8066 
8067   bml->unlock();
8068   ConcurrentMarkSweepThread::desynchronize(true);
8069 
8070   ConcurrentMarkSweepThread::acknowledge_yield_request();
8071 
8072   _collector->stopTimer();
8073   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8074   if (PrintCMSStatistics != 0) {
8075     _collector->incrementYields();
8076   }
8077   _collector->icms_wait();
8078 
8079   // See the comment in coordinator_yield()
8080   for (unsigned i = 0; i < CMSYieldSleepCount &&
8081                        ConcurrentMarkSweepThread::should_yield() &&
8082                        !CMSCollector::foregroundGCIsActive(); ++i) {
8083     os::sleep(Thread::current(), 1, false);
8084     ConcurrentMarkSweepThread::acknowledge_yield_request();
8085   }
8086 
8087   ConcurrentMarkSweepThread::synchronize(true);
8088   bml->lock();
8089 
8090   _collector->startTimer();
8091 }
8092 
8093 bool CMSPrecleanRefsYieldClosure::should_return() {
8094   if (ConcurrentMarkSweepThread::should_yield()) {
8095     do_yield_work();
8096   }
8097   return _collector->foregroundGCIsActive();
8098 }
8099 
8100 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8101   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8102          "mr should be aligned to start at a card boundary");
8103   // We'd like to assert:
8104   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8105   //        "mr should be a range of cards");
8106   // However, that would be too strong in one case -- the last
8107   // partition ends at _unallocated_block which, in general, can be
8108   // an arbitrary boundary, not necessarily card aligned.
8109   if (PrintCMSStatistics != 0) {
8110     _num_dirty_cards +=
8111          mr.word_size()/CardTableModRefBS::card_size_in_words;
8112   }
8113   _space->object_iterate_mem(mr, &_scan_cl);
8114 }
8115 
8116 SweepClosure::SweepClosure(CMSCollector* collector,
8117                            ConcurrentMarkSweepGeneration* g,
8118                            CMSBitMap* bitMap, bool should_yield) :
8119   _collector(collector),
8120   _g(g),
8121   _sp(g->cmsSpace()),
8122   _limit(_sp->sweep_limit()),
8123   _freelistLock(_sp->freelistLock()),
8124   _bitMap(bitMap),
8125   _yield(should_yield),
8126   _inFreeRange(false),           // No free range at beginning of sweep
8127   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8128   _lastFreeRangeCoalesced(false),
8129   _freeFinger(g->used_region().start())
8130 {
8131   NOT_PRODUCT(
8132     _numObjectsFreed = 0;
8133     _numWordsFreed   = 0;
8134     _numObjectsLive = 0;
8135     _numWordsLive = 0;
8136     _numObjectsAlreadyFree = 0;
8137     _numWordsAlreadyFree = 0;
8138     _last_fc = NULL;
8139 
8140     _sp->initializeIndexedFreeListArrayReturnedBytes();
8141     _sp->dictionary()->initialize_dict_returned_bytes();
8142   )
8143   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8144          "sweep _limit out of bounds");
8145   if (CMSTraceSweeper) {
8146     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8147                         _limit);
8148   }
8149 }
8150 
8151 void SweepClosure::print_on(outputStream* st) const {
8152   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8153                 _sp->bottom(), _sp->end());
8154   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8155   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8156   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8157   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8158                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8159 }
8160 
8161 #ifndef PRODUCT
8162 // Assertion checking only:  no useful work in product mode --
8163 // however, if any of the flags below become product flags,
8164 // you may need to review this code to see if it needs to be
8165 // enabled in product mode.
8166 SweepClosure::~SweepClosure() {
8167   assert_lock_strong(_freelistLock);
8168   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8169          "sweep _limit out of bounds");
8170   if (inFreeRange()) {
8171     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8172     print();
8173     ShouldNotReachHere();
8174   }
8175   if (Verbose && PrintGC) {
8176     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8177                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8178     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8179                            SIZE_FORMAT" bytes  "
8180       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8181       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8182       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8183     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8184                         * sizeof(HeapWord);
8185     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8186 
8187     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8188       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8189       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8190       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8191       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8192       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8193         indexListReturnedBytes);
8194       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8195         dict_returned_bytes);
8196     }
8197   }
8198   if (CMSTraceSweeper) {
8199     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8200                            _limit);
8201   }
8202 }
8203 #endif  // PRODUCT
8204 
8205 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8206     bool freeRangeInFreeLists) {
8207   if (CMSTraceSweeper) {
8208     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
8209                freeFinger, freeRangeInFreeLists);
8210   }
8211   assert(!inFreeRange(), "Trampling existing free range");
8212   set_inFreeRange(true);
8213   set_lastFreeRangeCoalesced(false);
8214 
8215   set_freeFinger(freeFinger);
8216   set_freeRangeInFreeLists(freeRangeInFreeLists);
8217   if (CMSTestInFreeList) {
8218     if (freeRangeInFreeLists) {
8219       FreeChunk* fc = (FreeChunk*) freeFinger;
8220       assert(fc->is_free(), "A chunk on the free list should be free.");
8221       assert(fc->size() > 0, "Free range should have a size");
8222       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8223     }
8224   }
8225 }
8226 
8227 // Note that the sweeper runs concurrently with mutators. Thus,
8228 // it is possible for direct allocation in this generation to happen
8229 // in the middle of the sweep. Note that the sweeper also coalesces
8230 // contiguous free blocks. Thus, unless the sweeper and the allocator
8231 // synchronize appropriately freshly allocated blocks may get swept up.
8232 // This is accomplished by the sweeper locking the free lists while
8233 // it is sweeping. Thus blocks that are determined to be free are
8234 // indeed free. There is however one additional complication:
8235 // blocks that have been allocated since the final checkpoint and
8236 // mark, will not have been marked and so would be treated as
8237 // unreachable and swept up. To prevent this, the allocator marks
8238 // the bit map when allocating during the sweep phase. This leads,
8239 // however, to a further complication -- objects may have been allocated
8240 // but not yet initialized -- in the sense that the header isn't yet
8241 // installed. The sweeper can not then determine the size of the block
8242 // in order to skip over it. To deal with this case, we use a technique
8243 // (due to Printezis) to encode such uninitialized block sizes in the
8244 // bit map. Since the bit map uses a bit per every HeapWord, but the
8245 // CMS generation has a minimum object size of 3 HeapWords, it follows
8246 // that "normal marks" won't be adjacent in the bit map (there will
8247 // always be at least two 0 bits between successive 1 bits). We make use
8248 // of these "unused" bits to represent uninitialized blocks -- the bit
8249 // corresponding to the start of the uninitialized object and the next
8250 // bit are both set. Finally, a 1 bit marks the end of the object that
8251 // started with the two consecutive 1 bits to indicate its potentially
8252 // uninitialized state.
8253 
8254 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8255   FreeChunk* fc = (FreeChunk*)addr;
8256   size_t res;
8257 
8258   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8259   // than "addr == _limit" because although _limit was a block boundary when
8260   // we started the sweep, it may no longer be one because heap expansion
8261   // may have caused us to coalesce the block ending at the address _limit
8262   // with a newly expanded chunk (this happens when _limit was set to the
8263   // previous _end of the space), so we may have stepped past _limit:
8264   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8265   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8266     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8267            "sweep _limit out of bounds");
8268     assert(addr < _sp->end(), "addr out of bounds");
8269     // Flush any free range we might be holding as a single
8270     // coalesced chunk to the appropriate free list.
8271     if (inFreeRange()) {
8272       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8273              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8274       flush_cur_free_chunk(freeFinger(),
8275                            pointer_delta(addr, freeFinger()));
8276       if (CMSTraceSweeper) {
8277         gclog_or_tty->print("Sweep: last chunk: ");
8278         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
8279                    "[coalesced:%d]\n",
8280                    freeFinger(), pointer_delta(addr, freeFinger()),
8281                    lastFreeRangeCoalesced() ? 1 : 0);
8282       }
8283     }
8284 
8285     // help the iterator loop finish
8286     return pointer_delta(_sp->end(), addr);
8287   }
8288 
8289   assert(addr < _limit, "sweep invariant");
8290   // check if we should yield
8291   do_yield_check(addr);
8292   if (fc->is_free()) {
8293     // Chunk that is already free
8294     res = fc->size();
8295     do_already_free_chunk(fc);
8296     debug_only(_sp->verifyFreeLists());
8297     // If we flush the chunk at hand in lookahead_and_flush()
8298     // and it's coalesced with a preceding chunk, then the
8299     // process of "mangling" the payload of the coalesced block
8300     // will cause erasure of the size information from the
8301     // (erstwhile) header of all the coalesced blocks but the
8302     // first, so the first disjunct in the assert will not hold
8303     // in that specific case (in which case the second disjunct
8304     // will hold).
8305     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8306            "Otherwise the size info doesn't change at this step");
8307     NOT_PRODUCT(
8308       _numObjectsAlreadyFree++;
8309       _numWordsAlreadyFree += res;
8310     )
8311     NOT_PRODUCT(_last_fc = fc;)
8312   } else if (!_bitMap->isMarked(addr)) {
8313     // Chunk is fresh garbage
8314     res = do_garbage_chunk(fc);
8315     debug_only(_sp->verifyFreeLists());
8316     NOT_PRODUCT(
8317       _numObjectsFreed++;
8318       _numWordsFreed += res;
8319     )
8320   } else {
8321     // Chunk that is alive.
8322     res = do_live_chunk(fc);
8323     debug_only(_sp->verifyFreeLists());
8324     NOT_PRODUCT(
8325         _numObjectsLive++;
8326         _numWordsLive += res;
8327     )
8328   }
8329   return res;
8330 }
8331 
8332 // For the smart allocation, record following
8333 //  split deaths - a free chunk is removed from its free list because
8334 //      it is being split into two or more chunks.
8335 //  split birth - a free chunk is being added to its free list because
8336 //      a larger free chunk has been split and resulted in this free chunk.
8337 //  coal death - a free chunk is being removed from its free list because
8338 //      it is being coalesced into a large free chunk.
8339 //  coal birth - a free chunk is being added to its free list because
8340 //      it was created when two or more free chunks where coalesced into
8341 //      this free chunk.
8342 //
8343 // These statistics are used to determine the desired number of free
8344 // chunks of a given size.  The desired number is chosen to be relative
8345 // to the end of a CMS sweep.  The desired number at the end of a sweep
8346 // is the
8347 //      count-at-end-of-previous-sweep (an amount that was enough)
8348 //              - count-at-beginning-of-current-sweep  (the excess)
8349 //              + split-births  (gains in this size during interval)
8350 //              - split-deaths  (demands on this size during interval)
8351 // where the interval is from the end of one sweep to the end of the
8352 // next.
8353 //
8354 // When sweeping the sweeper maintains an accumulated chunk which is
8355 // the chunk that is made up of chunks that have been coalesced.  That
8356 // will be termed the left-hand chunk.  A new chunk of garbage that
8357 // is being considered for coalescing will be referred to as the
8358 // right-hand chunk.
8359 //
8360 // When making a decision on whether to coalesce a right-hand chunk with
8361 // the current left-hand chunk, the current count vs. the desired count
8362 // of the left-hand chunk is considered.  Also if the right-hand chunk
8363 // is near the large chunk at the end of the heap (see
8364 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8365 // left-hand chunk is coalesced.
8366 //
8367 // When making a decision about whether to split a chunk, the desired count
8368 // vs. the current count of the candidate to be split is also considered.
8369 // If the candidate is underpopulated (currently fewer chunks than desired)
8370 // a chunk of an overpopulated (currently more chunks than desired) size may
8371 // be chosen.  The "hint" associated with a free list, if non-null, points
8372 // to a free list which may be overpopulated.
8373 //
8374 
8375 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8376   const size_t size = fc->size();
8377   // Chunks that cannot be coalesced are not in the
8378   // free lists.
8379   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8380     assert(_sp->verify_chunk_in_free_list(fc),
8381       "free chunk should be in free lists");
8382   }
8383   // a chunk that is already free, should not have been
8384   // marked in the bit map
8385   HeapWord* const addr = (HeapWord*) fc;
8386   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8387   // Verify that the bit map has no bits marked between
8388   // addr and purported end of this block.
8389   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8390 
8391   // Some chunks cannot be coalesced under any circumstances.
8392   // See the definition of cantCoalesce().
8393   if (!fc->cantCoalesce()) {
8394     // This chunk can potentially be coalesced.
8395     if (_sp->adaptive_freelists()) {
8396       // All the work is done in
8397       do_post_free_or_garbage_chunk(fc, size);
8398     } else {  // Not adaptive free lists
8399       // this is a free chunk that can potentially be coalesced by the sweeper;
8400       if (!inFreeRange()) {
8401         // if the next chunk is a free block that can't be coalesced
8402         // it doesn't make sense to remove this chunk from the free lists
8403         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8404         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8405         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8406             nextChunk->is_free()               &&     // ... which is free...
8407             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8408           // nothing to do
8409         } else {
8410           // Potentially the start of a new free range:
8411           // Don't eagerly remove it from the free lists.
8412           // No need to remove it if it will just be put
8413           // back again.  (Also from a pragmatic point of view
8414           // if it is a free block in a region that is beyond
8415           // any allocated blocks, an assertion will fail)
8416           // Remember the start of a free run.
8417           initialize_free_range(addr, true);
8418           // end - can coalesce with next chunk
8419         }
8420       } else {
8421         // the midst of a free range, we are coalescing
8422         print_free_block_coalesced(fc);
8423         if (CMSTraceSweeper) {
8424           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8425         }
8426         // remove it from the free lists
8427         _sp->removeFreeChunkFromFreeLists(fc);
8428         set_lastFreeRangeCoalesced(true);
8429         // If the chunk is being coalesced and the current free range is
8430         // in the free lists, remove the current free range so that it
8431         // will be returned to the free lists in its entirety - all
8432         // the coalesced pieces included.
8433         if (freeRangeInFreeLists()) {
8434           FreeChunk* ffc = (FreeChunk*) freeFinger();
8435           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8436             "Size of free range is inconsistent with chunk size.");
8437           if (CMSTestInFreeList) {
8438             assert(_sp->verify_chunk_in_free_list(ffc),
8439               "free range is not in free lists");
8440           }
8441           _sp->removeFreeChunkFromFreeLists(ffc);
8442           set_freeRangeInFreeLists(false);
8443         }
8444       }
8445     }
8446     // Note that if the chunk is not coalescable (the else arm
8447     // below), we unconditionally flush, without needing to do
8448     // a "lookahead," as we do below.
8449     if (inFreeRange()) lookahead_and_flush(fc, size);
8450   } else {
8451     // Code path common to both original and adaptive free lists.
8452 
8453     // cant coalesce with previous block; this should be treated
8454     // as the end of a free run if any
8455     if (inFreeRange()) {
8456       // we kicked some butt; time to pick up the garbage
8457       assert(freeFinger() < addr, "freeFinger points too high");
8458       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8459     }
8460     // else, nothing to do, just continue
8461   }
8462 }
8463 
8464 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8465   // This is a chunk of garbage.  It is not in any free list.
8466   // Add it to a free list or let it possibly be coalesced into
8467   // a larger chunk.
8468   HeapWord* const addr = (HeapWord*) fc;
8469   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8470 
8471   if (_sp->adaptive_freelists()) {
8472     // Verify that the bit map has no bits marked between
8473     // addr and purported end of just dead object.
8474     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8475 
8476     do_post_free_or_garbage_chunk(fc, size);
8477   } else {
8478     if (!inFreeRange()) {
8479       // start of a new free range
8480       assert(size > 0, "A free range should have a size");
8481       initialize_free_range(addr, false);
8482     } else {
8483       // this will be swept up when we hit the end of the
8484       // free range
8485       if (CMSTraceSweeper) {
8486         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8487       }
8488       // If the chunk is being coalesced and the current free range is
8489       // in the free lists, remove the current free range so that it
8490       // will be returned to the free lists in its entirety - all
8491       // the coalesced pieces included.
8492       if (freeRangeInFreeLists()) {
8493         FreeChunk* ffc = (FreeChunk*)freeFinger();
8494         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8495           "Size of free range is inconsistent with chunk size.");
8496         if (CMSTestInFreeList) {
8497           assert(_sp->verify_chunk_in_free_list(ffc),
8498             "free range is not in free lists");
8499         }
8500         _sp->removeFreeChunkFromFreeLists(ffc);
8501         set_freeRangeInFreeLists(false);
8502       }
8503       set_lastFreeRangeCoalesced(true);
8504     }
8505     // this will be swept up when we hit the end of the free range
8506 
8507     // Verify that the bit map has no bits marked between
8508     // addr and purported end of just dead object.
8509     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8510   }
8511   assert(_limit >= addr + size,
8512          "A freshly garbage chunk can't possibly straddle over _limit");
8513   if (inFreeRange()) lookahead_and_flush(fc, size);
8514   return size;
8515 }
8516 
8517 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8518   HeapWord* addr = (HeapWord*) fc;
8519   // The sweeper has just found a live object. Return any accumulated
8520   // left hand chunk to the free lists.
8521   if (inFreeRange()) {
8522     assert(freeFinger() < addr, "freeFinger points too high");
8523     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8524   }
8525 
8526   // This object is live: we'd normally expect this to be
8527   // an oop, and like to assert the following:
8528   // assert(oop(addr)->is_oop(), "live block should be an oop");
8529   // However, as we commented above, this may be an object whose
8530   // header hasn't yet been initialized.
8531   size_t size;
8532   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8533   if (_bitMap->isMarked(addr + 1)) {
8534     // Determine the size from the bit map, rather than trying to
8535     // compute it from the object header.
8536     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8537     size = pointer_delta(nextOneAddr + 1, addr);
8538     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8539            "alignment problem");
8540 
8541 #ifdef ASSERT
8542       if (oop(addr)->klass_or_null() != NULL) {
8543         // Ignore mark word because we are running concurrent with mutators
8544         assert(oop(addr)->is_oop(true), "live block should be an oop");
8545         assert(size ==
8546                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8547                "P-mark and computed size do not agree");
8548       }
8549 #endif
8550 
8551   } else {
8552     // This should be an initialized object that's alive.
8553     assert(oop(addr)->klass_or_null() != NULL,
8554            "Should be an initialized object");
8555     // Ignore mark word because we are running concurrent with mutators
8556     assert(oop(addr)->is_oop(true), "live block should be an oop");
8557     // Verify that the bit map has no bits marked between
8558     // addr and purported end of this block.
8559     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8560     assert(size >= 3, "Necessary for Printezis marks to work");
8561     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8562     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8563   }
8564   return size;
8565 }
8566 
8567 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8568                                                  size_t chunkSize) {
8569   // do_post_free_or_garbage_chunk() should only be called in the case
8570   // of the adaptive free list allocator.
8571   const bool fcInFreeLists = fc->is_free();
8572   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8573   assert((HeapWord*)fc <= _limit, "sweep invariant");
8574   if (CMSTestInFreeList && fcInFreeLists) {
8575     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8576   }
8577 
8578   if (CMSTraceSweeper) {
8579     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", fc, chunkSize);
8580   }
8581 
8582   HeapWord* const fc_addr = (HeapWord*) fc;
8583 
8584   bool coalesce;
8585   const size_t left  = pointer_delta(fc_addr, freeFinger());
8586   const size_t right = chunkSize;
8587   switch (FLSCoalescePolicy) {
8588     // numeric value forms a coalition aggressiveness metric
8589     case 0:  { // never coalesce
8590       coalesce = false;
8591       break;
8592     }
8593     case 1: { // coalesce if left & right chunks on overpopulated lists
8594       coalesce = _sp->coalOverPopulated(left) &&
8595                  _sp->coalOverPopulated(right);
8596       break;
8597     }
8598     case 2: { // coalesce if left chunk on overpopulated list (default)
8599       coalesce = _sp->coalOverPopulated(left);
8600       break;
8601     }
8602     case 3: { // coalesce if left OR right chunk on overpopulated list
8603       coalesce = _sp->coalOverPopulated(left) ||
8604                  _sp->coalOverPopulated(right);
8605       break;
8606     }
8607     case 4: { // always coalesce
8608       coalesce = true;
8609       break;
8610     }
8611     default:
8612      ShouldNotReachHere();
8613   }
8614 
8615   // Should the current free range be coalesced?
8616   // If the chunk is in a free range and either we decided to coalesce above
8617   // or the chunk is near the large block at the end of the heap
8618   // (isNearLargestChunk() returns true), then coalesce this chunk.
8619   const bool doCoalesce = inFreeRange()
8620                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8621   if (doCoalesce) {
8622     // Coalesce the current free range on the left with the new
8623     // chunk on the right.  If either is on a free list,
8624     // it must be removed from the list and stashed in the closure.
8625     if (freeRangeInFreeLists()) {
8626       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8627       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8628         "Size of free range is inconsistent with chunk size.");
8629       if (CMSTestInFreeList) {
8630         assert(_sp->verify_chunk_in_free_list(ffc),
8631           "Chunk is not in free lists");
8632       }
8633       _sp->coalDeath(ffc->size());
8634       _sp->removeFreeChunkFromFreeLists(ffc);
8635       set_freeRangeInFreeLists(false);
8636     }
8637     if (fcInFreeLists) {
8638       _sp->coalDeath(chunkSize);
8639       assert(fc->size() == chunkSize,
8640         "The chunk has the wrong size or is not in the free lists");
8641       _sp->removeFreeChunkFromFreeLists(fc);
8642     }
8643     set_lastFreeRangeCoalesced(true);
8644     print_free_block_coalesced(fc);
8645   } else {  // not in a free range and/or should not coalesce
8646     // Return the current free range and start a new one.
8647     if (inFreeRange()) {
8648       // In a free range but cannot coalesce with the right hand chunk.
8649       // Put the current free range into the free lists.
8650       flush_cur_free_chunk(freeFinger(),
8651                            pointer_delta(fc_addr, freeFinger()));
8652     }
8653     // Set up for new free range.  Pass along whether the right hand
8654     // chunk is in the free lists.
8655     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8656   }
8657 }
8658 
8659 // Lookahead flush:
8660 // If we are tracking a free range, and this is the last chunk that
8661 // we'll look at because its end crosses past _limit, we'll preemptively
8662 // flush it along with any free range we may be holding on to. Note that
8663 // this can be the case only for an already free or freshly garbage
8664 // chunk. If this block is an object, it can never straddle
8665 // over _limit. The "straddling" occurs when _limit is set at
8666 // the previous end of the space when this cycle started, and
8667 // a subsequent heap expansion caused the previously co-terminal
8668 // free block to be coalesced with the newly expanded portion,
8669 // thus rendering _limit a non-block-boundary making it dangerous
8670 // for the sweeper to step over and examine.
8671 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8672   assert(inFreeRange(), "Should only be called if currently in a free range.");
8673   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8674   assert(_sp->used_region().contains(eob - 1),
8675          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8676                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8677                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8678                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8679   if (eob >= _limit) {
8680     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8681     if (CMSTraceSweeper) {
8682       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8683                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8684                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8685                              _limit, fc, eob, _sp->bottom(), _sp->end());
8686     }
8687     // Return the storage we are tracking back into the free lists.
8688     if (CMSTraceSweeper) {
8689       gclog_or_tty->print_cr("Flushing ... ");
8690     }
8691     assert(freeFinger() < eob, "Error");
8692     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8693   }
8694 }
8695 
8696 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8697   assert(inFreeRange(), "Should only be called if currently in a free range.");
8698   assert(size > 0,
8699     "A zero sized chunk cannot be added to the free lists.");
8700   if (!freeRangeInFreeLists()) {
8701     if (CMSTestInFreeList) {
8702       FreeChunk* fc = (FreeChunk*) chunk;
8703       fc->set_size(size);
8704       assert(!_sp->verify_chunk_in_free_list(fc),
8705         "chunk should not be in free lists yet");
8706     }
8707     if (CMSTraceSweeper) {
8708       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
8709                     chunk, size);
8710     }
8711     // A new free range is going to be starting.  The current
8712     // free range has not been added to the free lists yet or
8713     // was removed so add it back.
8714     // If the current free range was coalesced, then the death
8715     // of the free range was recorded.  Record a birth now.
8716     if (lastFreeRangeCoalesced()) {
8717       _sp->coalBirth(size);
8718     }
8719     _sp->addChunkAndRepairOffsetTable(chunk, size,
8720             lastFreeRangeCoalesced());
8721   } else if (CMSTraceSweeper) {
8722     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8723   }
8724   set_inFreeRange(false);
8725   set_freeRangeInFreeLists(false);
8726 }
8727 
8728 // We take a break if we've been at this for a while,
8729 // so as to avoid monopolizing the locks involved.
8730 void SweepClosure::do_yield_work(HeapWord* addr) {
8731   // Return current free chunk being used for coalescing (if any)
8732   // to the appropriate freelist.  After yielding, the next
8733   // free block encountered will start a coalescing range of
8734   // free blocks.  If the next free block is adjacent to the
8735   // chunk just flushed, they will need to wait for the next
8736   // sweep to be coalesced.
8737   if (inFreeRange()) {
8738     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8739   }
8740 
8741   // First give up the locks, then yield, then re-lock.
8742   // We should probably use a constructor/destructor idiom to
8743   // do this unlock/lock or modify the MutexUnlocker class to
8744   // serve our purpose. XXX
8745   assert_lock_strong(_bitMap->lock());
8746   assert_lock_strong(_freelistLock);
8747   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8748          "CMS thread should hold CMS token");
8749   _bitMap->lock()->unlock();
8750   _freelistLock->unlock();
8751   ConcurrentMarkSweepThread::desynchronize(true);
8752   ConcurrentMarkSweepThread::acknowledge_yield_request();
8753   _collector->stopTimer();
8754   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8755   if (PrintCMSStatistics != 0) {
8756     _collector->incrementYields();
8757   }
8758   _collector->icms_wait();
8759 
8760   // See the comment in coordinator_yield()
8761   for (unsigned i = 0; i < CMSYieldSleepCount &&
8762                        ConcurrentMarkSweepThread::should_yield() &&
8763                        !CMSCollector::foregroundGCIsActive(); ++i) {
8764     os::sleep(Thread::current(), 1, false);
8765     ConcurrentMarkSweepThread::acknowledge_yield_request();
8766   }
8767 
8768   ConcurrentMarkSweepThread::synchronize(true);
8769   _freelistLock->lock();
8770   _bitMap->lock()->lock_without_safepoint_check();
8771   _collector->startTimer();
8772 }
8773 
8774 #ifndef PRODUCT
8775 // This is actually very useful in a product build if it can
8776 // be called from the debugger.  Compile it into the product
8777 // as needed.
8778 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8779   return debug_cms_space->verify_chunk_in_free_list(fc);
8780 }
8781 #endif
8782 
8783 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8784   if (CMSTraceSweeper) {
8785     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8786                            fc, fc->size());
8787   }
8788 }
8789 
8790 // CMSIsAliveClosure
8791 bool CMSIsAliveClosure::do_object_b(oop obj) {
8792   HeapWord* addr = (HeapWord*)obj;
8793   return addr != NULL &&
8794          (!_span.contains(addr) || _bit_map->isMarked(addr));
8795 }
8796 
8797 
8798 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8799                       MemRegion span,
8800                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8801                       bool cpc):
8802   _collector(collector),
8803   _span(span),
8804   _bit_map(bit_map),
8805   _mark_stack(mark_stack),
8806   _concurrent_precleaning(cpc) {
8807   assert(!_span.is_empty(), "Empty span could spell trouble");
8808 }
8809 
8810 
8811 // CMSKeepAliveClosure: the serial version
8812 void CMSKeepAliveClosure::do_oop(oop obj) {
8813   HeapWord* addr = (HeapWord*)obj;
8814   if (_span.contains(addr) &&
8815       !_bit_map->isMarked(addr)) {
8816     _bit_map->mark(addr);
8817     bool simulate_overflow = false;
8818     NOT_PRODUCT(
8819       if (CMSMarkStackOverflowALot &&
8820           _collector->simulate_overflow()) {
8821         // simulate a stack overflow
8822         simulate_overflow = true;
8823       }
8824     )
8825     if (simulate_overflow || !_mark_stack->push(obj)) {
8826       if (_concurrent_precleaning) {
8827         // We dirty the overflown object and let the remark
8828         // phase deal with it.
8829         assert(_collector->overflow_list_is_empty(), "Error");
8830         // In the case of object arrays, we need to dirty all of
8831         // the cards that the object spans. No locking or atomics
8832         // are needed since no one else can be mutating the mod union
8833         // table.
8834         if (obj->is_objArray()) {
8835           size_t sz = obj->size();
8836           HeapWord* end_card_addr =
8837             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8838           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8839           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8840           _collector->_modUnionTable.mark_range(redirty_range);
8841         } else {
8842           _collector->_modUnionTable.mark(addr);
8843         }
8844         _collector->_ser_kac_preclean_ovflw++;
8845       } else {
8846         _collector->push_on_overflow_list(obj);
8847         _collector->_ser_kac_ovflw++;
8848       }
8849     }
8850   }
8851 }
8852 
8853 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8854 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8855 
8856 // CMSParKeepAliveClosure: a parallel version of the above.
8857 // The work queues are private to each closure (thread),
8858 // but (may be) available for stealing by other threads.
8859 void CMSParKeepAliveClosure::do_oop(oop obj) {
8860   HeapWord* addr = (HeapWord*)obj;
8861   if (_span.contains(addr) &&
8862       !_bit_map->isMarked(addr)) {
8863     // In general, during recursive tracing, several threads
8864     // may be concurrently getting here; the first one to
8865     // "tag" it, claims it.
8866     if (_bit_map->par_mark(addr)) {
8867       bool res = _work_queue->push(obj);
8868       assert(res, "Low water mark should be much less than capacity");
8869       // Do a recursive trim in the hope that this will keep
8870       // stack usage lower, but leave some oops for potential stealers
8871       trim_queue(_low_water_mark);
8872     } // Else, another thread got there first
8873   }
8874 }
8875 
8876 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8877 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8878 
8879 void CMSParKeepAliveClosure::trim_queue(uint max) {
8880   while (_work_queue->size() > max) {
8881     oop new_oop;
8882     if (_work_queue->pop_local(new_oop)) {
8883       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8884       assert(_bit_map->isMarked((HeapWord*)new_oop),
8885              "no white objects on this stack!");
8886       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8887       // iterate over the oops in this oop, marking and pushing
8888       // the ones in CMS heap (i.e. in _span).
8889       new_oop->oop_iterate(&_mark_and_push);
8890     }
8891   }
8892 }
8893 
8894 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8895                                 CMSCollector* collector,
8896                                 MemRegion span, CMSBitMap* bit_map,
8897                                 OopTaskQueue* work_queue):
8898   _collector(collector),
8899   _span(span),
8900   _bit_map(bit_map),
8901   _work_queue(work_queue) { }
8902 
8903 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8904   HeapWord* addr = (HeapWord*)obj;
8905   if (_span.contains(addr) &&
8906       !_bit_map->isMarked(addr)) {
8907     if (_bit_map->par_mark(addr)) {
8908       bool simulate_overflow = false;
8909       NOT_PRODUCT(
8910         if (CMSMarkStackOverflowALot &&
8911             _collector->par_simulate_overflow()) {
8912           // simulate a stack overflow
8913           simulate_overflow = true;
8914         }
8915       )
8916       if (simulate_overflow || !_work_queue->push(obj)) {
8917         _collector->par_push_on_overflow_list(obj);
8918         _collector->_par_kac_ovflw++;
8919       }
8920     } // Else another thread got there already
8921   }
8922 }
8923 
8924 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8925 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8926 
8927 //////////////////////////////////////////////////////////////////
8928 //  CMSExpansionCause                /////////////////////////////
8929 //////////////////////////////////////////////////////////////////
8930 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8931   switch (cause) {
8932     case _no_expansion:
8933       return "No expansion";
8934     case _satisfy_free_ratio:
8935       return "Free ratio";
8936     case _satisfy_promotion:
8937       return "Satisfy promotion";
8938     case _satisfy_allocation:
8939       return "allocation";
8940     case _allocate_par_lab:
8941       return "Par LAB";
8942     case _allocate_par_spooling_space:
8943       return "Par Spooling Space";
8944     case _adaptive_size_policy:
8945       return "Ergonomics";
8946     default:
8947       return "unknown";
8948   }
8949 }
8950 
8951 void CMSDrainMarkingStackClosure::do_void() {
8952   // the max number to take from overflow list at a time
8953   const size_t num = _mark_stack->capacity()/4;
8954   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8955          "Overflow list should be NULL during concurrent phases");
8956   while (!_mark_stack->isEmpty() ||
8957          // if stack is empty, check the overflow list
8958          _collector->take_from_overflow_list(num, _mark_stack)) {
8959     oop obj = _mark_stack->pop();
8960     HeapWord* addr = (HeapWord*)obj;
8961     assert(_span.contains(addr), "Should be within span");
8962     assert(_bit_map->isMarked(addr), "Should be marked");
8963     assert(obj->is_oop(), "Should be an oop");
8964     obj->oop_iterate(_keep_alive);
8965   }
8966 }
8967 
8968 void CMSParDrainMarkingStackClosure::do_void() {
8969   // drain queue
8970   trim_queue(0);
8971 }
8972 
8973 // Trim our work_queue so its length is below max at return
8974 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8975   while (_work_queue->size() > max) {
8976     oop new_oop;
8977     if (_work_queue->pop_local(new_oop)) {
8978       assert(new_oop->is_oop(), "Expected an oop");
8979       assert(_bit_map->isMarked((HeapWord*)new_oop),
8980              "no white objects on this stack!");
8981       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8982       // iterate over the oops in this oop, marking and pushing
8983       // the ones in CMS heap (i.e. in _span).
8984       new_oop->oop_iterate(&_mark_and_push);
8985     }
8986   }
8987 }
8988 
8989 ////////////////////////////////////////////////////////////////////
8990 // Support for Marking Stack Overflow list handling and related code
8991 ////////////////////////////////////////////////////////////////////
8992 // Much of the following code is similar in shape and spirit to the
8993 // code used in ParNewGC. We should try and share that code
8994 // as much as possible in the future.
8995 
8996 #ifndef PRODUCT
8997 // Debugging support for CMSStackOverflowALot
8998 
8999 // It's OK to call this multi-threaded;  the worst thing
9000 // that can happen is that we'll get a bunch of closely
9001 // spaced simulated overflows, but that's OK, in fact
9002 // probably good as it would exercise the overflow code
9003 // under contention.
9004 bool CMSCollector::simulate_overflow() {
9005   if (_overflow_counter-- <= 0) { // just being defensive
9006     _overflow_counter = CMSMarkStackOverflowInterval;
9007     return true;
9008   } else {
9009     return false;
9010   }
9011 }
9012 
9013 bool CMSCollector::par_simulate_overflow() {
9014   return simulate_overflow();
9015 }
9016 #endif
9017 
9018 // Single-threaded
9019 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9020   assert(stack->isEmpty(), "Expected precondition");
9021   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9022   size_t i = num;
9023   oop  cur = _overflow_list;
9024   const markOop proto = markOopDesc::prototype();
9025   NOT_PRODUCT(ssize_t n = 0;)
9026   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9027     next = oop(cur->mark());
9028     cur->set_mark(proto);   // until proven otherwise
9029     assert(cur->is_oop(), "Should be an oop");
9030     bool res = stack->push(cur);
9031     assert(res, "Bit off more than can chew?");
9032     NOT_PRODUCT(n++;)
9033   }
9034   _overflow_list = cur;
9035 #ifndef PRODUCT
9036   assert(_num_par_pushes >= n, "Too many pops?");
9037   _num_par_pushes -=n;
9038 #endif
9039   return !stack->isEmpty();
9040 }
9041 
9042 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
9043 // (MT-safe) Get a prefix of at most "num" from the list.
9044 // The overflow list is chained through the mark word of
9045 // each object in the list. We fetch the entire list,
9046 // break off a prefix of the right size and return the
9047 // remainder. If other threads try to take objects from
9048 // the overflow list at that time, they will wait for
9049 // some time to see if data becomes available. If (and
9050 // only if) another thread places one or more object(s)
9051 // on the global list before we have returned the suffix
9052 // to the global list, we will walk down our local list
9053 // to find its end and append the global list to
9054 // our suffix before returning it. This suffix walk can
9055 // prove to be expensive (quadratic in the amount of traffic)
9056 // when there are many objects in the overflow list and
9057 // there is much producer-consumer contention on the list.
9058 // *NOTE*: The overflow list manipulation code here and
9059 // in ParNewGeneration:: are very similar in shape,
9060 // except that in the ParNew case we use the old (from/eden)
9061 // copy of the object to thread the list via its klass word.
9062 // Because of the common code, if you make any changes in
9063 // the code below, please check the ParNew version to see if
9064 // similar changes might be needed.
9065 // CR 6797058 has been filed to consolidate the common code.
9066 bool CMSCollector::par_take_from_overflow_list(size_t num,
9067                                                OopTaskQueue* work_q,
9068                                                int no_of_gc_threads) {
9069   assert(work_q->size() == 0, "First empty local work queue");
9070   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9071   if (_overflow_list == NULL) {
9072     return false;
9073   }
9074   // Grab the entire list; we'll put back a suffix
9075   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9076   Thread* tid = Thread::current();
9077   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9078   // set to ParallelGCThreads.
9079   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9080   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9081   // If the list is busy, we spin for a short while,
9082   // sleeping between attempts to get the list.
9083   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9084     os::sleep(tid, sleep_time_millis, false);
9085     if (_overflow_list == NULL) {
9086       // Nothing left to take
9087       return false;
9088     } else if (_overflow_list != BUSY) {
9089       // Try and grab the prefix
9090       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9091     }
9092   }
9093   // If the list was found to be empty, or we spun long
9094   // enough, we give up and return empty-handed. If we leave
9095   // the list in the BUSY state below, it must be the case that
9096   // some other thread holds the overflow list and will set it
9097   // to a non-BUSY state in the future.
9098   if (prefix == NULL || prefix == BUSY) {
9099      // Nothing to take or waited long enough
9100      if (prefix == NULL) {
9101        // Write back the NULL in case we overwrote it with BUSY above
9102        // and it is still the same value.
9103        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9104      }
9105      return false;
9106   }
9107   assert(prefix != NULL && prefix != BUSY, "Error");
9108   size_t i = num;
9109   oop cur = prefix;
9110   // Walk down the first "num" objects, unless we reach the end.
9111   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9112   if (cur->mark() == NULL) {
9113     // We have "num" or fewer elements in the list, so there
9114     // is nothing to return to the global list.
9115     // Write back the NULL in lieu of the BUSY we wrote
9116     // above, if it is still the same value.
9117     if (_overflow_list == BUSY) {
9118       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9119     }
9120   } else {
9121     // Chop off the suffix and return it to the global list.
9122     assert(cur->mark() != BUSY, "Error");
9123     oop suffix_head = cur->mark(); // suffix will be put back on global list
9124     cur->set_mark(NULL);           // break off suffix
9125     // It's possible that the list is still in the empty(busy) state
9126     // we left it in a short while ago; in that case we may be
9127     // able to place back the suffix without incurring the cost
9128     // of a walk down the list.
9129     oop observed_overflow_list = _overflow_list;
9130     oop cur_overflow_list = observed_overflow_list;
9131     bool attached = false;
9132     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9133       observed_overflow_list =
9134         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9135       if (cur_overflow_list == observed_overflow_list) {
9136         attached = true;
9137         break;
9138       } else cur_overflow_list = observed_overflow_list;
9139     }
9140     if (!attached) {
9141       // Too bad, someone else sneaked in (at least) an element; we'll need
9142       // to do a splice. Find tail of suffix so we can prepend suffix to global
9143       // list.
9144       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9145       oop suffix_tail = cur;
9146       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9147              "Tautology");
9148       observed_overflow_list = _overflow_list;
9149       do {
9150         cur_overflow_list = observed_overflow_list;
9151         if (cur_overflow_list != BUSY) {
9152           // Do the splice ...
9153           suffix_tail->set_mark(markOop(cur_overflow_list));
9154         } else { // cur_overflow_list == BUSY
9155           suffix_tail->set_mark(NULL);
9156         }
9157         // ... and try to place spliced list back on overflow_list ...
9158         observed_overflow_list =
9159           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9160       } while (cur_overflow_list != observed_overflow_list);
9161       // ... until we have succeeded in doing so.
9162     }
9163   }
9164 
9165   // Push the prefix elements on work_q
9166   assert(prefix != NULL, "control point invariant");
9167   const markOop proto = markOopDesc::prototype();
9168   oop next;
9169   NOT_PRODUCT(ssize_t n = 0;)
9170   for (cur = prefix; cur != NULL; cur = next) {
9171     next = oop(cur->mark());
9172     cur->set_mark(proto);   // until proven otherwise
9173     assert(cur->is_oop(), "Should be an oop");
9174     bool res = work_q->push(cur);
9175     assert(res, "Bit off more than we can chew?");
9176     NOT_PRODUCT(n++;)
9177   }
9178 #ifndef PRODUCT
9179   assert(_num_par_pushes >= n, "Too many pops?");
9180   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9181 #endif
9182   return true;
9183 }
9184 
9185 // Single-threaded
9186 void CMSCollector::push_on_overflow_list(oop p) {
9187   NOT_PRODUCT(_num_par_pushes++;)
9188   assert(p->is_oop(), "Not an oop");
9189   preserve_mark_if_necessary(p);
9190   p->set_mark((markOop)_overflow_list);
9191   _overflow_list = p;
9192 }
9193 
9194 // Multi-threaded; use CAS to prepend to overflow list
9195 void CMSCollector::par_push_on_overflow_list(oop p) {
9196   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9197   assert(p->is_oop(), "Not an oop");
9198   par_preserve_mark_if_necessary(p);
9199   oop observed_overflow_list = _overflow_list;
9200   oop cur_overflow_list;
9201   do {
9202     cur_overflow_list = observed_overflow_list;
9203     if (cur_overflow_list != BUSY) {
9204       p->set_mark(markOop(cur_overflow_list));
9205     } else {
9206       p->set_mark(NULL);
9207     }
9208     observed_overflow_list =
9209       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9210   } while (cur_overflow_list != observed_overflow_list);
9211 }
9212 #undef BUSY
9213 
9214 // Single threaded
9215 // General Note on GrowableArray: pushes may silently fail
9216 // because we are (temporarily) out of C-heap for expanding
9217 // the stack. The problem is quite ubiquitous and affects
9218 // a lot of code in the JVM. The prudent thing for GrowableArray
9219 // to do (for now) is to exit with an error. However, that may
9220 // be too draconian in some cases because the caller may be
9221 // able to recover without much harm. For such cases, we
9222 // should probably introduce a "soft_push" method which returns
9223 // an indication of success or failure with the assumption that
9224 // the caller may be able to recover from a failure; code in
9225 // the VM can then be changed, incrementally, to deal with such
9226 // failures where possible, thus, incrementally hardening the VM
9227 // in such low resource situations.
9228 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9229   _preserved_oop_stack.push(p);
9230   _preserved_mark_stack.push(m);
9231   assert(m == p->mark(), "Mark word changed");
9232   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9233          "bijection");
9234 }
9235 
9236 // Single threaded
9237 void CMSCollector::preserve_mark_if_necessary(oop p) {
9238   markOop m = p->mark();
9239   if (m->must_be_preserved(p)) {
9240     preserve_mark_work(p, m);
9241   }
9242 }
9243 
9244 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9245   markOop m = p->mark();
9246   if (m->must_be_preserved(p)) {
9247     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9248     // Even though we read the mark word without holding
9249     // the lock, we are assured that it will not change
9250     // because we "own" this oop, so no other thread can
9251     // be trying to push it on the overflow list; see
9252     // the assertion in preserve_mark_work() that checks
9253     // that m == p->mark().
9254     preserve_mark_work(p, m);
9255   }
9256 }
9257 
9258 // We should be able to do this multi-threaded,
9259 // a chunk of stack being a task (this is
9260 // correct because each oop only ever appears
9261 // once in the overflow list. However, it's
9262 // not very easy to completely overlap this with
9263 // other operations, so will generally not be done
9264 // until all work's been completed. Because we
9265 // expect the preserved oop stack (set) to be small,
9266 // it's probably fine to do this single-threaded.
9267 // We can explore cleverer concurrent/overlapped/parallel
9268 // processing of preserved marks if we feel the
9269 // need for this in the future. Stack overflow should
9270 // be so rare in practice and, when it happens, its
9271 // effect on performance so great that this will
9272 // likely just be in the noise anyway.
9273 void CMSCollector::restore_preserved_marks_if_any() {
9274   assert(SafepointSynchronize::is_at_safepoint(),
9275          "world should be stopped");
9276   assert(Thread::current()->is_ConcurrentGC_thread() ||
9277          Thread::current()->is_VM_thread(),
9278          "should be single-threaded");
9279   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9280          "bijection");
9281 
9282   while (!_preserved_oop_stack.is_empty()) {
9283     oop p = _preserved_oop_stack.pop();
9284     assert(p->is_oop(), "Should be an oop");
9285     assert(_span.contains(p), "oop should be in _span");
9286     assert(p->mark() == markOopDesc::prototype(),
9287            "Set when taken from overflow list");
9288     markOop m = _preserved_mark_stack.pop();
9289     p->set_mark(m);
9290   }
9291   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9292          "stacks were cleared above");
9293 }
9294 
9295 #ifndef PRODUCT
9296 bool CMSCollector::no_preserved_marks() const {
9297   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9298 }
9299 #endif
9300 
9301 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9302 {
9303   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9304   CMSAdaptiveSizePolicy* size_policy =
9305     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9306   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9307     "Wrong type for size policy");
9308   return size_policy;
9309 }
9310 
9311 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9312                                            size_t desired_promo_size) {
9313   if (cur_promo_size < desired_promo_size) {
9314     size_t expand_bytes = desired_promo_size - cur_promo_size;
9315     if (PrintAdaptiveSizePolicy && Verbose) {
9316       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9317         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9318         expand_bytes);
9319     }
9320     expand(expand_bytes,
9321            MinHeapDeltaBytes,
9322            CMSExpansionCause::_adaptive_size_policy);
9323   } else if (desired_promo_size < cur_promo_size) {
9324     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9325     if (PrintAdaptiveSizePolicy && Verbose) {
9326       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9327         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9328         shrink_bytes);
9329     }
9330     shrink(shrink_bytes);
9331   }
9332 }
9333 
9334 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9335   GenCollectedHeap* gch = GenCollectedHeap::heap();
9336   CMSGCAdaptivePolicyCounters* counters =
9337     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9338   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9339     "Wrong kind of counters");
9340   return counters;
9341 }
9342 
9343 
9344 void ASConcurrentMarkSweepGeneration::update_counters() {
9345   if (UsePerfData) {
9346     _space_counters->update_all();
9347     _gen_counters->update_all();
9348     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9349     GenCollectedHeap* gch = GenCollectedHeap::heap();
9350     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9351     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9352       "Wrong gc statistics type");
9353     counters->update_counters(gc_stats_l);
9354   }
9355 }
9356 
9357 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9358   if (UsePerfData) {
9359     _space_counters->update_used(used);
9360     _space_counters->update_capacity();
9361     _gen_counters->update_all();
9362 
9363     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9364     GenCollectedHeap* gch = GenCollectedHeap::heap();
9365     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9366     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9367       "Wrong gc statistics type");
9368     counters->update_counters(gc_stats_l);
9369   }
9370 }
9371 
9372 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9373   assert_locked_or_safepoint(Heap_lock);
9374   assert_lock_strong(freelistLock());
9375   HeapWord* old_end = _cmsSpace->end();
9376   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9377   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9378   FreeChunk* chunk_at_end = find_chunk_at_end();
9379   if (chunk_at_end == NULL) {
9380     // No room to shrink
9381     if (PrintGCDetails && Verbose) {
9382       gclog_or_tty->print_cr("No room to shrink: old_end  "
9383         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9384         " chunk_at_end  " PTR_FORMAT,
9385         old_end, unallocated_start, chunk_at_end);
9386     }
9387     return;
9388   } else {
9389 
9390     // Find the chunk at the end of the space and determine
9391     // how much it can be shrunk.
9392     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9393     size_t aligned_shrinkable_size_in_bytes =
9394       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9395     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9396       "Inconsistent chunk at end of space");
9397     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9398     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9399 
9400     // Shrink the underlying space
9401     _virtual_space.shrink_by(bytes);
9402     if (PrintGCDetails && Verbose) {
9403       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9404         " desired_bytes " SIZE_FORMAT
9405         " shrinkable_size_in_bytes " SIZE_FORMAT
9406         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9407         "  bytes  " SIZE_FORMAT,
9408         desired_bytes, shrinkable_size_in_bytes,
9409         aligned_shrinkable_size_in_bytes, bytes);
9410       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9411         "  unallocated_start  " SIZE_FORMAT,
9412         old_end, unallocated_start);
9413     }
9414 
9415     // If the space did shrink (shrinking is not guaranteed),
9416     // shrink the chunk at the end by the appropriate amount.
9417     if (((HeapWord*)_virtual_space.high()) < old_end) {
9418       size_t new_word_size =
9419         heap_word_size(_virtual_space.committed_size());
9420 
9421       // Have to remove the chunk from the dictionary because it is changing
9422       // size and might be someplace elsewhere in the dictionary.
9423 
9424       // Get the chunk at end, shrink it, and put it
9425       // back.
9426       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9427       size_t word_size_change = word_size_before - new_word_size;
9428       size_t chunk_at_end_old_size = chunk_at_end->size();
9429       assert(chunk_at_end_old_size >= word_size_change,
9430         "Shrink is too large");
9431       chunk_at_end->set_size(chunk_at_end_old_size -
9432                           word_size_change);
9433       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9434         word_size_change);
9435 
9436       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9437 
9438       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9439       _bts->resize(new_word_size);  // resize the block offset shared array
9440       Universe::heap()->barrier_set()->resize_covered_region(mr);
9441       _cmsSpace->assert_locked();
9442       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9443 
9444       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9445 
9446       // update the space and generation capacity counters
9447       if (UsePerfData) {
9448         _space_counters->update_capacity();
9449         _gen_counters->update_all();
9450       }
9451 
9452       if (Verbose && PrintGCDetails) {
9453         size_t new_mem_size = _virtual_space.committed_size();
9454         size_t old_mem_size = new_mem_size + bytes;
9455         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9456                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9457       }
9458     }
9459 
9460     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9461       "Inconsistency at end of space");
9462     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9463       "Shrinking is inconsistent");
9464     return;
9465   }
9466 }
9467 // Transfer some number of overflown objects to usual marking
9468 // stack. Return true if some objects were transferred.
9469 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9470   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9471                     (size_t)ParGCDesiredObjsFromOverflowList);
9472 
9473   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9474   assert(_collector->overflow_list_is_empty() || res,
9475          "If list is not empty, we should have taken something");
9476   assert(!res || !_mark_stack->isEmpty(),
9477          "If we took something, it should now be on our stack");
9478   return res;
9479 }
9480 
9481 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9482   size_t res = _sp->block_size_no_stall(addr, _collector);
9483   if (_sp->block_is_obj(addr)) {
9484     if (_live_bit_map->isMarked(addr)) {
9485       // It can't have been dead in a previous cycle
9486       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9487     } else {
9488       _dead_bit_map->mark(addr);      // mark the dead object
9489     }
9490   }
9491   // Could be 0, if the block size could not be computed without stalling.
9492   return res;
9493 }
9494 
9495 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9496 
9497   switch (phase) {
9498     case CMSCollector::InitialMarking:
9499       initialize(true  /* fullGC */ ,
9500                  cause /* cause of the GC */,
9501                  true  /* recordGCBeginTime */,
9502                  true  /* recordPreGCUsage */,
9503                  false /* recordPeakUsage */,
9504                  false /* recordPostGCusage */,
9505                  true  /* recordAccumulatedGCTime */,
9506                  false /* recordGCEndTime */,
9507                  false /* countCollection */  );
9508       break;
9509 
9510     case CMSCollector::FinalMarking:
9511       initialize(true  /* fullGC */ ,
9512                  cause /* cause of the GC */,
9513                  false /* recordGCBeginTime */,
9514                  false /* recordPreGCUsage */,
9515                  false /* recordPeakUsage */,
9516                  false /* recordPostGCusage */,
9517                  true  /* recordAccumulatedGCTime */,
9518                  false /* recordGCEndTime */,
9519                  false /* countCollection */  );
9520       break;
9521 
9522     case CMSCollector::Sweeping:
9523       initialize(true  /* fullGC */ ,
9524                  cause /* cause of the GC */,
9525                  false /* recordGCBeginTime */,
9526                  false /* recordPreGCUsage */,
9527                  true  /* recordPeakUsage */,
9528                  true  /* recordPostGCusage */,
9529                  false /* recordAccumulatedGCTime */,
9530                  true  /* recordGCEndTime */,
9531                  true  /* countCollection */  );
9532       break;
9533 
9534     default:
9535       ShouldNotReachHere();
9536   }
9537 }