1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1Log.hpp"
  33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  34 #include "gc_implementation/g1/g1RemSet.hpp"
  35 #include "gc_implementation/g1/heapRegion.inline.hpp"
  36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  38 #include "gc_implementation/shared/vmGCOperations.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "memory/genOopClosures.inline.hpp"
  43 #include "memory/referencePolicy.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "services/memTracker.hpp"
  49 
  50 // Concurrent marking bit map wrapper
  51 
  52 CMBitMapRO::CMBitMapRO(int shifter) :
  53   _bm(),
  54   _shifter(shifter) {
  55   _bmStartWord = 0;
  56   _bmWordSize = 0;
  57 }
  58 
  59 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
  60                                                HeapWord* limit) const {
  61   // First we must round addr *up* to a possible object boundary.
  62   addr = (HeapWord*)align_size_up((intptr_t)addr,
  63                                   HeapWordSize << _shifter);
  64   size_t addrOffset = heapWordToOffset(addr);
  65   if (limit == NULL) {
  66     limit = _bmStartWord + _bmWordSize;
  67   }
  68   size_t limitOffset = heapWordToOffset(limit);
  69   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  70   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  71   assert(nextAddr >= addr, "get_next_one postcondition");
  72   assert(nextAddr == limit || isMarked(nextAddr),
  73          "get_next_one postcondition");
  74   return nextAddr;
  75 }
  76 
  77 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
  78                                                  HeapWord* limit) const {
  79   size_t addrOffset = heapWordToOffset(addr);
  80   if (limit == NULL) {
  81     limit = _bmStartWord + _bmWordSize;
  82   }
  83   size_t limitOffset = heapWordToOffset(limit);
  84   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  85   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  86   assert(nextAddr >= addr, "get_next_one postcondition");
  87   assert(nextAddr == limit || !isMarked(nextAddr),
  88          "get_next_one postcondition");
  89   return nextAddr;
  90 }
  91 
  92 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  93   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  94   return (int) (diff >> _shifter);
  95 }
  96 
  97 #ifndef PRODUCT
  98 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
  99   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 100   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 101          "size inconsistency");
 102   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
 103          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
 104 }
 105 #endif
 106 
 107 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 108   _bm.print_on_error(st, prefix);
 109 }
 110 
 111 bool CMBitMap::allocate(ReservedSpace heap_rs) {
 112   _bmStartWord = (HeapWord*)(heap_rs.base());
 113   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
 114   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
 115                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
 116   if (!brs.is_reserved()) {
 117     warning("ConcurrentMark marking bit map allocation failure");
 118     return false;
 119   }
 120   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
 121   // For now we'll just commit all of the bit map up front.
 122   // Later on we'll try to be more parsimonious with swap.
 123   if (!_virtual_space.initialize(brs, brs.size())) {
 124     warning("ConcurrentMark marking bit map backing store failure");
 125     return false;
 126   }
 127   assert(_virtual_space.committed_size() == brs.size(),
 128          "didn't reserve backing store for all of concurrent marking bit map?");
 129   _bm.set_map((uintptr_t*)_virtual_space.low());
 130   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
 131          _bmWordSize, "inconsistency in bit map sizing");
 132   _bm.set_size(_bmWordSize >> _shifter);
 133   return true;
 134 }
 135 
 136 void CMBitMap::clearAll() {
 137   _bm.clear();
 138   return;
 139 }
 140 
 141 void CMBitMap::markRange(MemRegion mr) {
 142   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 143   assert(!mr.is_empty(), "unexpected empty region");
 144   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 145           ((HeapWord *) mr.end())),
 146          "markRange memory region end is not card aligned");
 147   // convert address range into offset range
 148   _bm.at_put_range(heapWordToOffset(mr.start()),
 149                    heapWordToOffset(mr.end()), true);
 150 }
 151 
 152 void CMBitMap::clearRange(MemRegion mr) {
 153   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 154   assert(!mr.is_empty(), "unexpected empty region");
 155   // convert address range into offset range
 156   _bm.at_put_range(heapWordToOffset(mr.start()),
 157                    heapWordToOffset(mr.end()), false);
 158 }
 159 
 160 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 161                                             HeapWord* end_addr) {
 162   HeapWord* start = getNextMarkedWordAddress(addr);
 163   start = MIN2(start, end_addr);
 164   HeapWord* end   = getNextUnmarkedWordAddress(start);
 165   end = MIN2(end, end_addr);
 166   assert(start <= end, "Consistency check");
 167   MemRegion mr(start, end);
 168   if (!mr.is_empty()) {
 169     clearRange(mr);
 170   }
 171   return mr;
 172 }
 173 
 174 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 175   _base(NULL), _cm(cm)
 176 #ifdef ASSERT
 177   , _drain_in_progress(false)
 178   , _drain_in_progress_yields(false)
 179 #endif
 180 {}
 181 
 182 bool CMMarkStack::allocate(size_t capacity) {
 183   // allocate a stack of the requisite depth
 184   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 185   if (!rs.is_reserved()) {
 186     warning("ConcurrentMark MarkStack allocation failure");
 187     return false;
 188   }
 189   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 190   if (!_virtual_space.initialize(rs, rs.size())) {
 191     warning("ConcurrentMark MarkStack backing store failure");
 192     // Release the virtual memory reserved for the marking stack
 193     rs.release();
 194     return false;
 195   }
 196   assert(_virtual_space.committed_size() == rs.size(),
 197          "Didn't reserve backing store for all of ConcurrentMark stack?");
 198   _base = (oop*) _virtual_space.low();
 199   setEmpty();
 200   _capacity = (jint) capacity;
 201   _saved_index = -1;
 202   _should_expand = false;
 203   NOT_PRODUCT(_max_depth = 0);
 204   return true;
 205 }
 206 
 207 void CMMarkStack::expand() {
 208   // Called, during remark, if we've overflown the marking stack during marking.
 209   assert(isEmpty(), "stack should been emptied while handling overflow");
 210   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 211   // Clear expansion flag
 212   _should_expand = false;
 213   if (_capacity == (jint) MarkStackSizeMax) {
 214     if (PrintGCDetails && Verbose) {
 215       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 216     }
 217     return;
 218   }
 219   // Double capacity if possible
 220   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 221   // Do not give up existing stack until we have managed to
 222   // get the double capacity that we desired.
 223   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 224                                                            sizeof(oop)));
 225   if (rs.is_reserved()) {
 226     // Release the backing store associated with old stack
 227     _virtual_space.release();
 228     // Reinitialize virtual space for new stack
 229     if (!_virtual_space.initialize(rs, rs.size())) {
 230       fatal("Not enough swap for expanded marking stack capacity");
 231     }
 232     _base = (oop*)(_virtual_space.low());
 233     _index = 0;
 234     _capacity = new_capacity;
 235   } else {
 236     if (PrintGCDetails && Verbose) {
 237       // Failed to double capacity, continue;
 238       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 239                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 240                           _capacity / K, new_capacity / K);
 241     }
 242   }
 243 }
 244 
 245 void CMMarkStack::set_should_expand() {
 246   // If we're resetting the marking state because of an
 247   // marking stack overflow, record that we should, if
 248   // possible, expand the stack.
 249   _should_expand = _cm->has_overflown();
 250 }
 251 
 252 CMMarkStack::~CMMarkStack() {
 253   if (_base != NULL) {
 254     _base = NULL;
 255     _virtual_space.release();
 256   }
 257 }
 258 
 259 void CMMarkStack::par_push(oop ptr) {
 260   while (true) {
 261     if (isFull()) {
 262       _overflow = true;
 263       return;
 264     }
 265     // Otherwise...
 266     jint index = _index;
 267     jint next_index = index+1;
 268     jint res = Atomic::cmpxchg(next_index, &_index, index);
 269     if (res == index) {
 270       _base[index] = ptr;
 271       // Note that we don't maintain this atomically.  We could, but it
 272       // doesn't seem necessary.
 273       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 274       return;
 275     }
 276     // Otherwise, we need to try again.
 277   }
 278 }
 279 
 280 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 281   while (true) {
 282     if (isFull()) {
 283       _overflow = true;
 284       return;
 285     }
 286     // Otherwise...
 287     jint index = _index;
 288     jint next_index = index + n;
 289     if (next_index > _capacity) {
 290       _overflow = true;
 291       return;
 292     }
 293     jint res = Atomic::cmpxchg(next_index, &_index, index);
 294     if (res == index) {
 295       for (int i = 0; i < n; i++) {
 296         int  ind = index + i;
 297         assert(ind < _capacity, "By overflow test above.");
 298         _base[ind] = ptr_arr[i];
 299       }
 300       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 301       return;
 302     }
 303     // Otherwise, we need to try again.
 304   }
 305 }
 306 
 307 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 308   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 309   jint start = _index;
 310   jint next_index = start + n;
 311   if (next_index > _capacity) {
 312     _overflow = true;
 313     return;
 314   }
 315   // Otherwise.
 316   _index = next_index;
 317   for (int i = 0; i < n; i++) {
 318     int ind = start + i;
 319     assert(ind < _capacity, "By overflow test above.");
 320     _base[ind] = ptr_arr[i];
 321   }
 322   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 323 }
 324 
 325 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 326   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 327   jint index = _index;
 328   if (index == 0) {
 329     *n = 0;
 330     return false;
 331   } else {
 332     int k = MIN2(max, index);
 333     jint  new_ind = index - k;
 334     for (int j = 0; j < k; j++) {
 335       ptr_arr[j] = _base[new_ind + j];
 336     }
 337     _index = new_ind;
 338     *n = k;
 339     return true;
 340   }
 341 }
 342 
 343 template<class OopClosureClass>
 344 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 345   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 346          || SafepointSynchronize::is_at_safepoint(),
 347          "Drain recursion must be yield-safe.");
 348   bool res = true;
 349   debug_only(_drain_in_progress = true);
 350   debug_only(_drain_in_progress_yields = yield_after);
 351   while (!isEmpty()) {
 352     oop newOop = pop();
 353     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 354     assert(newOop->is_oop(), "Expected an oop");
 355     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 356            "only grey objects on this stack");
 357     newOop->oop_iterate(cl);
 358     if (yield_after && _cm->do_yield_check()) {
 359       res = false;
 360       break;
 361     }
 362   }
 363   debug_only(_drain_in_progress = false);
 364   return res;
 365 }
 366 
 367 void CMMarkStack::note_start_of_gc() {
 368   assert(_saved_index == -1,
 369          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 370   _saved_index = _index;
 371 }
 372 
 373 void CMMarkStack::note_end_of_gc() {
 374   // This is intentionally a guarantee, instead of an assert. If we
 375   // accidentally add something to the mark stack during GC, it
 376   // will be a correctness issue so it's better if we crash. we'll
 377   // only check this once per GC anyway, so it won't be a performance
 378   // issue in any way.
 379   guarantee(_saved_index == _index,
 380             err_msg("saved index: %d index: %d", _saved_index, _index));
 381   _saved_index = -1;
 382 }
 383 
 384 void CMMarkStack::oops_do(OopClosure* f) {
 385   assert(_saved_index == _index,
 386          err_msg("saved index: %d index: %d", _saved_index, _index));
 387   for (int i = 0; i < _index; i += 1) {
 388     f->do_oop(&_base[i]);
 389   }
 390 }
 391 
 392 bool ConcurrentMark::not_yet_marked(oop obj) const {
 393   return _g1h->is_obj_ill(obj);
 394 }
 395 
 396 CMRootRegions::CMRootRegions() :
 397   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 398   _should_abort(false),  _next_survivor(NULL) { }
 399 
 400 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 401   _young_list = g1h->young_list();
 402   _cm = cm;
 403 }
 404 
 405 void CMRootRegions::prepare_for_scan() {
 406   assert(!scan_in_progress(), "pre-condition");
 407 
 408   // Currently, only survivors can be root regions.
 409   assert(_next_survivor == NULL, "pre-condition");
 410   _next_survivor = _young_list->first_survivor_region();
 411   _scan_in_progress = (_next_survivor != NULL);
 412   _should_abort = false;
 413 }
 414 
 415 HeapRegion* CMRootRegions::claim_next() {
 416   if (_should_abort) {
 417     // If someone has set the should_abort flag, we return NULL to
 418     // force the caller to bail out of their loop.
 419     return NULL;
 420   }
 421 
 422   // Currently, only survivors can be root regions.
 423   HeapRegion* res = _next_survivor;
 424   if (res != NULL) {
 425     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 426     // Read it again in case it changed while we were waiting for the lock.
 427     res = _next_survivor;
 428     if (res != NULL) {
 429       if (res == _young_list->last_survivor_region()) {
 430         // We just claimed the last survivor so store NULL to indicate
 431         // that we're done.
 432         _next_survivor = NULL;
 433       } else {
 434         _next_survivor = res->get_next_young_region();
 435       }
 436     } else {
 437       // Someone else claimed the last survivor while we were trying
 438       // to take the lock so nothing else to do.
 439     }
 440   }
 441   assert(res == NULL || res->is_survivor(), "post-condition");
 442 
 443   return res;
 444 }
 445 
 446 void CMRootRegions::scan_finished() {
 447   assert(scan_in_progress(), "pre-condition");
 448 
 449   // Currently, only survivors can be root regions.
 450   if (!_should_abort) {
 451     assert(_next_survivor == NULL, "we should have claimed all survivors");
 452   }
 453   _next_survivor = NULL;
 454 
 455   {
 456     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 457     _scan_in_progress = false;
 458     RootRegionScan_lock->notify_all();
 459   }
 460 }
 461 
 462 bool CMRootRegions::wait_until_scan_finished() {
 463   if (!scan_in_progress()) return false;
 464 
 465   {
 466     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 467     while (scan_in_progress()) {
 468       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 469     }
 470   }
 471   return true;
 472 }
 473 
 474 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 475 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 476 #endif // _MSC_VER
 477 
 478 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 479   return MAX2((n_par_threads + 2) / 4, 1U);
 480 }
 481 
 482 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
 483   _g1h(g1h),
 484   _markBitMap1(log2_intptr(MinObjAlignment)),
 485   _markBitMap2(log2_intptr(MinObjAlignment)),
 486   _parallel_marking_threads(0),
 487   _max_parallel_marking_threads(0),
 488   _sleep_factor(0.0),
 489   _marking_task_overhead(1.0),
 490   _cleanup_sleep_factor(0.0),
 491   _cleanup_task_overhead(1.0),
 492   _cleanup_list("Cleanup List"),
 493   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 494   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
 495             CardTableModRefBS::card_shift,
 496             false /* in_resource_area*/),
 497 
 498   _prevMarkBitMap(&_markBitMap1),
 499   _nextMarkBitMap(&_markBitMap2),
 500 
 501   _markStack(this),
 502   // _finger set in set_non_marking_state
 503 
 504   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 505   // _active_tasks set in set_non_marking_state
 506   // _tasks set inside the constructor
 507   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 508   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 509 
 510   _has_overflown(false),
 511   _concurrent(false),
 512   _has_aborted(false),
 513   _restart_for_overflow(false),
 514   _concurrent_marking_in_progress(false),
 515 
 516   // _verbose_level set below
 517 
 518   _init_times(),
 519   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 520   _cleanup_times(),
 521   _total_counting_time(0.0),
 522   _total_rs_scrub_time(0.0),
 523 
 524   _parallel_workers(NULL),
 525 
 526   _count_card_bitmaps(NULL),
 527   _count_marked_bytes(NULL),
 528   _completed_initialization(false) {
 529   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 530   if (verbose_level < no_verbose) {
 531     verbose_level = no_verbose;
 532   }
 533   if (verbose_level > high_verbose) {
 534     verbose_level = high_verbose;
 535   }
 536   _verbose_level = verbose_level;
 537 
 538   if (verbose_low()) {
 539     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 540                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
 541   }
 542 
 543   if (!_markBitMap1.allocate(heap_rs)) {
 544     warning("Failed to allocate first CM bit map");
 545     return;
 546   }
 547   if (!_markBitMap2.allocate(heap_rs)) {
 548     warning("Failed to allocate second CM bit map");
 549     return;
 550   }
 551 
 552   // Create & start a ConcurrentMark thread.
 553   _cmThread = new ConcurrentMarkThread(this);
 554   assert(cmThread() != NULL, "CM Thread should have been created");
 555   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 556   if (_cmThread->osthread() == NULL) {
 557       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 558   }
 559 
 560   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 561   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
 562   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
 563 
 564   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 565   satb_qs.set_buffer_size(G1SATBBufferSize);
 566 
 567   _root_regions.init(_g1h, this);
 568 
 569   if (ConcGCThreads > ParallelGCThreads) {
 570     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 571             "than ParallelGCThreads (" UINTX_FORMAT ").",
 572             ConcGCThreads, ParallelGCThreads);
 573     return;
 574   }
 575   if (ParallelGCThreads == 0) {
 576     // if we are not running with any parallel GC threads we will not
 577     // spawn any marking threads either
 578     _parallel_marking_threads =       0;
 579     _max_parallel_marking_threads =   0;
 580     _sleep_factor             =     0.0;
 581     _marking_task_overhead    =     1.0;
 582   } else {
 583     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 584       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 585       // if both are set
 586       _sleep_factor             = 0.0;
 587       _marking_task_overhead    = 1.0;
 588     } else if (G1MarkingOverheadPercent > 0) {
 589       // We will calculate the number of parallel marking threads based
 590       // on a target overhead with respect to the soft real-time goal
 591       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 592       double overall_cm_overhead =
 593         (double) MaxGCPauseMillis * marking_overhead /
 594         (double) GCPauseIntervalMillis;
 595       double cpu_ratio = 1.0 / (double) os::processor_count();
 596       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 597       double marking_task_overhead =
 598         overall_cm_overhead / marking_thread_num *
 599                                                 (double) os::processor_count();
 600       double sleep_factor =
 601                          (1.0 - marking_task_overhead) / marking_task_overhead;
 602 
 603       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 604       _sleep_factor             = sleep_factor;
 605       _marking_task_overhead    = marking_task_overhead;
 606     } else {
 607       // Calculate the number of parallel marking threads by scaling
 608       // the number of parallel GC threads.
 609       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 610       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 611       _sleep_factor             = 0.0;
 612       _marking_task_overhead    = 1.0;
 613     }
 614 
 615     assert(ConcGCThreads > 0, "Should have been set");
 616     _parallel_marking_threads = (uint) ConcGCThreads;
 617     _max_parallel_marking_threads = _parallel_marking_threads;
 618 
 619     if (parallel_marking_threads() > 1) {
 620       _cleanup_task_overhead = 1.0;
 621     } else {
 622       _cleanup_task_overhead = marking_task_overhead();
 623     }
 624     _cleanup_sleep_factor =
 625                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 626 
 627 #if 0
 628     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 629     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 630     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 631     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 632     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 633 #endif
 634 
 635     guarantee(parallel_marking_threads() > 0, "peace of mind");
 636     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 637          _max_parallel_marking_threads, false, true);
 638     if (_parallel_workers == NULL) {
 639       vm_exit_during_initialization("Failed necessary allocation.");
 640     } else {
 641       _parallel_workers->initialize_workers();
 642     }
 643   }
 644 
 645   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 646     uintx mark_stack_size =
 647       MIN2(MarkStackSizeMax,
 648           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 649     // Verify that the calculated value for MarkStackSize is in range.
 650     // It would be nice to use the private utility routine from Arguments.
 651     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 652       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 653               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 654               mark_stack_size, 1, MarkStackSizeMax);
 655       return;
 656     }
 657     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 658   } else {
 659     // Verify MarkStackSize is in range.
 660     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 661       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 662         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 663           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 664                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 665                   MarkStackSize, 1, MarkStackSizeMax);
 666           return;
 667         }
 668       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 669         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 670           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 671                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 672                   MarkStackSize, MarkStackSizeMax);
 673           return;
 674         }
 675       }
 676     }
 677   }
 678 
 679   if (!_markStack.allocate(MarkStackSize)) {
 680     warning("Failed to allocate CM marking stack");
 681     return;
 682   }
 683 
 684   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 685   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 686 
 687   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 688   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 689 
 690   BitMap::idx_t card_bm_size = _card_bm.size();
 691 
 692   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 693   _active_tasks = _max_worker_id;
 694 
 695   size_t max_regions = (size_t) _g1h->max_regions();
 696   for (uint i = 0; i < _max_worker_id; ++i) {
 697     CMTaskQueue* task_queue = new CMTaskQueue();
 698     task_queue->initialize();
 699     _task_queues->register_queue(i, task_queue);
 700 
 701     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 702     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 703 
 704     _tasks[i] = new CMTask(i, this,
 705                            _count_marked_bytes[i],
 706                            &_count_card_bitmaps[i],
 707                            task_queue, _task_queues);
 708 
 709     _accum_task_vtime[i] = 0.0;
 710   }
 711 
 712   // Calculate the card number for the bottom of the heap. Used
 713   // in biasing indexes into the accounting card bitmaps.
 714   _heap_bottom_card_num =
 715     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 716                                 CardTableModRefBS::card_shift);
 717 
 718   // Clear all the liveness counting data
 719   clear_all_count_data();
 720 
 721   // so that the call below can read a sensible value
 722   _heap_start = (HeapWord*) heap_rs.base();
 723   set_non_marking_state();
 724   _completed_initialization = true;
 725 }
 726 
 727 void ConcurrentMark::update_g1_committed(bool force) {
 728   // If concurrent marking is not in progress, then we do not need to
 729   // update _heap_end.
 730   if (!concurrent_marking_in_progress() && !force) return;
 731 
 732   MemRegion committed = _g1h->g1_committed();
 733   assert(committed.start() == _heap_start, "start shouldn't change");
 734   HeapWord* new_end = committed.end();
 735   if (new_end > _heap_end) {
 736     // The heap has been expanded.
 737 
 738     _heap_end = new_end;
 739   }
 740   // Notice that the heap can also shrink. However, this only happens
 741   // during a Full GC (at least currently) and the entire marking
 742   // phase will bail out and the task will not be restarted. So, let's
 743   // do nothing.
 744 }
 745 
 746 void ConcurrentMark::reset() {
 747   // Starting values for these two. This should be called in a STW
 748   // phase. CM will be notified of any future g1_committed expansions
 749   // will be at the end of evacuation pauses, when tasks are
 750   // inactive.
 751   MemRegion committed = _g1h->g1_committed();
 752   _heap_start = committed.start();
 753   _heap_end   = committed.end();
 754 
 755   // Separated the asserts so that we know which one fires.
 756   assert(_heap_start != NULL, "heap bounds should look ok");
 757   assert(_heap_end != NULL, "heap bounds should look ok");
 758   assert(_heap_start < _heap_end, "heap bounds should look ok");
 759 
 760   // Reset all the marking data structures and any necessary flags
 761   reset_marking_state();
 762 
 763   if (verbose_low()) {
 764     gclog_or_tty->print_cr("[global] resetting");
 765   }
 766 
 767   // We do reset all of them, since different phases will use
 768   // different number of active threads. So, it's easiest to have all
 769   // of them ready.
 770   for (uint i = 0; i < _max_worker_id; ++i) {
 771     _tasks[i]->reset(_nextMarkBitMap);
 772   }
 773 
 774   // we need this to make sure that the flag is on during the evac
 775   // pause with initial mark piggy-backed
 776   set_concurrent_marking_in_progress();
 777 }
 778 
 779 
 780 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 781   _markStack.set_should_expand();
 782   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 783   if (clear_overflow) {
 784     clear_has_overflown();
 785   } else {
 786     assert(has_overflown(), "pre-condition");
 787   }
 788   _finger = _heap_start;
 789 
 790   for (uint i = 0; i < _max_worker_id; ++i) {
 791     CMTaskQueue* queue = _task_queues->queue(i);
 792     queue->set_empty();
 793   }
 794 }
 795 
 796 void ConcurrentMark::set_concurrency(uint active_tasks) {
 797   assert(active_tasks <= _max_worker_id, "we should not have more");
 798 
 799   _active_tasks = active_tasks;
 800   // Need to update the three data structures below according to the
 801   // number of active threads for this phase.
 802   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 803   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 804   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 805 }
 806 
 807 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 808   set_concurrency(active_tasks);
 809 
 810   _concurrent = concurrent;
 811   // We propagate this to all tasks, not just the active ones.
 812   for (uint i = 0; i < _max_worker_id; ++i)
 813     _tasks[i]->set_concurrent(concurrent);
 814 
 815   if (concurrent) {
 816     set_concurrent_marking_in_progress();
 817   } else {
 818     // We currently assume that the concurrent flag has been set to
 819     // false before we start remark. At this point we should also be
 820     // in a STW phase.
 821     assert(!concurrent_marking_in_progress(), "invariant");
 822     assert(_finger == _heap_end,
 823            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 824                    _finger, _heap_end));
 825     update_g1_committed(true);
 826   }
 827 }
 828 
 829 void ConcurrentMark::set_non_marking_state() {
 830   // We set the global marking state to some default values when we're
 831   // not doing marking.
 832   reset_marking_state();
 833   _active_tasks = 0;
 834   clear_concurrent_marking_in_progress();
 835 }
 836 
 837 ConcurrentMark::~ConcurrentMark() {
 838   // The ConcurrentMark instance is never freed.
 839   ShouldNotReachHere();
 840 }
 841 
 842 void ConcurrentMark::clearNextBitmap() {
 843   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 844   G1CollectorPolicy* g1p = g1h->g1_policy();
 845 
 846   // Make sure that the concurrent mark thread looks to still be in
 847   // the current cycle.
 848   guarantee(cmThread()->during_cycle(), "invariant");
 849 
 850   // We are finishing up the current cycle by clearing the next
 851   // marking bitmap and getting it ready for the next cycle. During
 852   // this time no other cycle can start. So, let's make sure that this
 853   // is the case.
 854   guarantee(!g1h->mark_in_progress(), "invariant");
 855 
 856   // clear the mark bitmap (no grey objects to start with).
 857   // We need to do this in chunks and offer to yield in between
 858   // each chunk.
 859   HeapWord* start  = _nextMarkBitMap->startWord();
 860   HeapWord* end    = _nextMarkBitMap->endWord();
 861   HeapWord* cur    = start;
 862   size_t chunkSize = M;
 863   while (cur < end) {
 864     HeapWord* next = cur + chunkSize;
 865     if (next > end) {
 866       next = end;
 867     }
 868     MemRegion mr(cur,next);
 869     _nextMarkBitMap->clearRange(mr);
 870     cur = next;
 871     do_yield_check();
 872 
 873     // Repeat the asserts from above. We'll do them as asserts here to
 874     // minimize their overhead on the product. However, we'll have
 875     // them as guarantees at the beginning / end of the bitmap
 876     // clearing to get some checking in the product.
 877     assert(cmThread()->during_cycle(), "invariant");
 878     assert(!g1h->mark_in_progress(), "invariant");
 879   }
 880 
 881   // Clear the liveness counting data
 882   clear_all_count_data();
 883 
 884   // Repeat the asserts from above.
 885   guarantee(cmThread()->during_cycle(), "invariant");
 886   guarantee(!g1h->mark_in_progress(), "invariant");
 887 }
 888 
 889 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 890 public:
 891   bool doHeapRegion(HeapRegion* r) {
 892     if (!r->continuesHumongous()) {
 893       r->note_start_of_marking();
 894     }
 895     return false;
 896   }
 897 };
 898 
 899 void ConcurrentMark::checkpointRootsInitialPre() {
 900   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 901   G1CollectorPolicy* g1p = g1h->g1_policy();
 902 
 903   _has_aborted = false;
 904 
 905 #ifndef PRODUCT
 906   if (G1PrintReachableAtInitialMark) {
 907     print_reachable("at-cycle-start",
 908                     VerifyOption_G1UsePrevMarking, true /* all */);
 909   }
 910 #endif
 911 
 912   // Initialize marking structures. This has to be done in a STW phase.
 913   reset();
 914 
 915   // For each region note start of marking.
 916   NoteStartOfMarkHRClosure startcl;
 917   g1h->heap_region_iterate(&startcl);
 918 }
 919 
 920 
 921 void ConcurrentMark::checkpointRootsInitialPost() {
 922   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 923 
 924   // If we force an overflow during remark, the remark operation will
 925   // actually abort and we'll restart concurrent marking. If we always
 926   // force an overflow during remark we'll never actually complete the
 927   // marking phase. So, we initialize this here, at the start of the
 928   // cycle, so that at the remaining overflow number will decrease at
 929   // every remark and we'll eventually not need to cause one.
 930   force_overflow_stw()->init();
 931 
 932   // Start Concurrent Marking weak-reference discovery.
 933   ReferenceProcessor* rp = g1h->ref_processor_cm();
 934   // enable ("weak") refs discovery
 935   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 936   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 937 
 938   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 939   // This is the start of  the marking cycle, we're expected all
 940   // threads to have SATB queues with active set to false.
 941   satb_mq_set.set_active_all_threads(true, /* new active value */
 942                                      false /* expected_active */);
 943 
 944   _root_regions.prepare_for_scan();
 945 
 946   // update_g1_committed() will be called at the end of an evac pause
 947   // when marking is on. So, it's also called at the end of the
 948   // initial-mark pause to update the heap end, if the heap expands
 949   // during it. No need to call it here.
 950 }
 951 
 952 /*
 953  * Notice that in the next two methods, we actually leave the STS
 954  * during the barrier sync and join it immediately afterwards. If we
 955  * do not do this, the following deadlock can occur: one thread could
 956  * be in the barrier sync code, waiting for the other thread to also
 957  * sync up, whereas another one could be trying to yield, while also
 958  * waiting for the other threads to sync up too.
 959  *
 960  * Note, however, that this code is also used during remark and in
 961  * this case we should not attempt to leave / enter the STS, otherwise
 962  * we'll either hit an assert (debug / fastdebug) or deadlock
 963  * (product). So we should only leave / enter the STS if we are
 964  * operating concurrently.
 965  *
 966  * Because the thread that does the sync barrier has left the STS, it
 967  * is possible to be suspended for a Full GC or an evacuation pause
 968  * could occur. This is actually safe, since the entering the sync
 969  * barrier is one of the last things do_marking_step() does, and it
 970  * doesn't manipulate any data structures afterwards.
 971  */
 972 
 973 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 974   if (verbose_low()) {
 975     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 976   }
 977 
 978   if (concurrent()) {
 979     ConcurrentGCThread::stsLeave();
 980   }
 981   _first_overflow_barrier_sync.enter();
 982   if (concurrent()) {
 983     ConcurrentGCThread::stsJoin();
 984   }
 985   // at this point everyone should have synced up and not be doing any
 986   // more work
 987 
 988   if (verbose_low()) {
 989     gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
 990   }
 991 
 992   // If we're executing the concurrent phase of marking, reset the marking
 993   // state; otherwise the marking state is reset after reference processing,
 994   // during the remark pause.
 995   // If we reset here as a result of an overflow during the remark we will
 996   // see assertion failures from any subsequent set_concurrency_and_phase()
 997   // calls.
 998   if (concurrent()) {
 999     // let the task associated with with worker 0 do this
1000     if (worker_id == 0) {
1001       // task 0 is responsible for clearing the global data structures
1002       // We should be here because of an overflow. During STW we should
1003       // not clear the overflow flag since we rely on it being true when
1004       // we exit this method to abort the pause and restart concurrent
1005       // marking.
1006       reset_marking_state(true /* clear_overflow */);
1007       force_overflow()->update();
1008 
1009       if (G1Log::fine()) {
1010         gclog_or_tty->date_stamp(PrintGCDateStamps);
1011         gclog_or_tty->stamp(PrintGCTimeStamps);
1012         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1013       }
1014     }
1015   }
1016 
1017   // after this, each task should reset its own data structures then
1018   // then go into the second barrier
1019 }
1020 
1021 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1022   if (verbose_low()) {
1023     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1024   }
1025 
1026   if (concurrent()) {
1027     ConcurrentGCThread::stsLeave();
1028   }
1029   _second_overflow_barrier_sync.enter();
1030   if (concurrent()) {
1031     ConcurrentGCThread::stsJoin();
1032   }
1033   // at this point everything should be re-initialized and ready to go
1034 
1035   if (verbose_low()) {
1036     gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1037   }
1038 }
1039 
1040 #ifndef PRODUCT
1041 void ForceOverflowSettings::init() {
1042   _num_remaining = G1ConcMarkForceOverflow;
1043   _force = false;
1044   update();
1045 }
1046 
1047 void ForceOverflowSettings::update() {
1048   if (_num_remaining > 0) {
1049     _num_remaining -= 1;
1050     _force = true;
1051   } else {
1052     _force = false;
1053   }
1054 }
1055 
1056 bool ForceOverflowSettings::should_force() {
1057   if (_force) {
1058     _force = false;
1059     return true;
1060   } else {
1061     return false;
1062   }
1063 }
1064 #endif // !PRODUCT
1065 
1066 class CMConcurrentMarkingTask: public AbstractGangTask {
1067 private:
1068   ConcurrentMark*       _cm;
1069   ConcurrentMarkThread* _cmt;
1070 
1071 public:
1072   void work(uint worker_id) {
1073     assert(Thread::current()->is_ConcurrentGC_thread(),
1074            "this should only be done by a conc GC thread");
1075     ResourceMark rm;
1076 
1077     double start_vtime = os::elapsedVTime();
1078 
1079     ConcurrentGCThread::stsJoin();
1080 
1081     assert(worker_id < _cm->active_tasks(), "invariant");
1082     CMTask* the_task = _cm->task(worker_id);
1083     the_task->record_start_time();
1084     if (!_cm->has_aborted()) {
1085       do {
1086         double start_vtime_sec = os::elapsedVTime();
1087         double start_time_sec = os::elapsedTime();
1088         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1089 
1090         the_task->do_marking_step(mark_step_duration_ms,
1091                                   true  /* do_termination */,
1092                                   false /* is_serial*/);
1093 
1094         double end_time_sec = os::elapsedTime();
1095         double end_vtime_sec = os::elapsedVTime();
1096         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1097         double elapsed_time_sec = end_time_sec - start_time_sec;
1098         _cm->clear_has_overflown();
1099 
1100         bool ret = _cm->do_yield_check(worker_id);
1101 
1102         jlong sleep_time_ms;
1103         if (!_cm->has_aborted() && the_task->has_aborted()) {
1104           sleep_time_ms =
1105             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1106           ConcurrentGCThread::stsLeave();
1107           os::sleep(Thread::current(), sleep_time_ms, false);
1108           ConcurrentGCThread::stsJoin();
1109         }
1110         double end_time2_sec = os::elapsedTime();
1111         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1112 
1113 #if 0
1114           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1115                                  "overhead %1.4lf",
1116                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1117                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1118           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1119                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1120 #endif
1121       } while (!_cm->has_aborted() && the_task->has_aborted());
1122     }
1123     the_task->record_end_time();
1124     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1125 
1126     ConcurrentGCThread::stsLeave();
1127 
1128     double end_vtime = os::elapsedVTime();
1129     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1130   }
1131 
1132   CMConcurrentMarkingTask(ConcurrentMark* cm,
1133                           ConcurrentMarkThread* cmt) :
1134       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1135 
1136   ~CMConcurrentMarkingTask() { }
1137 };
1138 
1139 // Calculates the number of active workers for a concurrent
1140 // phase.
1141 uint ConcurrentMark::calc_parallel_marking_threads() {
1142   if (G1CollectedHeap::use_parallel_gc_threads()) {
1143     uint n_conc_workers = 0;
1144     if (!UseDynamicNumberOfGCThreads ||
1145         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1146          !ForceDynamicNumberOfGCThreads)) {
1147       n_conc_workers = max_parallel_marking_threads();
1148     } else {
1149       n_conc_workers =
1150         AdaptiveSizePolicy::calc_default_active_workers(
1151                                      max_parallel_marking_threads(),
1152                                      1, /* Minimum workers */
1153                                      parallel_marking_threads(),
1154                                      Threads::number_of_non_daemon_threads());
1155       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1156       // that scaling has already gone into "_max_parallel_marking_threads".
1157     }
1158     assert(n_conc_workers > 0, "Always need at least 1");
1159     return n_conc_workers;
1160   }
1161   // If we are not running with any parallel GC threads we will not
1162   // have spawned any marking threads either. Hence the number of
1163   // concurrent workers should be 0.
1164   return 0;
1165 }
1166 
1167 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1168   // Currently, only survivors can be root regions.
1169   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1170   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1171 
1172   const uintx interval = PrefetchScanIntervalInBytes;
1173   HeapWord* curr = hr->bottom();
1174   const HeapWord* end = hr->top();
1175   while (curr < end) {
1176     Prefetch::read(curr, interval);
1177     oop obj = oop(curr);
1178     int size = obj->oop_iterate(&cl);
1179     assert(size == obj->size(), "sanity");
1180     curr += size;
1181   }
1182 }
1183 
1184 class CMRootRegionScanTask : public AbstractGangTask {
1185 private:
1186   ConcurrentMark* _cm;
1187 
1188 public:
1189   CMRootRegionScanTask(ConcurrentMark* cm) :
1190     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1191 
1192   void work(uint worker_id) {
1193     assert(Thread::current()->is_ConcurrentGC_thread(),
1194            "this should only be done by a conc GC thread");
1195 
1196     CMRootRegions* root_regions = _cm->root_regions();
1197     HeapRegion* hr = root_regions->claim_next();
1198     while (hr != NULL) {
1199       _cm->scanRootRegion(hr, worker_id);
1200       hr = root_regions->claim_next();
1201     }
1202   }
1203 };
1204 
1205 void ConcurrentMark::scanRootRegions() {
1206   // scan_in_progress() will have been set to true only if there was
1207   // at least one root region to scan. So, if it's false, we
1208   // should not attempt to do any further work.
1209   if (root_regions()->scan_in_progress()) {
1210     _parallel_marking_threads = calc_parallel_marking_threads();
1211     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1212            "Maximum number of marking threads exceeded");
1213     uint active_workers = MAX2(1U, parallel_marking_threads());
1214 
1215     CMRootRegionScanTask task(this);
1216     if (use_parallel_marking_threads()) {
1217       _parallel_workers->set_active_workers((int) active_workers);
1218       _parallel_workers->run_task(&task);
1219     } else {
1220       task.work(0);
1221     }
1222 
1223     // It's possible that has_aborted() is true here without actually
1224     // aborting the survivor scan earlier. This is OK as it's
1225     // mainly used for sanity checking.
1226     root_regions()->scan_finished();
1227   }
1228 }
1229 
1230 void ConcurrentMark::markFromRoots() {
1231   // we might be tempted to assert that:
1232   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1233   //        "inconsistent argument?");
1234   // However that wouldn't be right, because it's possible that
1235   // a safepoint is indeed in progress as a younger generation
1236   // stop-the-world GC happens even as we mark in this generation.
1237 
1238   _restart_for_overflow = false;
1239   force_overflow_conc()->init();
1240 
1241   // _g1h has _n_par_threads
1242   _parallel_marking_threads = calc_parallel_marking_threads();
1243   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1244     "Maximum number of marking threads exceeded");
1245 
1246   uint active_workers = MAX2(1U, parallel_marking_threads());
1247 
1248   // Parallel task terminator is set in "set_concurrency_and_phase()"
1249   set_concurrency_and_phase(active_workers, true /* concurrent */);
1250 
1251   CMConcurrentMarkingTask markingTask(this, cmThread());
1252   if (use_parallel_marking_threads()) {
1253     _parallel_workers->set_active_workers((int)active_workers);
1254     // Don't set _n_par_threads because it affects MT in process_strong_roots()
1255     // and the decisions on that MT processing is made elsewhere.
1256     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1257     _parallel_workers->run_task(&markingTask);
1258   } else {
1259     markingTask.work(0);
1260   }
1261   print_stats();
1262 }
1263 
1264 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1265   // world is stopped at this checkpoint
1266   assert(SafepointSynchronize::is_at_safepoint(),
1267          "world should be stopped");
1268 
1269   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1270 
1271   // If a full collection has happened, we shouldn't do this.
1272   if (has_aborted()) {
1273     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1274     return;
1275   }
1276 
1277   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1278 
1279   if (VerifyDuringGC) {
1280     HandleMark hm;  // handle scope
1281     Universe::heap()->prepare_for_verify();
1282     Universe::verify(VerifyOption_G1UsePrevMarking,
1283                      " VerifyDuringGC:(before)");
1284   }
1285 
1286   G1CollectorPolicy* g1p = g1h->g1_policy();
1287   g1p->record_concurrent_mark_remark_start();
1288 
1289   double start = os::elapsedTime();
1290 
1291   checkpointRootsFinalWork();
1292 
1293   double mark_work_end = os::elapsedTime();
1294 
1295   weakRefsWork(clear_all_soft_refs);
1296 
1297   if (has_overflown()) {
1298     // Oops.  We overflowed.  Restart concurrent marking.
1299     _restart_for_overflow = true;
1300     if (G1TraceMarkStackOverflow) {
1301       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1302     }
1303 
1304     // Verify the heap w.r.t. the previous marking bitmap.
1305     if (VerifyDuringGC) {
1306       HandleMark hm;  // handle scope
1307       Universe::heap()->prepare_for_verify();
1308       Universe::verify(VerifyOption_G1UsePrevMarking,
1309                        " VerifyDuringGC:(overflow)");
1310     }
1311 
1312     // Clear the marking state because we will be restarting
1313     // marking due to overflowing the global mark stack.
1314     reset_marking_state();
1315   } else {
1316     // Aggregate the per-task counting data that we have accumulated
1317     // while marking.
1318     aggregate_count_data();
1319 
1320     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1321     // We're done with marking.
1322     // This is the end of  the marking cycle, we're expected all
1323     // threads to have SATB queues with active set to true.
1324     satb_mq_set.set_active_all_threads(false, /* new active value */
1325                                        true /* expected_active */);
1326 
1327     if (VerifyDuringGC) {
1328       HandleMark hm;  // handle scope
1329       Universe::heap()->prepare_for_verify();
1330       Universe::verify(VerifyOption_G1UseNextMarking,
1331                        " VerifyDuringGC:(after)");
1332     }
1333     assert(!restart_for_overflow(), "sanity");
1334     // Completely reset the marking state since marking completed
1335     set_non_marking_state();
1336   }
1337 
1338   // Expand the marking stack, if we have to and if we can.
1339   if (_markStack.should_expand()) {
1340     _markStack.expand();
1341   }
1342 
1343   // Statistics
1344   double now = os::elapsedTime();
1345   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1346   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1347   _remark_times.add((now - start) * 1000.0);
1348 
1349   g1p->record_concurrent_mark_remark_end();
1350 
1351   G1CMIsAliveClosure is_alive(g1h);
1352   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1353 }
1354 
1355 // Base class of the closures that finalize and verify the
1356 // liveness counting data.
1357 class CMCountDataClosureBase: public HeapRegionClosure {
1358 protected:
1359   G1CollectedHeap* _g1h;
1360   ConcurrentMark* _cm;
1361   CardTableModRefBS* _ct_bs;
1362 
1363   BitMap* _region_bm;
1364   BitMap* _card_bm;
1365 
1366   // Takes a region that's not empty (i.e., it has at least one
1367   // live object in it and sets its corresponding bit on the region
1368   // bitmap to 1. If the region is "starts humongous" it will also set
1369   // to 1 the bits on the region bitmap that correspond to its
1370   // associated "continues humongous" regions.
1371   void set_bit_for_region(HeapRegion* hr) {
1372     assert(!hr->continuesHumongous(), "should have filtered those out");
1373 
1374     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1375     if (!hr->startsHumongous()) {
1376       // Normal (non-humongous) case: just set the bit.
1377       _region_bm->par_at_put(index, true);
1378     } else {
1379       // Starts humongous case: calculate how many regions are part of
1380       // this humongous region and then set the bit range.
1381       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1382       _region_bm->par_at_put_range(index, end_index, true);
1383     }
1384   }
1385 
1386 public:
1387   CMCountDataClosureBase(G1CollectedHeap* g1h,
1388                          BitMap* region_bm, BitMap* card_bm):
1389     _g1h(g1h), _cm(g1h->concurrent_mark()),
1390     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1391     _region_bm(region_bm), _card_bm(card_bm) { }
1392 };
1393 
1394 // Closure that calculates the # live objects per region. Used
1395 // for verification purposes during the cleanup pause.
1396 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1397   CMBitMapRO* _bm;
1398   size_t _region_marked_bytes;
1399 
1400 public:
1401   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1402                          BitMap* region_bm, BitMap* card_bm) :
1403     CMCountDataClosureBase(g1h, region_bm, card_bm),
1404     _bm(bm), _region_marked_bytes(0) { }
1405 
1406   bool doHeapRegion(HeapRegion* hr) {
1407 
1408     if (hr->continuesHumongous()) {
1409       // We will ignore these here and process them when their
1410       // associated "starts humongous" region is processed (see
1411       // set_bit_for_heap_region()). Note that we cannot rely on their
1412       // associated "starts humongous" region to have their bit set to
1413       // 1 since, due to the region chunking in the parallel region
1414       // iteration, a "continues humongous" region might be visited
1415       // before its associated "starts humongous".
1416       return false;
1417     }
1418 
1419     HeapWord* ntams = hr->next_top_at_mark_start();
1420     HeapWord* start = hr->bottom();
1421 
1422     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1423            err_msg("Preconditions not met - "
1424                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1425                    start, ntams, hr->end()));
1426 
1427     // Find the first marked object at or after "start".
1428     start = _bm->getNextMarkedWordAddress(start, ntams);
1429 
1430     size_t marked_bytes = 0;
1431 
1432     while (start < ntams) {
1433       oop obj = oop(start);
1434       int obj_sz = obj->size();
1435       HeapWord* obj_end = start + obj_sz;
1436 
1437       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1438       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1439 
1440       // Note: if we're looking at the last region in heap - obj_end
1441       // could be actually just beyond the end of the heap; end_idx
1442       // will then correspond to a (non-existent) card that is also
1443       // just beyond the heap.
1444       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1445         // end of object is not card aligned - increment to cover
1446         // all the cards spanned by the object
1447         end_idx += 1;
1448       }
1449 
1450       // Set the bits in the card BM for the cards spanned by this object.
1451       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1452 
1453       // Add the size of this object to the number of marked bytes.
1454       marked_bytes += (size_t)obj_sz * HeapWordSize;
1455 
1456       // Find the next marked object after this one.
1457       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1458     }
1459 
1460     // Mark the allocated-since-marking portion...
1461     HeapWord* top = hr->top();
1462     if (ntams < top) {
1463       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1464       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1465 
1466       // Note: if we're looking at the last region in heap - top
1467       // could be actually just beyond the end of the heap; end_idx
1468       // will then correspond to a (non-existent) card that is also
1469       // just beyond the heap.
1470       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1471         // end of object is not card aligned - increment to cover
1472         // all the cards spanned by the object
1473         end_idx += 1;
1474       }
1475       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1476 
1477       // This definitely means the region has live objects.
1478       set_bit_for_region(hr);
1479     }
1480 
1481     // Update the live region bitmap.
1482     if (marked_bytes > 0) {
1483       set_bit_for_region(hr);
1484     }
1485 
1486     // Set the marked bytes for the current region so that
1487     // it can be queried by a calling verification routine
1488     _region_marked_bytes = marked_bytes;
1489 
1490     return false;
1491   }
1492 
1493   size_t region_marked_bytes() const { return _region_marked_bytes; }
1494 };
1495 
1496 // Heap region closure used for verifying the counting data
1497 // that was accumulated concurrently and aggregated during
1498 // the remark pause. This closure is applied to the heap
1499 // regions during the STW cleanup pause.
1500 
1501 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1502   G1CollectedHeap* _g1h;
1503   ConcurrentMark* _cm;
1504   CalcLiveObjectsClosure _calc_cl;
1505   BitMap* _region_bm;   // Region BM to be verified
1506   BitMap* _card_bm;     // Card BM to be verified
1507   bool _verbose;        // verbose output?
1508 
1509   BitMap* _exp_region_bm; // Expected Region BM values
1510   BitMap* _exp_card_bm;   // Expected card BM values
1511 
1512   int _failures;
1513 
1514 public:
1515   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1516                                 BitMap* region_bm,
1517                                 BitMap* card_bm,
1518                                 BitMap* exp_region_bm,
1519                                 BitMap* exp_card_bm,
1520                                 bool verbose) :
1521     _g1h(g1h), _cm(g1h->concurrent_mark()),
1522     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1523     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1524     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1525     _failures(0) { }
1526 
1527   int failures() const { return _failures; }
1528 
1529   bool doHeapRegion(HeapRegion* hr) {
1530     if (hr->continuesHumongous()) {
1531       // We will ignore these here and process them when their
1532       // associated "starts humongous" region is processed (see
1533       // set_bit_for_heap_region()). Note that we cannot rely on their
1534       // associated "starts humongous" region to have their bit set to
1535       // 1 since, due to the region chunking in the parallel region
1536       // iteration, a "continues humongous" region might be visited
1537       // before its associated "starts humongous".
1538       return false;
1539     }
1540 
1541     int failures = 0;
1542 
1543     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1544     // this region and set the corresponding bits in the expected region
1545     // and card bitmaps.
1546     bool res = _calc_cl.doHeapRegion(hr);
1547     assert(res == false, "should be continuing");
1548 
1549     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1550                     Mutex::_no_safepoint_check_flag);
1551 
1552     // Verify the marked bytes for this region.
1553     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1554     size_t act_marked_bytes = hr->next_marked_bytes();
1555 
1556     // We're not OK if expected marked bytes > actual marked bytes. It means
1557     // we have missed accounting some objects during the actual marking.
1558     if (exp_marked_bytes > act_marked_bytes) {
1559       if (_verbose) {
1560         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1561                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1562                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
1563       }
1564       failures += 1;
1565     }
1566 
1567     // Verify the bit, for this region, in the actual and expected
1568     // (which was just calculated) region bit maps.
1569     // We're not OK if the bit in the calculated expected region
1570     // bitmap is set and the bit in the actual region bitmap is not.
1571     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1572 
1573     bool expected = _exp_region_bm->at(index);
1574     bool actual = _region_bm->at(index);
1575     if (expected && !actual) {
1576       if (_verbose) {
1577         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1578                                "expected: %s, actual: %s",
1579                                hr->hrs_index(),
1580                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1581       }
1582       failures += 1;
1583     }
1584 
1585     // Verify that the card bit maps for the cards spanned by the current
1586     // region match. We have an error if we have a set bit in the expected
1587     // bit map and the corresponding bit in the actual bitmap is not set.
1588 
1589     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1590     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1591 
1592     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1593       expected = _exp_card_bm->at(i);
1594       actual = _card_bm->at(i);
1595 
1596       if (expected && !actual) {
1597         if (_verbose) {
1598           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1599                                  "expected: %s, actual: %s",
1600                                  hr->hrs_index(), i,
1601                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1602         }
1603         failures += 1;
1604       }
1605     }
1606 
1607     if (failures > 0 && _verbose)  {
1608       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1609                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1610                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
1611                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1612     }
1613 
1614     _failures += failures;
1615 
1616     // We could stop iteration over the heap when we
1617     // find the first violating region by returning true.
1618     return false;
1619   }
1620 };
1621 
1622 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1623 protected:
1624   G1CollectedHeap* _g1h;
1625   ConcurrentMark* _cm;
1626   BitMap* _actual_region_bm;
1627   BitMap* _actual_card_bm;
1628 
1629   uint    _n_workers;
1630 
1631   BitMap* _expected_region_bm;
1632   BitMap* _expected_card_bm;
1633 
1634   int  _failures;
1635   bool _verbose;
1636 
1637 public:
1638   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1639                             BitMap* region_bm, BitMap* card_bm,
1640                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1641     : AbstractGangTask("G1 verify final counting"),
1642       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1643       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1644       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1645       _failures(0), _verbose(false),
1646       _n_workers(0) {
1647     assert(VerifyDuringGC, "don't call this otherwise");
1648 
1649     // Use the value already set as the number of active threads
1650     // in the call to run_task().
1651     if (G1CollectedHeap::use_parallel_gc_threads()) {
1652       assert( _g1h->workers()->active_workers() > 0,
1653         "Should have been previously set");
1654       _n_workers = _g1h->workers()->active_workers();
1655     } else {
1656       _n_workers = 1;
1657     }
1658 
1659     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1660     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1661 
1662     _verbose = _cm->verbose_medium();
1663   }
1664 
1665   void work(uint worker_id) {
1666     assert(worker_id < _n_workers, "invariant");
1667 
1668     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1669                                             _actual_region_bm, _actual_card_bm,
1670                                             _expected_region_bm,
1671                                             _expected_card_bm,
1672                                             _verbose);
1673 
1674     if (G1CollectedHeap::use_parallel_gc_threads()) {
1675       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1676                                             worker_id,
1677                                             _n_workers,
1678                                             HeapRegion::VerifyCountClaimValue);
1679     } else {
1680       _g1h->heap_region_iterate(&verify_cl);
1681     }
1682 
1683     Atomic::add(verify_cl.failures(), &_failures);
1684   }
1685 
1686   int failures() const { return _failures; }
1687 };
1688 
1689 // Closure that finalizes the liveness counting data.
1690 // Used during the cleanup pause.
1691 // Sets the bits corresponding to the interval [NTAMS, top]
1692 // (which contains the implicitly live objects) in the
1693 // card liveness bitmap. Also sets the bit for each region,
1694 // containing live data, in the region liveness bitmap.
1695 
1696 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1697  public:
1698   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1699                               BitMap* region_bm,
1700                               BitMap* card_bm) :
1701     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1702 
1703   bool doHeapRegion(HeapRegion* hr) {
1704 
1705     if (hr->continuesHumongous()) {
1706       // We will ignore these here and process them when their
1707       // associated "starts humongous" region is processed (see
1708       // set_bit_for_heap_region()). Note that we cannot rely on their
1709       // associated "starts humongous" region to have their bit set to
1710       // 1 since, due to the region chunking in the parallel region
1711       // iteration, a "continues humongous" region might be visited
1712       // before its associated "starts humongous".
1713       return false;
1714     }
1715 
1716     HeapWord* ntams = hr->next_top_at_mark_start();
1717     HeapWord* top   = hr->top();
1718 
1719     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1720 
1721     // Mark the allocated-since-marking portion...
1722     if (ntams < top) {
1723       // This definitely means the region has live objects.
1724       set_bit_for_region(hr);
1725 
1726       // Now set the bits in the card bitmap for [ntams, top)
1727       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1728       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1729 
1730       // Note: if we're looking at the last region in heap - top
1731       // could be actually just beyond the end of the heap; end_idx
1732       // will then correspond to a (non-existent) card that is also
1733       // just beyond the heap.
1734       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1735         // end of object is not card aligned - increment to cover
1736         // all the cards spanned by the object
1737         end_idx += 1;
1738       }
1739 
1740       assert(end_idx <= _card_bm->size(),
1741              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1742                      end_idx, _card_bm->size()));
1743       assert(start_idx < _card_bm->size(),
1744              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1745                      start_idx, _card_bm->size()));
1746 
1747       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1748     }
1749 
1750     // Set the bit for the region if it contains live data
1751     if (hr->next_marked_bytes() > 0) {
1752       set_bit_for_region(hr);
1753     }
1754 
1755     return false;
1756   }
1757 };
1758 
1759 class G1ParFinalCountTask: public AbstractGangTask {
1760 protected:
1761   G1CollectedHeap* _g1h;
1762   ConcurrentMark* _cm;
1763   BitMap* _actual_region_bm;
1764   BitMap* _actual_card_bm;
1765 
1766   uint    _n_workers;
1767 
1768 public:
1769   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1770     : AbstractGangTask("G1 final counting"),
1771       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1772       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1773       _n_workers(0) {
1774     // Use the value already set as the number of active threads
1775     // in the call to run_task().
1776     if (G1CollectedHeap::use_parallel_gc_threads()) {
1777       assert( _g1h->workers()->active_workers() > 0,
1778         "Should have been previously set");
1779       _n_workers = _g1h->workers()->active_workers();
1780     } else {
1781       _n_workers = 1;
1782     }
1783   }
1784 
1785   void work(uint worker_id) {
1786     assert(worker_id < _n_workers, "invariant");
1787 
1788     FinalCountDataUpdateClosure final_update_cl(_g1h,
1789                                                 _actual_region_bm,
1790                                                 _actual_card_bm);
1791 
1792     if (G1CollectedHeap::use_parallel_gc_threads()) {
1793       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1794                                             worker_id,
1795                                             _n_workers,
1796                                             HeapRegion::FinalCountClaimValue);
1797     } else {
1798       _g1h->heap_region_iterate(&final_update_cl);
1799     }
1800   }
1801 };
1802 
1803 class G1ParNoteEndTask;
1804 
1805 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1806   G1CollectedHeap* _g1;
1807   size_t _max_live_bytes;
1808   uint _regions_claimed;
1809   size_t _freed_bytes;
1810   FreeRegionList* _local_cleanup_list;
1811   HeapRegionSetCount _old_regions_removed;
1812   HeapRegionSetCount _humongous_regions_removed;
1813   HRRSCleanupTask* _hrrs_cleanup_task;
1814   double _claimed_region_time;
1815   double _max_region_time;
1816 
1817 public:
1818   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1819                              FreeRegionList* local_cleanup_list,
1820                              HRRSCleanupTask* hrrs_cleanup_task) :
1821     _g1(g1),
1822     _max_live_bytes(0), _regions_claimed(0),
1823     _freed_bytes(0),
1824     _claimed_region_time(0.0), _max_region_time(0.0),
1825     _local_cleanup_list(local_cleanup_list),
1826     _old_regions_removed(),
1827     _humongous_regions_removed(),
1828     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1829 
1830   size_t freed_bytes() { return _freed_bytes; }
1831   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1832   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1833 
1834   bool doHeapRegion(HeapRegion *hr) {
1835     if (hr->continuesHumongous()) {
1836       return false;
1837     }
1838     // We use a claim value of zero here because all regions
1839     // were claimed with value 1 in the FinalCount task.
1840     _g1->reset_gc_time_stamps(hr);
1841     double start = os::elapsedTime();
1842     _regions_claimed++;
1843     hr->note_end_of_marking();
1844     _max_live_bytes += hr->max_live_bytes();
1845 
1846     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1847       _freed_bytes += hr->used();
1848       hr->set_containing_set(NULL);
1849       if (hr->isHumongous()) {
1850         assert(hr->startsHumongous(), "we should only see starts humongous");
1851         _humongous_regions_removed.increment(1u, hr->capacity());
1852         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1853       } else {
1854         _old_regions_removed.increment(1u, hr->capacity());
1855         _g1->free_region(hr, _local_cleanup_list, true);
1856       }
1857     } else {
1858       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1859     }
1860 
1861     double region_time = (os::elapsedTime() - start);
1862     _claimed_region_time += region_time;
1863     if (region_time > _max_region_time) {
1864       _max_region_time = region_time;
1865     }
1866     return false;
1867   }
1868 
1869   size_t max_live_bytes() { return _max_live_bytes; }
1870   uint regions_claimed() { return _regions_claimed; }
1871   double claimed_region_time_sec() { return _claimed_region_time; }
1872   double max_region_time_sec() { return _max_region_time; }
1873 };
1874 
1875 class G1ParNoteEndTask: public AbstractGangTask {
1876   friend class G1NoteEndOfConcMarkClosure;
1877 
1878 protected:
1879   G1CollectedHeap* _g1h;
1880   size_t _max_live_bytes;
1881   size_t _freed_bytes;
1882   FreeRegionList* _cleanup_list;
1883 
1884 public:
1885   G1ParNoteEndTask(G1CollectedHeap* g1h,
1886                    FreeRegionList* cleanup_list) :
1887     AbstractGangTask("G1 note end"), _g1h(g1h),
1888     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1889 
1890   void work(uint worker_id) {
1891     double start = os::elapsedTime();
1892     FreeRegionList local_cleanup_list("Local Cleanup List");
1893     HRRSCleanupTask hrrs_cleanup_task;
1894     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1895                                            &hrrs_cleanup_task);
1896     if (G1CollectedHeap::use_parallel_gc_threads()) {
1897       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1898                                             _g1h->workers()->active_workers(),
1899                                             HeapRegion::NoteEndClaimValue);
1900     } else {
1901       _g1h->heap_region_iterate(&g1_note_end);
1902     }
1903     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1904 
1905     // Now update the lists
1906     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1907     {
1908       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1909       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1910       _max_live_bytes += g1_note_end.max_live_bytes();
1911       _freed_bytes += g1_note_end.freed_bytes();
1912 
1913       // If we iterate over the global cleanup list at the end of
1914       // cleanup to do this printing we will not guarantee to only
1915       // generate output for the newly-reclaimed regions (the list
1916       // might not be empty at the beginning of cleanup; we might
1917       // still be working on its previous contents). So we do the
1918       // printing here, before we append the new regions to the global
1919       // cleanup list.
1920 
1921       G1HRPrinter* hr_printer = _g1h->hr_printer();
1922       if (hr_printer->is_active()) {
1923         FreeRegionListIterator iter(&local_cleanup_list);
1924         while (iter.more_available()) {
1925           HeapRegion* hr = iter.get_next();
1926           hr_printer->cleanup(hr);
1927         }
1928       }
1929 
1930       _cleanup_list->add_ordered(&local_cleanup_list);
1931       assert(local_cleanup_list.is_empty(), "post-condition");
1932 
1933       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1934     }
1935   }
1936   size_t max_live_bytes() { return _max_live_bytes; }
1937   size_t freed_bytes() { return _freed_bytes; }
1938 };
1939 
1940 class G1ParScrubRemSetTask: public AbstractGangTask {
1941 protected:
1942   G1RemSet* _g1rs;
1943   BitMap* _region_bm;
1944   BitMap* _card_bm;
1945 public:
1946   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1947                        BitMap* region_bm, BitMap* card_bm) :
1948     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1949     _region_bm(region_bm), _card_bm(card_bm) { }
1950 
1951   void work(uint worker_id) {
1952     if (G1CollectedHeap::use_parallel_gc_threads()) {
1953       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1954                        HeapRegion::ScrubRemSetClaimValue);
1955     } else {
1956       _g1rs->scrub(_region_bm, _card_bm);
1957     }
1958   }
1959 
1960 };
1961 
1962 void ConcurrentMark::cleanup() {
1963   // world is stopped at this checkpoint
1964   assert(SafepointSynchronize::is_at_safepoint(),
1965          "world should be stopped");
1966   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1967 
1968   // If a full collection has happened, we shouldn't do this.
1969   if (has_aborted()) {
1970     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1971     return;
1972   }
1973 
1974   g1h->verify_region_sets_optional();
1975 
1976   if (VerifyDuringGC) {
1977     HandleMark hm;  // handle scope
1978     Universe::heap()->prepare_for_verify();
1979     Universe::verify(VerifyOption_G1UsePrevMarking,
1980                      " VerifyDuringGC:(before)");
1981   }
1982 
1983   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1984   g1p->record_concurrent_mark_cleanup_start();
1985 
1986   double start = os::elapsedTime();
1987 
1988   HeapRegionRemSet::reset_for_cleanup_tasks();
1989 
1990   uint n_workers;
1991 
1992   // Do counting once more with the world stopped for good measure.
1993   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1994 
1995   if (G1CollectedHeap::use_parallel_gc_threads()) {
1996    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1997            "sanity check");
1998 
1999     g1h->set_par_threads();
2000     n_workers = g1h->n_par_threads();
2001     assert(g1h->n_par_threads() == n_workers,
2002            "Should not have been reset");
2003     g1h->workers()->run_task(&g1_par_count_task);
2004     // Done with the parallel phase so reset to 0.
2005     g1h->set_par_threads(0);
2006 
2007     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2008            "sanity check");
2009   } else {
2010     n_workers = 1;
2011     g1_par_count_task.work(0);
2012   }
2013 
2014   if (VerifyDuringGC) {
2015     // Verify that the counting data accumulated during marking matches
2016     // that calculated by walking the marking bitmap.
2017 
2018     // Bitmaps to hold expected values
2019     BitMap expected_region_bm(_region_bm.size(), true);
2020     BitMap expected_card_bm(_card_bm.size(), true);
2021 
2022     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2023                                                  &_region_bm,
2024                                                  &_card_bm,
2025                                                  &expected_region_bm,
2026                                                  &expected_card_bm);
2027 
2028     if (G1CollectedHeap::use_parallel_gc_threads()) {
2029       g1h->set_par_threads((int)n_workers);
2030       g1h->workers()->run_task(&g1_par_verify_task);
2031       // Done with the parallel phase so reset to 0.
2032       g1h->set_par_threads(0);
2033 
2034       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2035              "sanity check");
2036     } else {
2037       g1_par_verify_task.work(0);
2038     }
2039 
2040     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2041   }
2042 
2043   size_t start_used_bytes = g1h->used();
2044   g1h->set_marking_complete();
2045 
2046   double count_end = os::elapsedTime();
2047   double this_final_counting_time = (count_end - start);
2048   _total_counting_time += this_final_counting_time;
2049 
2050   if (G1PrintRegionLivenessInfo) {
2051     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2052     _g1h->heap_region_iterate(&cl);
2053   }
2054 
2055   // Install newly created mark bitMap as "prev".
2056   swapMarkBitMaps();
2057 
2058   g1h->reset_gc_time_stamp();
2059 
2060   // Note end of marking in all heap regions.
2061   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2062   if (G1CollectedHeap::use_parallel_gc_threads()) {
2063     g1h->set_par_threads((int)n_workers);
2064     g1h->workers()->run_task(&g1_par_note_end_task);
2065     g1h->set_par_threads(0);
2066 
2067     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2068            "sanity check");
2069   } else {
2070     g1_par_note_end_task.work(0);
2071   }
2072   g1h->check_gc_time_stamps();
2073 
2074   if (!cleanup_list_is_empty()) {
2075     // The cleanup list is not empty, so we'll have to process it
2076     // concurrently. Notify anyone else that might be wanting free
2077     // regions that there will be more free regions coming soon.
2078     g1h->set_free_regions_coming();
2079   }
2080 
2081   // call below, since it affects the metric by which we sort the heap
2082   // regions.
2083   if (G1ScrubRemSets) {
2084     double rs_scrub_start = os::elapsedTime();
2085     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2086     if (G1CollectedHeap::use_parallel_gc_threads()) {
2087       g1h->set_par_threads((int)n_workers);
2088       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2089       g1h->set_par_threads(0);
2090 
2091       assert(g1h->check_heap_region_claim_values(
2092                                             HeapRegion::ScrubRemSetClaimValue),
2093              "sanity check");
2094     } else {
2095       g1_par_scrub_rs_task.work(0);
2096     }
2097 
2098     double rs_scrub_end = os::elapsedTime();
2099     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2100     _total_rs_scrub_time += this_rs_scrub_time;
2101   }
2102 
2103   // this will also free any regions totally full of garbage objects,
2104   // and sort the regions.
2105   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2106 
2107   // Statistics.
2108   double end = os::elapsedTime();
2109   _cleanup_times.add((end - start) * 1000.0);
2110 
2111   if (G1Log::fine()) {
2112     g1h->print_size_transition(gclog_or_tty,
2113                                start_used_bytes,
2114                                g1h->used(),
2115                                g1h->capacity());
2116   }
2117 
2118   // Clean up will have freed any regions completely full of garbage.
2119   // Update the soft reference policy with the new heap occupancy.
2120   Universe::update_heap_info_at_gc();
2121 
2122   // We need to make this be a "collection" so any collection pause that
2123   // races with it goes around and waits for completeCleanup to finish.
2124   g1h->increment_total_collections();
2125 
2126   // We reclaimed old regions so we should calculate the sizes to make
2127   // sure we update the old gen/space data.
2128   g1h->g1mm()->update_sizes();
2129 
2130   if (VerifyDuringGC) {
2131     HandleMark hm;  // handle scope
2132     Universe::heap()->prepare_for_verify();
2133     Universe::verify(VerifyOption_G1UsePrevMarking,
2134                      " VerifyDuringGC:(after)");
2135   }
2136 
2137   g1h->verify_region_sets_optional();
2138   g1h->trace_heap_after_concurrent_cycle();
2139 }
2140 
2141 void ConcurrentMark::completeCleanup() {
2142   if (has_aborted()) return;
2143 
2144   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2145 
2146   _cleanup_list.verify_optional();
2147   FreeRegionList tmp_free_list("Tmp Free List");
2148 
2149   if (G1ConcRegionFreeingVerbose) {
2150     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2151                            "cleanup list has %u entries",
2152                            _cleanup_list.length());
2153   }
2154 
2155   // Noone else should be accessing the _cleanup_list at this point,
2156   // so it's not necessary to take any locks
2157   while (!_cleanup_list.is_empty()) {
2158     HeapRegion* hr = _cleanup_list.remove_head();
2159     assert(hr != NULL, "Got NULL from a non-empty list");
2160     hr->par_clear();
2161     tmp_free_list.add_ordered(hr);
2162 
2163     // Instead of adding one region at a time to the secondary_free_list,
2164     // we accumulate them in the local list and move them a few at a
2165     // time. This also cuts down on the number of notify_all() calls
2166     // we do during this process. We'll also append the local list when
2167     // _cleanup_list is empty (which means we just removed the last
2168     // region from the _cleanup_list).
2169     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2170         _cleanup_list.is_empty()) {
2171       if (G1ConcRegionFreeingVerbose) {
2172         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2173                                "appending %u entries to the secondary_free_list, "
2174                                "cleanup list still has %u entries",
2175                                tmp_free_list.length(),
2176                                _cleanup_list.length());
2177       }
2178 
2179       {
2180         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2181         g1h->secondary_free_list_add(&tmp_free_list);
2182         SecondaryFreeList_lock->notify_all();
2183       }
2184 
2185       if (G1StressConcRegionFreeing) {
2186         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2187           os::sleep(Thread::current(), (jlong) 1, false);
2188         }
2189       }
2190     }
2191   }
2192   assert(tmp_free_list.is_empty(), "post-condition");
2193 }
2194 
2195 // Supporting Object and Oop closures for reference discovery
2196 // and processing in during marking
2197 
2198 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2199   HeapWord* addr = (HeapWord*)obj;
2200   return addr != NULL &&
2201          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2202 }
2203 
2204 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2205 // Uses the CMTask associated with a worker thread (for serial reference
2206 // processing the CMTask for worker 0 is used) to preserve (mark) and
2207 // trace referent objects.
2208 //
2209 // Using the CMTask and embedded local queues avoids having the worker
2210 // threads operating on the global mark stack. This reduces the risk
2211 // of overflowing the stack - which we would rather avoid at this late
2212 // state. Also using the tasks' local queues removes the potential
2213 // of the workers interfering with each other that could occur if
2214 // operating on the global stack.
2215 
2216 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2217   ConcurrentMark* _cm;
2218   CMTask*         _task;
2219   int             _ref_counter_limit;
2220   int             _ref_counter;
2221   bool            _is_serial;
2222  public:
2223   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2224     _cm(cm), _task(task), _is_serial(is_serial),
2225     _ref_counter_limit(G1RefProcDrainInterval) {
2226     assert(_ref_counter_limit > 0, "sanity");
2227     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2228     _ref_counter = _ref_counter_limit;
2229   }
2230 
2231   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2232   virtual void do_oop(      oop* p) { do_oop_work(p); }
2233 
2234   template <class T> void do_oop_work(T* p) {
2235     if (!_cm->has_overflown()) {
2236       oop obj = oopDesc::load_decode_heap_oop(p);
2237       if (_cm->verbose_high()) {
2238         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2239                                "*"PTR_FORMAT" = "PTR_FORMAT,
2240                                _task->worker_id(), p, (void*) obj);
2241       }
2242 
2243       _task->deal_with_reference(obj);
2244       _ref_counter--;
2245 
2246       if (_ref_counter == 0) {
2247         // We have dealt with _ref_counter_limit references, pushing them
2248         // and objects reachable from them on to the local stack (and
2249         // possibly the global stack). Call CMTask::do_marking_step() to
2250         // process these entries.
2251         //
2252         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2253         // there's nothing more to do (i.e. we're done with the entries that
2254         // were pushed as a result of the CMTask::deal_with_reference() calls
2255         // above) or we overflow.
2256         //
2257         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2258         // flag while there may still be some work to do. (See the comment at
2259         // the beginning of CMTask::do_marking_step() for those conditions -
2260         // one of which is reaching the specified time target.) It is only
2261         // when CMTask::do_marking_step() returns without setting the
2262         // has_aborted() flag that the marking step has completed.
2263         do {
2264           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2265           _task->do_marking_step(mark_step_duration_ms,
2266                                  false      /* do_termination */,
2267                                  _is_serial);
2268         } while (_task->has_aborted() && !_cm->has_overflown());
2269         _ref_counter = _ref_counter_limit;
2270       }
2271     } else {
2272       if (_cm->verbose_high()) {
2273          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2274       }
2275     }
2276   }
2277 };
2278 
2279 // 'Drain' oop closure used by both serial and parallel reference processing.
2280 // Uses the CMTask associated with a given worker thread (for serial
2281 // reference processing the CMtask for worker 0 is used). Calls the
2282 // do_marking_step routine, with an unbelievably large timeout value,
2283 // to drain the marking data structures of the remaining entries
2284 // added by the 'keep alive' oop closure above.
2285 
2286 class G1CMDrainMarkingStackClosure: public VoidClosure {
2287   ConcurrentMark* _cm;
2288   CMTask*         _task;
2289   bool            _is_serial;
2290  public:
2291   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2292     _cm(cm), _task(task), _is_serial(is_serial) {
2293     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2294   }
2295 
2296   void do_void() {
2297     do {
2298       if (_cm->verbose_high()) {
2299         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2300                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2301       }
2302 
2303       // We call CMTask::do_marking_step() to completely drain the local
2304       // and global marking stacks of entries pushed by the 'keep alive'
2305       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2306       //
2307       // CMTask::do_marking_step() is called in a loop, which we'll exit
2308       // if there's nothing more to do (i.e. we've completely drained the
2309       // entries that were pushed as a a result of applying the 'keep alive'
2310       // closure to the entries on the discovered ref lists) or we overflow
2311       // the global marking stack.
2312       //
2313       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2314       // flag while there may still be some work to do. (See the comment at
2315       // the beginning of CMTask::do_marking_step() for those conditions -
2316       // one of which is reaching the specified time target.) It is only
2317       // when CMTask::do_marking_step() returns without setting the
2318       // has_aborted() flag that the marking step has completed.
2319 
2320       _task->do_marking_step(1000000000.0 /* something very large */,
2321                              true         /* do_termination */,
2322                              _is_serial);
2323     } while (_task->has_aborted() && !_cm->has_overflown());
2324   }
2325 };
2326 
2327 // Implementation of AbstractRefProcTaskExecutor for parallel
2328 // reference processing at the end of G1 concurrent marking
2329 
2330 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2331 private:
2332   G1CollectedHeap* _g1h;
2333   ConcurrentMark*  _cm;
2334   WorkGang*        _workers;
2335   int              _active_workers;
2336 
2337 public:
2338   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2339                         ConcurrentMark* cm,
2340                         WorkGang* workers,
2341                         int n_workers) :
2342     _g1h(g1h), _cm(cm),
2343     _workers(workers), _active_workers(n_workers) { }
2344 
2345   // Executes the given task using concurrent marking worker threads.
2346   virtual void execute(ProcessTask& task);
2347   virtual void execute(EnqueueTask& task);
2348 };
2349 
2350 class G1CMRefProcTaskProxy: public AbstractGangTask {
2351   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2352   ProcessTask&     _proc_task;
2353   G1CollectedHeap* _g1h;
2354   ConcurrentMark*  _cm;
2355 
2356 public:
2357   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2358                      G1CollectedHeap* g1h,
2359                      ConcurrentMark* cm) :
2360     AbstractGangTask("Process reference objects in parallel"),
2361     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2362     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2363     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2364   }
2365 
2366   virtual void work(uint worker_id) {
2367     CMTask* task = _cm->task(worker_id);
2368     G1CMIsAliveClosure g1_is_alive(_g1h);
2369     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2370     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2371 
2372     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2373   }
2374 };
2375 
2376 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2377   assert(_workers != NULL, "Need parallel worker threads.");
2378   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2379 
2380   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2381 
2382   // We need to reset the concurrency level before each
2383   // proxy task execution, so that the termination protocol
2384   // and overflow handling in CMTask::do_marking_step() knows
2385   // how many workers to wait for.
2386   _cm->set_concurrency(_active_workers);
2387   _g1h->set_par_threads(_active_workers);
2388   _workers->run_task(&proc_task_proxy);
2389   _g1h->set_par_threads(0);
2390 }
2391 
2392 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2393   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2394   EnqueueTask& _enq_task;
2395 
2396 public:
2397   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2398     AbstractGangTask("Enqueue reference objects in parallel"),
2399     _enq_task(enq_task) { }
2400 
2401   virtual void work(uint worker_id) {
2402     _enq_task.work(worker_id);
2403   }
2404 };
2405 
2406 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2407   assert(_workers != NULL, "Need parallel worker threads.");
2408   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2409 
2410   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2411 
2412   // Not strictly necessary but...
2413   //
2414   // We need to reset the concurrency level before each
2415   // proxy task execution, so that the termination protocol
2416   // and overflow handling in CMTask::do_marking_step() knows
2417   // how many workers to wait for.
2418   _cm->set_concurrency(_active_workers);
2419   _g1h->set_par_threads(_active_workers);
2420   _workers->run_task(&enq_task_proxy);
2421   _g1h->set_par_threads(0);
2422 }
2423 
2424 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2425   if (has_overflown()) {
2426     // Skip processing the discovered references if we have
2427     // overflown the global marking stack. Reference objects
2428     // only get discovered once so it is OK to not
2429     // de-populate the discovered reference lists. We could have,
2430     // but the only benefit would be that, when marking restarts,
2431     // less reference objects are discovered.
2432     return;
2433   }
2434 
2435   ResourceMark rm;
2436   HandleMark   hm;
2437 
2438   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2439 
2440   // Is alive closure.
2441   G1CMIsAliveClosure g1_is_alive(g1h);
2442 
2443   // Inner scope to exclude the cleaning of the string and symbol
2444   // tables from the displayed time.
2445   {
2446     if (G1Log::finer()) {
2447       gclog_or_tty->put(' ');
2448     }
2449     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm());
2450 
2451     ReferenceProcessor* rp = g1h->ref_processor_cm();
2452 
2453     // See the comment in G1CollectedHeap::ref_processing_init()
2454     // about how reference processing currently works in G1.
2455 
2456     // Set the soft reference policy
2457     rp->setup_policy(clear_all_soft_refs);
2458     assert(_markStack.isEmpty(), "mark stack should be empty");
2459 
2460     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2461     // in serial reference processing. Note these closures are also
2462     // used for serially processing (by the the current thread) the
2463     // JNI references during parallel reference processing.
2464     //
2465     // These closures do not need to synchronize with the worker
2466     // threads involved in parallel reference processing as these
2467     // instances are executed serially by the current thread (e.g.
2468     // reference processing is not multi-threaded and is thus
2469     // performed by the current thread instead of a gang worker).
2470     //
2471     // The gang tasks involved in parallel reference processing create
2472     // their own instances of these closures, which do their own
2473     // synchronization among themselves.
2474     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2475     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2476 
2477     // We need at least one active thread. If reference processing
2478     // is not multi-threaded we use the current (VMThread) thread,
2479     // otherwise we use the work gang from the G1CollectedHeap and
2480     // we utilize all the worker threads we can.
2481     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2482     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2483     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2484 
2485     // Parallel processing task executor.
2486     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2487                                               g1h->workers(), active_workers);
2488     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2489 
2490     // Set the concurrency level. The phase was already set prior to
2491     // executing the remark task.
2492     set_concurrency(active_workers);
2493 
2494     // Set the degree of MT processing here.  If the discovery was done MT,
2495     // the number of threads involved during discovery could differ from
2496     // the number of active workers.  This is OK as long as the discovered
2497     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2498     rp->set_active_mt_degree(active_workers);
2499 
2500     // Process the weak references.
2501     const ReferenceProcessorStats& stats =
2502         rp->process_discovered_references(&g1_is_alive,
2503                                           &g1_keep_alive,
2504                                           &g1_drain_mark_stack,
2505                                           executor,
2506                                           g1h->gc_timer_cm());
2507     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2508 
2509     // The do_oop work routines of the keep_alive and drain_marking_stack
2510     // oop closures will set the has_overflown flag if we overflow the
2511     // global marking stack.
2512 
2513     assert(_markStack.overflow() || _markStack.isEmpty(),
2514             "mark stack should be empty (unless it overflowed)");
2515 
2516     if (_markStack.overflow()) {
2517       // This should have been done already when we tried to push an
2518       // entry on to the global mark stack. But let's do it again.
2519       set_has_overflown();
2520     }
2521 
2522     assert(rp->num_q() == active_workers, "why not");
2523 
2524     rp->enqueue_discovered_references(executor);
2525 
2526     rp->verify_no_references_recorded();
2527     assert(!rp->discovery_enabled(), "Post condition");
2528   }
2529 
2530   if (has_overflown()) {
2531     // We can not trust g1_is_alive if the marking stack overflowed
2532     return;
2533   }
2534 
2535   g1h->unlink_string_and_symbol_table(&g1_is_alive,
2536                                       /* process_strings */ false, // currently strings are always roots
2537                                       /* process_symbols */ true);
2538 }
2539 
2540 void ConcurrentMark::swapMarkBitMaps() {
2541   CMBitMapRO* temp = _prevMarkBitMap;
2542   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2543   _nextMarkBitMap  = (CMBitMap*)  temp;
2544 }
2545 
2546 class CMRemarkTask: public AbstractGangTask {
2547 private:
2548   ConcurrentMark* _cm;
2549   bool            _is_serial;
2550 public:
2551   void work(uint worker_id) {
2552     // Since all available tasks are actually started, we should
2553     // only proceed if we're supposed to be active.
2554     if (worker_id < _cm->active_tasks()) {
2555       CMTask* task = _cm->task(worker_id);
2556       task->record_start_time();
2557       do {
2558         task->do_marking_step(1000000000.0 /* something very large */,
2559                               true         /* do_termination       */,
2560                               _is_serial);
2561       } while (task->has_aborted() && !_cm->has_overflown());
2562       // If we overflow, then we do not want to restart. We instead
2563       // want to abort remark and do concurrent marking again.
2564       task->record_end_time();
2565     }
2566   }
2567 
2568   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2569     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2570     _cm->terminator()->reset_for_reuse(active_workers);
2571   }
2572 };
2573 
2574 void ConcurrentMark::checkpointRootsFinalWork() {
2575   ResourceMark rm;
2576   HandleMark   hm;
2577   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2578 
2579   g1h->ensure_parsability(false);
2580 
2581   if (G1CollectedHeap::use_parallel_gc_threads()) {
2582     G1CollectedHeap::StrongRootsScope srs(g1h);
2583     // this is remark, so we'll use up all active threads
2584     uint active_workers = g1h->workers()->active_workers();
2585     if (active_workers == 0) {
2586       assert(active_workers > 0, "Should have been set earlier");
2587       active_workers = (uint) ParallelGCThreads;
2588       g1h->workers()->set_active_workers(active_workers);
2589     }
2590     set_concurrency_and_phase(active_workers, false /* concurrent */);
2591     // Leave _parallel_marking_threads at it's
2592     // value originally calculated in the ConcurrentMark
2593     // constructor and pass values of the active workers
2594     // through the gang in the task.
2595 
2596     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2597     // We will start all available threads, even if we decide that the
2598     // active_workers will be fewer. The extra ones will just bail out
2599     // immediately.
2600     g1h->set_par_threads(active_workers);
2601     g1h->workers()->run_task(&remarkTask);
2602     g1h->set_par_threads(0);
2603   } else {
2604     G1CollectedHeap::StrongRootsScope srs(g1h);
2605     uint active_workers = 1;
2606     set_concurrency_and_phase(active_workers, false /* concurrent */);
2607 
2608     // Note - if there's no work gang then the VMThread will be
2609     // the thread to execute the remark - serially. We have
2610     // to pass true for the is_serial parameter so that
2611     // CMTask::do_marking_step() doesn't enter the sync
2612     // barriers in the event of an overflow. Doing so will
2613     // cause an assert that the current thread is not a
2614     // concurrent GC thread.
2615     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2616     remarkTask.work(0);
2617   }
2618   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2619   guarantee(has_overflown() ||
2620             satb_mq_set.completed_buffers_num() == 0,
2621             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2622                     BOOL_TO_STR(has_overflown()),
2623                     satb_mq_set.completed_buffers_num()));
2624 
2625   print_stats();
2626 }
2627 
2628 #ifndef PRODUCT
2629 
2630 class PrintReachableOopClosure: public OopClosure {
2631 private:
2632   G1CollectedHeap* _g1h;
2633   outputStream*    _out;
2634   VerifyOption     _vo;
2635   bool             _all;
2636 
2637 public:
2638   PrintReachableOopClosure(outputStream* out,
2639                            VerifyOption  vo,
2640                            bool          all) :
2641     _g1h(G1CollectedHeap::heap()),
2642     _out(out), _vo(vo), _all(all) { }
2643 
2644   void do_oop(narrowOop* p) { do_oop_work(p); }
2645   void do_oop(      oop* p) { do_oop_work(p); }
2646 
2647   template <class T> void do_oop_work(T* p) {
2648     oop         obj = oopDesc::load_decode_heap_oop(p);
2649     const char* str = NULL;
2650     const char* str2 = "";
2651 
2652     if (obj == NULL) {
2653       str = "";
2654     } else if (!_g1h->is_in_g1_reserved(obj)) {
2655       str = " O";
2656     } else {
2657       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2658       guarantee(hr != NULL, "invariant");
2659       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2660       bool marked = _g1h->is_marked(obj, _vo);
2661 
2662       if (over_tams) {
2663         str = " >";
2664         if (marked) {
2665           str2 = " AND MARKED";
2666         }
2667       } else if (marked) {
2668         str = " M";
2669       } else {
2670         str = " NOT";
2671       }
2672     }
2673 
2674     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2675                    p, (void*) obj, str, str2);
2676   }
2677 };
2678 
2679 class PrintReachableObjectClosure : public ObjectClosure {
2680 private:
2681   G1CollectedHeap* _g1h;
2682   outputStream*    _out;
2683   VerifyOption     _vo;
2684   bool             _all;
2685   HeapRegion*      _hr;
2686 
2687 public:
2688   PrintReachableObjectClosure(outputStream* out,
2689                               VerifyOption  vo,
2690                               bool          all,
2691                               HeapRegion*   hr) :
2692     _g1h(G1CollectedHeap::heap()),
2693     _out(out), _vo(vo), _all(all), _hr(hr) { }
2694 
2695   void do_object(oop o) {
2696     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2697     bool marked = _g1h->is_marked(o, _vo);
2698     bool print_it = _all || over_tams || marked;
2699 
2700     if (print_it) {
2701       _out->print_cr(" "PTR_FORMAT"%s",
2702                      (void *)o, (over_tams) ? " >" : (marked) ? " M" : "");
2703       PrintReachableOopClosure oopCl(_out, _vo, _all);
2704       o->oop_iterate_no_header(&oopCl);
2705     }
2706   }
2707 };
2708 
2709 class PrintReachableRegionClosure : public HeapRegionClosure {
2710 private:
2711   G1CollectedHeap* _g1h;
2712   outputStream*    _out;
2713   VerifyOption     _vo;
2714   bool             _all;
2715 
2716 public:
2717   bool doHeapRegion(HeapRegion* hr) {
2718     HeapWord* b = hr->bottom();
2719     HeapWord* e = hr->end();
2720     HeapWord* t = hr->top();
2721     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2722     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2723                    "TAMS: "PTR_FORMAT, b, e, t, p);
2724     _out->cr();
2725 
2726     HeapWord* from = b;
2727     HeapWord* to   = t;
2728 
2729     if (to > from) {
2730       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
2731       _out->cr();
2732       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2733       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2734       _out->cr();
2735     }
2736 
2737     return false;
2738   }
2739 
2740   PrintReachableRegionClosure(outputStream* out,
2741                               VerifyOption  vo,
2742                               bool          all) :
2743     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2744 };
2745 
2746 void ConcurrentMark::print_reachable(const char* str,
2747                                      VerifyOption vo,
2748                                      bool all) {
2749   gclog_or_tty->cr();
2750   gclog_or_tty->print_cr("== Doing heap dump... ");
2751 
2752   if (G1PrintReachableBaseFile == NULL) {
2753     gclog_or_tty->print_cr("  #### error: no base file defined");
2754     return;
2755   }
2756 
2757   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2758       (JVM_MAXPATHLEN - 1)) {
2759     gclog_or_tty->print_cr("  #### error: file name too long");
2760     return;
2761   }
2762 
2763   char file_name[JVM_MAXPATHLEN];
2764   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2765   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2766 
2767   fileStream fout(file_name);
2768   if (!fout.is_open()) {
2769     gclog_or_tty->print_cr("  #### error: could not open file");
2770     return;
2771   }
2772 
2773   outputStream* out = &fout;
2774   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2775   out->cr();
2776 
2777   out->print_cr("--- ITERATING OVER REGIONS");
2778   out->cr();
2779   PrintReachableRegionClosure rcl(out, vo, all);
2780   _g1h->heap_region_iterate(&rcl);
2781   out->cr();
2782 
2783   gclog_or_tty->print_cr("  done");
2784   gclog_or_tty->flush();
2785 }
2786 
2787 #endif // PRODUCT
2788 
2789 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2790   // Note we are overriding the read-only view of the prev map here, via
2791   // the cast.
2792   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2793 }
2794 
2795 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2796   _nextMarkBitMap->clearRange(mr);
2797 }
2798 
2799 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
2800   clearRangePrevBitmap(mr);
2801   clearRangeNextBitmap(mr);
2802 }
2803 
2804 HeapRegion*
2805 ConcurrentMark::claim_region(uint worker_id) {
2806   // "checkpoint" the finger
2807   HeapWord* finger = _finger;
2808 
2809   // _heap_end will not change underneath our feet; it only changes at
2810   // yield points.
2811   while (finger < _heap_end) {
2812     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2813 
2814     // Note on how this code handles humongous regions. In the
2815     // normal case the finger will reach the start of a "starts
2816     // humongous" (SH) region. Its end will either be the end of the
2817     // last "continues humongous" (CH) region in the sequence, or the
2818     // standard end of the SH region (if the SH is the only region in
2819     // the sequence). That way claim_region() will skip over the CH
2820     // regions. However, there is a subtle race between a CM thread
2821     // executing this method and a mutator thread doing a humongous
2822     // object allocation. The two are not mutually exclusive as the CM
2823     // thread does not need to hold the Heap_lock when it gets
2824     // here. So there is a chance that claim_region() will come across
2825     // a free region that's in the progress of becoming a SH or a CH
2826     // region. In the former case, it will either
2827     //   a) Miss the update to the region's end, in which case it will
2828     //      visit every subsequent CH region, will find their bitmaps
2829     //      empty, and do nothing, or
2830     //   b) Will observe the update of the region's end (in which case
2831     //      it will skip the subsequent CH regions).
2832     // If it comes across a region that suddenly becomes CH, the
2833     // scenario will be similar to b). So, the race between
2834     // claim_region() and a humongous object allocation might force us
2835     // to do a bit of unnecessary work (due to some unnecessary bitmap
2836     // iterations) but it should not introduce and correctness issues.
2837     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2838     HeapWord*   bottom        = curr_region->bottom();
2839     HeapWord*   end           = curr_region->end();
2840     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2841 
2842     if (verbose_low()) {
2843       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2844                              "["PTR_FORMAT", "PTR_FORMAT"), "
2845                              "limit = "PTR_FORMAT,
2846                              worker_id, curr_region, bottom, end, limit);
2847     }
2848 
2849     // Is the gap between reading the finger and doing the CAS too long?
2850     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2851     if (res == finger) {
2852       // we succeeded
2853 
2854       // notice that _finger == end cannot be guaranteed here since,
2855       // someone else might have moved the finger even further
2856       assert(_finger >= end, "the finger should have moved forward");
2857 
2858       if (verbose_low()) {
2859         gclog_or_tty->print_cr("[%u] we were successful with region = "
2860                                PTR_FORMAT, worker_id, curr_region);
2861       }
2862 
2863       if (limit > bottom) {
2864         if (verbose_low()) {
2865           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2866                                  "returning it ", worker_id, curr_region);
2867         }
2868         return curr_region;
2869       } else {
2870         assert(limit == bottom,
2871                "the region limit should be at bottom");
2872         if (verbose_low()) {
2873           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2874                                  "returning NULL", worker_id, curr_region);
2875         }
2876         // we return NULL and the caller should try calling
2877         // claim_region() again.
2878         return NULL;
2879       }
2880     } else {
2881       assert(_finger > finger, "the finger should have moved forward");
2882       if (verbose_low()) {
2883         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2884                                "global finger = "PTR_FORMAT", "
2885                                "our finger = "PTR_FORMAT,
2886                                worker_id, _finger, finger);
2887       }
2888 
2889       // read it again
2890       finger = _finger;
2891     }
2892   }
2893 
2894   return NULL;
2895 }
2896 
2897 #ifndef PRODUCT
2898 enum VerifyNoCSetOopsPhase {
2899   VerifyNoCSetOopsStack,
2900   VerifyNoCSetOopsQueues,
2901   VerifyNoCSetOopsSATBCompleted,
2902   VerifyNoCSetOopsSATBThread
2903 };
2904 
2905 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2906 private:
2907   G1CollectedHeap* _g1h;
2908   VerifyNoCSetOopsPhase _phase;
2909   int _info;
2910 
2911   const char* phase_str() {
2912     switch (_phase) {
2913     case VerifyNoCSetOopsStack:         return "Stack";
2914     case VerifyNoCSetOopsQueues:        return "Queue";
2915     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2916     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2917     default:                            ShouldNotReachHere();
2918     }
2919     return NULL;
2920   }
2921 
2922   void do_object_work(oop obj) {
2923     guarantee(!_g1h->obj_in_cs(obj),
2924               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2925                       (void*) obj, phase_str(), _info));
2926   }
2927 
2928 public:
2929   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2930 
2931   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2932     _phase = phase;
2933     _info = info;
2934   }
2935 
2936   virtual void do_oop(oop* p) {
2937     oop obj = oopDesc::load_decode_heap_oop(p);
2938     do_object_work(obj);
2939   }
2940 
2941   virtual void do_oop(narrowOop* p) {
2942     // We should not come across narrow oops while scanning marking
2943     // stacks and SATB buffers.
2944     ShouldNotReachHere();
2945   }
2946 
2947   virtual void do_object(oop obj) {
2948     do_object_work(obj);
2949   }
2950 };
2951 
2952 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
2953                                          bool verify_enqueued_buffers,
2954                                          bool verify_thread_buffers,
2955                                          bool verify_fingers) {
2956   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2957   if (!G1CollectedHeap::heap()->mark_in_progress()) {
2958     return;
2959   }
2960 
2961   VerifyNoCSetOopsClosure cl;
2962 
2963   if (verify_stacks) {
2964     // Verify entries on the global mark stack
2965     cl.set_phase(VerifyNoCSetOopsStack);
2966     _markStack.oops_do(&cl);
2967 
2968     // Verify entries on the task queues
2969     for (uint i = 0; i < _max_worker_id; i += 1) {
2970       cl.set_phase(VerifyNoCSetOopsQueues, i);
2971       CMTaskQueue* queue = _task_queues->queue(i);
2972       queue->oops_do(&cl);
2973     }
2974   }
2975 
2976   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
2977 
2978   // Verify entries on the enqueued SATB buffers
2979   if (verify_enqueued_buffers) {
2980     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
2981     satb_qs.iterate_completed_buffers_read_only(&cl);
2982   }
2983 
2984   // Verify entries on the per-thread SATB buffers
2985   if (verify_thread_buffers) {
2986     cl.set_phase(VerifyNoCSetOopsSATBThread);
2987     satb_qs.iterate_thread_buffers_read_only(&cl);
2988   }
2989 
2990   if (verify_fingers) {
2991     // Verify the global finger
2992     HeapWord* global_finger = finger();
2993     if (global_finger != NULL && global_finger < _heap_end) {
2994       // The global finger always points to a heap region boundary. We
2995       // use heap_region_containing_raw() to get the containing region
2996       // given that the global finger could be pointing to a free region
2997       // which subsequently becomes continues humongous. If that
2998       // happens, heap_region_containing() will return the bottom of the
2999       // corresponding starts humongous region and the check below will
3000       // not hold any more.
3001       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3002       guarantee(global_finger == global_hr->bottom(),
3003                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3004                         global_finger, HR_FORMAT_PARAMS(global_hr)));
3005     }
3006 
3007     // Verify the task fingers
3008     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3009     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3010       CMTask* task = _tasks[i];
3011       HeapWord* task_finger = task->finger();
3012       if (task_finger != NULL && task_finger < _heap_end) {
3013         // See above note on the global finger verification.
3014         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3015         guarantee(task_finger == task_hr->bottom() ||
3016                   !task_hr->in_collection_set(),
3017                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3018                           task_finger, HR_FORMAT_PARAMS(task_hr)));
3019       }
3020     }
3021   }
3022 }
3023 #endif // PRODUCT
3024 
3025 // Aggregate the counting data that was constructed concurrently
3026 // with marking.
3027 class AggregateCountDataHRClosure: public HeapRegionClosure {
3028   G1CollectedHeap* _g1h;
3029   ConcurrentMark* _cm;
3030   CardTableModRefBS* _ct_bs;
3031   BitMap* _cm_card_bm;
3032   uint _max_worker_id;
3033 
3034  public:
3035   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3036                               BitMap* cm_card_bm,
3037                               uint max_worker_id) :
3038     _g1h(g1h), _cm(g1h->concurrent_mark()),
3039     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3040     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3041 
3042   bool doHeapRegion(HeapRegion* hr) {
3043     if (hr->continuesHumongous()) {
3044       // We will ignore these here and process them when their
3045       // associated "starts humongous" region is processed.
3046       // Note that we cannot rely on their associated
3047       // "starts humongous" region to have their bit set to 1
3048       // since, due to the region chunking in the parallel region
3049       // iteration, a "continues humongous" region might be visited
3050       // before its associated "starts humongous".
3051       return false;
3052     }
3053 
3054     HeapWord* start = hr->bottom();
3055     HeapWord* limit = hr->next_top_at_mark_start();
3056     HeapWord* end = hr->end();
3057 
3058     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3059            err_msg("Preconditions not met - "
3060                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3061                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3062                    start, limit, hr->top(), hr->end()));
3063 
3064     assert(hr->next_marked_bytes() == 0, "Precondition");
3065 
3066     if (start == limit) {
3067       // NTAMS of this region has not been set so nothing to do.
3068       return false;
3069     }
3070 
3071     // 'start' should be in the heap.
3072     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3073     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3074     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3075 
3076     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3077     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3078     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3079 
3080     // If ntams is not card aligned then we bump card bitmap index
3081     // for limit so that we get the all the cards spanned by
3082     // the object ending at ntams.
3083     // Note: if this is the last region in the heap then ntams
3084     // could be actually just beyond the end of the the heap;
3085     // limit_idx will then  correspond to a (non-existent) card
3086     // that is also outside the heap.
3087     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3088       limit_idx += 1;
3089     }
3090 
3091     assert(limit_idx <= end_idx, "or else use atomics");
3092 
3093     // Aggregate the "stripe" in the count data associated with hr.
3094     uint hrs_index = hr->hrs_index();
3095     size_t marked_bytes = 0;
3096 
3097     for (uint i = 0; i < _max_worker_id; i += 1) {
3098       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3099       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3100 
3101       // Fetch the marked_bytes in this region for task i and
3102       // add it to the running total for this region.
3103       marked_bytes += marked_bytes_array[hrs_index];
3104 
3105       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3106       // into the global card bitmap.
3107       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3108 
3109       while (scan_idx < limit_idx) {
3110         assert(task_card_bm->at(scan_idx) == true, "should be");
3111         _cm_card_bm->set_bit(scan_idx);
3112         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3113 
3114         // BitMap::get_next_one_offset() can handle the case when
3115         // its left_offset parameter is greater than its right_offset
3116         // parameter. It does, however, have an early exit if
3117         // left_offset == right_offset. So let's limit the value
3118         // passed in for left offset here.
3119         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3120         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3121       }
3122     }
3123 
3124     // Update the marked bytes for this region.
3125     hr->add_to_marked_bytes(marked_bytes);
3126 
3127     // Next heap region
3128     return false;
3129   }
3130 };
3131 
3132 class G1AggregateCountDataTask: public AbstractGangTask {
3133 protected:
3134   G1CollectedHeap* _g1h;
3135   ConcurrentMark* _cm;
3136   BitMap* _cm_card_bm;
3137   uint _max_worker_id;
3138   int _active_workers;
3139 
3140 public:
3141   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3142                            ConcurrentMark* cm,
3143                            BitMap* cm_card_bm,
3144                            uint max_worker_id,
3145                            int n_workers) :
3146     AbstractGangTask("Count Aggregation"),
3147     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3148     _max_worker_id(max_worker_id),
3149     _active_workers(n_workers) { }
3150 
3151   void work(uint worker_id) {
3152     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3153 
3154     if (G1CollectedHeap::use_parallel_gc_threads()) {
3155       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3156                                             _active_workers,
3157                                             HeapRegion::AggregateCountClaimValue);
3158     } else {
3159       _g1h->heap_region_iterate(&cl);
3160     }
3161   }
3162 };
3163 
3164 
3165 void ConcurrentMark::aggregate_count_data() {
3166   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3167                         _g1h->workers()->active_workers() :
3168                         1);
3169 
3170   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3171                                            _max_worker_id, n_workers);
3172 
3173   if (G1CollectedHeap::use_parallel_gc_threads()) {
3174     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3175            "sanity check");
3176     _g1h->set_par_threads(n_workers);
3177     _g1h->workers()->run_task(&g1_par_agg_task);
3178     _g1h->set_par_threads(0);
3179 
3180     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3181            "sanity check");
3182     _g1h->reset_heap_region_claim_values();
3183   } else {
3184     g1_par_agg_task.work(0);
3185   }
3186 }
3187 
3188 // Clear the per-worker arrays used to store the per-region counting data
3189 void ConcurrentMark::clear_all_count_data() {
3190   // Clear the global card bitmap - it will be filled during
3191   // liveness count aggregation (during remark) and the
3192   // final counting task.
3193   _card_bm.clear();
3194 
3195   // Clear the global region bitmap - it will be filled as part
3196   // of the final counting task.
3197   _region_bm.clear();
3198 
3199   uint max_regions = _g1h->max_regions();
3200   assert(_max_worker_id > 0, "uninitialized");
3201 
3202   for (uint i = 0; i < _max_worker_id; i += 1) {
3203     BitMap* task_card_bm = count_card_bitmap_for(i);
3204     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3205 
3206     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3207     assert(marked_bytes_array != NULL, "uninitialized");
3208 
3209     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3210     task_card_bm->clear();
3211   }
3212 }
3213 
3214 void ConcurrentMark::print_stats() {
3215   if (verbose_stats()) {
3216     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3217     for (size_t i = 0; i < _active_tasks; ++i) {
3218       _tasks[i]->print_stats();
3219       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3220     }
3221   }
3222 }
3223 
3224 // abandon current marking iteration due to a Full GC
3225 void ConcurrentMark::abort() {
3226   // Clear all marks to force marking thread to do nothing
3227   _nextMarkBitMap->clearAll();
3228   // Clear the liveness counting data
3229   clear_all_count_data();
3230   // Empty mark stack
3231   reset_marking_state();
3232   for (uint i = 0; i < _max_worker_id; ++i) {
3233     _tasks[i]->clear_region_fields();
3234   }
3235   _has_aborted = true;
3236 
3237   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3238   satb_mq_set.abandon_partial_marking();
3239   // This can be called either during or outside marking, we'll read
3240   // the expected_active value from the SATB queue set.
3241   satb_mq_set.set_active_all_threads(
3242                                  false, /* new active value */
3243                                  satb_mq_set.is_active() /* expected_active */);
3244 
3245   _g1h->trace_heap_after_concurrent_cycle();
3246   _g1h->register_concurrent_cycle_end();
3247 }
3248 
3249 static void print_ms_time_info(const char* prefix, const char* name,
3250                                NumberSeq& ns) {
3251   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3252                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3253   if (ns.num() > 0) {
3254     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3255                            prefix, ns.sd(), ns.maximum());
3256   }
3257 }
3258 
3259 void ConcurrentMark::print_summary_info() {
3260   gclog_or_tty->print_cr(" Concurrent marking:");
3261   print_ms_time_info("  ", "init marks", _init_times);
3262   print_ms_time_info("  ", "remarks", _remark_times);
3263   {
3264     print_ms_time_info("     ", "final marks", _remark_mark_times);
3265     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3266 
3267   }
3268   print_ms_time_info("  ", "cleanups", _cleanup_times);
3269   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3270                          _total_counting_time,
3271                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3272                           (double)_cleanup_times.num()
3273                          : 0.0));
3274   if (G1ScrubRemSets) {
3275     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3276                            _total_rs_scrub_time,
3277                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3278                             (double)_cleanup_times.num()
3279                            : 0.0));
3280   }
3281   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3282                          (_init_times.sum() + _remark_times.sum() +
3283                           _cleanup_times.sum())/1000.0);
3284   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3285                 "(%8.2f s marking).",
3286                 cmThread()->vtime_accum(),
3287                 cmThread()->vtime_mark_accum());
3288 }
3289 
3290 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3291   if (use_parallel_marking_threads()) {
3292     _parallel_workers->print_worker_threads_on(st);
3293   }
3294 }
3295 
3296 void ConcurrentMark::print_on_error(outputStream* st) const {
3297   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3298       _prevMarkBitMap, _nextMarkBitMap);
3299   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3300   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3301 }
3302 
3303 // We take a break if someone is trying to stop the world.
3304 bool ConcurrentMark::do_yield_check(uint worker_id) {
3305   if (should_yield()) {
3306     if (worker_id == 0) {
3307       _g1h->g1_policy()->record_concurrent_pause();
3308     }
3309     cmThread()->yield();
3310     return true;
3311   } else {
3312     return false;
3313   }
3314 }
3315 
3316 bool ConcurrentMark::should_yield() {
3317   return cmThread()->should_yield();
3318 }
3319 
3320 bool ConcurrentMark::containing_card_is_marked(void* p) {
3321   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3322   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3323 }
3324 
3325 bool ConcurrentMark::containing_cards_are_marked(void* start,
3326                                                  void* last) {
3327   return containing_card_is_marked(start) &&
3328          containing_card_is_marked(last);
3329 }
3330 
3331 #ifndef PRODUCT
3332 // for debugging purposes
3333 void ConcurrentMark::print_finger() {
3334   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3335                          _heap_start, _heap_end, _finger);
3336   for (uint i = 0; i < _max_worker_id; ++i) {
3337     gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3338   }
3339   gclog_or_tty->print_cr("");
3340 }
3341 #endif
3342 
3343 void CMTask::scan_object(oop obj) {
3344   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3345 
3346   if (_cm->verbose_high()) {
3347     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3348                            _worker_id, (void*) obj);
3349   }
3350 
3351   size_t obj_size = obj->size();
3352   _words_scanned += obj_size;
3353 
3354   obj->oop_iterate(_cm_oop_closure);
3355   statsOnly( ++_objs_scanned );
3356   check_limits();
3357 }
3358 
3359 // Closure for iteration over bitmaps
3360 class CMBitMapClosure : public BitMapClosure {
3361 private:
3362   // the bitmap that is being iterated over
3363   CMBitMap*                   _nextMarkBitMap;
3364   ConcurrentMark*             _cm;
3365   CMTask*                     _task;
3366 
3367 public:
3368   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3369     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3370 
3371   bool do_bit(size_t offset) {
3372     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3373     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3374     assert( addr < _cm->finger(), "invariant");
3375 
3376     statsOnly( _task->increase_objs_found_on_bitmap() );
3377     assert(addr >= _task->finger(), "invariant");
3378 
3379     // We move that task's local finger along.
3380     _task->move_finger_to(addr);
3381 
3382     _task->scan_object(oop(addr));
3383     // we only partially drain the local queue and global stack
3384     _task->drain_local_queue(true);
3385     _task->drain_global_stack(true);
3386 
3387     // if the has_aborted flag has been raised, we need to bail out of
3388     // the iteration
3389     return !_task->has_aborted();
3390   }
3391 };
3392 
3393 // Closure for iterating over objects, currently only used for
3394 // processing SATB buffers.
3395 class CMObjectClosure : public ObjectClosure {
3396 private:
3397   CMTask* _task;
3398 
3399 public:
3400   void do_object(oop obj) {
3401     _task->deal_with_reference(obj);
3402   }
3403 
3404   CMObjectClosure(CMTask* task) : _task(task) { }
3405 };
3406 
3407 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3408                                ConcurrentMark* cm,
3409                                CMTask* task)
3410   : _g1h(g1h), _cm(cm), _task(task) {
3411   assert(_ref_processor == NULL, "should be initialized to NULL");
3412 
3413   if (G1UseConcMarkReferenceProcessing) {
3414     _ref_processor = g1h->ref_processor_cm();
3415     assert(_ref_processor != NULL, "should not be NULL");
3416   }
3417 }
3418 
3419 void CMTask::setup_for_region(HeapRegion* hr) {
3420   // Separated the asserts so that we know which one fires.
3421   assert(hr != NULL,
3422         "claim_region() should have filtered out continues humongous regions");
3423   assert(!hr->continuesHumongous(),
3424         "claim_region() should have filtered out continues humongous regions");
3425 
3426   if (_cm->verbose_low()) {
3427     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3428                            _worker_id, hr);
3429   }
3430 
3431   _curr_region  = hr;
3432   _finger       = hr->bottom();
3433   update_region_limit();
3434 }
3435 
3436 void CMTask::update_region_limit() {
3437   HeapRegion* hr            = _curr_region;
3438   HeapWord* bottom          = hr->bottom();
3439   HeapWord* limit           = hr->next_top_at_mark_start();
3440 
3441   if (limit == bottom) {
3442     if (_cm->verbose_low()) {
3443       gclog_or_tty->print_cr("[%u] found an empty region "
3444                              "["PTR_FORMAT", "PTR_FORMAT")",
3445                              _worker_id, bottom, limit);
3446     }
3447     // The region was collected underneath our feet.
3448     // We set the finger to bottom to ensure that the bitmap
3449     // iteration that will follow this will not do anything.
3450     // (this is not a condition that holds when we set the region up,
3451     // as the region is not supposed to be empty in the first place)
3452     _finger = bottom;
3453   } else if (limit >= _region_limit) {
3454     assert(limit >= _finger, "peace of mind");
3455   } else {
3456     assert(limit < _region_limit, "only way to get here");
3457     // This can happen under some pretty unusual circumstances.  An
3458     // evacuation pause empties the region underneath our feet (NTAMS
3459     // at bottom). We then do some allocation in the region (NTAMS
3460     // stays at bottom), followed by the region being used as a GC
3461     // alloc region (NTAMS will move to top() and the objects
3462     // originally below it will be grayed). All objects now marked in
3463     // the region are explicitly grayed, if below the global finger,
3464     // and we do not need in fact to scan anything else. So, we simply
3465     // set _finger to be limit to ensure that the bitmap iteration
3466     // doesn't do anything.
3467     _finger = limit;
3468   }
3469 
3470   _region_limit = limit;
3471 }
3472 
3473 void CMTask::giveup_current_region() {
3474   assert(_curr_region != NULL, "invariant");
3475   if (_cm->verbose_low()) {
3476     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3477                            _worker_id, _curr_region);
3478   }
3479   clear_region_fields();
3480 }
3481 
3482 void CMTask::clear_region_fields() {
3483   // Values for these three fields that indicate that we're not
3484   // holding on to a region.
3485   _curr_region   = NULL;
3486   _finger        = NULL;
3487   _region_limit  = NULL;
3488 }
3489 
3490 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3491   if (cm_oop_closure == NULL) {
3492     assert(_cm_oop_closure != NULL, "invariant");
3493   } else {
3494     assert(_cm_oop_closure == NULL, "invariant");
3495   }
3496   _cm_oop_closure = cm_oop_closure;
3497 }
3498 
3499 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3500   guarantee(nextMarkBitMap != NULL, "invariant");
3501 
3502   if (_cm->verbose_low()) {
3503     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3504   }
3505 
3506   _nextMarkBitMap                = nextMarkBitMap;
3507   clear_region_fields();
3508 
3509   _calls                         = 0;
3510   _elapsed_time_ms               = 0.0;
3511   _termination_time_ms           = 0.0;
3512   _termination_start_time_ms     = 0.0;
3513 
3514 #if _MARKING_STATS_
3515   _local_pushes                  = 0;
3516   _local_pops                    = 0;
3517   _local_max_size                = 0;
3518   _objs_scanned                  = 0;
3519   _global_pushes                 = 0;
3520   _global_pops                   = 0;
3521   _global_max_size               = 0;
3522   _global_transfers_to           = 0;
3523   _global_transfers_from         = 0;
3524   _regions_claimed               = 0;
3525   _objs_found_on_bitmap          = 0;
3526   _satb_buffers_processed        = 0;
3527   _steal_attempts                = 0;
3528   _steals                        = 0;
3529   _aborted                       = 0;
3530   _aborted_overflow              = 0;
3531   _aborted_cm_aborted            = 0;
3532   _aborted_yield                 = 0;
3533   _aborted_timed_out             = 0;
3534   _aborted_satb                  = 0;
3535   _aborted_termination           = 0;
3536 #endif // _MARKING_STATS_
3537 }
3538 
3539 bool CMTask::should_exit_termination() {
3540   regular_clock_call();
3541   // This is called when we are in the termination protocol. We should
3542   // quit if, for some reason, this task wants to abort or the global
3543   // stack is not empty (this means that we can get work from it).
3544   return !_cm->mark_stack_empty() || has_aborted();
3545 }
3546 
3547 void CMTask::reached_limit() {
3548   assert(_words_scanned >= _words_scanned_limit ||
3549          _refs_reached >= _refs_reached_limit ,
3550          "shouldn't have been called otherwise");
3551   regular_clock_call();
3552 }
3553 
3554 void CMTask::regular_clock_call() {
3555   if (has_aborted()) return;
3556 
3557   // First, we need to recalculate the words scanned and refs reached
3558   // limits for the next clock call.
3559   recalculate_limits();
3560 
3561   // During the regular clock call we do the following
3562 
3563   // (1) If an overflow has been flagged, then we abort.
3564   if (_cm->has_overflown()) {
3565     set_has_aborted();
3566     return;
3567   }
3568 
3569   // If we are not concurrent (i.e. we're doing remark) we don't need
3570   // to check anything else. The other steps are only needed during
3571   // the concurrent marking phase.
3572   if (!concurrent()) return;
3573 
3574   // (2) If marking has been aborted for Full GC, then we also abort.
3575   if (_cm->has_aborted()) {
3576     set_has_aborted();
3577     statsOnly( ++_aborted_cm_aborted );
3578     return;
3579   }
3580 
3581   double curr_time_ms = os::elapsedVTime() * 1000.0;
3582 
3583   // (3) If marking stats are enabled, then we update the step history.
3584 #if _MARKING_STATS_
3585   if (_words_scanned >= _words_scanned_limit) {
3586     ++_clock_due_to_scanning;
3587   }
3588   if (_refs_reached >= _refs_reached_limit) {
3589     ++_clock_due_to_marking;
3590   }
3591 
3592   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3593   _interval_start_time_ms = curr_time_ms;
3594   _all_clock_intervals_ms.add(last_interval_ms);
3595 
3596   if (_cm->verbose_medium()) {
3597       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3598                         "scanned = %d%s, refs reached = %d%s",
3599                         _worker_id, last_interval_ms,
3600                         _words_scanned,
3601                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3602                         _refs_reached,
3603                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3604   }
3605 #endif // _MARKING_STATS_
3606 
3607   // (4) We check whether we should yield. If we have to, then we abort.
3608   if (_cm->should_yield()) {
3609     // We should yield. To do this we abort the task. The caller is
3610     // responsible for yielding.
3611     set_has_aborted();
3612     statsOnly( ++_aborted_yield );
3613     return;
3614   }
3615 
3616   // (5) We check whether we've reached our time quota. If we have,
3617   // then we abort.
3618   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3619   if (elapsed_time_ms > _time_target_ms) {
3620     set_has_aborted();
3621     _has_timed_out = true;
3622     statsOnly( ++_aborted_timed_out );
3623     return;
3624   }
3625 
3626   // (6) Finally, we check whether there are enough completed STAB
3627   // buffers available for processing. If there are, we abort.
3628   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3629   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3630     if (_cm->verbose_low()) {
3631       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3632                              _worker_id);
3633     }
3634     // we do need to process SATB buffers, we'll abort and restart
3635     // the marking task to do so
3636     set_has_aborted();
3637     statsOnly( ++_aborted_satb );
3638     return;
3639   }
3640 }
3641 
3642 void CMTask::recalculate_limits() {
3643   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3644   _words_scanned_limit      = _real_words_scanned_limit;
3645 
3646   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3647   _refs_reached_limit       = _real_refs_reached_limit;
3648 }
3649 
3650 void CMTask::decrease_limits() {
3651   // This is called when we believe that we're going to do an infrequent
3652   // operation which will increase the per byte scanned cost (i.e. move
3653   // entries to/from the global stack). It basically tries to decrease the
3654   // scanning limit so that the clock is called earlier.
3655 
3656   if (_cm->verbose_medium()) {
3657     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3658   }
3659 
3660   _words_scanned_limit = _real_words_scanned_limit -
3661     3 * words_scanned_period / 4;
3662   _refs_reached_limit  = _real_refs_reached_limit -
3663     3 * refs_reached_period / 4;
3664 }
3665 
3666 void CMTask::move_entries_to_global_stack() {
3667   // local array where we'll store the entries that will be popped
3668   // from the local queue
3669   oop buffer[global_stack_transfer_size];
3670 
3671   int n = 0;
3672   oop obj;
3673   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3674     buffer[n] = obj;
3675     ++n;
3676   }
3677 
3678   if (n > 0) {
3679     // we popped at least one entry from the local queue
3680 
3681     statsOnly( ++_global_transfers_to; _local_pops += n );
3682 
3683     if (!_cm->mark_stack_push(buffer, n)) {
3684       if (_cm->verbose_low()) {
3685         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3686                                _worker_id);
3687       }
3688       set_has_aborted();
3689     } else {
3690       // the transfer was successful
3691 
3692       if (_cm->verbose_medium()) {
3693         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3694                                _worker_id, n);
3695       }
3696       statsOnly( int tmp_size = _cm->mark_stack_size();
3697                  if (tmp_size > _global_max_size) {
3698                    _global_max_size = tmp_size;
3699                  }
3700                  _global_pushes += n );
3701     }
3702   }
3703 
3704   // this operation was quite expensive, so decrease the limits
3705   decrease_limits();
3706 }
3707 
3708 void CMTask::get_entries_from_global_stack() {
3709   // local array where we'll store the entries that will be popped
3710   // from the global stack.
3711   oop buffer[global_stack_transfer_size];
3712   int n;
3713   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3714   assert(n <= global_stack_transfer_size,
3715          "we should not pop more than the given limit");
3716   if (n > 0) {
3717     // yes, we did actually pop at least one entry
3718 
3719     statsOnly( ++_global_transfers_from; _global_pops += n );
3720     if (_cm->verbose_medium()) {
3721       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3722                              _worker_id, n);
3723     }
3724     for (int i = 0; i < n; ++i) {
3725       bool success = _task_queue->push(buffer[i]);
3726       // We only call this when the local queue is empty or under a
3727       // given target limit. So, we do not expect this push to fail.
3728       assert(success, "invariant");
3729     }
3730 
3731     statsOnly( int tmp_size = _task_queue->size();
3732                if (tmp_size > _local_max_size) {
3733                  _local_max_size = tmp_size;
3734                }
3735                _local_pushes += n );
3736   }
3737 
3738   // this operation was quite expensive, so decrease the limits
3739   decrease_limits();
3740 }
3741 
3742 void CMTask::drain_local_queue(bool partially) {
3743   if (has_aborted()) return;
3744 
3745   // Decide what the target size is, depending whether we're going to
3746   // drain it partially (so that other tasks can steal if they run out
3747   // of things to do) or totally (at the very end).
3748   size_t target_size;
3749   if (partially) {
3750     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3751   } else {
3752     target_size = 0;
3753   }
3754 
3755   if (_task_queue->size() > target_size) {
3756     if (_cm->verbose_high()) {
3757       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3758                              _worker_id, target_size);
3759     }
3760 
3761     oop obj;
3762     bool ret = _task_queue->pop_local(obj);
3763     while (ret) {
3764       statsOnly( ++_local_pops );
3765 
3766       if (_cm->verbose_high()) {
3767         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3768                                (void*) obj);
3769       }
3770 
3771       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3772       assert(!_g1h->is_on_master_free_list(
3773                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3774 
3775       scan_object(obj);
3776 
3777       if (_task_queue->size() <= target_size || has_aborted()) {
3778         ret = false;
3779       } else {
3780         ret = _task_queue->pop_local(obj);
3781       }
3782     }
3783 
3784     if (_cm->verbose_high()) {
3785       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3786                              _worker_id, _task_queue->size());
3787     }
3788   }
3789 }
3790 
3791 void CMTask::drain_global_stack(bool partially) {
3792   if (has_aborted()) return;
3793 
3794   // We have a policy to drain the local queue before we attempt to
3795   // drain the global stack.
3796   assert(partially || _task_queue->size() == 0, "invariant");
3797 
3798   // Decide what the target size is, depending whether we're going to
3799   // drain it partially (so that other tasks can steal if they run out
3800   // of things to do) or totally (at the very end).  Notice that,
3801   // because we move entries from the global stack in chunks or
3802   // because another task might be doing the same, we might in fact
3803   // drop below the target. But, this is not a problem.
3804   size_t target_size;
3805   if (partially) {
3806     target_size = _cm->partial_mark_stack_size_target();
3807   } else {
3808     target_size = 0;
3809   }
3810 
3811   if (_cm->mark_stack_size() > target_size) {
3812     if (_cm->verbose_low()) {
3813       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3814                              _worker_id, target_size);
3815     }
3816 
3817     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3818       get_entries_from_global_stack();
3819       drain_local_queue(partially);
3820     }
3821 
3822     if (_cm->verbose_low()) {
3823       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3824                              _worker_id, _cm->mark_stack_size());
3825     }
3826   }
3827 }
3828 
3829 // SATB Queue has several assumptions on whether to call the par or
3830 // non-par versions of the methods. this is why some of the code is
3831 // replicated. We should really get rid of the single-threaded version
3832 // of the code to simplify things.
3833 void CMTask::drain_satb_buffers() {
3834   if (has_aborted()) return;
3835 
3836   // We set this so that the regular clock knows that we're in the
3837   // middle of draining buffers and doesn't set the abort flag when it
3838   // notices that SATB buffers are available for draining. It'd be
3839   // very counter productive if it did that. :-)
3840   _draining_satb_buffers = true;
3841 
3842   CMObjectClosure oc(this);
3843   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3844   if (G1CollectedHeap::use_parallel_gc_threads()) {
3845     satb_mq_set.set_par_closure(_worker_id, &oc);
3846   } else {
3847     satb_mq_set.set_closure(&oc);
3848   }
3849 
3850   // This keeps claiming and applying the closure to completed buffers
3851   // until we run out of buffers or we need to abort.
3852   if (G1CollectedHeap::use_parallel_gc_threads()) {
3853     while (!has_aborted() &&
3854            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3855       if (_cm->verbose_medium()) {
3856         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3857       }
3858       statsOnly( ++_satb_buffers_processed );
3859       regular_clock_call();
3860     }
3861   } else {
3862     while (!has_aborted() &&
3863            satb_mq_set.apply_closure_to_completed_buffer()) {
3864       if (_cm->verbose_medium()) {
3865         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3866       }
3867       statsOnly( ++_satb_buffers_processed );
3868       regular_clock_call();
3869     }
3870   }
3871 
3872   if (!concurrent() && !has_aborted()) {
3873     // We should only do this during remark.
3874     if (G1CollectedHeap::use_parallel_gc_threads()) {
3875       satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3876     } else {
3877       satb_mq_set.iterate_closure_all_threads();
3878     }
3879   }
3880 
3881   _draining_satb_buffers = false;
3882 
3883   assert(has_aborted() ||
3884          concurrent() ||
3885          satb_mq_set.completed_buffers_num() == 0, "invariant");
3886 
3887   if (G1CollectedHeap::use_parallel_gc_threads()) {
3888     satb_mq_set.set_par_closure(_worker_id, NULL);
3889   } else {
3890     satb_mq_set.set_closure(NULL);
3891   }
3892 
3893   // again, this was a potentially expensive operation, decrease the
3894   // limits to get the regular clock call early
3895   decrease_limits();
3896 }
3897 
3898 void CMTask::print_stats() {
3899   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3900                          _worker_id, _calls);
3901   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3902                          _elapsed_time_ms, _termination_time_ms);
3903   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3904                          _step_times_ms.num(), _step_times_ms.avg(),
3905                          _step_times_ms.sd());
3906   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3907                          _step_times_ms.maximum(), _step_times_ms.sum());
3908 
3909 #if _MARKING_STATS_
3910   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3911                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3912                          _all_clock_intervals_ms.sd());
3913   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3914                          _all_clock_intervals_ms.maximum(),
3915                          _all_clock_intervals_ms.sum());
3916   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3917                          _clock_due_to_scanning, _clock_due_to_marking);
3918   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3919                          _objs_scanned, _objs_found_on_bitmap);
3920   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3921                          _local_pushes, _local_pops, _local_max_size);
3922   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3923                          _global_pushes, _global_pops, _global_max_size);
3924   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3925                          _global_transfers_to,_global_transfers_from);
3926   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3927   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3928   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3929                          _steal_attempts, _steals);
3930   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3931   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3932                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3933   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3934                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3935 #endif // _MARKING_STATS_
3936 }
3937 
3938 /*****************************************************************************
3939 
3940     The do_marking_step(time_target_ms, ...) method is the building
3941     block of the parallel marking framework. It can be called in parallel
3942     with other invocations of do_marking_step() on different tasks
3943     (but only one per task, obviously) and concurrently with the
3944     mutator threads, or during remark, hence it eliminates the need
3945     for two versions of the code. When called during remark, it will
3946     pick up from where the task left off during the concurrent marking
3947     phase. Interestingly, tasks are also claimable during evacuation
3948     pauses too, since do_marking_step() ensures that it aborts before
3949     it needs to yield.
3950 
3951     The data structures that it uses to do marking work are the
3952     following:
3953 
3954       (1) Marking Bitmap. If there are gray objects that appear only
3955       on the bitmap (this happens either when dealing with an overflow
3956       or when the initial marking phase has simply marked the roots
3957       and didn't push them on the stack), then tasks claim heap
3958       regions whose bitmap they then scan to find gray objects. A
3959       global finger indicates where the end of the last claimed region
3960       is. A local finger indicates how far into the region a task has
3961       scanned. The two fingers are used to determine how to gray an
3962       object (i.e. whether simply marking it is OK, as it will be
3963       visited by a task in the future, or whether it needs to be also
3964       pushed on a stack).
3965 
3966       (2) Local Queue. The local queue of the task which is accessed
3967       reasonably efficiently by the task. Other tasks can steal from
3968       it when they run out of work. Throughout the marking phase, a
3969       task attempts to keep its local queue short but not totally
3970       empty, so that entries are available for stealing by other
3971       tasks. Only when there is no more work, a task will totally
3972       drain its local queue.
3973 
3974       (3) Global Mark Stack. This handles local queue overflow. During
3975       marking only sets of entries are moved between it and the local
3976       queues, as access to it requires a mutex and more fine-grain
3977       interaction with it which might cause contention. If it
3978       overflows, then the marking phase should restart and iterate
3979       over the bitmap to identify gray objects. Throughout the marking
3980       phase, tasks attempt to keep the global mark stack at a small
3981       length but not totally empty, so that entries are available for
3982       popping by other tasks. Only when there is no more work, tasks
3983       will totally drain the global mark stack.
3984 
3985       (4) SATB Buffer Queue. This is where completed SATB buffers are
3986       made available. Buffers are regularly removed from this queue
3987       and scanned for roots, so that the queue doesn't get too
3988       long. During remark, all completed buffers are processed, as
3989       well as the filled in parts of any uncompleted buffers.
3990 
3991     The do_marking_step() method tries to abort when the time target
3992     has been reached. There are a few other cases when the
3993     do_marking_step() method also aborts:
3994 
3995       (1) When the marking phase has been aborted (after a Full GC).
3996 
3997       (2) When a global overflow (on the global stack) has been
3998       triggered. Before the task aborts, it will actually sync up with
3999       the other tasks to ensure that all the marking data structures
4000       (local queues, stacks, fingers etc.)  are re-initialized so that
4001       when do_marking_step() completes, the marking phase can
4002       immediately restart.
4003 
4004       (3) When enough completed SATB buffers are available. The
4005       do_marking_step() method only tries to drain SATB buffers right
4006       at the beginning. So, if enough buffers are available, the
4007       marking step aborts and the SATB buffers are processed at
4008       the beginning of the next invocation.
4009 
4010       (4) To yield. when we have to yield then we abort and yield
4011       right at the end of do_marking_step(). This saves us from a lot
4012       of hassle as, by yielding we might allow a Full GC. If this
4013       happens then objects will be compacted underneath our feet, the
4014       heap might shrink, etc. We save checking for this by just
4015       aborting and doing the yield right at the end.
4016 
4017     From the above it follows that the do_marking_step() method should
4018     be called in a loop (or, otherwise, regularly) until it completes.
4019 
4020     If a marking step completes without its has_aborted() flag being
4021     true, it means it has completed the current marking phase (and
4022     also all other marking tasks have done so and have all synced up).
4023 
4024     A method called regular_clock_call() is invoked "regularly" (in
4025     sub ms intervals) throughout marking. It is this clock method that
4026     checks all the abort conditions which were mentioned above and
4027     decides when the task should abort. A work-based scheme is used to
4028     trigger this clock method: when the number of object words the
4029     marking phase has scanned or the number of references the marking
4030     phase has visited reach a given limit. Additional invocations to
4031     the method clock have been planted in a few other strategic places
4032     too. The initial reason for the clock method was to avoid calling
4033     vtime too regularly, as it is quite expensive. So, once it was in
4034     place, it was natural to piggy-back all the other conditions on it
4035     too and not constantly check them throughout the code.
4036 
4037     If do_termination is true then do_marking_step will enter its
4038     termination protocol.
4039 
4040     The value of is_serial must be true when do_marking_step is being
4041     called serially (i.e. by the VMThread) and do_marking_step should
4042     skip any synchronization in the termination and overflow code.
4043     Examples include the serial remark code and the serial reference
4044     processing closures.
4045 
4046     The value of is_serial must be false when do_marking_step is
4047     being called by any of the worker threads in a work gang.
4048     Examples include the concurrent marking code (CMMarkingTask),
4049     the MT remark code, and the MT reference processing closures.
4050 
4051  *****************************************************************************/
4052 
4053 void CMTask::do_marking_step(double time_target_ms,
4054                              bool do_termination,
4055                              bool is_serial) {
4056   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4057   assert(concurrent() == _cm->concurrent(), "they should be the same");
4058 
4059   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4060   assert(_task_queues != NULL, "invariant");
4061   assert(_task_queue != NULL, "invariant");
4062   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4063 
4064   assert(!_claimed,
4065          "only one thread should claim this task at any one time");
4066 
4067   // OK, this doesn't safeguard again all possible scenarios, as it is
4068   // possible for two threads to set the _claimed flag at the same
4069   // time. But it is only for debugging purposes anyway and it will
4070   // catch most problems.
4071   _claimed = true;
4072 
4073   _start_time_ms = os::elapsedVTime() * 1000.0;
4074   statsOnly( _interval_start_time_ms = _start_time_ms );
4075 
4076   // If do_stealing is true then do_marking_step will attempt to
4077   // steal work from the other CMTasks. It only makes sense to
4078   // enable stealing when the termination protocol is enabled
4079   // and do_marking_step() is not being called serially.
4080   bool do_stealing = do_termination && !is_serial;
4081 
4082   double diff_prediction_ms =
4083     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4084   _time_target_ms = time_target_ms - diff_prediction_ms;
4085 
4086   // set up the variables that are used in the work-based scheme to
4087   // call the regular clock method
4088   _words_scanned = 0;
4089   _refs_reached  = 0;
4090   recalculate_limits();
4091 
4092   // clear all flags
4093   clear_has_aborted();
4094   _has_timed_out = false;
4095   _draining_satb_buffers = false;
4096 
4097   ++_calls;
4098 
4099   if (_cm->verbose_low()) {
4100     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4101                            "target = %1.2lfms >>>>>>>>>>",
4102                            _worker_id, _calls, _time_target_ms);
4103   }
4104 
4105   // Set up the bitmap and oop closures. Anything that uses them is
4106   // eventually called from this method, so it is OK to allocate these
4107   // statically.
4108   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4109   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4110   set_cm_oop_closure(&cm_oop_closure);
4111 
4112   if (_cm->has_overflown()) {
4113     // This can happen if the mark stack overflows during a GC pause
4114     // and this task, after a yield point, restarts. We have to abort
4115     // as we need to get into the overflow protocol which happens
4116     // right at the end of this task.
4117     set_has_aborted();
4118   }
4119 
4120   // First drain any available SATB buffers. After this, we will not
4121   // look at SATB buffers before the next invocation of this method.
4122   // If enough completed SATB buffers are queued up, the regular clock
4123   // will abort this task so that it restarts.
4124   drain_satb_buffers();
4125   // ...then partially drain the local queue and the global stack
4126   drain_local_queue(true);
4127   drain_global_stack(true);
4128 
4129   do {
4130     if (!has_aborted() && _curr_region != NULL) {
4131       // This means that we're already holding on to a region.
4132       assert(_finger != NULL, "if region is not NULL, then the finger "
4133              "should not be NULL either");
4134 
4135       // We might have restarted this task after an evacuation pause
4136       // which might have evacuated the region we're holding on to
4137       // underneath our feet. Let's read its limit again to make sure
4138       // that we do not iterate over a region of the heap that
4139       // contains garbage (update_region_limit() will also move
4140       // _finger to the start of the region if it is found empty).
4141       update_region_limit();
4142       // We will start from _finger not from the start of the region,
4143       // as we might be restarting this task after aborting half-way
4144       // through scanning this region. In this case, _finger points to
4145       // the address where we last found a marked object. If this is a
4146       // fresh region, _finger points to start().
4147       MemRegion mr = MemRegion(_finger, _region_limit);
4148 
4149       if (_cm->verbose_low()) {
4150         gclog_or_tty->print_cr("[%u] we're scanning part "
4151                                "["PTR_FORMAT", "PTR_FORMAT") "
4152                                "of region "HR_FORMAT,
4153                                _worker_id, _finger, _region_limit,
4154                                HR_FORMAT_PARAMS(_curr_region));
4155       }
4156 
4157       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4158              "humongous regions should go around loop once only");
4159 
4160       // Some special cases:
4161       // If the memory region is empty, we can just give up the region.
4162       // If the current region is humongous then we only need to check
4163       // the bitmap for the bit associated with the start of the object,
4164       // scan the object if it's live, and give up the region.
4165       // Otherwise, let's iterate over the bitmap of the part of the region
4166       // that is left.
4167       // If the iteration is successful, give up the region.
4168       if (mr.is_empty()) {
4169         giveup_current_region();
4170         regular_clock_call();
4171       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4172         if (_nextMarkBitMap->isMarked(mr.start())) {
4173           // The object is marked - apply the closure
4174           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4175           bitmap_closure.do_bit(offset);
4176         }
4177         // Even if this task aborted while scanning the humongous object
4178         // we can (and should) give up the current region.
4179         giveup_current_region();
4180         regular_clock_call();
4181       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4182         giveup_current_region();
4183         regular_clock_call();
4184       } else {
4185         assert(has_aborted(), "currently the only way to do so");
4186         // The only way to abort the bitmap iteration is to return
4187         // false from the do_bit() method. However, inside the
4188         // do_bit() method we move the _finger to point to the
4189         // object currently being looked at. So, if we bail out, we
4190         // have definitely set _finger to something non-null.
4191         assert(_finger != NULL, "invariant");
4192 
4193         // Region iteration was actually aborted. So now _finger
4194         // points to the address of the object we last scanned. If we
4195         // leave it there, when we restart this task, we will rescan
4196         // the object. It is easy to avoid this. We move the finger by
4197         // enough to point to the next possible object header (the
4198         // bitmap knows by how much we need to move it as it knows its
4199         // granularity).
4200         assert(_finger < _region_limit, "invariant");
4201         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4202         // Check if bitmap iteration was aborted while scanning the last object
4203         if (new_finger >= _region_limit) {
4204           giveup_current_region();
4205         } else {
4206           move_finger_to(new_finger);
4207         }
4208       }
4209     }
4210     // At this point we have either completed iterating over the
4211     // region we were holding on to, or we have aborted.
4212 
4213     // We then partially drain the local queue and the global stack.
4214     // (Do we really need this?)
4215     drain_local_queue(true);
4216     drain_global_stack(true);
4217 
4218     // Read the note on the claim_region() method on why it might
4219     // return NULL with potentially more regions available for
4220     // claiming and why we have to check out_of_regions() to determine
4221     // whether we're done or not.
4222     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4223       // We are going to try to claim a new region. We should have
4224       // given up on the previous one.
4225       // Separated the asserts so that we know which one fires.
4226       assert(_curr_region  == NULL, "invariant");
4227       assert(_finger       == NULL, "invariant");
4228       assert(_region_limit == NULL, "invariant");
4229       if (_cm->verbose_low()) {
4230         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4231       }
4232       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4233       if (claimed_region != NULL) {
4234         // Yes, we managed to claim one
4235         statsOnly( ++_regions_claimed );
4236 
4237         if (_cm->verbose_low()) {
4238           gclog_or_tty->print_cr("[%u] we successfully claimed "
4239                                  "region "PTR_FORMAT,
4240                                  _worker_id, claimed_region);
4241         }
4242 
4243         setup_for_region(claimed_region);
4244         assert(_curr_region == claimed_region, "invariant");
4245       }
4246       // It is important to call the regular clock here. It might take
4247       // a while to claim a region if, for example, we hit a large
4248       // block of empty regions. So we need to call the regular clock
4249       // method once round the loop to make sure it's called
4250       // frequently enough.
4251       regular_clock_call();
4252     }
4253 
4254     if (!has_aborted() && _curr_region == NULL) {
4255       assert(_cm->out_of_regions(),
4256              "at this point we should be out of regions");
4257     }
4258   } while ( _curr_region != NULL && !has_aborted());
4259 
4260   if (!has_aborted()) {
4261     // We cannot check whether the global stack is empty, since other
4262     // tasks might be pushing objects to it concurrently.
4263     assert(_cm->out_of_regions(),
4264            "at this point we should be out of regions");
4265 
4266     if (_cm->verbose_low()) {
4267       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4268     }
4269 
4270     // Try to reduce the number of available SATB buffers so that
4271     // remark has less work to do.
4272     drain_satb_buffers();
4273   }
4274 
4275   // Since we've done everything else, we can now totally drain the
4276   // local queue and global stack.
4277   drain_local_queue(false);
4278   drain_global_stack(false);
4279 
4280   // Attempt at work stealing from other task's queues.
4281   if (do_stealing && !has_aborted()) {
4282     // We have not aborted. This means that we have finished all that
4283     // we could. Let's try to do some stealing...
4284 
4285     // We cannot check whether the global stack is empty, since other
4286     // tasks might be pushing objects to it concurrently.
4287     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4288            "only way to reach here");
4289 
4290     if (_cm->verbose_low()) {
4291       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4292     }
4293 
4294     while (!has_aborted()) {
4295       oop obj;
4296       statsOnly( ++_steal_attempts );
4297 
4298       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4299         if (_cm->verbose_medium()) {
4300           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4301                                  _worker_id, (void*) obj);
4302         }
4303 
4304         statsOnly( ++_steals );
4305 
4306         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4307                "any stolen object should be marked");
4308         scan_object(obj);
4309 
4310         // And since we're towards the end, let's totally drain the
4311         // local queue and global stack.
4312         drain_local_queue(false);
4313         drain_global_stack(false);
4314       } else {
4315         break;
4316       }
4317     }
4318   }
4319 
4320   // If we are about to wrap up and go into termination, check if we
4321   // should raise the overflow flag.
4322   if (do_termination && !has_aborted()) {
4323     if (_cm->force_overflow()->should_force()) {
4324       _cm->set_has_overflown();
4325       regular_clock_call();
4326     }
4327   }
4328 
4329   // We still haven't aborted. Now, let's try to get into the
4330   // termination protocol.
4331   if (do_termination && !has_aborted()) {
4332     // We cannot check whether the global stack is empty, since other
4333     // tasks might be concurrently pushing objects on it.
4334     // Separated the asserts so that we know which one fires.
4335     assert(_cm->out_of_regions(), "only way to reach here");
4336     assert(_task_queue->size() == 0, "only way to reach here");
4337 
4338     if (_cm->verbose_low()) {
4339       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4340     }
4341 
4342     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4343 
4344     // The CMTask class also extends the TerminatorTerminator class,
4345     // hence its should_exit_termination() method will also decide
4346     // whether to exit the termination protocol or not.
4347     bool finished = (is_serial ||
4348                      _cm->terminator()->offer_termination(this));
4349     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4350     _termination_time_ms +=
4351       termination_end_time_ms - _termination_start_time_ms;
4352 
4353     if (finished) {
4354       // We're all done.
4355 
4356       if (_worker_id == 0) {
4357         // let's allow task 0 to do this
4358         if (concurrent()) {
4359           assert(_cm->concurrent_marking_in_progress(), "invariant");
4360           // we need to set this to false before the next
4361           // safepoint. This way we ensure that the marking phase
4362           // doesn't observe any more heap expansions.
4363           _cm->clear_concurrent_marking_in_progress();
4364         }
4365       }
4366 
4367       // We can now guarantee that the global stack is empty, since
4368       // all other tasks have finished. We separated the guarantees so
4369       // that, if a condition is false, we can immediately find out
4370       // which one.
4371       guarantee(_cm->out_of_regions(), "only way to reach here");
4372       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4373       guarantee(_task_queue->size() == 0, "only way to reach here");
4374       guarantee(!_cm->has_overflown(), "only way to reach here");
4375       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4376 
4377       if (_cm->verbose_low()) {
4378         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4379       }
4380     } else {
4381       // Apparently there's more work to do. Let's abort this task. It
4382       // will restart it and we can hopefully find more things to do.
4383 
4384       if (_cm->verbose_low()) {
4385         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4386                                _worker_id);
4387       }
4388 
4389       set_has_aborted();
4390       statsOnly( ++_aborted_termination );
4391     }
4392   }
4393 
4394   // Mainly for debugging purposes to make sure that a pointer to the
4395   // closure which was statically allocated in this frame doesn't
4396   // escape it by accident.
4397   set_cm_oop_closure(NULL);
4398   double end_time_ms = os::elapsedVTime() * 1000.0;
4399   double elapsed_time_ms = end_time_ms - _start_time_ms;
4400   // Update the step history.
4401   _step_times_ms.add(elapsed_time_ms);
4402 
4403   if (has_aborted()) {
4404     // The task was aborted for some reason.
4405 
4406     statsOnly( ++_aborted );
4407 
4408     if (_has_timed_out) {
4409       double diff_ms = elapsed_time_ms - _time_target_ms;
4410       // Keep statistics of how well we did with respect to hitting
4411       // our target only if we actually timed out (if we aborted for
4412       // other reasons, then the results might get skewed).
4413       _marking_step_diffs_ms.add(diff_ms);
4414     }
4415 
4416     if (_cm->has_overflown()) {
4417       // This is the interesting one. We aborted because a global
4418       // overflow was raised. This means we have to restart the
4419       // marking phase and start iterating over regions. However, in
4420       // order to do this we have to make sure that all tasks stop
4421       // what they are doing and re-initialize in a safe manner. We
4422       // will achieve this with the use of two barrier sync points.
4423 
4424       if (_cm->verbose_low()) {
4425         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4426       }
4427 
4428       if (!is_serial) {
4429         // We only need to enter the sync barrier if being called
4430         // from a parallel context
4431         _cm->enter_first_sync_barrier(_worker_id);
4432 
4433         // When we exit this sync barrier we know that all tasks have
4434         // stopped doing marking work. So, it's now safe to
4435         // re-initialize our data structures. At the end of this method,
4436         // task 0 will clear the global data structures.
4437       }
4438 
4439       statsOnly( ++_aborted_overflow );
4440 
4441       // We clear the local state of this task...
4442       clear_region_fields();
4443 
4444       if (!is_serial) {
4445         // ...and enter the second barrier.
4446         _cm->enter_second_sync_barrier(_worker_id);
4447       }
4448       // At this point, if we're during the concurrent phase of
4449       // marking, everything has been re-initialized and we're
4450       // ready to restart.
4451     }
4452 
4453     if (_cm->verbose_low()) {
4454       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4455                              "elapsed = %1.2lfms <<<<<<<<<<",
4456                              _worker_id, _time_target_ms, elapsed_time_ms);
4457       if (_cm->has_aborted()) {
4458         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4459                                _worker_id);
4460       }
4461     }
4462   } else {
4463     if (_cm->verbose_low()) {
4464       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4465                              "elapsed = %1.2lfms <<<<<<<<<<",
4466                              _worker_id, _time_target_ms, elapsed_time_ms);
4467     }
4468   }
4469 
4470   _claimed = false;
4471 }
4472 
4473 CMTask::CMTask(uint worker_id,
4474                ConcurrentMark* cm,
4475                size_t* marked_bytes,
4476                BitMap* card_bm,
4477                CMTaskQueue* task_queue,
4478                CMTaskQueueSet* task_queues)
4479   : _g1h(G1CollectedHeap::heap()),
4480     _worker_id(worker_id), _cm(cm),
4481     _claimed(false),
4482     _nextMarkBitMap(NULL), _hash_seed(17),
4483     _task_queue(task_queue),
4484     _task_queues(task_queues),
4485     _cm_oop_closure(NULL),
4486     _marked_bytes_array(marked_bytes),
4487     _card_bm(card_bm) {
4488   guarantee(task_queue != NULL, "invariant");
4489   guarantee(task_queues != NULL, "invariant");
4490 
4491   statsOnly( _clock_due_to_scanning = 0;
4492              _clock_due_to_marking  = 0 );
4493 
4494   _marking_step_diffs_ms.add(0.5);
4495 }
4496 
4497 // These are formatting macros that are used below to ensure
4498 // consistent formatting. The *_H_* versions are used to format the
4499 // header for a particular value and they should be kept consistent
4500 // with the corresponding macro. Also note that most of the macros add
4501 // the necessary white space (as a prefix) which makes them a bit
4502 // easier to compose.
4503 
4504 // All the output lines are prefixed with this string to be able to
4505 // identify them easily in a large log file.
4506 #define G1PPRL_LINE_PREFIX            "###"
4507 
4508 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4509 #ifdef _LP64
4510 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4511 #else // _LP64
4512 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4513 #endif // _LP64
4514 
4515 // For per-region info
4516 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4517 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4518 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4519 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4520 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4521 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4522 
4523 // For summary info
4524 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4525 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4526 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4527 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4528 
4529 G1PrintRegionLivenessInfoClosure::
4530 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4531   : _out(out),
4532     _total_used_bytes(0), _total_capacity_bytes(0),
4533     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4534     _hum_used_bytes(0), _hum_capacity_bytes(0),
4535     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4536     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4537   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4538   MemRegion g1_committed = g1h->g1_committed();
4539   MemRegion g1_reserved = g1h->g1_reserved();
4540   double now = os::elapsedTime();
4541 
4542   // Print the header of the output.
4543   _out->cr();
4544   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4545   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4546                  G1PPRL_SUM_ADDR_FORMAT("committed")
4547                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4548                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4549                  g1_committed.start(), g1_committed.end(),
4550                  g1_reserved.start(), g1_reserved.end(),
4551                  HeapRegion::GrainBytes);
4552   _out->print_cr(G1PPRL_LINE_PREFIX);
4553   _out->print_cr(G1PPRL_LINE_PREFIX
4554                 G1PPRL_TYPE_H_FORMAT
4555                 G1PPRL_ADDR_BASE_H_FORMAT
4556                 G1PPRL_BYTE_H_FORMAT
4557                 G1PPRL_BYTE_H_FORMAT
4558                 G1PPRL_BYTE_H_FORMAT
4559                 G1PPRL_DOUBLE_H_FORMAT
4560                 G1PPRL_BYTE_H_FORMAT
4561                 G1PPRL_BYTE_H_FORMAT,
4562                 "type", "address-range",
4563                 "used", "prev-live", "next-live", "gc-eff",
4564                 "remset", "code-roots");
4565   _out->print_cr(G1PPRL_LINE_PREFIX
4566                 G1PPRL_TYPE_H_FORMAT
4567                 G1PPRL_ADDR_BASE_H_FORMAT
4568                 G1PPRL_BYTE_H_FORMAT
4569                 G1PPRL_BYTE_H_FORMAT
4570                 G1PPRL_BYTE_H_FORMAT
4571                 G1PPRL_DOUBLE_H_FORMAT
4572                 G1PPRL_BYTE_H_FORMAT
4573                 G1PPRL_BYTE_H_FORMAT,
4574                 "", "",
4575                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4576                 "(bytes)", "(bytes)");
4577 }
4578 
4579 // It takes as a parameter a reference to one of the _hum_* fields, it
4580 // deduces the corresponding value for a region in a humongous region
4581 // series (either the region size, or what's left if the _hum_* field
4582 // is < the region size), and updates the _hum_* field accordingly.
4583 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4584   size_t bytes = 0;
4585   // The > 0 check is to deal with the prev and next live bytes which
4586   // could be 0.
4587   if (*hum_bytes > 0) {
4588     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4589     *hum_bytes -= bytes;
4590   }
4591   return bytes;
4592 }
4593 
4594 // It deduces the values for a region in a humongous region series
4595 // from the _hum_* fields and updates those accordingly. It assumes
4596 // that that _hum_* fields have already been set up from the "starts
4597 // humongous" region and we visit the regions in address order.
4598 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4599                                                      size_t* capacity_bytes,
4600                                                      size_t* prev_live_bytes,
4601                                                      size_t* next_live_bytes) {
4602   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4603   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4604   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4605   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4606   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4607 }
4608 
4609 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4610   const char* type = "";
4611   HeapWord* bottom       = r->bottom();
4612   HeapWord* end          = r->end();
4613   size_t capacity_bytes  = r->capacity();
4614   size_t used_bytes      = r->used();
4615   size_t prev_live_bytes = r->live_bytes();
4616   size_t next_live_bytes = r->next_live_bytes();
4617   double gc_eff          = r->gc_efficiency();
4618   size_t remset_bytes    = r->rem_set()->mem_size();
4619   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4620 
4621   if (r->used() == 0) {
4622     type = "FREE";
4623   } else if (r->is_survivor()) {
4624     type = "SURV";
4625   } else if (r->is_young()) {
4626     type = "EDEN";
4627   } else if (r->startsHumongous()) {
4628     type = "HUMS";
4629 
4630     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4631            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4632            "they should have been zeroed after the last time we used them");
4633     // Set up the _hum_* fields.
4634     _hum_capacity_bytes  = capacity_bytes;
4635     _hum_used_bytes      = used_bytes;
4636     _hum_prev_live_bytes = prev_live_bytes;
4637     _hum_next_live_bytes = next_live_bytes;
4638     get_hum_bytes(&used_bytes, &capacity_bytes,
4639                   &prev_live_bytes, &next_live_bytes);
4640     end = bottom + HeapRegion::GrainWords;
4641   } else if (r->continuesHumongous()) {
4642     type = "HUMC";
4643     get_hum_bytes(&used_bytes, &capacity_bytes,
4644                   &prev_live_bytes, &next_live_bytes);
4645     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4646   } else {
4647     type = "OLD";
4648   }
4649 
4650   _total_used_bytes      += used_bytes;
4651   _total_capacity_bytes  += capacity_bytes;
4652   _total_prev_live_bytes += prev_live_bytes;
4653   _total_next_live_bytes += next_live_bytes;
4654   _total_remset_bytes    += remset_bytes;
4655   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4656 
4657   // Print a line for this particular region.
4658   _out->print_cr(G1PPRL_LINE_PREFIX
4659                  G1PPRL_TYPE_FORMAT
4660                  G1PPRL_ADDR_BASE_FORMAT
4661                  G1PPRL_BYTE_FORMAT
4662                  G1PPRL_BYTE_FORMAT
4663                  G1PPRL_BYTE_FORMAT
4664                  G1PPRL_DOUBLE_FORMAT
4665                  G1PPRL_BYTE_FORMAT
4666                  G1PPRL_BYTE_FORMAT,
4667                  type, bottom, end,
4668                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4669                  remset_bytes, strong_code_roots_bytes);
4670 
4671   return false;
4672 }
4673 
4674 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4675   // add static memory usages to remembered set sizes
4676   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4677   // Print the footer of the output.
4678   _out->print_cr(G1PPRL_LINE_PREFIX);
4679   _out->print_cr(G1PPRL_LINE_PREFIX
4680                  " SUMMARY"
4681                  G1PPRL_SUM_MB_FORMAT("capacity")
4682                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4683                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4684                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4685                  G1PPRL_SUM_MB_FORMAT("remset")
4686                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4687                  bytes_to_mb(_total_capacity_bytes),
4688                  bytes_to_mb(_total_used_bytes),
4689                  perc(_total_used_bytes, _total_capacity_bytes),
4690                  bytes_to_mb(_total_prev_live_bytes),
4691                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4692                  bytes_to_mb(_total_next_live_bytes),
4693                  perc(_total_next_live_bytes, _total_capacity_bytes),
4694                  bytes_to_mb(_total_remset_bytes),
4695                  bytes_to_mb(_total_strong_code_roots_bytes));
4696   _out->cr();
4697 }