1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  27 
  28 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
  29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
  30 #include "gc_implementation/g1/survRateGroup.hpp"
  31 #include "gc_implementation/shared/ageTable.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/space.inline.hpp"
  34 #include "memory/watermark.hpp"
  35 #include "utilities/macros.hpp"
  36 
  37 #if INCLUDE_ALL_GCS
  38 
  39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  40 // can be collected independently.
  41 
  42 // NOTE: Although a HeapRegion is a Space, its
  43 // Space::initDirtyCardClosure method must not be called.
  44 // The problem is that the existence of this method breaks
  45 // the independence of barrier sets from remembered sets.
  46 // The solution is to remove this method from the definition
  47 // of a Space.
  48 
  49 class HeapRegionRemSet;
  50 class HeapRegionRemSetIterator;
  51 class HeapRegion;
  52 class HeapRegionSetBase;
  53 class nmethod;
  54 
  55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
  56 #define HR_FORMAT_PARAMS(_hr_) \
  57                 (_hr_)->hrs_index(), \
  58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
  59                 (_hr_)->startsHumongous() ? "HS" : \
  60                 (_hr_)->continuesHumongous() ? "HC" : \
  61                 !(_hr_)->is_empty() ? "O" : "F", \
  62                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  63 
  64 // sentinel value for hrs_index
  65 #define G1_NULL_HRS_INDEX ((uint) -1)
  66 
  67 // A dirty card to oop closure for heap regions. It
  68 // knows how to get the G1 heap and how to use the bitmap
  69 // in the concurrent marker used by G1 to filter remembered
  70 // sets.
  71 
  72 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  73 public:
  74   // Specification of possible DirtyCardToOopClosure filtering.
  75   enum FilterKind {
  76     NoFilterKind,
  77     IntoCSFilterKind,
  78     OutOfRegionFilterKind
  79   };
  80 
  81 protected:
  82   HeapRegion* _hr;
  83   FilterKind _fk;
  84   G1CollectedHeap* _g1;
  85 
  86   // Walk the given memory region from bottom to (actual) top
  87   // looking for objects and applying the oop closure (_cl) to
  88   // them. The base implementation of this treats the area as
  89   // blocks, where a block may or may not be an object. Sub-
  90   // classes should override this to provide more accurate
  91   // or possibly more efficient walking.
  92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  93 
  94 public:
  95   HeapRegionDCTOC(G1CollectedHeap* g1,
  96                   HeapRegion* hr, ExtendedOopClosure* cl,
  97                   CardTableModRefBS::PrecisionStyle precision,
  98                   FilterKind fk);
  99 };
 100 
 101 // The complicating factor is that BlockOffsetTable diverged
 102 // significantly, and we need functionality that is only in the G1 version.
 103 // So I copied that code, which led to an alternate G1 version of
 104 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 105 // be reconciled, then G1OffsetTableContigSpace could go away.
 106 
 107 // The idea behind time stamps is the following. Doing a save_marks on
 108 // all regions at every GC pause is time consuming (if I remember
 109 // well, 10ms or so). So, we would like to do that only for regions
 110 // that are GC alloc regions. To achieve this, we use time
 111 // stamps. For every evacuation pause, G1CollectedHeap generates a
 112 // unique time stamp (essentially a counter that gets
 113 // incremented). Every time we want to call save_marks on a region,
 114 // we set the saved_mark_word to top and also copy the current GC
 115 // time stamp to the time stamp field of the space. Reading the
 116 // saved_mark_word involves checking the time stamp of the
 117 // region. If it is the same as the current GC time stamp, then we
 118 // can safely read the saved_mark_word field, as it is valid. If the
 119 // time stamp of the region is not the same as the current GC time
 120 // stamp, then we instead read top, as the saved_mark_word field is
 121 // invalid. Time stamps (on the regions and also on the
 122 // G1CollectedHeap) are reset at every cleanup (we iterate over
 123 // the regions anyway) and at the end of a Full GC. The current scheme
 124 // that uses sequential unsigned ints will fail only if we have 4b
 125 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 126 class G1OffsetTableContigSpace: public CompactibleSpace {
 127   friend class VMStructs;
 128   HeapWord* _top;
 129  protected:
 130   G1BlockOffsetArrayContigSpace _offsets;
 131   Mutex _par_alloc_lock;
 132   volatile unsigned _gc_time_stamp;
 133   // When we need to retire an allocation region, while other threads
 134   // are also concurrently trying to allocate into it, we typically
 135   // allocate a dummy object at the end of the region to ensure that
 136   // no more allocations can take place in it. However, sometimes we
 137   // want to know where the end of the last "real" object we allocated
 138   // into the region was and this is what this keeps track.
 139   HeapWord* _pre_dummy_top;
 140 
 141  public:
 142   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 143                            MemRegion mr);
 144 
 145   void set_top(HeapWord* value) { _top = value; }
 146   HeapWord* top() const { return _top; }
 147 
 148  protected:
 149   HeapWord** top_addr() { return &_top; }
 150   // Allocation helpers (return NULL if full).
 151   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
 152   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
 153 
 154  public:
 155   void reset_after_compaction() { set_top(compaction_top()); }
 156 
 157   size_t used() const { return byte_size(bottom(), top()); }
 158   size_t free() const { return byte_size(top(), end()); }
 159   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 160 
 161   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 162 
 163   void object_iterate(ObjectClosure* blk);
 164   void safe_object_iterate(ObjectClosure* blk);
 165 
 166   void set_bottom(HeapWord* value);
 167   void set_end(HeapWord* value);
 168 
 169   virtual HeapWord* saved_mark_word() const;
 170   void record_top_and_timestamp();
 171   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 172   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 173 
 174   // See the comment above in the declaration of _pre_dummy_top for an
 175   // explanation of what it is.
 176   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 177     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 178     _pre_dummy_top = pre_dummy_top;
 179   }
 180   HeapWord* pre_dummy_top() {
 181     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 182   }
 183   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 184 
 185   virtual void clear(bool mangle_space);
 186 
 187   HeapWord* block_start(const void* p);
 188   HeapWord* block_start_const(const void* p) const;
 189 
 190   void prepare_for_compaction(CompactPoint* cp);
 191 
 192   // Add offset table update.
 193   virtual HeapWord* allocate(size_t word_size);
 194   HeapWord* par_allocate(size_t word_size);
 195 
 196   // MarkSweep support phase3
 197   virtual HeapWord* initialize_threshold();
 198   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 199 
 200   virtual void print() const;
 201 
 202   void reset_bot() {
 203     _offsets.zero_bottom_entry();
 204     _offsets.initialize_threshold();
 205   }
 206 
 207   void update_bot_for_object(HeapWord* start, size_t word_size) {
 208     _offsets.alloc_block(start, word_size);
 209   }
 210 
 211   void print_bot_on(outputStream* out) {
 212     _offsets.print_on(out);
 213   }
 214 };
 215 
 216 class HeapRegion: public G1OffsetTableContigSpace {
 217   friend class VMStructs;
 218  private:
 219 
 220   enum HumongousType {
 221     NotHumongous = 0,
 222     StartsHumongous,
 223     ContinuesHumongous
 224   };
 225 
 226   // The remembered set for this region.
 227   // (Might want to make this "inline" later, to avoid some alloc failure
 228   // issues.)
 229   HeapRegionRemSet* _rem_set;
 230 
 231   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 232 
 233  protected:
 234   // The index of this region in the heap region sequence.
 235   uint  _hrs_index;
 236 
 237   HumongousType _humongous_type;
 238   // For a humongous region, region in which it starts.
 239   HeapRegion* _humongous_start_region;
 240   // For the start region of a humongous sequence, it's original end().
 241   HeapWord* _orig_end;
 242 
 243   // True iff the region is in current collection_set.
 244   bool _in_collection_set;
 245 
 246   // True iff an attempt to evacuate an object in the region failed.
 247   bool _evacuation_failed;
 248 
 249   // A heap region may be a member one of a number of special subsets, each
 250   // represented as linked lists through the field below.  Currently, there
 251   // is only one set:
 252   //   The collection set.
 253   HeapRegion* _next_in_special_set;
 254 
 255   // next region in the young "generation" region set
 256   HeapRegion* _next_young_region;
 257 
 258   // Next region whose cards need cleaning
 259   HeapRegion* _next_dirty_cards_region;
 260 
 261   // Fields used by the HeapRegionSetBase class and subclasses.
 262   HeapRegion* _next;
 263   HeapRegion* _prev;
 264 #ifdef ASSERT
 265   HeapRegionSetBase* _containing_set;
 266 #endif // ASSERT
 267   bool _pending_removal;
 268 
 269   // For parallel heapRegion traversal.
 270   jint _claimed;
 271 
 272   // We use concurrent marking to determine the amount of live data
 273   // in each heap region.
 274   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 275   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 276 
 277   // The calculated GC efficiency of the region.
 278   double _gc_efficiency;
 279 
 280   enum YoungType {
 281     NotYoung,                   // a region is not young
 282     Young,                      // a region is young
 283     Survivor                    // a region is young and it contains survivors
 284   };
 285 
 286   volatile YoungType _young_type;
 287   int  _young_index_in_cset;
 288   SurvRateGroup* _surv_rate_group;
 289   int  _age_index;
 290 
 291   // The start of the unmarked area. The unmarked area extends from this
 292   // word until the top and/or end of the region, and is the part
 293   // of the region for which no marking was done, i.e. objects may
 294   // have been allocated in this part since the last mark phase.
 295   // "prev" is the top at the start of the last completed marking.
 296   // "next" is the top at the start of the in-progress marking (if any.)
 297   HeapWord* _prev_top_at_mark_start;
 298   HeapWord* _next_top_at_mark_start;
 299   // If a collection pause is in progress, this is the top at the start
 300   // of that pause.
 301 
 302   void init_top_at_mark_start() {
 303     assert(_prev_marked_bytes == 0 &&
 304            _next_marked_bytes == 0,
 305            "Must be called after zero_marked_bytes.");
 306     HeapWord* bot = bottom();
 307     _prev_top_at_mark_start = bot;
 308     _next_top_at_mark_start = bot;
 309   }
 310 
 311   void set_young_type(YoungType new_type) {
 312     //assert(_young_type != new_type, "setting the same type" );
 313     // TODO: add more assertions here
 314     _young_type = new_type;
 315   }
 316 
 317   // Cached attributes used in the collection set policy information
 318 
 319   // The RSet length that was added to the total value
 320   // for the collection set.
 321   size_t _recorded_rs_length;
 322 
 323   // The predicted elapsed time that was added to total value
 324   // for the collection set.
 325   double _predicted_elapsed_time_ms;
 326 
 327   // The predicted number of bytes to copy that was added to
 328   // the total value for the collection set.
 329   size_t _predicted_bytes_to_copy;
 330 
 331  public:
 332   HeapRegion(uint hrs_index,
 333              G1BlockOffsetSharedArray* sharedOffsetArray,
 334              MemRegion mr);
 335 
 336   static int    LogOfHRGrainBytes;
 337   static int    LogOfHRGrainWords;
 338 
 339   static size_t GrainBytes;
 340   static size_t GrainWords;
 341   static size_t CardsPerRegion;
 342 
 343   static size_t align_up_to_region_byte_size(size_t sz) {
 344     return (sz + (size_t) GrainBytes - 1) &
 345                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 346   }
 347 
 348   static size_t max_region_size();
 349 
 350   // It sets up the heap region size (GrainBytes / GrainWords), as
 351   // well as other related fields that are based on the heap region
 352   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 353   // CardsPerRegion). All those fields are considered constant
 354   // throughout the JVM's execution, therefore they should only be set
 355   // up once during initialization time.
 356   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 357 
 358   enum ClaimValues {
 359     InitialClaimValue          = 0,
 360     FinalCountClaimValue       = 1,
 361     NoteEndClaimValue          = 2,
 362     ScrubRemSetClaimValue      = 3,
 363     ParVerifyClaimValue        = 4,
 364     RebuildRSClaimValue        = 5,
 365     ParEvacFailureClaimValue   = 6,
 366     AggregateCountClaimValue   = 7,
 367     VerifyCountClaimValue      = 8,
 368     ParMarkRootClaimValue      = 9
 369   };
 370 
 371   // All allocated blocks are occupied by objects in a HeapRegion
 372   bool block_is_obj(const HeapWord* p) const;
 373 
 374   // Returns the object size for all valid block starts
 375   // and the amount of unallocated words if called on top()
 376   size_t block_size(const HeapWord* p) const;
 377 
 378   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
 379   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 380 
 381   // If this region is a member of a HeapRegionSeq, the index in that
 382   // sequence, otherwise -1.
 383   uint hrs_index() const { return _hrs_index; }
 384 
 385   // The number of bytes marked live in the region in the last marking phase.
 386   size_t marked_bytes()    { return _prev_marked_bytes; }
 387   size_t live_bytes() {
 388     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 389   }
 390 
 391   // The number of bytes counted in the next marking.
 392   size_t next_marked_bytes() { return _next_marked_bytes; }
 393   // The number of bytes live wrt the next marking.
 394   size_t next_live_bytes() {
 395     return
 396       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 397   }
 398 
 399   // A lower bound on the amount of garbage bytes in the region.
 400   size_t garbage_bytes() {
 401     size_t used_at_mark_start_bytes =
 402       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 403     assert(used_at_mark_start_bytes >= marked_bytes(),
 404            "Can't mark more than we have.");
 405     return used_at_mark_start_bytes - marked_bytes();
 406   }
 407 
 408   // Return the amount of bytes we'll reclaim if we collect this
 409   // region. This includes not only the known garbage bytes in the
 410   // region but also any unallocated space in it, i.e., [top, end),
 411   // since it will also be reclaimed if we collect the region.
 412   size_t reclaimable_bytes() {
 413     size_t known_live_bytes = live_bytes();
 414     assert(known_live_bytes <= capacity(), "sanity");
 415     return capacity() - known_live_bytes;
 416   }
 417 
 418   // An upper bound on the number of live bytes in the region.
 419   size_t max_live_bytes() { return used() - garbage_bytes(); }
 420 
 421   void add_to_marked_bytes(size_t incr_bytes) {
 422     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 423     assert(_next_marked_bytes <= used(), "invariant" );
 424   }
 425 
 426   void zero_marked_bytes()      {
 427     _prev_marked_bytes = _next_marked_bytes = 0;
 428   }
 429 
 430   bool isHumongous() const { return _humongous_type != NotHumongous; }
 431   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
 432   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
 433   // For a humongous region, region in which it starts.
 434   HeapRegion* humongous_start_region() const {
 435     return _humongous_start_region;
 436   }
 437 
 438   // Return the number of distinct regions that are covered by this region:
 439   // 1 if the region is not humongous, >= 1 if the region is humongous.
 440   uint region_num() const {
 441     if (!isHumongous()) {
 442       return 1U;
 443     } else {
 444       assert(startsHumongous(), "doesn't make sense on HC regions");
 445       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 446       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 447     }
 448   }
 449 
 450   // Return the index + 1 of the last HC regions that's associated
 451   // with this HS region.
 452   uint last_hc_index() const {
 453     assert(startsHumongous(), "don't call this otherwise");
 454     return hrs_index() + region_num();
 455   }
 456 
 457   // Same as Space::is_in_reserved, but will use the original size of the region.
 458   // The original size is different only for start humongous regions. They get
 459   // their _end set up to be the end of the last continues region of the
 460   // corresponding humongous object.
 461   bool is_in_reserved_raw(const void* p) const {
 462     return _bottom <= p && p < _orig_end;
 463   }
 464 
 465   // Makes the current region be a "starts humongous" region, i.e.,
 466   // the first region in a series of one or more contiguous regions
 467   // that will contain a single "humongous" object. The two parameters
 468   // are as follows:
 469   //
 470   // new_top : The new value of the top field of this region which
 471   // points to the end of the humongous object that's being
 472   // allocated. If there is more than one region in the series, top
 473   // will lie beyond this region's original end field and on the last
 474   // region in the series.
 475   //
 476   // new_end : The new value of the end field of this region which
 477   // points to the end of the last region in the series. If there is
 478   // one region in the series (namely: this one) end will be the same
 479   // as the original end of this region.
 480   //
 481   // Updating top and end as described above makes this region look as
 482   // if it spans the entire space taken up by all the regions in the
 483   // series and an single allocation moved its top to new_top. This
 484   // ensures that the space (capacity / allocated) taken up by all
 485   // humongous regions can be calculated by just looking at the
 486   // "starts humongous" regions and by ignoring the "continues
 487   // humongous" regions.
 488   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
 489 
 490   // Makes the current region be a "continues humongous'
 491   // region. first_hr is the "start humongous" region of the series
 492   // which this region will be part of.
 493   void set_continuesHumongous(HeapRegion* first_hr);
 494 
 495   // Unsets the humongous-related fields on the region.
 496   void set_notHumongous();
 497 
 498   // If the region has a remembered set, return a pointer to it.
 499   HeapRegionRemSet* rem_set() const {
 500     return _rem_set;
 501   }
 502 
 503   // True iff the region is in current collection_set.
 504   bool in_collection_set() const {
 505     return _in_collection_set;
 506   }
 507   void set_in_collection_set(bool b) {
 508     _in_collection_set = b;
 509   }
 510   HeapRegion* next_in_collection_set() {
 511     assert(in_collection_set(), "should only invoke on member of CS.");
 512     assert(_next_in_special_set == NULL ||
 513            _next_in_special_set->in_collection_set(),
 514            "Malformed CS.");
 515     return _next_in_special_set;
 516   }
 517   void set_next_in_collection_set(HeapRegion* r) {
 518     assert(in_collection_set(), "should only invoke on member of CS.");
 519     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 520     _next_in_special_set = r;
 521   }
 522 
 523   // Methods used by the HeapRegionSetBase class and subclasses.
 524 
 525   // Getter and setter for the next and prev fields used to link regions into
 526   // linked lists.
 527   HeapRegion* next()              { return _next; }
 528   HeapRegion* prev()              { return _prev; }
 529 
 530   void set_next(HeapRegion* next) { _next = next; }
 531   void set_prev(HeapRegion* prev) { _prev = prev; }
 532 
 533   // Every region added to a set is tagged with a reference to that
 534   // set. This is used for doing consistency checking to make sure that
 535   // the contents of a set are as they should be and it's only
 536   // available in non-product builds.
 537 #ifdef ASSERT
 538   void set_containing_set(HeapRegionSetBase* containing_set) {
 539     assert((containing_set == NULL && _containing_set != NULL) ||
 540            (containing_set != NULL && _containing_set == NULL),
 541            err_msg("containing_set: "PTR_FORMAT" "
 542                    "_containing_set: "PTR_FORMAT,
 543                    p2i(containing_set), p2i(_containing_set)));
 544 
 545     _containing_set = containing_set;
 546   }
 547 
 548   HeapRegionSetBase* containing_set() { return _containing_set; }
 549 #else // ASSERT
 550   void set_containing_set(HeapRegionSetBase* containing_set) { }
 551 
 552   // containing_set() is only used in asserts so there's no reason
 553   // to provide a dummy version of it.
 554 #endif // ASSERT
 555 
 556   // If we want to remove regions from a list in bulk we can simply tag
 557   // them with the pending_removal tag and call the
 558   // remove_all_pending() method on the list.
 559 
 560   bool pending_removal() { return _pending_removal; }
 561 
 562   void set_pending_removal(bool pending_removal) {
 563     if (pending_removal) {
 564       assert(!_pending_removal && containing_set() != NULL,
 565              "can only set pending removal to true if it's false and "
 566              "the region belongs to a region set");
 567     } else {
 568       assert( _pending_removal && containing_set() == NULL,
 569               "can only set pending removal to false if it's true and "
 570               "the region does not belong to a region set");
 571     }
 572 
 573     _pending_removal = pending_removal;
 574   }
 575 
 576   HeapRegion* get_next_young_region() { return _next_young_region; }
 577   void set_next_young_region(HeapRegion* hr) {
 578     _next_young_region = hr;
 579   }
 580 
 581   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 582   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 583   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 584   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 585 
 586   HeapWord* orig_end() { return _orig_end; }
 587 
 588   // Reset HR stuff to default values.
 589   void hr_clear(bool par, bool clear_space, bool locked = false);
 590   void par_clear();
 591 
 592   // Get the start of the unmarked area in this region.
 593   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 594   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 595 
 596   // Note the start or end of marking. This tells the heap region
 597   // that the collector is about to start or has finished (concurrently)
 598   // marking the heap.
 599 
 600   // Notify the region that concurrent marking is starting. Initialize
 601   // all fields related to the next marking info.
 602   inline void note_start_of_marking();
 603 
 604   // Notify the region that concurrent marking has finished. Copy the
 605   // (now finalized) next marking info fields into the prev marking
 606   // info fields.
 607   inline void note_end_of_marking();
 608 
 609   // Notify the region that it will be used as to-space during a GC
 610   // and we are about to start copying objects into it.
 611   inline void note_start_of_copying(bool during_initial_mark);
 612 
 613   // Notify the region that it ceases being to-space during a GC and
 614   // we will not copy objects into it any more.
 615   inline void note_end_of_copying(bool during_initial_mark);
 616 
 617   // Notify the region that we are about to start processing
 618   // self-forwarded objects during evac failure handling.
 619   void note_self_forwarding_removal_start(bool during_initial_mark,
 620                                           bool during_conc_mark);
 621 
 622   // Notify the region that we have finished processing self-forwarded
 623   // objects during evac failure handling.
 624   void note_self_forwarding_removal_end(bool during_initial_mark,
 625                                         bool during_conc_mark,
 626                                         size_t marked_bytes);
 627 
 628   // Returns "false" iff no object in the region was allocated when the
 629   // last mark phase ended.
 630   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 631 
 632   void reset_during_compaction() {
 633     assert(isHumongous() && startsHumongous(),
 634            "should only be called for starts humongous regions");
 635 
 636     zero_marked_bytes();
 637     init_top_at_mark_start();
 638   }
 639 
 640   void calc_gc_efficiency(void);
 641   double gc_efficiency() { return _gc_efficiency;}
 642 
 643   bool is_young() const     { return _young_type != NotYoung; }
 644   bool is_survivor() const  { return _young_type == Survivor; }
 645 
 646   int  young_index_in_cset() const { return _young_index_in_cset; }
 647   void set_young_index_in_cset(int index) {
 648     assert( (index == -1) || is_young(), "pre-condition" );
 649     _young_index_in_cset = index;
 650   }
 651 
 652   int age_in_surv_rate_group() {
 653     assert( _surv_rate_group != NULL, "pre-condition" );
 654     assert( _age_index > -1, "pre-condition" );
 655     return _surv_rate_group->age_in_group(_age_index);
 656   }
 657 
 658   void record_surv_words_in_group(size_t words_survived) {
 659     assert( _surv_rate_group != NULL, "pre-condition" );
 660     assert( _age_index > -1, "pre-condition" );
 661     int age_in_group = age_in_surv_rate_group();
 662     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 663   }
 664 
 665   int age_in_surv_rate_group_cond() {
 666     if (_surv_rate_group != NULL)
 667       return age_in_surv_rate_group();
 668     else
 669       return -1;
 670   }
 671 
 672   SurvRateGroup* surv_rate_group() {
 673     return _surv_rate_group;
 674   }
 675 
 676   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 677     assert( surv_rate_group != NULL, "pre-condition" );
 678     assert( _surv_rate_group == NULL, "pre-condition" );
 679     assert( is_young(), "pre-condition" );
 680 
 681     _surv_rate_group = surv_rate_group;
 682     _age_index = surv_rate_group->next_age_index();
 683   }
 684 
 685   void uninstall_surv_rate_group() {
 686     if (_surv_rate_group != NULL) {
 687       assert( _age_index > -1, "pre-condition" );
 688       assert( is_young(), "pre-condition" );
 689 
 690       _surv_rate_group = NULL;
 691       _age_index = -1;
 692     } else {
 693       assert( _age_index == -1, "pre-condition" );
 694     }
 695   }
 696 
 697   void set_young() { set_young_type(Young); }
 698 
 699   void set_survivor() { set_young_type(Survivor); }
 700 
 701   void set_not_young() { set_young_type(NotYoung); }
 702 
 703   // Determine if an object has been allocated since the last
 704   // mark performed by the collector. This returns true iff the object
 705   // is within the unmarked area of the region.
 706   bool obj_allocated_since_prev_marking(oop obj) const {
 707     return (HeapWord *) obj >= prev_top_at_mark_start();
 708   }
 709   bool obj_allocated_since_next_marking(oop obj) const {
 710     return (HeapWord *) obj >= next_top_at_mark_start();
 711   }
 712 
 713   // For parallel heapRegion traversal.
 714   bool claimHeapRegion(int claimValue);
 715   jint claim_value() { return _claimed; }
 716   // Use this carefully: only when you're sure no one is claiming...
 717   void set_claim_value(int claimValue) { _claimed = claimValue; }
 718 
 719   // Returns the "evacuation_failed" property of the region.
 720   bool evacuation_failed() { return _evacuation_failed; }
 721 
 722   // Sets the "evacuation_failed" property of the region.
 723   void set_evacuation_failed(bool b) {
 724     _evacuation_failed = b;
 725 
 726     if (b) {
 727       _next_marked_bytes = 0;
 728     }
 729   }
 730 
 731   // Requires that "mr" be entirely within the region.
 732   // Apply "cl->do_object" to all objects that intersect with "mr".
 733   // If the iteration encounters an unparseable portion of the region,
 734   // or if "cl->abort()" is true after a closure application,
 735   // terminate the iteration and return the address of the start of the
 736   // subregion that isn't done.  (The two can be distinguished by querying
 737   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 738   // completed.
 739   HeapWord*
 740   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 741 
 742   // filter_young: if true and the region is a young region then we
 743   // skip the iteration.
 744   // card_ptr: if not NULL, and we decide that the card is not young
 745   // and we iterate over it, we'll clean the card before we start the
 746   // iteration.
 747   HeapWord*
 748   oops_on_card_seq_iterate_careful(MemRegion mr,
 749                                    FilterOutOfRegionClosure* cl,
 750                                    bool filter_young,
 751                                    jbyte* card_ptr);
 752 
 753   // A version of block start that is guaranteed to find *some* block
 754   // boundary at or before "p", but does not object iteration, and may
 755   // therefore be used safely when the heap is unparseable.
 756   HeapWord* block_start_careful(const void* p) const {
 757     return _offsets.block_start_careful(p);
 758   }
 759 
 760   // Requires that "addr" is within the region.  Returns the start of the
 761   // first ("careful") block that starts at or after "addr", or else the
 762   // "end" of the region if there is no such block.
 763   HeapWord* next_block_start_careful(HeapWord* addr);
 764 
 765   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 766   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 767   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 768 
 769   void set_recorded_rs_length(size_t rs_length) {
 770     _recorded_rs_length = rs_length;
 771   }
 772 
 773   void set_predicted_elapsed_time_ms(double ms) {
 774     _predicted_elapsed_time_ms = ms;
 775   }
 776 
 777   void set_predicted_bytes_to_copy(size_t bytes) {
 778     _predicted_bytes_to_copy = bytes;
 779   }
 780 
 781   virtual CompactibleSpace* next_compaction_space() const;
 782 
 783   virtual void reset_after_compaction();
 784 
 785   // Routines for managing a list of code roots (attached to the
 786   // this region's RSet) that point into this heap region.
 787   void add_strong_code_root(nmethod* nm);
 788   void remove_strong_code_root(nmethod* nm);
 789 
 790   // During a collection, migrate the successfully evacuated
 791   // strong code roots that referenced into this region to the
 792   // new regions that they now point into. Unsuccessfully
 793   // evacuated code roots are not migrated.
 794   void migrate_strong_code_roots();
 795 
 796   // Applies blk->do_code_blob() to each of the entries in
 797   // the strong code roots list for this region
 798   void strong_code_roots_do(CodeBlobClosure* blk) const;
 799 
 800   // Verify that the entries on the strong code root list for this
 801   // region are live and include at least one pointer into this region.
 802   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 803 
 804   void print() const;
 805   void print_on(outputStream* st) const;
 806 
 807   // vo == UsePrevMarking  -> use "prev" marking information,
 808   // vo == UseNextMarking -> use "next" marking information
 809   // vo == UseMarkWord    -> use the mark word in the object header
 810   //
 811   // NOTE: Only the "prev" marking information is guaranteed to be
 812   // consistent most of the time, so most calls to this should use
 813   // vo == UsePrevMarking.
 814   // Currently, there is only one case where this is called with
 815   // vo == UseNextMarking, which is to verify the "next" marking
 816   // information at the end of remark.
 817   // Currently there is only one place where this is called with
 818   // vo == UseMarkWord, which is to verify the marking during a
 819   // full GC.
 820   void verify(VerifyOption vo, bool *failures) const;
 821 
 822   // Override; it uses the "prev" marking information
 823   virtual void verify() const;
 824 };
 825 
 826 // HeapRegionClosure is used for iterating over regions.
 827 // Terminates the iteration when the "doHeapRegion" method returns "true".
 828 class HeapRegionClosure : public StackObj {
 829   friend class HeapRegionSeq;
 830   friend class G1CollectedHeap;
 831 
 832   bool _complete;
 833   void incomplete() { _complete = false; }
 834 
 835  public:
 836   HeapRegionClosure(): _complete(true) {}
 837 
 838   // Typically called on each region until it returns true.
 839   virtual bool doHeapRegion(HeapRegion* r) = 0;
 840 
 841   // True after iteration if the closure was applied to all heap regions
 842   // and returned "false" in all cases.
 843   bool complete() { return _complete; }
 844 };
 845 
 846 #endif // INCLUDE_ALL_GCS
 847 
 848 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP