1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/gcTraceTime.hpp"
  33 #include "gc_implementation/shared/vmGCOperations.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "memory/space.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.inline2.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/fprofiler.hpp"
  48 #include "runtime/handles.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/vmError.hpp"
  54 #include "utilities/workgroup.hpp"
  55 #include "utilities/macros.hpp"
  56 #if INCLUDE_ALL_GCS
  57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  59 #endif // INCLUDE_ALL_GCS
  60 
  61 GenCollectedHeap* GenCollectedHeap::_gch;
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 // The set of potentially parallel tasks in strong root scanning.
  65 enum GCH_process_strong_roots_tasks {
  66   // We probably want to parallelize both of these internally, but for now...
  67   GCH_PS_younger_gens,
  68   // Leave this one last.
  69   GCH_PS_NumElements
  70 };
  71 
  72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  73   SharedHeap(policy),
  74   _gen_policy(policy),
  75   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  76   _full_collections_completed(0)
  77 {
  78   if (_gen_process_strong_tasks == NULL ||
  79       !_gen_process_strong_tasks->valid()) {
  80     vm_exit_during_initialization("Failed necessary allocation.");
  81   }
  82   assert(policy != NULL, "Sanity check");
  83 }
  84 
  85 jint GenCollectedHeap::initialize() {
  86   CollectedHeap::pre_initialize();
  87 
  88   int i;
  89   _n_gens = gen_policy()->number_of_generations();
  90 
  91   // While there are no constraints in the GC code that HeapWordSize
  92   // be any particular value, there are multiple other areas in the
  93   // system which believe this to be true (e.g. oop->object_size in some
  94   // cases incorrectly returns the size in wordSize units rather than
  95   // HeapWordSize).
  96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  97 
  98   // The heap must be at least as aligned as generations.
  99   size_t gen_alignment = Generation::GenGrain;
 100 
 101   _gen_specs = gen_policy()->generations();
 102 
 103   // Make sure the sizes are all aligned.
 104   for (i = 0; i < _n_gens; i++) {
 105     _gen_specs[i]->align(gen_alignment);
 106   }
 107 
 108   // Allocate space for the heap.
 109 
 110   char* heap_address;
 111   size_t total_reserved = 0;
 112   int n_covered_regions = 0;
 113   ReservedSpace heap_rs;
 114 
 115   size_t heap_alignment = collector_policy()->heap_alignment();
 116 
 117   heap_address = allocate(heap_alignment, &total_reserved,
 118                           &n_covered_regions, &heap_rs);
 119 
 120   if (!heap_rs.is_reserved()) {
 121     vm_shutdown_during_initialization(
 122       "Could not reserve enough space for object heap");
 123     return JNI_ENOMEM;
 124   }
 125 
 126   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 127                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 128 
 129   // It is important to do this in a way such that concurrent readers can't
 130   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 131   _reserved.set_word_size(0);
 132   _reserved.set_start((HeapWord*)heap_rs.base());
 133   size_t actual_heap_size = heap_rs.size();
 134   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 135 
 136   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 137   set_barrier_set(rem_set()->bs());
 138 
 139   _gch = this;
 140 
 141   for (i = 0; i < _n_gens; i++) {
 142     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
 143     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 144     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 145   }
 146   clear_incremental_collection_failed();
 147 
 148 #if INCLUDE_ALL_GCS
 149   // If we are running CMS, create the collector responsible
 150   // for collecting the CMS generations.
 151   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 152     bool success = create_cms_collector();
 153     if (!success) return JNI_ENOMEM;
 154   }
 155 #endif // INCLUDE_ALL_GCS
 156 
 157   return JNI_OK;
 158 }
 159 
 160 
 161 char* GenCollectedHeap::allocate(size_t alignment,
 162                                  size_t* _total_reserved,
 163                                  int* _n_covered_regions,
 164                                  ReservedSpace* heap_rs){
 165   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 166     "the maximum representable size";
 167 
 168   // Now figure out the total size.
 169   size_t total_reserved = 0;
 170   int n_covered_regions = 0;
 171   const size_t pageSize = UseLargePages ?
 172       os::large_page_size() : os::vm_page_size();
 173 
 174   assert(alignment % pageSize == 0, "Must be");
 175 
 176   for (int i = 0; i < _n_gens; i++) {
 177     total_reserved += _gen_specs[i]->max_size();
 178     if (total_reserved < _gen_specs[i]->max_size()) {
 179       vm_exit_during_initialization(overflow_msg);
 180     }
 181     n_covered_regions += _gen_specs[i]->n_covered_regions();
 182   }
 183   assert(total_reserved % alignment == 0,
 184          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 185                  SIZE_FORMAT, total_reserved, alignment));
 186 
 187   // Needed until the cardtable is fixed to have the right number
 188   // of covered regions.
 189   n_covered_regions += 2;
 190 
 191   *_total_reserved = total_reserved;
 192   *_n_covered_regions = n_covered_regions;
 193 
 194   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 195   return heap_rs->base();
 196 }
 197 
 198 
 199 void GenCollectedHeap::post_initialize() {
 200   SharedHeap::post_initialize();
 201   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 202   guarantee(policy->is_generation_policy(), "Illegal policy type");
 203   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 204   assert(def_new_gen->kind() == Generation::DefNew ||
 205          def_new_gen->kind() == Generation::ParNew,
 206          "Wrong generation kind");
 207 
 208   Generation* old_gen = get_gen(1);
 209   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 210          old_gen->kind() == Generation::MarkSweepCompact,
 211     "Wrong generation kind");
 212 
 213   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 214                                  old_gen->capacity(),
 215                                  def_new_gen->from()->capacity());
 216   policy->initialize_gc_policy_counters();
 217 }
 218 
 219 void GenCollectedHeap::ref_processing_init() {
 220   SharedHeap::ref_processing_init();
 221   for (int i = 0; i < _n_gens; i++) {
 222     _gens[i]->ref_processor_init();
 223   }
 224 }
 225 
 226 size_t GenCollectedHeap::capacity() const {
 227   size_t res = 0;
 228   for (int i = 0; i < _n_gens; i++) {
 229     res += _gens[i]->capacity();
 230   }
 231   return res;
 232 }
 233 
 234 size_t GenCollectedHeap::used() const {
 235   size_t res = 0;
 236   for (int i = 0; i < _n_gens; i++) {
 237     res += _gens[i]->used();
 238   }
 239   return res;
 240 }
 241 
 242 // Save the "used_region" for generations level and lower.
 243 void GenCollectedHeap::save_used_regions(int level) {
 244   assert(level < _n_gens, "Illegal level parameter");
 245   for (int i = level; i >= 0; i--) {
 246     _gens[i]->save_used_region();
 247   }
 248 }
 249 
 250 size_t GenCollectedHeap::max_capacity() const {
 251   size_t res = 0;
 252   for (int i = 0; i < _n_gens; i++) {
 253     res += _gens[i]->max_capacity();
 254   }
 255   return res;
 256 }
 257 
 258 // Update the _full_collections_completed counter
 259 // at the end of a stop-world full GC.
 260 unsigned int GenCollectedHeap::update_full_collections_completed() {
 261   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 262   assert(_full_collections_completed <= _total_full_collections,
 263          "Can't complete more collections than were started");
 264   _full_collections_completed = _total_full_collections;
 265   ml.notify_all();
 266   return _full_collections_completed;
 267 }
 268 
 269 // Update the _full_collections_completed counter, as appropriate,
 270 // at the end of a concurrent GC cycle. Note the conditional update
 271 // below to allow this method to be called by a concurrent collector
 272 // without synchronizing in any manner with the VM thread (which
 273 // may already have initiated a STW full collection "concurrently").
 274 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 275   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 276   assert((_full_collections_completed <= _total_full_collections) &&
 277          (count <= _total_full_collections),
 278          "Can't complete more collections than were started");
 279   if (count > _full_collections_completed) {
 280     _full_collections_completed = count;
 281     ml.notify_all();
 282   }
 283   return _full_collections_completed;
 284 }
 285 
 286 
 287 #ifndef PRODUCT
 288 // Override of memory state checking method in CollectedHeap:
 289 // Some collectors (CMS for example) can't have badHeapWordVal written
 290 // in the first two words of an object. (For instance , in the case of
 291 // CMS these words hold state used to synchronize between certain
 292 // (concurrent) GC steps and direct allocating mutators.)
 293 // The skip_header_HeapWords() method below, allows us to skip
 294 // over the requisite number of HeapWord's. Note that (for
 295 // generational collectors) this means that those many words are
 296 // skipped in each object, irrespective of the generation in which
 297 // that object lives. The resultant loss of precision seems to be
 298 // harmless and the pain of avoiding that imprecision appears somewhat
 299 // higher than we are prepared to pay for such rudimentary debugging
 300 // support.
 301 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 302                                                          size_t size) {
 303   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 304     // We are asked to check a size in HeapWords,
 305     // but the memory is mangled in juint words.
 306     juint* start = (juint*) (addr + skip_header_HeapWords());
 307     juint* end   = (juint*) (addr + size);
 308     for (juint* slot = start; slot < end; slot += 1) {
 309       assert(*slot == badHeapWordVal,
 310              "Found non badHeapWordValue in pre-allocation check");
 311     }
 312   }
 313 }
 314 #endif
 315 
 316 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 317                                                bool is_tlab,
 318                                                bool first_only) {
 319   HeapWord* res;
 320   for (int i = 0; i < _n_gens; i++) {
 321     if (_gens[i]->should_allocate(size, is_tlab)) {
 322       res = _gens[i]->allocate(size, is_tlab);
 323       if (res != NULL) return res;
 324       else if (first_only) break;
 325     }
 326   }
 327   // Otherwise...
 328   return NULL;
 329 }
 330 
 331 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 332                                          bool* gc_overhead_limit_was_exceeded) {
 333   return collector_policy()->mem_allocate_work(size,
 334                                                false /* is_tlab */,
 335                                                gc_overhead_limit_was_exceeded);
 336 }
 337 
 338 bool GenCollectedHeap::must_clear_all_soft_refs() {
 339   return _gc_cause == GCCause::_last_ditch_collection;
 340 }
 341 
 342 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 343   return UseConcMarkSweepGC &&
 344          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 345           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 346 }
 347 
 348 void GenCollectedHeap::do_collection(bool  full,
 349                                      bool   clear_all_soft_refs,
 350                                      size_t size,
 351                                      bool   is_tlab,
 352                                      int    max_level) {
 353   bool prepared_for_verification = false;
 354   ResourceMark rm;
 355   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 356 
 357   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 358   assert(my_thread->is_VM_thread() ||
 359          my_thread->is_ConcurrentGC_thread(),
 360          "incorrect thread type capability");
 361   assert(Heap_lock->is_locked(),
 362          "the requesting thread should have the Heap_lock");
 363   guarantee(!is_gc_active(), "collection is not reentrant");
 364   assert(max_level < n_gens(), "sanity check");
 365 
 366   if (GC_locker::check_active_before_gc()) {
 367     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 368   }
 369 
 370   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 371                           collector_policy()->should_clear_all_soft_refs();
 372 
 373   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 374 
 375   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 376 
 377   print_heap_before_gc();
 378 
 379   {
 380     FlagSetting fl(_is_gc_active, true);
 381 
 382     bool complete = full && (max_level == (n_gens()-1));
 383     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 384     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 385     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 386     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 387     // so we can assume here that the next GC id is what we want.
 388     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 389 
 390     gc_prologue(complete);
 391     increment_total_collections(complete);
 392 
 393     size_t gch_prev_used = used();
 394 
 395     int starting_level = 0;
 396     if (full) {
 397       // Search for the oldest generation which will collect all younger
 398       // generations, and start collection loop there.
 399       for (int i = max_level; i >= 0; i--) {
 400         if (_gens[i]->full_collects_younger_generations()) {
 401           starting_level = i;
 402           break;
 403         }
 404       }
 405     }
 406 
 407     bool must_restore_marks_for_biased_locking = false;
 408 
 409     int max_level_collected = starting_level;
 410     for (int i = starting_level; i <= max_level; i++) {
 411       if (_gens[i]->should_collect(full, size, is_tlab)) {
 412         if (i == n_gens() - 1) {  // a major collection is to happen
 413           if (!complete) {
 414             // The full_collections increment was missed above.
 415             increment_total_full_collections();
 416           }
 417           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 418         }
 419         // Timer for individual generations. Last argument is false: no CR
 420         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 421         // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 422         // so we can assume here that the next GC id is what we want.
 423         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 424         TraceCollectorStats tcs(_gens[i]->counters());
 425         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 426 
 427         size_t prev_used = _gens[i]->used();
 428         _gens[i]->stat_record()->invocations++;
 429         _gens[i]->stat_record()->accumulated_time.start();
 430 
 431         // Must be done anew before each collection because
 432         // a previous collection will do mangling and will
 433         // change top of some spaces.
 434         record_gen_tops_before_GC();
 435 
 436         if (PrintGC && Verbose) {
 437           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 438                      i,
 439                      _gens[i]->stat_record()->invocations,
 440                      size*HeapWordSize);
 441         }
 442 
 443         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 444             total_collections() >= VerifyGCStartAt) {
 445           HandleMark hm;  // Discard invalid handles created during verification
 446           if (!prepared_for_verification) {
 447             prepare_for_verify();
 448             prepared_for_verification = true;
 449           }
 450           Universe::verify(" VerifyBeforeGC:");
 451         }
 452         COMPILER2_PRESENT(DerivedPointerTable::clear());
 453 
 454         if (!must_restore_marks_for_biased_locking &&
 455             _gens[i]->performs_in_place_marking()) {
 456           // We perform this mark word preservation work lazily
 457           // because it's only at this point that we know whether we
 458           // absolutely have to do it; we want to avoid doing it for
 459           // scavenge-only collections where it's unnecessary
 460           must_restore_marks_for_biased_locking = true;
 461           BiasedLocking::preserve_marks();
 462         }
 463 
 464         // Do collection work
 465         {
 466           // Note on ref discovery: For what appear to be historical reasons,
 467           // GCH enables and disabled (by enqueing) refs discovery.
 468           // In the future this should be moved into the generation's
 469           // collect method so that ref discovery and enqueueing concerns
 470           // are local to a generation. The collect method could return
 471           // an appropriate indication in the case that notification on
 472           // the ref lock was needed. This will make the treatment of
 473           // weak refs more uniform (and indeed remove such concerns
 474           // from GCH). XXX
 475 
 476           HandleMark hm;  // Discard invalid handles created during gc
 477           save_marks();   // save marks for all gens
 478           // We want to discover references, but not process them yet.
 479           // This mode is disabled in process_discovered_references if the
 480           // generation does some collection work, or in
 481           // enqueue_discovered_references if the generation returns
 482           // without doing any work.
 483           ReferenceProcessor* rp = _gens[i]->ref_processor();
 484           // If the discovery of ("weak") refs in this generation is
 485           // atomic wrt other collectors in this configuration, we
 486           // are guaranteed to have empty discovered ref lists.
 487           if (rp->discovery_is_atomic()) {
 488             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 489             rp->setup_policy(do_clear_all_soft_refs);
 490           } else {
 491             // collect() below will enable discovery as appropriate
 492           }
 493           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 494           if (!rp->enqueuing_is_done()) {
 495             rp->enqueue_discovered_references();
 496           } else {
 497             rp->set_enqueuing_is_done(false);
 498           }
 499           rp->verify_no_references_recorded();
 500         }
 501         max_level_collected = i;
 502 
 503         // Determine if allocation request was met.
 504         if (size > 0) {
 505           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 506             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 507               size = 0;
 508             }
 509           }
 510         }
 511 
 512         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 513 
 514         _gens[i]->stat_record()->accumulated_time.stop();
 515 
 516         update_gc_stats(i, full);
 517 
 518         if (VerifyAfterGC && i >= VerifyGCLevel &&
 519             total_collections() >= VerifyGCStartAt) {
 520           HandleMark hm;  // Discard invalid handles created during verification
 521           Universe::verify(" VerifyAfterGC:");
 522         }
 523 
 524         if (PrintGCDetails) {
 525           gclog_or_tty->print(":");
 526           _gens[i]->print_heap_change(prev_used);
 527         }
 528       }
 529     }
 530 
 531     // Update "complete" boolean wrt what actually transpired --
 532     // for instance, a promotion failure could have led to
 533     // a whole heap collection.
 534     complete = complete || (max_level_collected == n_gens() - 1);
 535 
 536     if (complete) { // We did a "major" collection
 537       // FIXME: See comment at pre_full_gc_dump call
 538       post_full_gc_dump(NULL);   // do any post full gc dumps
 539     }
 540 
 541     if (PrintGCDetails) {
 542       print_heap_change(gch_prev_used);
 543 
 544       // Print metaspace info for full GC with PrintGCDetails flag.
 545       if (complete) {
 546         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 547       }
 548     }
 549 
 550     for (int j = max_level_collected; j >= 0; j -= 1) {
 551       // Adjust generation sizes.
 552       _gens[j]->compute_new_size();
 553     }
 554 
 555     if (complete) {
 556       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 557       ClassLoaderDataGraph::purge();
 558       MetaspaceAux::verify_metrics();
 559       // Resize the metaspace capacity after full collections
 560       MetaspaceGC::compute_new_size();
 561       update_full_collections_completed();
 562     }
 563 
 564     // Track memory usage and detect low memory after GC finishes
 565     MemoryService::track_memory_usage();
 566 
 567     gc_epilogue(complete);
 568 
 569     if (must_restore_marks_for_biased_locking) {
 570       BiasedLocking::restore_marks();
 571     }
 572   }
 573 
 574   print_heap_after_gc();
 575 
 576 #ifdef TRACESPINNING
 577   ParallelTaskTerminator::print_termination_counts();
 578 #endif
 579 }
 580 
 581 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 582   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 583 }
 584 
 585 void GenCollectedHeap::set_par_threads(uint t) {
 586   SharedHeap::set_par_threads(t);
 587   _gen_process_strong_tasks->set_n_threads(t);
 588 }
 589 
 590 void GenCollectedHeap::
 591 gen_process_strong_roots(int level,
 592                          bool younger_gens_as_roots,
 593                          bool activate_scope,
 594                          SharedHeap::ScanningOption so,
 595                          OopsInGenClosure* not_older_gens,
 596                          OopsInGenClosure* older_gens,
 597                          KlassClosure* klass_closure) {
 598   // General strong roots.
 599 
 600   SharedHeap::process_strong_roots(activate_scope, so,
 601                                    not_older_gens, klass_closure);
 602 
 603   if (younger_gens_as_roots) {
 604     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 605       for (int i = 0; i < level; i++) {
 606         not_older_gens->set_generation(_gens[i]);
 607         _gens[i]->oop_iterate(not_older_gens);
 608       }
 609       not_older_gens->reset_generation();
 610     }
 611   }
 612   // When collection is parallel, all threads get to cooperate to do
 613   // older-gen scanning.
 614   for (int i = level+1; i < _n_gens; i++) {
 615     older_gens->set_generation(_gens[i]);
 616     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 617     older_gens->reset_generation();
 618   }
 619 
 620   _gen_process_strong_tasks->all_tasks_completed();
 621 }
 622 
 623 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 624   SharedHeap::process_weak_roots(root_closure);
 625   // "Local" "weak" refs
 626   for (int i = 0; i < _n_gens; i++) {
 627     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 628   }
 629 }
 630 
 631 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 632 void GenCollectedHeap::                                                 \
 633 oop_since_save_marks_iterate(int level,                                 \
 634                              OopClosureType* cur,                       \
 635                              OopClosureType* older) {                   \
 636   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 637   for (int i = level+1; i < n_gens(); i++) {                            \
 638     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 639   }                                                                     \
 640 }
 641 
 642 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 643 
 644 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 645 
 646 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 647   for (int i = level; i < _n_gens; i++) {
 648     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 649   }
 650   return true;
 651 }
 652 
 653 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 654   return _gens[0]->supports_inline_contig_alloc();
 655 }
 656 
 657 HeapWord** GenCollectedHeap::top_addr() const {
 658   return _gens[0]->top_addr();
 659 }
 660 
 661 HeapWord** GenCollectedHeap::end_addr() const {
 662   return _gens[0]->end_addr();
 663 }
 664 
 665 // public collection interfaces
 666 
 667 void GenCollectedHeap::collect(GCCause::Cause cause) {
 668   if (should_do_concurrent_full_gc(cause)) {
 669 #if INCLUDE_ALL_GCS
 670     // mostly concurrent full collection
 671     collect_mostly_concurrent(cause);
 672 #else  // INCLUDE_ALL_GCS
 673     ShouldNotReachHere();
 674 #endif // INCLUDE_ALL_GCS
 675   } else {
 676 #ifdef ASSERT
 677     if (cause == GCCause::_scavenge_alot) {
 678       // minor collection only
 679       collect(cause, 0);
 680     } else {
 681       // Stop-the-world full collection
 682       collect(cause, n_gens() - 1);
 683     }
 684 #else
 685     // Stop-the-world full collection
 686     collect(cause, n_gens() - 1);
 687 #endif
 688   }
 689 }
 690 
 691 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 692   // The caller doesn't have the Heap_lock
 693   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 694   MutexLocker ml(Heap_lock);
 695   collect_locked(cause, max_level);
 696 }
 697 
 698 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 699   // The caller has the Heap_lock
 700   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 701   collect_locked(cause, n_gens() - 1);
 702 }
 703 
 704 // this is the private collection interface
 705 // The Heap_lock is expected to be held on entry.
 706 
 707 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 708   // Read the GC count while holding the Heap_lock
 709   unsigned int gc_count_before      = total_collections();
 710   unsigned int full_gc_count_before = total_full_collections();
 711   {
 712     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 713     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 714                          cause, max_level);
 715     VMThread::execute(&op);
 716   }
 717 }
 718 
 719 #if INCLUDE_ALL_GCS
 720 bool GenCollectedHeap::create_cms_collector() {
 721 
 722   assert(_gens[1]->kind() == Generation::ConcurrentMarkSweep,
 723          "Unexpected generation kinds");
 724   // Skip two header words in the block content verification
 725   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 726   CMSCollector* collector = new CMSCollector(
 727     (ConcurrentMarkSweepGeneration*)_gens[1],
 728     _rem_set->as_CardTableRS(),
 729     (ConcurrentMarkSweepPolicy*) collector_policy());
 730 
 731   if (collector == NULL || !collector->completed_initialization()) {
 732     if (collector) {
 733       delete collector;  // Be nice in embedded situation
 734     }
 735     vm_shutdown_during_initialization("Could not create CMS collector");
 736     return false;
 737   }
 738   return true;  // success
 739 }
 740 
 741 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 742   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 743 
 744   MutexLocker ml(Heap_lock);
 745   // Read the GC counts while holding the Heap_lock
 746   unsigned int full_gc_count_before = total_full_collections();
 747   unsigned int gc_count_before      = total_collections();
 748   {
 749     MutexUnlocker mu(Heap_lock);
 750     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 751     VMThread::execute(&op);
 752   }
 753 }
 754 #endif // INCLUDE_ALL_GCS
 755 
 756 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 757    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 758 }
 759 
 760 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 761                                           int max_level) {
 762   int local_max_level;
 763   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 764       gc_cause() == GCCause::_gc_locker) {
 765     local_max_level = 0;
 766   } else {
 767     local_max_level = max_level;
 768   }
 769 
 770   do_collection(true                 /* full */,
 771                 clear_all_soft_refs  /* clear_all_soft_refs */,
 772                 0                    /* size */,
 773                 false                /* is_tlab */,
 774                 local_max_level      /* max_level */);
 775   // Hack XXX FIX ME !!!
 776   // A scavenge may not have been attempted, or may have
 777   // been attempted and failed, because the old gen was too full
 778   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 779       incremental_collection_will_fail(false /* don't consult_young */)) {
 780     if (PrintGCDetails) {
 781       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 782                              "because scavenge failed");
 783     }
 784     // This time allow the old gen to be collected as well
 785     do_collection(true                 /* full */,
 786                   clear_all_soft_refs  /* clear_all_soft_refs */,
 787                   0                    /* size */,
 788                   false                /* is_tlab */,
 789                   n_gens() - 1         /* max_level */);
 790   }
 791 }
 792 
 793 bool GenCollectedHeap::is_in_young(oop p) {
 794   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 795   assert(result == _gens[0]->is_in_reserved(p),
 796          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 797   return result;
 798 }
 799 
 800 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 801 bool GenCollectedHeap::is_in(const void* p) const {
 802   #ifndef ASSERT
 803   guarantee(VerifyBeforeGC      ||
 804             VerifyDuringGC      ||
 805             VerifyBeforeExit    ||
 806             VerifyDuringStartup ||
 807             PrintAssembly       ||
 808             tty->count() != 0   ||   // already printing
 809             VerifyAfterGC       ||
 810     VMError::fatal_error_in_progress(), "too expensive");
 811 
 812   #endif
 813   // This might be sped up with a cache of the last generation that
 814   // answered yes.
 815   for (int i = 0; i < _n_gens; i++) {
 816     if (_gens[i]->is_in(p)) return true;
 817   }
 818   // Otherwise...
 819   return false;
 820 }
 821 
 822 #ifdef ASSERT
 823 // Don't implement this by using is_in_young().  This method is used
 824 // in some cases to check that is_in_young() is correct.
 825 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 826   assert(is_in_reserved(p) || p == NULL,
 827     "Does not work if address is non-null and outside of the heap");
 828   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 829 }
 830 #endif
 831 
 832 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 833   for (int i = 0; i < _n_gens; i++) {
 834     _gens[i]->oop_iterate(cl);
 835   }
 836 }
 837 
 838 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 839   for (int i = 0; i < _n_gens; i++) {
 840     _gens[i]->object_iterate(cl);
 841   }
 842 }
 843 
 844 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 845   for (int i = 0; i < _n_gens; i++) {
 846     _gens[i]->safe_object_iterate(cl);
 847   }
 848 }
 849 
 850 Space* GenCollectedHeap::space_containing(const void* addr) const {
 851   for (int i = 0; i < _n_gens; i++) {
 852     Space* res = _gens[i]->space_containing(addr);
 853     if (res != NULL) return res;
 854   }
 855   // Otherwise...
 856   assert(false, "Could not find containing space");
 857   return NULL;
 858 }
 859 
 860 
 861 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 862   assert(is_in_reserved(addr), "block_start of address outside of heap");
 863   for (int i = 0; i < _n_gens; i++) {
 864     if (_gens[i]->is_in_reserved(addr)) {
 865       assert(_gens[i]->is_in(addr),
 866              "addr should be in allocated part of generation");
 867       return _gens[i]->block_start(addr);
 868     }
 869   }
 870   assert(false, "Some generation should contain the address");
 871   return NULL;
 872 }
 873 
 874 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 875   assert(is_in_reserved(addr), "block_size of address outside of heap");
 876   for (int i = 0; i < _n_gens; i++) {
 877     if (_gens[i]->is_in_reserved(addr)) {
 878       assert(_gens[i]->is_in(addr),
 879              "addr should be in allocated part of generation");
 880       return _gens[i]->block_size(addr);
 881     }
 882   }
 883   assert(false, "Some generation should contain the address");
 884   return 0;
 885 }
 886 
 887 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 888   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 889   assert(block_start(addr) == addr, "addr must be a block start");
 890   for (int i = 0; i < _n_gens; i++) {
 891     if (_gens[i]->is_in_reserved(addr)) {
 892       return _gens[i]->block_is_obj(addr);
 893     }
 894   }
 895   assert(false, "Some generation should contain the address");
 896   return false;
 897 }
 898 
 899 bool GenCollectedHeap::supports_tlab_allocation() const {
 900   for (int i = 0; i < _n_gens; i += 1) {
 901     if (_gens[i]->supports_tlab_allocation()) {
 902       return true;
 903     }
 904   }
 905   return false;
 906 }
 907 
 908 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 909   size_t result = 0;
 910   for (int i = 0; i < _n_gens; i += 1) {
 911     if (_gens[i]->supports_tlab_allocation()) {
 912       result += _gens[i]->tlab_capacity();
 913     }
 914   }
 915   return result;
 916 }
 917 
 918 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 919   size_t result = 0;
 920   for (int i = 0; i < _n_gens; i += 1) {
 921     if (_gens[i]->supports_tlab_allocation()) {
 922       result += _gens[i]->tlab_used();
 923     }
 924   }
 925   return result;
 926 }
 927 
 928 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 929   size_t result = 0;
 930   for (int i = 0; i < _n_gens; i += 1) {
 931     if (_gens[i]->supports_tlab_allocation()) {
 932       result += _gens[i]->unsafe_max_tlab_alloc();
 933     }
 934   }
 935   return result;
 936 }
 937 
 938 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 939   bool gc_overhead_limit_was_exceeded;
 940   return collector_policy()->mem_allocate_work(size /* size */,
 941                                                true /* is_tlab */,
 942                                                &gc_overhead_limit_was_exceeded);
 943 }
 944 
 945 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 946 // from the list headed by "*prev_ptr".
 947 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 948   bool first = true;
 949   size_t min_size = 0;   // "first" makes this conceptually infinite.
 950   ScratchBlock **smallest_ptr, *smallest;
 951   ScratchBlock  *cur = *prev_ptr;
 952   while (cur) {
 953     assert(*prev_ptr == cur, "just checking");
 954     if (first || cur->num_words < min_size) {
 955       smallest_ptr = prev_ptr;
 956       smallest     = cur;
 957       min_size     = smallest->num_words;
 958       first        = false;
 959     }
 960     prev_ptr = &cur->next;
 961     cur     =  cur->next;
 962   }
 963   smallest      = *smallest_ptr;
 964   *smallest_ptr = smallest->next;
 965   return smallest;
 966 }
 967 
 968 // Sort the scratch block list headed by res into decreasing size order,
 969 // and set "res" to the result.
 970 static void sort_scratch_list(ScratchBlock*& list) {
 971   ScratchBlock* sorted = NULL;
 972   ScratchBlock* unsorted = list;
 973   while (unsorted) {
 974     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 975     smallest->next  = sorted;
 976     sorted          = smallest;
 977   }
 978   list = sorted;
 979 }
 980 
 981 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 982                                                size_t max_alloc_words) {
 983   ScratchBlock* res = NULL;
 984   for (int i = 0; i < _n_gens; i++) {
 985     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
 986   }
 987   sort_scratch_list(res);
 988   return res;
 989 }
 990 
 991 void GenCollectedHeap::release_scratch() {
 992   for (int i = 0; i < _n_gens; i++) {
 993     _gens[i]->reset_scratch();
 994   }
 995 }
 996 
 997 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 998   void do_generation(Generation* gen) {
 999     gen->prepare_for_verify();
1000   }
1001 };
1002 
1003 void GenCollectedHeap::prepare_for_verify() {
1004   ensure_parsability(false);        // no need to retire TLABs
1005   GenPrepareForVerifyClosure blk;
1006   generation_iterate(&blk, false);
1007 }
1008 
1009 
1010 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1011                                           bool old_to_young) {
1012   if (old_to_young) {
1013     for (int i = _n_gens-1; i >= 0; i--) {
1014       cl->do_generation(_gens[i]);
1015     }
1016   } else {
1017     for (int i = 0; i < _n_gens; i++) {
1018       cl->do_generation(_gens[i]);
1019     }
1020   }
1021 }
1022 
1023 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1024   for (int i = 0; i < _n_gens; i++) {
1025     _gens[i]->space_iterate(cl, true);
1026   }
1027 }
1028 
1029 bool GenCollectedHeap::is_maximal_no_gc() const {
1030   for (int i = 0; i < _n_gens; i++) {
1031     if (!_gens[i]->is_maximal_no_gc()) {
1032       return false;
1033     }
1034   }
1035   return true;
1036 }
1037 
1038 void GenCollectedHeap::save_marks() {
1039   for (int i = 0; i < _n_gens; i++) {
1040     _gens[i]->save_marks();
1041   }
1042 }
1043 
1044 GenCollectedHeap* GenCollectedHeap::heap() {
1045   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1046   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1047   return _gch;
1048 }
1049 
1050 
1051 void GenCollectedHeap::prepare_for_compaction() {
1052   guarantee(_n_gens = 2, "Wrong number of generations");
1053   Generation* old_gen = _gens[1];
1054   // Start by compacting into same gen.
1055   CompactPoint cp(old_gen, NULL, NULL);
1056   old_gen->prepare_for_compaction(&cp);
1057   Generation* young_gen = _gens[0];
1058   young_gen->prepare_for_compaction(&cp);
1059 }
1060 
1061 GCStats* GenCollectedHeap::gc_stats(int level) const {
1062   return _gens[level]->gc_stats();
1063 }
1064 
1065 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1066   for (int i = _n_gens-1; i >= 0; i--) {
1067     Generation* g = _gens[i];
1068     if (!silent) {
1069       gclog_or_tty->print("%s", g->name());
1070       gclog_or_tty->print(" ");
1071     }
1072     g->verify();
1073   }
1074   if (!silent) {
1075     gclog_or_tty->print("remset ");
1076   }
1077   rem_set()->verify();
1078 }
1079 
1080 void GenCollectedHeap::print_on(outputStream* st) const {
1081   for (int i = 0; i < _n_gens; i++) {
1082     _gens[i]->print_on(st);
1083   }
1084   MetaspaceAux::print_on(st);
1085 }
1086 
1087 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1088   if (workers() != NULL) {
1089     workers()->threads_do(tc);
1090   }
1091 #if INCLUDE_ALL_GCS
1092   if (UseConcMarkSweepGC) {
1093     ConcurrentMarkSweepThread::threads_do(tc);
1094   }
1095 #endif // INCLUDE_ALL_GCS
1096 }
1097 
1098 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1099 #if INCLUDE_ALL_GCS
1100   if (UseParNewGC) {
1101     workers()->print_worker_threads_on(st);
1102   }
1103   if (UseConcMarkSweepGC) {
1104     ConcurrentMarkSweepThread::print_all_on(st);
1105   }
1106 #endif // INCLUDE_ALL_GCS
1107 }
1108 
1109 void GenCollectedHeap::print_on_error(outputStream* st) const {
1110   this->CollectedHeap::print_on_error(st);
1111 
1112 #if INCLUDE_ALL_GCS
1113   if (UseConcMarkSweepGC) {
1114     st->cr();
1115     CMSCollector::print_on_error(st);
1116   }
1117 #endif // INCLUDE_ALL_GCS
1118 }
1119 
1120 void GenCollectedHeap::print_tracing_info() const {
1121   if (TraceYoungGenTime) {
1122     get_gen(0)->print_summary_info();
1123   }
1124   if (TraceOldGenTime) {
1125     get_gen(1)->print_summary_info();
1126   }
1127 }
1128 
1129 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1130   if (PrintGCDetails && Verbose) {
1131     gclog_or_tty->print(" "  SIZE_FORMAT
1132                         "->" SIZE_FORMAT
1133                         "("  SIZE_FORMAT ")",
1134                         prev_used, used(), capacity());
1135   } else {
1136     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1137                         "->" SIZE_FORMAT "K"
1138                         "("  SIZE_FORMAT "K)",
1139                         prev_used / K, used() / K, capacity() / K);
1140   }
1141 }
1142 
1143 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1144  private:
1145   bool _full;
1146  public:
1147   void do_generation(Generation* gen) {
1148     gen->gc_prologue(_full);
1149   }
1150   GenGCPrologueClosure(bool full) : _full(full) {};
1151 };
1152 
1153 void GenCollectedHeap::gc_prologue(bool full) {
1154   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1155 
1156   always_do_update_barrier = false;
1157   // Fill TLAB's and such
1158   CollectedHeap::accumulate_statistics_all_tlabs();
1159   ensure_parsability(true);   // retire TLABs
1160 
1161   // Walk generations
1162   GenGCPrologueClosure blk(full);
1163   generation_iterate(&blk, false);  // not old-to-young.
1164 };
1165 
1166 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1167  private:
1168   bool _full;
1169  public:
1170   void do_generation(Generation* gen) {
1171     gen->gc_epilogue(_full);
1172   }
1173   GenGCEpilogueClosure(bool full) : _full(full) {};
1174 };
1175 
1176 void GenCollectedHeap::gc_epilogue(bool full) {
1177 #ifdef COMPILER2
1178   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1179   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1180   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1181 #endif /* COMPILER2 */
1182 
1183   resize_all_tlabs();
1184 
1185   GenGCEpilogueClosure blk(full);
1186   generation_iterate(&blk, false);  // not old-to-young.
1187 
1188   if (!CleanChunkPoolAsync) {
1189     Chunk::clean_chunk_pool();
1190   }
1191 
1192   MetaspaceCounters::update_performance_counters();
1193   CompressedClassSpaceCounters::update_performance_counters();
1194 
1195   always_do_update_barrier = UseConcMarkSweepGC;
1196 };
1197 
1198 #ifndef PRODUCT
1199 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1200  private:
1201  public:
1202   void do_generation(Generation* gen) {
1203     gen->record_spaces_top();
1204   }
1205 };
1206 
1207 void GenCollectedHeap::record_gen_tops_before_GC() {
1208   if (ZapUnusedHeapArea) {
1209     GenGCSaveTopsBeforeGCClosure blk;
1210     generation_iterate(&blk, false);  // not old-to-young.
1211   }
1212 }
1213 #endif  // not PRODUCT
1214 
1215 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1216  public:
1217   void do_generation(Generation* gen) {
1218     gen->ensure_parsability();
1219   }
1220 };
1221 
1222 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1223   CollectedHeap::ensure_parsability(retire_tlabs);
1224   GenEnsureParsabilityClosure ep_cl;
1225   generation_iterate(&ep_cl, false);
1226 }
1227 
1228 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1229                                               oop obj,
1230                                               size_t obj_size) {
1231   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1232   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1233   HeapWord* result = NULL;
1234 
1235   result = old_gen->expand_and_allocate(obj_size, false);
1236 
1237   if (result != NULL) {
1238     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1239   }
1240   return oop(result);
1241 }
1242 
1243 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1244   jlong _time;   // in ms
1245   jlong _now;    // in ms
1246 
1247  public:
1248   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1249 
1250   jlong time() { return _time; }
1251 
1252   void do_generation(Generation* gen) {
1253     _time = MIN2(_time, gen->time_of_last_gc(_now));
1254   }
1255 };
1256 
1257 jlong GenCollectedHeap::millis_since_last_gc() {
1258   // We need a monotonically non-decreasing time in ms but
1259   // os::javaTimeMillis() does not guarantee monotonicity.
1260   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1261   GenTimeOfLastGCClosure tolgc_cl(now);
1262   // iterate over generations getting the oldest
1263   // time that a generation was collected
1264   generation_iterate(&tolgc_cl, false);
1265 
1266   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1267   // provided the underlying platform provides such a time source
1268   // (and it is bug free). So we still have to guard against getting
1269   // back a time later than 'now'.
1270   jlong retVal = now - tolgc_cl.time();
1271   if (retVal < 0) {
1272     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
1273     return 0;
1274   }
1275   return retVal;
1276 }