src/share/vm/memory/sharedHeap.hpp

Print this page




  52 // In
  53 //    1) ParallelTaskTerminator::offer_termination() where _n_threads
  54 //    must be set to the correct value so that count of workers that
  55 //    have offered termination will exactly match the number
  56 //    working on the task.  Tasks such as those derived from GCTask
  57 //    use ParallelTaskTerminator's.  Tasks that want load balancing
  58 //    by work stealing use this method to gauge completion.
  59 //    2) SubTasksDone has a variable _n_threads that is used in
  60 //    all_tasks_completed() to determine completion.  all_tasks_complete()
  61 //    counts the number of tasks that have been done and then reset
  62 //    the SubTasksDone so that it can be used again.  When the number of
  63 //    tasks is set to the number of GC workers, then _n_threads must
  64 //    be set to the number of active GC workers. G1CollectedHeap,
  65 //    HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone.
  66 //    This seems too many.
  67 //    3) SequentialSubTasksDone has an _n_threads that is used in
  68 //    a way similar to SubTasksDone and has the same dependency on the
  69 //    number of active GC workers.  CompactibleFreeListSpace and Space
  70 //    have SequentialSubTasksDone's.
  71 // Example of using SubTasksDone and SequentialSubTasksDone
  72 // G1CollectedHeap::g1_process_strong_roots() calls
  73 //  process_strong_roots(false, // no scoping; this is parallel code
  74 //                       is_scavenging, so,
  75 //                       &buf_scan_non_heap_roots,
  76 //                       &eager_scan_code_roots);
  77 //  which delegates to SharedHeap::process_strong_roots() and uses
  78 //  SubTasksDone* _process_strong_tasks to claim tasks.
  79 //  process_strong_roots() calls
  80 //      rem_set()->younger_refs_iterate()
  81 //  to scan the card table and which eventually calls down into
  82 //  CardTableModRefBS::par_non_clean_card_iterate_work().  This method
  83 //  uses SequentialSubTasksDone* _pst to claim tasks.
  84 //  Both SubTasksDone and SequentialSubTasksDone call their method
  85 //  all_tasks_completed() to count the number of GC workers that have
  86 //  finished their work.  That logic is "when all the workers are
  87 //  finished the tasks are finished".
  88 //
  89 //  The pattern that appears  in the code is to set _n_threads
  90 //  to a value > 1 before a task that you would like executed in parallel
  91 //  and then to set it to 0 after that task has completed.  A value of
  92 //  0 is a "special" value in set_n_threads() which translates to
  93 //  setting _n_threads to 1.
  94 //
  95 //  Some code uses _n_termination to decide if work should be done in
  96 //  parallel.  The notorious possibly_parallel_oops_do() in threads.cpp
  97 //  is an example of such code.  Look for variable "is_par" for other
  98 //  examples.
  99 //


 165 
 166   // Iterate over all spaces in use in the heap, in an undefined order.
 167   virtual void space_iterate(SpaceClosure* cl) = 0;
 168 
 169   // A SharedHeap will contain some number of spaces.  This finds the
 170   // space whose reserved area contains the given address, or else returns
 171   // NULL.
 172   virtual Space* space_containing(const void* addr) const = 0;
 173 
 174   bool no_gc_in_progress() { return !is_gc_active(); }
 175 
 176   // Some collectors will perform "process_strong_roots" in parallel.
 177   // Such a call will involve claiming some fine-grained tasks, such as
 178   // scanning of threads.  To make this process simpler, we provide the
 179   // "strong_roots_parity()" method.  Collectors that start parallel tasks
 180   // whose threads invoke "process_strong_roots" must
 181   // call "change_strong_roots_parity" in sequential code starting such a
 182   // task.  (This also means that a parallel thread may only call
 183   // process_strong_roots once.)
 184   //
 185   // For calls to process_strong_roots by sequential code, the parity is
 186   // updated automatically.
 187   //
 188   // The idea is that objects representing fine-grained tasks, such as
 189   // threads, will contain a "parity" field.  A task will is claimed in the
 190   // current "process_strong_roots" call only if its parity field is the
 191   // same as the "strong_roots_parity"; task claiming is accomplished by
 192   // updating the parity field to the strong_roots_parity with a CAS.
 193   //
 194   // If the client meats this spec, then strong_roots_parity() will have
 195   // the following properties:
 196   //   a) to return a different value than was returned before the last
 197   //      call to change_strong_roots_parity, and
 198   //   c) to never return a distinguished value (zero) with which such
 199   //      task-claiming variables may be initialized, to indicate "never
 200   //      claimed".
 201  private:
 202   void change_strong_roots_parity();
 203  public:
 204   int strong_roots_parity() { return _strong_roots_parity; }
 205 
 206   // Call these in sequential code around process_strong_roots.
 207   // strong_roots_prologue calls change_strong_roots_parity, if
 208   // parallel tasks are enabled.
 209   class StrongRootsScope : public MarkingCodeBlobClosure::MarkScope {






 210   public:
 211     StrongRootsScope(SharedHeap* outer, bool activate = true);
 212     ~StrongRootsScope();





 213   };
 214   friend class StrongRootsScope;
 215 











 216   enum ScanningOption {
 217     SO_None                = 0x0,
 218     SO_AllClasses          = 0x1,
 219     SO_SystemClasses       = 0x2,
 220     SO_Strings             = 0x4,
 221     SO_AllCodeCache        = 0x8,
 222     SO_ScavengeCodeCache   = 0x10
 223   };
 224 
 225   FlexibleWorkGang* workers() const { return _workers; }
 226 
 227   // Invoke the "do_oop" method the closure "roots" on all root locations.
 228   // The "so" argument determines which roots the closure is applied to:
 229   // "SO_None" does none;
 230   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
 231   // "SO_SystemClasses" to all the "system" classes and loaders;
 232   // "SO_Strings" applies the closure to all entries in StringTable;
 233   // "SO_AllCodeCache" applies the closure to all elements of the CodeCache.
 234   // "SO_ScavengeCodeCache" applies the closure to elements on the scavenge root list in the CodeCache.












 235   void process_strong_roots(bool activate_scope,
 236                             ScanningOption so,
 237                             OopClosure* roots,
 238                             KlassClosure* klass_closure);


 239 
 240   // Apply "root_closure" to the JNI weak roots..
 241   void process_weak_roots(OopClosure* root_closure);
 242 
 243   // The functions below are helper functions that a subclass of
 244   // "SharedHeap" can use in the implementation of its virtual
 245   // functions.
 246 
 247 public:
 248 
 249   // Do anything common to GC's.
 250   virtual void gc_prologue(bool full) = 0;
 251   virtual void gc_epilogue(bool full) = 0;
 252 
 253   // Sets the number of parallel threads that will be doing tasks
 254   // (such as process strong roots) subsequently.
 255   virtual void set_par_threads(uint t);
 256 
 257   int n_termination();
 258   void set_n_termination(int t);
 259 
 260   //
 261   // New methods from CollectedHeap
 262   //
 263 
 264   // Some utilities.
 265   void print_size_transition(outputStream* out,
 266                              size_t bytes_before,
 267                              size_t bytes_after,
 268                              size_t capacity);
 269 };
 270 
 271 inline SharedHeap::ScanningOption operator|(SharedHeap::ScanningOption so0, SharedHeap::ScanningOption so1) {
 272   return static_cast<SharedHeap::ScanningOption>(static_cast<int>(so0) | static_cast<int>(so1));
 273 }
 274 


  52 // In
  53 //    1) ParallelTaskTerminator::offer_termination() where _n_threads
  54 //    must be set to the correct value so that count of workers that
  55 //    have offered termination will exactly match the number
  56 //    working on the task.  Tasks such as those derived from GCTask
  57 //    use ParallelTaskTerminator's.  Tasks that want load balancing
  58 //    by work stealing use this method to gauge completion.
  59 //    2) SubTasksDone has a variable _n_threads that is used in
  60 //    all_tasks_completed() to determine completion.  all_tasks_complete()
  61 //    counts the number of tasks that have been done and then reset
  62 //    the SubTasksDone so that it can be used again.  When the number of
  63 //    tasks is set to the number of GC workers, then _n_threads must
  64 //    be set to the number of active GC workers. G1CollectedHeap,
  65 //    HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone.
  66 //    This seems too many.
  67 //    3) SequentialSubTasksDone has an _n_threads that is used in
  68 //    a way similar to SubTasksDone and has the same dependency on the
  69 //    number of active GC workers.  CompactibleFreeListSpace and Space
  70 //    have SequentialSubTasksDone's.
  71 // Example of using SubTasksDone and SequentialSubTasksDone
  72 // G1CollectedHeap::g1_process_roots()
  73 //  to SharedHeap::process_roots() and uses




  74 //  SubTasksDone* _process_strong_tasks to claim tasks.
  75 //  process_roots() calls
  76 //      rem_set()->younger_refs_iterate()
  77 //  to scan the card table and which eventually calls down into
  78 //  CardTableModRefBS::par_non_clean_card_iterate_work().  This method
  79 //  uses SequentialSubTasksDone* _pst to claim tasks.
  80 //  Both SubTasksDone and SequentialSubTasksDone call their method
  81 //  all_tasks_completed() to count the number of GC workers that have
  82 //  finished their work.  That logic is "when all the workers are
  83 //  finished the tasks are finished".
  84 //
  85 //  The pattern that appears  in the code is to set _n_threads
  86 //  to a value > 1 before a task that you would like executed in parallel
  87 //  and then to set it to 0 after that task has completed.  A value of
  88 //  0 is a "special" value in set_n_threads() which translates to
  89 //  setting _n_threads to 1.
  90 //
  91 //  Some code uses _n_termination to decide if work should be done in
  92 //  parallel.  The notorious possibly_parallel_oops_do() in threads.cpp
  93 //  is an example of such code.  Look for variable "is_par" for other
  94 //  examples.
  95 //


 161 
 162   // Iterate over all spaces in use in the heap, in an undefined order.
 163   virtual void space_iterate(SpaceClosure* cl) = 0;
 164 
 165   // A SharedHeap will contain some number of spaces.  This finds the
 166   // space whose reserved area contains the given address, or else returns
 167   // NULL.
 168   virtual Space* space_containing(const void* addr) const = 0;
 169 
 170   bool no_gc_in_progress() { return !is_gc_active(); }
 171 
 172   // Some collectors will perform "process_strong_roots" in parallel.
 173   // Such a call will involve claiming some fine-grained tasks, such as
 174   // scanning of threads.  To make this process simpler, we provide the
 175   // "strong_roots_parity()" method.  Collectors that start parallel tasks
 176   // whose threads invoke "process_strong_roots" must
 177   // call "change_strong_roots_parity" in sequential code starting such a
 178   // task.  (This also means that a parallel thread may only call
 179   // process_strong_roots once.)
 180   //
 181   // For calls to process_roots by sequential code, the parity is
 182   // updated automatically.
 183   //
 184   // The idea is that objects representing fine-grained tasks, such as
 185   // threads, will contain a "parity" field.  A task will is claimed in the
 186   // current "process_roots" call only if its parity field is the
 187   // same as the "strong_roots_parity"; task claiming is accomplished by
 188   // updating the parity field to the strong_roots_parity with a CAS.
 189   //
 190   // If the client meats this spec, then strong_roots_parity() will have
 191   // the following properties:
 192   //   a) to return a different value than was returned before the last
 193   //      call to change_strong_roots_parity, and
 194   //   c) to never return a distinguished value (zero) with which such
 195   //      task-claiming variables may be initialized, to indicate "never
 196   //      claimed".


 197  public:
 198   int strong_roots_parity() { return _strong_roots_parity; }
 199 
 200   // Call these in sequential code around process_roots.
 201   // strong_roots_prologue calls change_strong_roots_parity, if
 202   // parallel tasks are enabled.
 203   class StrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
 204     // Used to implement the Thread work barrier.
 205     static Monitor* _lock;
 206 
 207     SharedHeap*   _sh;
 208     volatile jint _n_workers_done_with_threads;
 209 
 210    public:
 211     StrongRootsScope(SharedHeap* heap, bool activate = true);
 212     ~StrongRootsScope();
 213 
 214     // Mark that this thread is done with the Threads work.
 215     void mark_worker_done_with_threads(uint n_workers);
 216     // Wait until all n_workers are done with the Threads work.
 217     void wait_until_all_workers_done_with_threads(uint n_workers);
 218   };
 219   friend class StrongRootsScope;
 220 
 221   // The current active StrongRootScope
 222   StrongRootsScope* _strong_roots_scope;
 223 
 224   StrongRootsScope* active_strong_roots_scope() const;
 225 
 226  private:
 227   void register_strong_roots_scope(StrongRootsScope* scope);
 228   void unregister_strong_roots_scope(StrongRootsScope* scope);
 229   void change_strong_roots_parity();
 230 
 231  public:
 232   enum ScanningOption {
 233     SO_None                =  0x0,



 234     SO_AllCodeCache        =  0x8,
 235     SO_ScavengeCodeCache   = 0x10
 236   };
 237 
 238   FlexibleWorkGang* workers() const { return _workers; }
 239 
 240   // Invoke the "do_oop" method the closure "roots" on all root locations.
 241   // The "so" argument determines which roots the closure is applied to:
 242   // "SO_None" does none;



 243   // "SO_AllCodeCache" applies the closure to all elements of the CodeCache.
 244   // "SO_ScavengeCodeCache" applies the closure to elements on the scavenge root list in the CodeCache.
 245   void process_roots(bool activate_scope,
 246                      ScanningOption so,
 247                      OopClosure* strong_roots,
 248                      OopClosure* weak_roots,
 249                      CLDClosure* strong_cld_closure,
 250                      CLDClosure* weak_cld_closure,
 251                      CodeBlobClosure* code_roots);
 252   void process_all_roots(bool activate_scope,
 253                          ScanningOption so,
 254                          OopClosure* roots,
 255                          CLDClosure* cld_closure,
 256                          CodeBlobClosure* code_roots);
 257   void process_strong_roots(bool activate_scope,
 258                             ScanningOption so,
 259                             OopClosure* roots,
 260                             CLDClosure* cld_closure,
 261                             CodeBlobClosure* code_roots);
 262 
 263 
 264   // Apply "root_closure" to the JNI weak roots..
 265   void process_weak_roots(OopClosure* root_closure);
 266 
 267   // The functions below are helper functions that a subclass of
 268   // "SharedHeap" can use in the implementation of its virtual
 269   // functions.
 270 
 271 public:
 272 
 273   // Do anything common to GC's.
 274   virtual void gc_prologue(bool full) = 0;
 275   virtual void gc_epilogue(bool full) = 0;
 276 
 277   // Sets the number of parallel threads that will be doing tasks
 278   // (such as process roots) subsequently.
 279   virtual void set_par_threads(uint t);
 280 
 281   int n_termination();
 282   void set_n_termination(int t);
 283 
 284   //
 285   // New methods from CollectedHeap
 286   //
 287 
 288   // Some utilities.
 289   void print_size_transition(outputStream* out,
 290                              size_t bytes_before,
 291                              size_t bytes_after,
 292                              size_t capacity);
 293 };
 294 
 295 inline SharedHeap::ScanningOption operator|(SharedHeap::ScanningOption so0, SharedHeap::ScanningOption so1) {
 296   return static_cast<SharedHeap::ScanningOption>(static_cast<int>(so0) | static_cast<int>(so1));
 297 }
 298