1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
  27 #endif
  28 
  29 #include "precompiled.hpp"
  30 #include "classfile/metadataOnStackMark.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  34 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  35 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  36 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  37 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  38 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  39 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  40 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  41 #include "gc_implementation/g1/g1EvacFailure.hpp"
  42 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  43 #include "gc_implementation/g1/g1Log.hpp"
  44 #include "gc_implementation/g1/g1MarkSweep.hpp"
  45 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  46 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  47 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  49 #include "gc_implementation/g1/g1StringDedup.hpp"
  50 #include "gc_implementation/g1/g1YCTypes.hpp"
  51 #include "gc_implementation/g1/heapRegion.inline.hpp"
  52 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  53 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  54 #include "gc_implementation/g1/vm_operations_g1.hpp"
  55 #include "gc_implementation/shared/gcHeapSummary.hpp"
  56 #include "gc_implementation/shared/gcTimer.hpp"
  57 #include "gc_implementation/shared/gcTrace.hpp"
  58 #include "gc_implementation/shared/gcTraceTime.hpp"
  59 #include "gc_implementation/shared/isGCActiveMark.hpp"
  60 #include "memory/allocation.hpp"
  61 #include "memory/gcLocker.inline.hpp"
  62 #include "memory/generationSpec.hpp"
  63 #include "memory/iterator.hpp"
  64 #include "memory/referenceProcessor.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "oops/oop.pcgc.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 
  70 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  71 
  72 // turn it on so that the contents of the young list (scan-only /
  73 // to-be-collected) are printed at "strategic" points before / during
  74 // / after the collection --- this is useful for debugging
  75 #define YOUNG_LIST_VERBOSE 0
  76 // CURRENT STATUS
  77 // This file is under construction.  Search for "FIXME".
  78 
  79 // INVARIANTS/NOTES
  80 //
  81 // All allocation activity covered by the G1CollectedHeap interface is
  82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  83 // and allocate_new_tlab, which are the "entry" points to the
  84 // allocation code from the rest of the JVM.  (Note that this does not
  85 // apply to TLAB allocation, which is not part of this interface: it
  86 // is done by clients of this interface.)
  87 
  88 // Notes on implementation of parallelism in different tasks.
  89 //
  90 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  91 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  92 // It does use run_task() which sets _n_workers in the task.
  93 // G1ParTask executes g1_process_roots() ->
  94 // SharedHeap::process_roots() which calls eventually to
  95 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  96 // SequentialSubTasksDone.  SharedHeap::process_roots() also
  97 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  98 //
  99 
 100 // Local to this file.
 101 
 102 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 103   bool _concurrent;
 104 public:
 105   RefineCardTableEntryClosure() : _concurrent(true) { }
 106 
 107   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 108     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 109     // This path is executed by the concurrent refine or mutator threads,
 110     // concurrently, and so we do not care if card_ptr contains references
 111     // that point into the collection set.
 112     assert(!oops_into_cset, "should be");
 113 
 114     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 115       // Caller will actually yield.
 116       return false;
 117     }
 118     // Otherwise, we finished successfully; return true.
 119     return true;
 120   }
 121 
 122   void set_concurrent(bool b) { _concurrent = b; }
 123 };
 124 
 125 
 126 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 127   size_t _num_processed;
 128   CardTableModRefBS* _ctbs;
 129   int _histo[256];
 130 
 131  public:
 132   ClearLoggedCardTableEntryClosure() :
 133     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 134   {
 135     for (int i = 0; i < 256; i++) _histo[i] = 0;
 136   }
 137 
 138   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 139     unsigned char* ujb = (unsigned char*)card_ptr;
 140     int ind = (int)(*ujb);
 141     _histo[ind]++;
 142 
 143     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 144     _num_processed++;
 145 
 146     return true;
 147   }
 148 
 149   size_t num_processed() { return _num_processed; }
 150 
 151   void print_histo() {
 152     gclog_or_tty->print_cr("Card table value histogram:");
 153     for (int i = 0; i < 256; i++) {
 154       if (_histo[i] != 0) {
 155         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 156       }
 157     }
 158   }
 159 };
 160 
 161 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 162  private:
 163   size_t _num_processed;
 164 
 165  public:
 166   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 167 
 168   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 169     *card_ptr = CardTableModRefBS::dirty_card_val();
 170     _num_processed++;
 171     return true;
 172   }
 173 
 174   size_t num_processed() const { return _num_processed; }
 175 };
 176 
 177 YoungList::YoungList(G1CollectedHeap* g1h) :
 178     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 179     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 180   guarantee(check_list_empty(false), "just making sure...");
 181 }
 182 
 183 void YoungList::push_region(HeapRegion *hr) {
 184   assert(!hr->is_young(), "should not already be young");
 185   assert(hr->get_next_young_region() == NULL, "cause it should!");
 186 
 187   hr->set_next_young_region(_head);
 188   _head = hr;
 189 
 190   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 191   ++_length;
 192 }
 193 
 194 void YoungList::add_survivor_region(HeapRegion* hr) {
 195   assert(hr->is_survivor(), "should be flagged as survivor region");
 196   assert(hr->get_next_young_region() == NULL, "cause it should!");
 197 
 198   hr->set_next_young_region(_survivor_head);
 199   if (_survivor_head == NULL) {
 200     _survivor_tail = hr;
 201   }
 202   _survivor_head = hr;
 203   ++_survivor_length;
 204 }
 205 
 206 void YoungList::empty_list(HeapRegion* list) {
 207   while (list != NULL) {
 208     HeapRegion* next = list->get_next_young_region();
 209     list->set_next_young_region(NULL);
 210     list->uninstall_surv_rate_group();
 211     // This is called before a Full GC and all the non-empty /
 212     // non-humongous regions at the end of the Full GC will end up as
 213     // old anyway.
 214     list->set_old();
 215     list = next;
 216   }
 217 }
 218 
 219 void YoungList::empty_list() {
 220   assert(check_list_well_formed(), "young list should be well formed");
 221 
 222   empty_list(_head);
 223   _head = NULL;
 224   _length = 0;
 225 
 226   empty_list(_survivor_head);
 227   _survivor_head = NULL;
 228   _survivor_tail = NULL;
 229   _survivor_length = 0;
 230 
 231   _last_sampled_rs_lengths = 0;
 232 
 233   assert(check_list_empty(false), "just making sure...");
 234 }
 235 
 236 bool YoungList::check_list_well_formed() {
 237   bool ret = true;
 238 
 239   uint length = 0;
 240   HeapRegion* curr = _head;
 241   HeapRegion* last = NULL;
 242   while (curr != NULL) {
 243     if (!curr->is_young()) {
 244       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 245                              "incorrectly tagged (y: %d, surv: %d)",
 246                              curr->bottom(), curr->end(),
 247                              curr->is_young(), curr->is_survivor());
 248       ret = false;
 249     }
 250     ++length;
 251     last = curr;
 252     curr = curr->get_next_young_region();
 253   }
 254   ret = ret && (length == _length);
 255 
 256   if (!ret) {
 257     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 258     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 259                            length, _length);
 260   }
 261 
 262   return ret;
 263 }
 264 
 265 bool YoungList::check_list_empty(bool check_sample) {
 266   bool ret = true;
 267 
 268   if (_length != 0) {
 269     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 270                   _length);
 271     ret = false;
 272   }
 273   if (check_sample && _last_sampled_rs_lengths != 0) {
 274     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 275     ret = false;
 276   }
 277   if (_head != NULL) {
 278     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 279     ret = false;
 280   }
 281   if (!ret) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 283   }
 284 
 285   return ret;
 286 }
 287 
 288 void
 289 YoungList::rs_length_sampling_init() {
 290   _sampled_rs_lengths = 0;
 291   _curr               = _head;
 292 }
 293 
 294 bool
 295 YoungList::rs_length_sampling_more() {
 296   return _curr != NULL;
 297 }
 298 
 299 void
 300 YoungList::rs_length_sampling_next() {
 301   assert( _curr != NULL, "invariant" );
 302   size_t rs_length = _curr->rem_set()->occupied();
 303 
 304   _sampled_rs_lengths += rs_length;
 305 
 306   // The current region may not yet have been added to the
 307   // incremental collection set (it gets added when it is
 308   // retired as the current allocation region).
 309   if (_curr->in_collection_set()) {
 310     // Update the collection set policy information for this region
 311     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 312   }
 313 
 314   _curr = _curr->get_next_young_region();
 315   if (_curr == NULL) {
 316     _last_sampled_rs_lengths = _sampled_rs_lengths;
 317     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 318   }
 319 }
 320 
 321 void
 322 YoungList::reset_auxilary_lists() {
 323   guarantee( is_empty(), "young list should be empty" );
 324   assert(check_list_well_formed(), "young list should be well formed");
 325 
 326   // Add survivor regions to SurvRateGroup.
 327   _g1h->g1_policy()->note_start_adding_survivor_regions();
 328   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 329 
 330   int young_index_in_cset = 0;
 331   for (HeapRegion* curr = _survivor_head;
 332        curr != NULL;
 333        curr = curr->get_next_young_region()) {
 334     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 335 
 336     // The region is a non-empty survivor so let's add it to
 337     // the incremental collection set for the next evacuation
 338     // pause.
 339     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 340     young_index_in_cset += 1;
 341   }
 342   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 343   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 344 
 345   _head   = _survivor_head;
 346   _length = _survivor_length;
 347   if (_survivor_head != NULL) {
 348     assert(_survivor_tail != NULL, "cause it shouldn't be");
 349     assert(_survivor_length > 0, "invariant");
 350     _survivor_tail->set_next_young_region(NULL);
 351   }
 352 
 353   // Don't clear the survivor list handles until the start of
 354   // the next evacuation pause - we need it in order to re-tag
 355   // the survivor regions from this evacuation pause as 'young'
 356   // at the start of the next.
 357 
 358   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 359 
 360   assert(check_list_well_formed(), "young list should be well formed");
 361 }
 362 
 363 void YoungList::print() {
 364   HeapRegion* lists[] = {_head,   _survivor_head};
 365   const char* names[] = {"YOUNG", "SURVIVOR"};
 366 
 367   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 368     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 369     HeapRegion *curr = lists[list];
 370     if (curr == NULL)
 371       gclog_or_tty->print_cr("  empty");
 372     while (curr != NULL) {
 373       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 374                              HR_FORMAT_PARAMS(curr),
 375                              curr->prev_top_at_mark_start(),
 376                              curr->next_top_at_mark_start(),
 377                              curr->age_in_surv_rate_group_cond());
 378       curr = curr->get_next_young_region();
 379     }
 380   }
 381 
 382   gclog_or_tty->cr();
 383 }
 384 
 385 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 386   OtherRegionsTable::invalidate(start_idx, num_regions);
 387 }
 388 
 389 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 390   // The from card cache is not the memory that is actually committed. So we cannot
 391   // take advantage of the zero_filled parameter.
 392   reset_from_card_cache(start_idx, num_regions);
 393 }
 394 
 395 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 396 {
 397   // Claim the right to put the region on the dirty cards region list
 398   // by installing a self pointer.
 399   HeapRegion* next = hr->get_next_dirty_cards_region();
 400   if (next == NULL) {
 401     HeapRegion* res = (HeapRegion*)
 402       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 403                           NULL);
 404     if (res == NULL) {
 405       HeapRegion* head;
 406       do {
 407         // Put the region to the dirty cards region list.
 408         head = _dirty_cards_region_list;
 409         next = (HeapRegion*)
 410           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 411         if (next == head) {
 412           assert(hr->get_next_dirty_cards_region() == hr,
 413                  "hr->get_next_dirty_cards_region() != hr");
 414           if (next == NULL) {
 415             // The last region in the list points to itself.
 416             hr->set_next_dirty_cards_region(hr);
 417           } else {
 418             hr->set_next_dirty_cards_region(next);
 419           }
 420         }
 421       } while (next != head);
 422     }
 423   }
 424 }
 425 
 426 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 427 {
 428   HeapRegion* head;
 429   HeapRegion* hr;
 430   do {
 431     head = _dirty_cards_region_list;
 432     if (head == NULL) {
 433       return NULL;
 434     }
 435     HeapRegion* new_head = head->get_next_dirty_cards_region();
 436     if (head == new_head) {
 437       // The last region.
 438       new_head = NULL;
 439     }
 440     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 441                                           head);
 442   } while (hr != head);
 443   assert(hr != NULL, "invariant");
 444   hr->set_next_dirty_cards_region(NULL);
 445   return hr;
 446 }
 447 
 448 #ifdef ASSERT
 449 // A region is added to the collection set as it is retired
 450 // so an address p can point to a region which will be in the
 451 // collection set but has not yet been retired.  This method
 452 // therefore is only accurate during a GC pause after all
 453 // regions have been retired.  It is used for debugging
 454 // to check if an nmethod has references to objects that can
 455 // be move during a partial collection.  Though it can be
 456 // inaccurate, it is sufficient for G1 because the conservative
 457 // implementation of is_scavengable() for G1 will indicate that
 458 // all nmethods must be scanned during a partial collection.
 459 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 460   if (p == NULL) {
 461     return false;
 462   }
 463   return heap_region_containing(p)->in_collection_set();
 464 }
 465 #endif
 466 
 467 // Returns true if the reference points to an object that
 468 // can move in an incremental collection.
 469 bool G1CollectedHeap::is_scavengable(const void* p) {
 470   HeapRegion* hr = heap_region_containing(p);
 471   return !hr->isHumongous();
 472 }
 473 
 474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 476   CardTableModRefBS* ct_bs = g1_barrier_set();
 477 
 478   // Count the dirty cards at the start.
 479   CountNonCleanMemRegionClosure count1(this);
 480   ct_bs->mod_card_iterate(&count1);
 481   int orig_count = count1.n();
 482 
 483   // First clear the logged cards.
 484   ClearLoggedCardTableEntryClosure clear;
 485   dcqs.apply_closure_to_all_completed_buffers(&clear);
 486   dcqs.iterate_closure_all_threads(&clear, false);
 487   clear.print_histo();
 488 
 489   // Now ensure that there's no dirty cards.
 490   CountNonCleanMemRegionClosure count2(this);
 491   ct_bs->mod_card_iterate(&count2);
 492   if (count2.n() != 0) {
 493     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 494                            count2.n(), orig_count);
 495   }
 496   guarantee(count2.n() == 0, "Card table should be clean.");
 497 
 498   RedirtyLoggedCardTableEntryClosure redirty;
 499   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 500   dcqs.iterate_closure_all_threads(&redirty, false);
 501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 502                          clear.num_processed(), orig_count);
 503   guarantee(redirty.num_processed() == clear.num_processed(),
 504             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 505                     redirty.num_processed(), clear.num_processed()));
 506 
 507   CountNonCleanMemRegionClosure count3(this);
 508   ct_bs->mod_card_iterate(&count3);
 509   if (count3.n() != orig_count) {
 510     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 511                            orig_count, count3.n());
 512     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 513   }
 514 }
 515 
 516 // Private class members.
 517 
 518 G1CollectedHeap* G1CollectedHeap::_g1h;
 519 
 520 // Private methods.
 521 
 522 HeapRegion*
 523 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 524   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 525   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 526     if (!_secondary_free_list.is_empty()) {
 527       if (G1ConcRegionFreeingVerbose) {
 528         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 529                                "secondary_free_list has %u entries",
 530                                _secondary_free_list.length());
 531       }
 532       // It looks as if there are free regions available on the
 533       // secondary_free_list. Let's move them to the free_list and try
 534       // again to allocate from it.
 535       append_secondary_free_list();
 536 
 537       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 538              "empty we should have moved at least one entry to the free_list");
 539       HeapRegion* res = _hrm.allocate_free_region(is_old);
 540       if (G1ConcRegionFreeingVerbose) {
 541         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 542                                "allocated "HR_FORMAT" from secondary_free_list",
 543                                HR_FORMAT_PARAMS(res));
 544       }
 545       return res;
 546     }
 547 
 548     // Wait here until we get notified either when (a) there are no
 549     // more free regions coming or (b) some regions have been moved on
 550     // the secondary_free_list.
 551     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 552   }
 553 
 554   if (G1ConcRegionFreeingVerbose) {
 555     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 556                            "could not allocate from secondary_free_list");
 557   }
 558   return NULL;
 559 }
 560 
 561 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 562   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 563          "the only time we use this to allocate a humongous region is "
 564          "when we are allocating a single humongous region");
 565 
 566   HeapRegion* res;
 567   if (G1StressConcRegionFreeing) {
 568     if (!_secondary_free_list.is_empty()) {
 569       if (G1ConcRegionFreeingVerbose) {
 570         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 571                                "forced to look at the secondary_free_list");
 572       }
 573       res = new_region_try_secondary_free_list(is_old);
 574       if (res != NULL) {
 575         return res;
 576       }
 577     }
 578   }
 579 
 580   res = _hrm.allocate_free_region(is_old);
 581 
 582   if (res == NULL) {
 583     if (G1ConcRegionFreeingVerbose) {
 584       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 585                              "res == NULL, trying the secondary_free_list");
 586     }
 587     res = new_region_try_secondary_free_list(is_old);
 588   }
 589   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 590     // Currently, only attempts to allocate GC alloc regions set
 591     // do_expand to true. So, we should only reach here during a
 592     // safepoint. If this assumption changes we might have to
 593     // reconsider the use of _expand_heap_after_alloc_failure.
 594     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 595 
 596     ergo_verbose1(ErgoHeapSizing,
 597                   "attempt heap expansion",
 598                   ergo_format_reason("region allocation request failed")
 599                   ergo_format_byte("allocation request"),
 600                   word_size * HeapWordSize);
 601     if (expand(word_size * HeapWordSize)) {
 602       // Given that expand() succeeded in expanding the heap, and we
 603       // always expand the heap by an amount aligned to the heap
 604       // region size, the free list should in theory not be empty.
 605       // In either case allocate_free_region() will check for NULL.
 606       res = _hrm.allocate_free_region(is_old);
 607     } else {
 608       _expand_heap_after_alloc_failure = false;
 609     }
 610   }
 611   return res;
 612 }
 613 
 614 HeapWord*
 615 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 616                                                            uint num_regions,
 617                                                            size_t word_size,
 618                                                            AllocationContext_t context) {
 619   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 620   assert(isHumongous(word_size), "word_size should be humongous");
 621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 622 
 623   // Index of last region in the series + 1.
 624   uint last = first + num_regions;
 625 
 626   // We need to initialize the region(s) we just discovered. This is
 627   // a bit tricky given that it can happen concurrently with
 628   // refinement threads refining cards on these regions and
 629   // potentially wanting to refine the BOT as they are scanning
 630   // those cards (this can happen shortly after a cleanup; see CR
 631   // 6991377). So we have to set up the region(s) carefully and in
 632   // a specific order.
 633 
 634   // The word size sum of all the regions we will allocate.
 635   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 636   assert(word_size <= word_size_sum, "sanity");
 637 
 638   // This will be the "starts humongous" region.
 639   HeapRegion* first_hr = region_at(first);
 640   // The header of the new object will be placed at the bottom of
 641   // the first region.
 642   HeapWord* new_obj = first_hr->bottom();
 643   // This will be the new end of the first region in the series that
 644   // should also match the end of the last region in the series.
 645   HeapWord* new_end = new_obj + word_size_sum;
 646   // This will be the new top of the first region that will reflect
 647   // this allocation.
 648   HeapWord* new_top = new_obj + word_size;
 649 
 650   // First, we need to zero the header of the space that we will be
 651   // allocating. When we update top further down, some refinement
 652   // threads might try to scan the region. By zeroing the header we
 653   // ensure that any thread that will try to scan the region will
 654   // come across the zero klass word and bail out.
 655   //
 656   // NOTE: It would not have been correct to have used
 657   // CollectedHeap::fill_with_object() and make the space look like
 658   // an int array. The thread that is doing the allocation will
 659   // later update the object header to a potentially different array
 660   // type and, for a very short period of time, the klass and length
 661   // fields will be inconsistent. This could cause a refinement
 662   // thread to calculate the object size incorrectly.
 663   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 664 
 665   // We will set up the first region as "starts humongous". This
 666   // will also update the BOT covering all the regions to reflect
 667   // that there is a single object that starts at the bottom of the
 668   // first region.
 669   first_hr->set_startsHumongous(new_top, new_end);
 670   first_hr->set_allocation_context(context);
 671   // Then, if there are any, we will set up the "continues
 672   // humongous" regions.
 673   HeapRegion* hr = NULL;
 674   for (uint i = first + 1; i < last; ++i) {
 675     hr = region_at(i);
 676     hr->set_continuesHumongous(first_hr);
 677     hr->set_allocation_context(context);
 678   }
 679   // If we have "continues humongous" regions (hr != NULL), then the
 680   // end of the last one should match new_end.
 681   assert(hr == NULL || hr->end() == new_end, "sanity");
 682 
 683   // Up to this point no concurrent thread would have been able to
 684   // do any scanning on any region in this series. All the top
 685   // fields still point to bottom, so the intersection between
 686   // [bottom,top] and [card_start,card_end] will be empty. Before we
 687   // update the top fields, we'll do a storestore to make sure that
 688   // no thread sees the update to top before the zeroing of the
 689   // object header and the BOT initialization.
 690   OrderAccess::storestore();
 691 
 692   // Now that the BOT and the object header have been initialized,
 693   // we can update top of the "starts humongous" region.
 694   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 695          "new_top should be in this region");
 696   first_hr->set_top(new_top);
 697   if (_hr_printer.is_active()) {
 698     HeapWord* bottom = first_hr->bottom();
 699     HeapWord* end = first_hr->orig_end();
 700     if ((first + 1) == last) {
 701       // the series has a single humongous region
 702       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 703     } else {
 704       // the series has more than one humongous regions
 705       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 706     }
 707   }
 708 
 709   // Now, we will update the top fields of the "continues humongous"
 710   // regions. The reason we need to do this is that, otherwise,
 711   // these regions would look empty and this will confuse parts of
 712   // G1. For example, the code that looks for a consecutive number
 713   // of empty regions will consider them empty and try to
 714   // re-allocate them. We can extend is_empty() to also include
 715   // !continuesHumongous(), but it is easier to just update the top
 716   // fields here. The way we set top for all regions (i.e., top ==
 717   // end for all regions but the last one, top == new_top for the
 718   // last one) is actually used when we will free up the humongous
 719   // region in free_humongous_region().
 720   hr = NULL;
 721   for (uint i = first + 1; i < last; ++i) {
 722     hr = region_at(i);
 723     if ((i + 1) == last) {
 724       // last continues humongous region
 725       assert(hr->bottom() < new_top && new_top <= hr->end(),
 726              "new_top should fall on this region");
 727       hr->set_top(new_top);
 728       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 729     } else {
 730       // not last one
 731       assert(new_top > hr->end(), "new_top should be above this region");
 732       hr->set_top(hr->end());
 733       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 734     }
 735   }
 736   // If we have continues humongous regions (hr != NULL), then the
 737   // end of the last one should match new_end and its top should
 738   // match new_top.
 739   assert(hr == NULL ||
 740          (hr->end() == new_end && hr->top() == new_top), "sanity");
 741   check_bitmaps("Humongous Region Allocation", first_hr);
 742 
 743   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 744   _allocator->increase_used(first_hr->used());
 745   _humongous_set.add(first_hr);
 746 
 747   return new_obj;
 748 }
 749 
 750 // If could fit into free regions w/o expansion, try.
 751 // Otherwise, if can expand, do so.
 752 // Otherwise, if using ex regions might help, try with ex given back.
 753 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 754   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 755 
 756   verify_region_sets_optional();
 757 
 758   uint first = G1_NO_HRM_INDEX;
 759   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 760 
 761   if (obj_regions == 1) {
 762     // Only one region to allocate, try to use a fast path by directly allocating
 763     // from the free lists. Do not try to expand here, we will potentially do that
 764     // later.
 765     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 766     if (hr != NULL) {
 767       first = hr->hrm_index();
 768     }
 769   } else {
 770     // We can't allocate humongous regions spanning more than one region while
 771     // cleanupComplete() is running, since some of the regions we find to be
 772     // empty might not yet be added to the free list. It is not straightforward
 773     // to know in which list they are on so that we can remove them. We only
 774     // need to do this if we need to allocate more than one region to satisfy the
 775     // current humongous allocation request. If we are only allocating one region
 776     // we use the one-region region allocation code (see above), that already
 777     // potentially waits for regions from the secondary free list.
 778     wait_while_free_regions_coming();
 779     append_secondary_free_list_if_not_empty_with_lock();
 780 
 781     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 782     // are lucky enough to find some.
 783     first = _hrm.find_contiguous_only_empty(obj_regions);
 784     if (first != G1_NO_HRM_INDEX) {
 785       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 786     }
 787   }
 788 
 789   if (first == G1_NO_HRM_INDEX) {
 790     // Policy: We could not find enough regions for the humongous object in the
 791     // free list. Look through the heap to find a mix of free and uncommitted regions.
 792     // If so, try expansion.
 793     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 794     if (first != G1_NO_HRM_INDEX) {
 795       // We found something. Make sure these regions are committed, i.e. expand
 796       // the heap. Alternatively we could do a defragmentation GC.
 797       ergo_verbose1(ErgoHeapSizing,
 798                     "attempt heap expansion",
 799                     ergo_format_reason("humongous allocation request failed")
 800                     ergo_format_byte("allocation request"),
 801                     word_size * HeapWordSize);
 802 
 803       _hrm.expand_at(first, obj_regions);
 804       g1_policy()->record_new_heap_size(num_regions());
 805 
 806 #ifdef ASSERT
 807       for (uint i = first; i < first + obj_regions; ++i) {
 808         HeapRegion* hr = region_at(i);
 809         assert(hr->is_free(), "sanity");
 810         assert(hr->is_empty(), "sanity");
 811         assert(is_on_master_free_list(hr), "sanity");
 812       }
 813 #endif
 814       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 815     } else {
 816       // Policy: Potentially trigger a defragmentation GC.
 817     }
 818   }
 819 
 820   HeapWord* result = NULL;
 821   if (first != G1_NO_HRM_INDEX) {
 822     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 823                                                        word_size, context);
 824     assert(result != NULL, "it should always return a valid result");
 825 
 826     // A successful humongous object allocation changes the used space
 827     // information of the old generation so we need to recalculate the
 828     // sizes and update the jstat counters here.
 829     g1mm()->update_sizes();
 830   }
 831 
 832   verify_region_sets_optional();
 833 
 834   return result;
 835 }
 836 
 837 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 838   assert_heap_not_locked_and_not_at_safepoint();
 839   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 840 
 841   unsigned int dummy_gc_count_before;
 842   int dummy_gclocker_retry_count = 0;
 843   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 844 }
 845 
 846 HeapWord*
 847 G1CollectedHeap::mem_allocate(size_t word_size,
 848                               bool*  gc_overhead_limit_was_exceeded) {
 849   assert_heap_not_locked_and_not_at_safepoint();
 850 
 851   // Loop until the allocation is satisfied, or unsatisfied after GC.
 852   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 853     unsigned int gc_count_before;
 854 
 855     HeapWord* result = NULL;
 856     if (!isHumongous(word_size)) {
 857       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 858     } else {
 859       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 860     }
 861     if (result != NULL) {
 862       return result;
 863     }
 864 
 865     // Create the garbage collection operation...
 866     VM_G1CollectForAllocation op(gc_count_before, word_size);
 867     op.set_allocation_context(AllocationContext::current());
 868 
 869     // ...and get the VM thread to execute it.
 870     VMThread::execute(&op);
 871 
 872     if (op.prologue_succeeded() && op.pause_succeeded()) {
 873       // If the operation was successful we'll return the result even
 874       // if it is NULL. If the allocation attempt failed immediately
 875       // after a Full GC, it's unlikely we'll be able to allocate now.
 876       HeapWord* result = op.result();
 877       if (result != NULL && !isHumongous(word_size)) {
 878         // Allocations that take place on VM operations do not do any
 879         // card dirtying and we have to do it here. We only have to do
 880         // this for non-humongous allocations, though.
 881         dirty_young_block(result, word_size);
 882       }
 883       return result;
 884     } else {
 885       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 886         return NULL;
 887       }
 888       assert(op.result() == NULL,
 889              "the result should be NULL if the VM op did not succeed");
 890     }
 891 
 892     // Give a warning if we seem to be looping forever.
 893     if ((QueuedAllocationWarningCount > 0) &&
 894         (try_count % QueuedAllocationWarningCount == 0)) {
 895       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 896     }
 897   }
 898 
 899   ShouldNotReachHere();
 900   return NULL;
 901 }
 902 
 903 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 904                                                    AllocationContext_t context,
 905                                                    unsigned int *gc_count_before_ret,
 906                                                    int* gclocker_retry_count_ret) {
 907   // Make sure you read the note in attempt_allocation_humongous().
 908 
 909   assert_heap_not_locked_and_not_at_safepoint();
 910   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 911          "be called for humongous allocation requests");
 912 
 913   // We should only get here after the first-level allocation attempt
 914   // (attempt_allocation()) failed to allocate.
 915 
 916   // We will loop until a) we manage to successfully perform the
 917   // allocation or b) we successfully schedule a collection which
 918   // fails to perform the allocation. b) is the only case when we'll
 919   // return NULL.
 920   HeapWord* result = NULL;
 921   for (int try_count = 1; /* we'll return */; try_count += 1) {
 922     bool should_try_gc;
 923     unsigned int gc_count_before;
 924 
 925     {
 926       MutexLockerEx x(Heap_lock);
 927       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 928                                                                                     false /* bot_updates */);
 929       if (result != NULL) {
 930         return result;
 931       }
 932 
 933       // If we reach here, attempt_allocation_locked() above failed to
 934       // allocate a new region. So the mutator alloc region should be NULL.
 935       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 936 
 937       if (GC_locker::is_active_and_needs_gc()) {
 938         if (g1_policy()->can_expand_young_list()) {
 939           // No need for an ergo verbose message here,
 940           // can_expand_young_list() does this when it returns true.
 941           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 942                                                                                        false /* bot_updates */);
 943           if (result != NULL) {
 944             return result;
 945           }
 946         }
 947         should_try_gc = false;
 948       } else {
 949         // The GCLocker may not be active but the GCLocker initiated
 950         // GC may not yet have been performed (GCLocker::needs_gc()
 951         // returns true). In this case we do not try this GC and
 952         // wait until the GCLocker initiated GC is performed, and
 953         // then retry the allocation.
 954         if (GC_locker::needs_gc()) {
 955           should_try_gc = false;
 956         } else {
 957           // Read the GC count while still holding the Heap_lock.
 958           gc_count_before = total_collections();
 959           should_try_gc = true;
 960         }
 961       }
 962     }
 963 
 964     if (should_try_gc) {
 965       bool succeeded;
 966       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 967           GCCause::_g1_inc_collection_pause);
 968       if (result != NULL) {
 969         assert(succeeded, "only way to get back a non-NULL result");
 970         return result;
 971       }
 972 
 973       if (succeeded) {
 974         // If we get here we successfully scheduled a collection which
 975         // failed to allocate. No point in trying to allocate
 976         // further. We'll just return NULL.
 977         MutexLockerEx x(Heap_lock);
 978         *gc_count_before_ret = total_collections();
 979         return NULL;
 980       }
 981     } else {
 982       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 983         MutexLockerEx x(Heap_lock);
 984         *gc_count_before_ret = total_collections();
 985         return NULL;
 986       }
 987       // The GCLocker is either active or the GCLocker initiated
 988       // GC has not yet been performed. Stall until it is and
 989       // then retry the allocation.
 990       GC_locker::stall_until_clear();
 991       (*gclocker_retry_count_ret) += 1;
 992     }
 993 
 994     // We can reach here if we were unsuccessful in scheduling a
 995     // collection (because another thread beat us to it) or if we were
 996     // stalled due to the GC locker. In either can we should retry the
 997     // allocation attempt in case another thread successfully
 998     // performed a collection and reclaimed enough space. We do the
 999     // first attempt (without holding the Heap_lock) here and the
1000     // follow-on attempt will be at the start of the next loop
1001     // iteration (after taking the Heap_lock).
1002     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
1003                                                                            false /* bot_updates */);
1004     if (result != NULL) {
1005       return result;
1006     }
1007 
1008     // Give a warning if we seem to be looping forever.
1009     if ((QueuedAllocationWarningCount > 0) &&
1010         (try_count % QueuedAllocationWarningCount == 0)) {
1011       warning("G1CollectedHeap::attempt_allocation_slow() "
1012               "retries %d times", try_count);
1013     }
1014   }
1015 
1016   ShouldNotReachHere();
1017   return NULL;
1018 }
1019 
1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1021                                                         unsigned int * gc_count_before_ret,
1022                                                         int* gclocker_retry_count_ret) {
1023   // The structure of this method has a lot of similarities to
1024   // attempt_allocation_slow(). The reason these two were not merged
1025   // into a single one is that such a method would require several "if
1026   // allocation is not humongous do this, otherwise do that"
1027   // conditional paths which would obscure its flow. In fact, an early
1028   // version of this code did use a unified method which was harder to
1029   // follow and, as a result, it had subtle bugs that were hard to
1030   // track down. So keeping these two methods separate allows each to
1031   // be more readable. It will be good to keep these two in sync as
1032   // much as possible.
1033 
1034   assert_heap_not_locked_and_not_at_safepoint();
1035   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1036          "should only be called for humongous allocations");
1037 
1038   // Humongous objects can exhaust the heap quickly, so we should check if we
1039   // need to start a marking cycle at each humongous object allocation. We do
1040   // the check before we do the actual allocation. The reason for doing it
1041   // before the allocation is that we avoid having to keep track of the newly
1042   // allocated memory while we do a GC.
1043   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1044                                            word_size)) {
1045     collect(GCCause::_g1_humongous_allocation);
1046   }
1047 
1048   // We will loop until a) we manage to successfully perform the
1049   // allocation or b) we successfully schedule a collection which
1050   // fails to perform the allocation. b) is the only case when we'll
1051   // return NULL.
1052   HeapWord* result = NULL;
1053   for (int try_count = 1; /* we'll return */; try_count += 1) {
1054     bool should_try_gc;
1055     unsigned int gc_count_before;
1056 
1057     {
1058       MutexLockerEx x(Heap_lock);
1059 
1060       // Given that humongous objects are not allocated in young
1061       // regions, we'll first try to do the allocation without doing a
1062       // collection hoping that there's enough space in the heap.
1063       result = humongous_obj_allocate(word_size, AllocationContext::current());
1064       if (result != NULL) {
1065         return result;
1066       }
1067 
1068       if (GC_locker::is_active_and_needs_gc()) {
1069         should_try_gc = false;
1070       } else {
1071          // The GCLocker may not be active but the GCLocker initiated
1072         // GC may not yet have been performed (GCLocker::needs_gc()
1073         // returns true). In this case we do not try this GC and
1074         // wait until the GCLocker initiated GC is performed, and
1075         // then retry the allocation.
1076         if (GC_locker::needs_gc()) {
1077           should_try_gc = false;
1078         } else {
1079           // Read the GC count while still holding the Heap_lock.
1080           gc_count_before = total_collections();
1081           should_try_gc = true;
1082         }
1083       }
1084     }
1085 
1086     if (should_try_gc) {
1087       // If we failed to allocate the humongous object, we should try to
1088       // do a collection pause (if we're allowed) in case it reclaims
1089       // enough space for the allocation to succeed after the pause.
1090 
1091       bool succeeded;
1092       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1093           GCCause::_g1_humongous_allocation);
1094       if (result != NULL) {
1095         assert(succeeded, "only way to get back a non-NULL result");
1096         return result;
1097       }
1098 
1099       if (succeeded) {
1100         // If we get here we successfully scheduled a collection which
1101         // failed to allocate. No point in trying to allocate
1102         // further. We'll just return NULL.
1103         MutexLockerEx x(Heap_lock);
1104         *gc_count_before_ret = total_collections();
1105         return NULL;
1106       }
1107     } else {
1108       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1109         MutexLockerEx x(Heap_lock);
1110         *gc_count_before_ret = total_collections();
1111         return NULL;
1112       }
1113       // The GCLocker is either active or the GCLocker initiated
1114       // GC has not yet been performed. Stall until it is and
1115       // then retry the allocation.
1116       GC_locker::stall_until_clear();
1117       (*gclocker_retry_count_ret) += 1;
1118     }
1119 
1120     // We can reach here if we were unsuccessful in scheduling a
1121     // collection (because another thread beat us to it) or if we were
1122     // stalled due to the GC locker. In either can we should retry the
1123     // allocation attempt in case another thread successfully
1124     // performed a collection and reclaimed enough space.  Give a
1125     // warning if we seem to be looping forever.
1126 
1127     if ((QueuedAllocationWarningCount > 0) &&
1128         (try_count % QueuedAllocationWarningCount == 0)) {
1129       warning("G1CollectedHeap::attempt_allocation_humongous() "
1130               "retries %d times", try_count);
1131     }
1132   }
1133 
1134   ShouldNotReachHere();
1135   return NULL;
1136 }
1137 
1138 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1139                                                            AllocationContext_t context,
1140                                                            bool expect_null_mutator_alloc_region) {
1141   assert_at_safepoint(true /* should_be_vm_thread */);
1142   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1143                                              !expect_null_mutator_alloc_region,
1144          "the current alloc region was unexpectedly found to be non-NULL");
1145 
1146   if (!isHumongous(word_size)) {
1147     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1148                                                       false /* bot_updates */);
1149   } else {
1150     HeapWord* result = humongous_obj_allocate(word_size, context);
1151     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1152       g1_policy()->set_initiate_conc_mark_if_possible();
1153     }
1154     return result;
1155   }
1156 
1157   ShouldNotReachHere();
1158 }
1159 
1160 class PostMCRemSetClearClosure: public HeapRegionClosure {
1161   G1CollectedHeap* _g1h;
1162   ModRefBarrierSet* _mr_bs;
1163 public:
1164   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1165     _g1h(g1h), _mr_bs(mr_bs) {}
1166 
1167   bool doHeapRegion(HeapRegion* r) {
1168     HeapRegionRemSet* hrrs = r->rem_set();
1169 
1170     if (r->continuesHumongous()) {
1171       // We'll assert that the strong code root list and RSet is empty
1172       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1173       assert(hrrs->occupied() == 0, "RSet should be empty");
1174       return false;
1175     }
1176 
1177     _g1h->reset_gc_time_stamps(r);
1178     hrrs->clear();
1179     // You might think here that we could clear just the cards
1180     // corresponding to the used region.  But no: if we leave a dirty card
1181     // in a region we might allocate into, then it would prevent that card
1182     // from being enqueued, and cause it to be missed.
1183     // Re: the performance cost: we shouldn't be doing full GC anyway!
1184     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1185 
1186     return false;
1187   }
1188 };
1189 
1190 void G1CollectedHeap::clear_rsets_post_compaction() {
1191   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1192   heap_region_iterate(&rs_clear);
1193 }
1194 
1195 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1196   G1CollectedHeap*   _g1h;
1197   UpdateRSOopClosure _cl;
1198   int                _worker_i;
1199 public:
1200   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1201     _cl(g1->g1_rem_set(), worker_i),
1202     _worker_i(worker_i),
1203     _g1h(g1)
1204   { }
1205 
1206   bool doHeapRegion(HeapRegion* r) {
1207     if (!r->continuesHumongous()) {
1208       _cl.set_from(r);
1209       r->oop_iterate(&_cl);
1210     }
1211     return false;
1212   }
1213 };
1214 
1215 class ParRebuildRSTask: public AbstractGangTask {
1216   G1CollectedHeap* _g1;
1217 public:
1218   ParRebuildRSTask(G1CollectedHeap* g1)
1219     : AbstractGangTask("ParRebuildRSTask"),
1220       _g1(g1)
1221   { }
1222 
1223   void work(uint worker_id) {
1224     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1225     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1226                                           _g1->workers()->active_workers(),
1227                                          HeapRegion::RebuildRSClaimValue);
1228   }
1229 };
1230 
1231 class PostCompactionPrinterClosure: public HeapRegionClosure {
1232 private:
1233   G1HRPrinter* _hr_printer;
1234 public:
1235   bool doHeapRegion(HeapRegion* hr) {
1236     assert(!hr->is_young(), "not expecting to find young regions");
1237     if (hr->is_free()) {
1238       // We only generate output for non-empty regions.
1239     } else if (hr->startsHumongous()) {
1240       if (hr->region_num() == 1) {
1241         // single humongous region
1242         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1243       } else {
1244         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1245       }
1246     } else if (hr->continuesHumongous()) {
1247       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1248     } else if (hr->is_old()) {
1249       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1250     } else {
1251       ShouldNotReachHere();
1252     }
1253     return false;
1254   }
1255 
1256   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1257     : _hr_printer(hr_printer) { }
1258 };
1259 
1260 void G1CollectedHeap::print_hrm_post_compaction() {
1261   PostCompactionPrinterClosure cl(hr_printer());
1262   heap_region_iterate(&cl);
1263 }
1264 
1265 bool G1CollectedHeap::do_collection(bool explicit_gc,
1266                                     bool clear_all_soft_refs,
1267                                     size_t word_size) {
1268   assert_at_safepoint(true /* should_be_vm_thread */);
1269 
1270   if (GC_locker::check_active_before_gc()) {
1271     return false;
1272   }
1273 
1274   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1275   gc_timer->register_gc_start();
1276 
1277   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1278   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1279 
1280   SvcGCMarker sgcm(SvcGCMarker::FULL);
1281   ResourceMark rm;
1282 
1283   print_heap_before_gc();
1284   trace_heap_before_gc(gc_tracer);
1285 
1286   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1287 
1288   verify_region_sets_optional();
1289 
1290   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1291                            collector_policy()->should_clear_all_soft_refs();
1292 
1293   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1294 
1295   {
1296     IsGCActiveMark x;
1297 
1298     // Timing
1299     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1300     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1301     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1302 
1303     {
1304       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1305       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1306       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1307 
1308       double start = os::elapsedTime();
1309       g1_policy()->record_full_collection_start();
1310 
1311       // Note: When we have a more flexible GC logging framework that
1312       // allows us to add optional attributes to a GC log record we
1313       // could consider timing and reporting how long we wait in the
1314       // following two methods.
1315       wait_while_free_regions_coming();
1316       // If we start the compaction before the CM threads finish
1317       // scanning the root regions we might trip them over as we'll
1318       // be moving objects / updating references. So let's wait until
1319       // they are done. By telling them to abort, they should complete
1320       // early.
1321       _cm->root_regions()->abort();
1322       _cm->root_regions()->wait_until_scan_finished();
1323       append_secondary_free_list_if_not_empty_with_lock();
1324 
1325       gc_prologue(true);
1326       increment_total_collections(true /* full gc */);
1327       increment_old_marking_cycles_started();
1328 
1329       assert(used() == recalculate_used(), "Should be equal");
1330 
1331       verify_before_gc();
1332 
1333       check_bitmaps("Full GC Start");
1334       pre_full_gc_dump(gc_timer);
1335 
1336       COMPILER2_PRESENT(DerivedPointerTable::clear());
1337 
1338       // Disable discovery and empty the discovered lists
1339       // for the CM ref processor.
1340       ref_processor_cm()->disable_discovery();
1341       ref_processor_cm()->abandon_partial_discovery();
1342       ref_processor_cm()->verify_no_references_recorded();
1343 
1344       // Abandon current iterations of concurrent marking and concurrent
1345       // refinement, if any are in progress. We have to do this before
1346       // wait_until_scan_finished() below.
1347       concurrent_mark()->abort();
1348 
1349       // Make sure we'll choose a new allocation region afterwards.
1350       _allocator->release_mutator_alloc_region();
1351       _allocator->abandon_gc_alloc_regions();
1352       g1_rem_set()->cleanupHRRS();
1353 
1354       // We should call this after we retire any currently active alloc
1355       // regions so that all the ALLOC / RETIRE events are generated
1356       // before the start GC event.
1357       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1358 
1359       // We may have added regions to the current incremental collection
1360       // set between the last GC or pause and now. We need to clear the
1361       // incremental collection set and then start rebuilding it afresh
1362       // after this full GC.
1363       abandon_collection_set(g1_policy()->inc_cset_head());
1364       g1_policy()->clear_incremental_cset();
1365       g1_policy()->stop_incremental_cset_building();
1366 
1367       tear_down_region_sets(false /* free_list_only */);
1368       g1_policy()->set_gcs_are_young(true);
1369 
1370       // See the comments in g1CollectedHeap.hpp and
1371       // G1CollectedHeap::ref_processing_init() about
1372       // how reference processing currently works in G1.
1373 
1374       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1375       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1376 
1377       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1378       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1379 
1380       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1381       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1382 
1383       // Do collection work
1384       {
1385         HandleMark hm;  // Discard invalid handles created during gc
1386         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1387       }
1388 
1389       assert(num_free_regions() == 0, "we should not have added any free regions");
1390       rebuild_region_sets(false /* free_list_only */);
1391 
1392       // Enqueue any discovered reference objects that have
1393       // not been removed from the discovered lists.
1394       ref_processor_stw()->enqueue_discovered_references();
1395 
1396       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1397 
1398       MemoryService::track_memory_usage();
1399 
1400       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1401       ref_processor_stw()->verify_no_references_recorded();
1402 
1403       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1404       ClassLoaderDataGraph::purge();
1405       MetaspaceAux::verify_metrics();
1406 
1407       // Note: since we've just done a full GC, concurrent
1408       // marking is no longer active. Therefore we need not
1409       // re-enable reference discovery for the CM ref processor.
1410       // That will be done at the start of the next marking cycle.
1411       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1412       ref_processor_cm()->verify_no_references_recorded();
1413 
1414       reset_gc_time_stamp();
1415       // Since everything potentially moved, we will clear all remembered
1416       // sets, and clear all cards.  Later we will rebuild remembered
1417       // sets. We will also reset the GC time stamps of the regions.
1418       clear_rsets_post_compaction();
1419       check_gc_time_stamps();
1420 
1421       // Resize the heap if necessary.
1422       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1423 
1424       if (_hr_printer.is_active()) {
1425         // We should do this after we potentially resize the heap so
1426         // that all the COMMIT / UNCOMMIT events are generated before
1427         // the end GC event.
1428 
1429         print_hrm_post_compaction();
1430         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1431       }
1432 
1433       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1434       if (hot_card_cache->use_cache()) {
1435         hot_card_cache->reset_card_counts();
1436         hot_card_cache->reset_hot_cache();
1437       }
1438 
1439       // Rebuild remembered sets of all regions.
1440       if (G1CollectedHeap::use_parallel_gc_threads()) {
1441         uint n_workers =
1442           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1443                                                   workers()->active_workers(),
1444                                                   Threads::number_of_non_daemon_threads());
1445         assert(UseDynamicNumberOfGCThreads ||
1446                n_workers == workers()->total_workers(),
1447                "If not dynamic should be using all the  workers");
1448         workers()->set_active_workers(n_workers);
1449         // Set parallel threads in the heap (_n_par_threads) only
1450         // before a parallel phase and always reset it to 0 after
1451         // the phase so that the number of parallel threads does
1452         // no get carried forward to a serial phase where there
1453         // may be code that is "possibly_parallel".
1454         set_par_threads(n_workers);
1455 
1456         ParRebuildRSTask rebuild_rs_task(this);
1457         assert(check_heap_region_claim_values(
1458                HeapRegion::InitialClaimValue), "sanity check");
1459         assert(UseDynamicNumberOfGCThreads ||
1460                workers()->active_workers() == workers()->total_workers(),
1461                "Unless dynamic should use total workers");
1462         // Use the most recent number of  active workers
1463         assert(workers()->active_workers() > 0,
1464                "Active workers not properly set");
1465         set_par_threads(workers()->active_workers());
1466         workers()->run_task(&rebuild_rs_task);
1467         set_par_threads(0);
1468         assert(check_heap_region_claim_values(
1469                HeapRegion::RebuildRSClaimValue), "sanity check");
1470         reset_heap_region_claim_values();
1471       } else {
1472         RebuildRSOutOfRegionClosure rebuild_rs(this);
1473         heap_region_iterate(&rebuild_rs);
1474       }
1475 
1476       // Rebuild the strong code root lists for each region
1477       rebuild_strong_code_roots();
1478 
1479       if (true) { // FIXME
1480         MetaspaceGC::compute_new_size();
1481       }
1482 
1483 #ifdef TRACESPINNING
1484       ParallelTaskTerminator::print_termination_counts();
1485 #endif
1486 
1487       // Discard all rset updates
1488       JavaThread::dirty_card_queue_set().abandon_logs();
1489       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1490 
1491       _young_list->reset_sampled_info();
1492       // At this point there should be no regions in the
1493       // entire heap tagged as young.
1494       assert(check_young_list_empty(true /* check_heap */),
1495              "young list should be empty at this point");
1496 
1497       // Update the number of full collections that have been completed.
1498       increment_old_marking_cycles_completed(false /* concurrent */);
1499 
1500       _hrm.verify_optional();
1501       verify_region_sets_optional();
1502 
1503       verify_after_gc();
1504 
1505       // Clear the previous marking bitmap, if needed for bitmap verification.
1506       // Note we cannot do this when we clear the next marking bitmap in
1507       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1508       // objects marked during a full GC against the previous bitmap.
1509       // But we need to clear it before calling check_bitmaps below since
1510       // the full GC has compacted objects and updated TAMS but not updated
1511       // the prev bitmap.
1512       if (G1VerifyBitmaps) {
1513         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1514       }
1515       check_bitmaps("Full GC End");
1516 
1517       // Start a new incremental collection set for the next pause
1518       assert(g1_policy()->collection_set() == NULL, "must be");
1519       g1_policy()->start_incremental_cset_building();
1520 
1521       clear_cset_fast_test();
1522 
1523       _allocator->init_mutator_alloc_region();
1524 
1525       double end = os::elapsedTime();
1526       g1_policy()->record_full_collection_end();
1527 
1528       if (G1Log::fine()) {
1529         g1_policy()->print_heap_transition();
1530       }
1531 
1532       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1533       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1534       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1535       // before any GC notifications are raised.
1536       g1mm()->update_sizes();
1537 
1538       gc_epilogue(true);
1539     }
1540 
1541     if (G1Log::finer()) {
1542       g1_policy()->print_detailed_heap_transition(true /* full */);
1543     }
1544 
1545     print_heap_after_gc();
1546     trace_heap_after_gc(gc_tracer);
1547 
1548     post_full_gc_dump(gc_timer);
1549 
1550     gc_timer->register_gc_end();
1551     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1552   }
1553 
1554   return true;
1555 }
1556 
1557 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1558   // do_collection() will return whether it succeeded in performing
1559   // the GC. Currently, there is no facility on the
1560   // do_full_collection() API to notify the caller than the collection
1561   // did not succeed (e.g., because it was locked out by the GC
1562   // locker). So, right now, we'll ignore the return value.
1563   bool dummy = do_collection(true,                /* explicit_gc */
1564                              clear_all_soft_refs,
1565                              0                    /* word_size */);
1566 }
1567 
1568 // This code is mostly copied from TenuredGeneration.
1569 void
1570 G1CollectedHeap::
1571 resize_if_necessary_after_full_collection(size_t word_size) {
1572   // Include the current allocation, if any, and bytes that will be
1573   // pre-allocated to support collections, as "used".
1574   const size_t used_after_gc = used();
1575   const size_t capacity_after_gc = capacity();
1576   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1577 
1578   // This is enforced in arguments.cpp.
1579   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1580          "otherwise the code below doesn't make sense");
1581 
1582   // We don't have floating point command-line arguments
1583   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1584   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1585   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1586   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1587 
1588   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1589   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1590 
1591   // We have to be careful here as these two calculations can overflow
1592   // 32-bit size_t's.
1593   double used_after_gc_d = (double) used_after_gc;
1594   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1595   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1596 
1597   // Let's make sure that they are both under the max heap size, which
1598   // by default will make them fit into a size_t.
1599   double desired_capacity_upper_bound = (double) max_heap_size;
1600   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1601                                     desired_capacity_upper_bound);
1602   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1603                                     desired_capacity_upper_bound);
1604 
1605   // We can now safely turn them into size_t's.
1606   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1607   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1608 
1609   // This assert only makes sense here, before we adjust them
1610   // with respect to the min and max heap size.
1611   assert(minimum_desired_capacity <= maximum_desired_capacity,
1612          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1613                  "maximum_desired_capacity = "SIZE_FORMAT,
1614                  minimum_desired_capacity, maximum_desired_capacity));
1615 
1616   // Should not be greater than the heap max size. No need to adjust
1617   // it with respect to the heap min size as it's a lower bound (i.e.,
1618   // we'll try to make the capacity larger than it, not smaller).
1619   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1620   // Should not be less than the heap min size. No need to adjust it
1621   // with respect to the heap max size as it's an upper bound (i.e.,
1622   // we'll try to make the capacity smaller than it, not greater).
1623   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1624 
1625   if (capacity_after_gc < minimum_desired_capacity) {
1626     // Don't expand unless it's significant
1627     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1628     ergo_verbose4(ErgoHeapSizing,
1629                   "attempt heap expansion",
1630                   ergo_format_reason("capacity lower than "
1631                                      "min desired capacity after Full GC")
1632                   ergo_format_byte("capacity")
1633                   ergo_format_byte("occupancy")
1634                   ergo_format_byte_perc("min desired capacity"),
1635                   capacity_after_gc, used_after_gc,
1636                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1637     expand(expand_bytes);
1638 
1639     // No expansion, now see if we want to shrink
1640   } else if (capacity_after_gc > maximum_desired_capacity) {
1641     // Capacity too large, compute shrinking size
1642     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1643     ergo_verbose4(ErgoHeapSizing,
1644                   "attempt heap shrinking",
1645                   ergo_format_reason("capacity higher than "
1646                                      "max desired capacity after Full GC")
1647                   ergo_format_byte("capacity")
1648                   ergo_format_byte("occupancy")
1649                   ergo_format_byte_perc("max desired capacity"),
1650                   capacity_after_gc, used_after_gc,
1651                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1652     shrink(shrink_bytes);
1653   }
1654 }
1655 
1656 
1657 HeapWord*
1658 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1659                                            AllocationContext_t context,
1660                                            bool* succeeded) {
1661   assert_at_safepoint(true /* should_be_vm_thread */);
1662 
1663   *succeeded = true;
1664   // Let's attempt the allocation first.
1665   HeapWord* result =
1666     attempt_allocation_at_safepoint(word_size,
1667                                     context,
1668                                     false /* expect_null_mutator_alloc_region */);
1669   if (result != NULL) {
1670     assert(*succeeded, "sanity");
1671     return result;
1672   }
1673 
1674   // In a G1 heap, we're supposed to keep allocation from failing by
1675   // incremental pauses.  Therefore, at least for now, we'll favor
1676   // expansion over collection.  (This might change in the future if we can
1677   // do something smarter than full collection to satisfy a failed alloc.)
1678   result = expand_and_allocate(word_size, context);
1679   if (result != NULL) {
1680     assert(*succeeded, "sanity");
1681     return result;
1682   }
1683 
1684   // Expansion didn't work, we'll try to do a Full GC.
1685   bool gc_succeeded = do_collection(false, /* explicit_gc */
1686                                     false, /* clear_all_soft_refs */
1687                                     word_size);
1688   if (!gc_succeeded) {
1689     *succeeded = false;
1690     return NULL;
1691   }
1692 
1693   // Retry the allocation
1694   result = attempt_allocation_at_safepoint(word_size,
1695                                            context,
1696                                            true /* expect_null_mutator_alloc_region */);
1697   if (result != NULL) {
1698     assert(*succeeded, "sanity");
1699     return result;
1700   }
1701 
1702   // Then, try a Full GC that will collect all soft references.
1703   gc_succeeded = do_collection(false, /* explicit_gc */
1704                                true,  /* clear_all_soft_refs */
1705                                word_size);
1706   if (!gc_succeeded) {
1707     *succeeded = false;
1708     return NULL;
1709   }
1710 
1711   // Retry the allocation once more
1712   result = attempt_allocation_at_safepoint(word_size,
1713                                            context,
1714                                            true /* expect_null_mutator_alloc_region */);
1715   if (result != NULL) {
1716     assert(*succeeded, "sanity");
1717     return result;
1718   }
1719 
1720   assert(!collector_policy()->should_clear_all_soft_refs(),
1721          "Flag should have been handled and cleared prior to this point");
1722 
1723   // What else?  We might try synchronous finalization later.  If the total
1724   // space available is large enough for the allocation, then a more
1725   // complete compaction phase than we've tried so far might be
1726   // appropriate.
1727   assert(*succeeded, "sanity");
1728   return NULL;
1729 }
1730 
1731 // Attempting to expand the heap sufficiently
1732 // to support an allocation of the given "word_size".  If
1733 // successful, perform the allocation and return the address of the
1734 // allocated block, or else "NULL".
1735 
1736 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1737   assert_at_safepoint(true /* should_be_vm_thread */);
1738 
1739   verify_region_sets_optional();
1740 
1741   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1742   ergo_verbose1(ErgoHeapSizing,
1743                 "attempt heap expansion",
1744                 ergo_format_reason("allocation request failed")
1745                 ergo_format_byte("allocation request"),
1746                 word_size * HeapWordSize);
1747   if (expand(expand_bytes)) {
1748     _hrm.verify_optional();
1749     verify_region_sets_optional();
1750     return attempt_allocation_at_safepoint(word_size,
1751                                            context,
1752                                            false /* expect_null_mutator_alloc_region */);
1753   }
1754   return NULL;
1755 }
1756 
1757 bool G1CollectedHeap::expand(size_t expand_bytes) {
1758   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1759   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1760                                        HeapRegion::GrainBytes);
1761   ergo_verbose2(ErgoHeapSizing,
1762                 "expand the heap",
1763                 ergo_format_byte("requested expansion amount")
1764                 ergo_format_byte("attempted expansion amount"),
1765                 expand_bytes, aligned_expand_bytes);
1766 
1767   if (is_maximal_no_gc()) {
1768     ergo_verbose0(ErgoHeapSizing,
1769                       "did not expand the heap",
1770                       ergo_format_reason("heap already fully expanded"));
1771     return false;
1772   }
1773 
1774   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1775   assert(regions_to_expand > 0, "Must expand by at least one region");
1776 
1777   uint expanded_by = _hrm.expand_by(regions_to_expand);
1778 
1779   if (expanded_by > 0) {
1780     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1781     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1782     g1_policy()->record_new_heap_size(num_regions());
1783   } else {
1784     ergo_verbose0(ErgoHeapSizing,
1785                   "did not expand the heap",
1786                   ergo_format_reason("heap expansion operation failed"));
1787     // The expansion of the virtual storage space was unsuccessful.
1788     // Let's see if it was because we ran out of swap.
1789     if (G1ExitOnExpansionFailure &&
1790         _hrm.available() >= regions_to_expand) {
1791       // We had head room...
1792       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1793     }
1794   }
1795   return regions_to_expand > 0;
1796 }
1797 
1798 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1799   size_t aligned_shrink_bytes =
1800     ReservedSpace::page_align_size_down(shrink_bytes);
1801   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1802                                          HeapRegion::GrainBytes);
1803   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1804 
1805   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1806   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1807 
1808   ergo_verbose3(ErgoHeapSizing,
1809                 "shrink the heap",
1810                 ergo_format_byte("requested shrinking amount")
1811                 ergo_format_byte("aligned shrinking amount")
1812                 ergo_format_byte("attempted shrinking amount"),
1813                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1814   if (num_regions_removed > 0) {
1815     g1_policy()->record_new_heap_size(num_regions());
1816   } else {
1817     ergo_verbose0(ErgoHeapSizing,
1818                   "did not shrink the heap",
1819                   ergo_format_reason("heap shrinking operation failed"));
1820   }
1821 }
1822 
1823 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1824   verify_region_sets_optional();
1825 
1826   // We should only reach here at the end of a Full GC which means we
1827   // should not not be holding to any GC alloc regions. The method
1828   // below will make sure of that and do any remaining clean up.
1829   _allocator->abandon_gc_alloc_regions();
1830 
1831   // Instead of tearing down / rebuilding the free lists here, we
1832   // could instead use the remove_all_pending() method on free_list to
1833   // remove only the ones that we need to remove.
1834   tear_down_region_sets(true /* free_list_only */);
1835   shrink_helper(shrink_bytes);
1836   rebuild_region_sets(true /* free_list_only */);
1837 
1838   _hrm.verify_optional();
1839   verify_region_sets_optional();
1840 }
1841 
1842 // Public methods.
1843 
1844 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1845 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1846 #endif // _MSC_VER
1847 
1848 
1849 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1850   SharedHeap(policy_),
1851   _g1_policy(policy_),
1852   _dirty_card_queue_set(false),
1853   _into_cset_dirty_card_queue_set(false),
1854   _is_alive_closure_cm(this),
1855   _is_alive_closure_stw(this),
1856   _ref_processor_cm(NULL),
1857   _ref_processor_stw(NULL),
1858   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1859   _bot_shared(NULL),
1860   _evac_failure_scan_stack(NULL),
1861   _mark_in_progress(false),
1862   _cg1r(NULL),
1863   _g1mm(NULL),
1864   _refine_cte_cl(NULL),
1865   _full_collection(false),
1866   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1867   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1868   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1869   _humongous_is_live(),
1870   _has_humongous_reclaim_candidates(false),
1871   _free_regions_coming(false),
1872   _young_list(new YoungList(this)),
1873   _gc_time_stamp(0),
1874   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1875   _old_plab_stats(OldPLABSize, PLABWeight),
1876   _expand_heap_after_alloc_failure(true),
1877   _surviving_young_words(NULL),
1878   _old_marking_cycles_started(0),
1879   _old_marking_cycles_completed(0),
1880   _concurrent_cycle_started(false),
1881   _in_cset_fast_test(),
1882   _dirty_cards_region_list(NULL),
1883   _worker_cset_start_region(NULL),
1884   _worker_cset_start_region_time_stamp(NULL),
1885   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1886   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1887   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1888   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1889 
1890   _g1h = this;
1891   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1892     vm_exit_during_initialization("Failed necessary allocation.");
1893   }
1894 
1895   _allocator = G1Allocator::create_allocator(_g1h);
1896   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1897 
1898   int n_queues = MAX2((int)ParallelGCThreads, 1);
1899   _task_queues = new RefToScanQueueSet(n_queues);
1900 
1901   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1902   assert(n_rem_sets > 0, "Invariant.");
1903 
1904   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1905   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1906   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1907 
1908   for (int i = 0; i < n_queues; i++) {
1909     RefToScanQueue* q = new RefToScanQueue();
1910     q->initialize();
1911     _task_queues->register_queue(i, q);
1912     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1913   }
1914   clear_cset_start_regions();
1915 
1916   // Initialize the G1EvacuationFailureALot counters and flags.
1917   NOT_PRODUCT(reset_evacuation_should_fail();)
1918 
1919   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1920 }
1921 
1922 jint G1CollectedHeap::initialize() {
1923   CollectedHeap::pre_initialize();
1924   os::enable_vtime();
1925 
1926   G1Log::init();
1927 
1928   // Necessary to satisfy locking discipline assertions.
1929 
1930   MutexLocker x(Heap_lock);
1931 
1932   // We have to initialize the printer before committing the heap, as
1933   // it will be used then.
1934   _hr_printer.set_active(G1PrintHeapRegions);
1935 
1936   // While there are no constraints in the GC code that HeapWordSize
1937   // be any particular value, there are multiple other areas in the
1938   // system which believe this to be true (e.g. oop->object_size in some
1939   // cases incorrectly returns the size in wordSize units rather than
1940   // HeapWordSize).
1941   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1942 
1943   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1944   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1945   size_t heap_alignment = collector_policy()->heap_alignment();
1946 
1947   // Ensure that the sizes are properly aligned.
1948   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1949   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1950   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1951 
1952   _refine_cte_cl = new RefineCardTableEntryClosure();
1953 
1954   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1955 
1956   // Reserve the maximum.
1957 
1958   // When compressed oops are enabled, the preferred heap base
1959   // is calculated by subtracting the requested size from the
1960   // 32Gb boundary and using the result as the base address for
1961   // heap reservation. If the requested size is not aligned to
1962   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1963   // into the ReservedHeapSpace constructor) then the actual
1964   // base of the reserved heap may end up differing from the
1965   // address that was requested (i.e. the preferred heap base).
1966   // If this happens then we could end up using a non-optimal
1967   // compressed oops mode.
1968 
1969   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1970                                                  heap_alignment);
1971 
1972   // It is important to do this in a way such that concurrent readers can't
1973   // temporarily think something is in the heap.  (I've actually seen this
1974   // happen in asserts: DLD.)
1975   _reserved.set_word_size(0);
1976   _reserved.set_start((HeapWord*)heap_rs.base());
1977   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1978 
1979   // Create the gen rem set (and barrier set) for the entire reserved region.
1980   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1981   set_barrier_set(rem_set()->bs());
1982   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1983     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1984     return JNI_ENOMEM;
1985   }
1986 
1987   // Also create a G1 rem set.
1988   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1989 
1990   // Carve out the G1 part of the heap.
1991 
1992   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1993   G1RegionToSpaceMapper* heap_storage =
1994     G1RegionToSpaceMapper::create_mapper(g1_rs,
1995                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1996                                          HeapRegion::GrainBytes,
1997                                          1,
1998                                          mtJavaHeap);
1999   heap_storage->set_mapping_changed_listener(&_listener);
2000 
2001   // Reserve space for the block offset table. We do not support automatic uncommit
2002   // for the card table at this time. BOT only.
2003   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
2004   G1RegionToSpaceMapper* bot_storage =
2005     G1RegionToSpaceMapper::create_mapper(bot_rs,
2006                                          os::vm_page_size(),
2007                                          HeapRegion::GrainBytes,
2008                                          G1BlockOffsetSharedArray::N_bytes,
2009                                          mtGC);
2010 
2011   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2012   G1RegionToSpaceMapper* cardtable_storage =
2013     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
2014                                          os::vm_page_size(),
2015                                          HeapRegion::GrainBytes,
2016                                          G1BlockOffsetSharedArray::N_bytes,
2017                                          mtGC);
2018 
2019   // Reserve space for the card counts table.
2020   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
2021   G1RegionToSpaceMapper* card_counts_storage =
2022     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
2023                                          os::vm_page_size(),
2024                                          HeapRegion::GrainBytes,
2025                                          G1BlockOffsetSharedArray::N_bytes,
2026                                          mtGC);
2027 
2028   // Reserve space for prev and next bitmap.
2029   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2030 
2031   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2032   G1RegionToSpaceMapper* prev_bitmap_storage =
2033     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
2034                                          os::vm_page_size(),
2035                                          HeapRegion::GrainBytes,
2036                                          CMBitMap::mark_distance(),
2037                                          mtGC);
2038 
2039   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2040   G1RegionToSpaceMapper* next_bitmap_storage =
2041     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
2042                                          os::vm_page_size(),
2043                                          HeapRegion::GrainBytes,
2044                                          CMBitMap::mark_distance(),
2045                                          mtGC);
2046 
2047   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2048   g1_barrier_set()->initialize(cardtable_storage);
2049    // Do later initialization work for concurrent refinement.
2050   _cg1r->init(card_counts_storage);
2051 
2052   // 6843694 - ensure that the maximum region index can fit
2053   // in the remembered set structures.
2054   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2055   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2056 
2057   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2058   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2059   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2060             "too many cards per region");
2061 
2062   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2063 
2064   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2065 
2066   _g1h = this;
2067 
2068   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2069   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2070 
2071   // Create the ConcurrentMark data structure and thread.
2072   // (Must do this late, so that "max_regions" is defined.)
2073   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2074   if (_cm == NULL || !_cm->completed_initialization()) {
2075     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2076     return JNI_ENOMEM;
2077   }
2078   _cmThread = _cm->cmThread();
2079 
2080   // Initialize the from_card cache structure of HeapRegionRemSet.
2081   HeapRegionRemSet::init_heap(max_regions());
2082 
2083   // Now expand into the initial heap size.
2084   if (!expand(init_byte_size)) {
2085     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2086     return JNI_ENOMEM;
2087   }
2088 
2089   // Perform any initialization actions delegated to the policy.
2090   g1_policy()->init();
2091 
2092   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2093                                                SATB_Q_FL_lock,
2094                                                G1SATBProcessCompletedThreshold,
2095                                                Shared_SATB_Q_lock);
2096 
2097   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2098                                                 DirtyCardQ_CBL_mon,
2099                                                 DirtyCardQ_FL_lock,
2100                                                 concurrent_g1_refine()->yellow_zone(),
2101                                                 concurrent_g1_refine()->red_zone(),
2102                                                 Shared_DirtyCardQ_lock);
2103 
2104   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2105                                     DirtyCardQ_CBL_mon,
2106                                     DirtyCardQ_FL_lock,
2107                                     -1, // never trigger processing
2108                                     -1, // no limit on length
2109                                     Shared_DirtyCardQ_lock,
2110                                     &JavaThread::dirty_card_queue_set());
2111 
2112   // Initialize the card queue set used to hold cards containing
2113   // references into the collection set.
2114   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2115                                              DirtyCardQ_CBL_mon,
2116                                              DirtyCardQ_FL_lock,
2117                                              -1, // never trigger processing
2118                                              -1, // no limit on length
2119                                              Shared_DirtyCardQ_lock,
2120                                              &JavaThread::dirty_card_queue_set());
2121 
2122   // In case we're keeping closure specialization stats, initialize those
2123   // counts and that mechanism.
2124   SpecializationStats::clear();
2125 
2126   // Here we allocate the dummy HeapRegion that is required by the
2127   // G1AllocRegion class.
2128   HeapRegion* dummy_region = _hrm.get_dummy_region();
2129 
2130   // We'll re-use the same region whether the alloc region will
2131   // require BOT updates or not and, if it doesn't, then a non-young
2132   // region will complain that it cannot support allocations without
2133   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2134   dummy_region->set_eden();
2135   // Make sure it's full.
2136   dummy_region->set_top(dummy_region->end());
2137   G1AllocRegion::setup(this, dummy_region);
2138 
2139   _allocator->init_mutator_alloc_region();
2140 
2141   // Do create of the monitoring and management support so that
2142   // values in the heap have been properly initialized.
2143   _g1mm = new G1MonitoringSupport(this);
2144 
2145   G1StringDedup::initialize();
2146 
2147   return JNI_OK;
2148 }
2149 
2150 void G1CollectedHeap::stop() {
2151   // Stop all concurrent threads. We do this to make sure these threads
2152   // do not continue to execute and access resources (e.g. gclog_or_tty)
2153   // that are destroyed during shutdown.
2154   _cg1r->stop();
2155   _cmThread->stop();
2156   if (G1StringDedup::is_enabled()) {
2157     G1StringDedup::stop();
2158   }
2159 }
2160 
2161 void G1CollectedHeap::clear_humongous_is_live_table() {
2162   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
2163   _humongous_is_live.clear();
2164 }
2165 
2166 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2167   return HeapRegion::max_region_size();
2168 }
2169 
2170 void G1CollectedHeap::ref_processing_init() {
2171   // Reference processing in G1 currently works as follows:
2172   //
2173   // * There are two reference processor instances. One is
2174   //   used to record and process discovered references
2175   //   during concurrent marking; the other is used to
2176   //   record and process references during STW pauses
2177   //   (both full and incremental).
2178   // * Both ref processors need to 'span' the entire heap as
2179   //   the regions in the collection set may be dotted around.
2180   //
2181   // * For the concurrent marking ref processor:
2182   //   * Reference discovery is enabled at initial marking.
2183   //   * Reference discovery is disabled and the discovered
2184   //     references processed etc during remarking.
2185   //   * Reference discovery is MT (see below).
2186   //   * Reference discovery requires a barrier (see below).
2187   //   * Reference processing may or may not be MT
2188   //     (depending on the value of ParallelRefProcEnabled
2189   //     and ParallelGCThreads).
2190   //   * A full GC disables reference discovery by the CM
2191   //     ref processor and abandons any entries on it's
2192   //     discovered lists.
2193   //
2194   // * For the STW processor:
2195   //   * Non MT discovery is enabled at the start of a full GC.
2196   //   * Processing and enqueueing during a full GC is non-MT.
2197   //   * During a full GC, references are processed after marking.
2198   //
2199   //   * Discovery (may or may not be MT) is enabled at the start
2200   //     of an incremental evacuation pause.
2201   //   * References are processed near the end of a STW evacuation pause.
2202   //   * For both types of GC:
2203   //     * Discovery is atomic - i.e. not concurrent.
2204   //     * Reference discovery will not need a barrier.
2205 
2206   SharedHeap::ref_processing_init();
2207   MemRegion mr = reserved_region();
2208 
2209   // Concurrent Mark ref processor
2210   _ref_processor_cm =
2211     new ReferenceProcessor(mr,    // span
2212                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2213                                 // mt processing
2214                            (int) ParallelGCThreads,
2215                                 // degree of mt processing
2216                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2217                                 // mt discovery
2218                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2219                                 // degree of mt discovery
2220                            false,
2221                                 // Reference discovery is not atomic
2222                            &_is_alive_closure_cm);
2223                                 // is alive closure
2224                                 // (for efficiency/performance)
2225 
2226   // STW ref processor
2227   _ref_processor_stw =
2228     new ReferenceProcessor(mr,    // span
2229                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2230                                 // mt processing
2231                            MAX2((int)ParallelGCThreads, 1),
2232                                 // degree of mt processing
2233                            (ParallelGCThreads > 1),
2234                                 // mt discovery
2235                            MAX2((int)ParallelGCThreads, 1),
2236                                 // degree of mt discovery
2237                            true,
2238                                 // Reference discovery is atomic
2239                            &_is_alive_closure_stw);
2240                                 // is alive closure
2241                                 // (for efficiency/performance)
2242 }
2243 
2244 size_t G1CollectedHeap::capacity() const {
2245   return _hrm.length() * HeapRegion::GrainBytes;
2246 }
2247 
2248 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2249   assert(!hr->continuesHumongous(), "pre-condition");
2250   hr->reset_gc_time_stamp();
2251   if (hr->startsHumongous()) {
2252     uint first_index = hr->hrm_index() + 1;
2253     uint last_index = hr->last_hc_index();
2254     for (uint i = first_index; i < last_index; i += 1) {
2255       HeapRegion* chr = region_at(i);
2256       assert(chr->continuesHumongous(), "sanity");
2257       chr->reset_gc_time_stamp();
2258     }
2259   }
2260 }
2261 
2262 #ifndef PRODUCT
2263 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2264 private:
2265   unsigned _gc_time_stamp;
2266   bool _failures;
2267 
2268 public:
2269   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2270     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2271 
2272   virtual bool doHeapRegion(HeapRegion* hr) {
2273     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2274     if (_gc_time_stamp != region_gc_time_stamp) {
2275       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2276                              "expected %d", HR_FORMAT_PARAMS(hr),
2277                              region_gc_time_stamp, _gc_time_stamp);
2278       _failures = true;
2279     }
2280     return false;
2281   }
2282 
2283   bool failures() { return _failures; }
2284 };
2285 
2286 void G1CollectedHeap::check_gc_time_stamps() {
2287   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2288   heap_region_iterate(&cl);
2289   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2290 }
2291 #endif // PRODUCT
2292 
2293 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2294                                                  DirtyCardQueue* into_cset_dcq,
2295                                                  bool concurrent,
2296                                                  uint worker_i) {
2297   // Clean cards in the hot card cache
2298   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2299   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2300 
2301   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2302   int n_completed_buffers = 0;
2303   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2304     n_completed_buffers++;
2305   }
2306   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2307   dcqs.clear_n_completed_buffers();
2308   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2309 }
2310 
2311 
2312 // Computes the sum of the storage used by the various regions.
2313 size_t G1CollectedHeap::used() const {
2314   return _allocator->used();
2315 }
2316 
2317 size_t G1CollectedHeap::used_unlocked() const {
2318   return _allocator->used_unlocked();
2319 }
2320 
2321 class SumUsedClosure: public HeapRegionClosure {
2322   size_t _used;
2323 public:
2324   SumUsedClosure() : _used(0) {}
2325   bool doHeapRegion(HeapRegion* r) {
2326     if (!r->continuesHumongous()) {
2327       _used += r->used();
2328     }
2329     return false;
2330   }
2331   size_t result() { return _used; }
2332 };
2333 
2334 size_t G1CollectedHeap::recalculate_used() const {
2335   double recalculate_used_start = os::elapsedTime();
2336 
2337   SumUsedClosure blk;
2338   heap_region_iterate(&blk);
2339 
2340   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2341   return blk.result();
2342 }
2343 
2344 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2345   switch (cause) {
2346     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2347     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2348     case GCCause::_g1_humongous_allocation: return true;
2349     case GCCause::_update_allocation_context_stats_inc: return true;
2350     default:                                return false;
2351   }
2352 }
2353 
2354 #ifndef PRODUCT
2355 void G1CollectedHeap::allocate_dummy_regions() {
2356   // Let's fill up most of the region
2357   size_t word_size = HeapRegion::GrainWords - 1024;
2358   // And as a result the region we'll allocate will be humongous.
2359   guarantee(isHumongous(word_size), "sanity");
2360 
2361   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2362     // Let's use the existing mechanism for the allocation
2363     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2364                                                  AllocationContext::system());
2365     if (dummy_obj != NULL) {
2366       MemRegion mr(dummy_obj, word_size);
2367       CollectedHeap::fill_with_object(mr);
2368     } else {
2369       // If we can't allocate once, we probably cannot allocate
2370       // again. Let's get out of the loop.
2371       break;
2372     }
2373   }
2374 }
2375 #endif // !PRODUCT
2376 
2377 void G1CollectedHeap::increment_old_marking_cycles_started() {
2378   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2379     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2380     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2381     _old_marking_cycles_started, _old_marking_cycles_completed));
2382 
2383   _old_marking_cycles_started++;
2384 }
2385 
2386 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2387   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2388 
2389   // We assume that if concurrent == true, then the caller is a
2390   // concurrent thread that was joined the Suspendible Thread
2391   // Set. If there's ever a cheap way to check this, we should add an
2392   // assert here.
2393 
2394   // Given that this method is called at the end of a Full GC or of a
2395   // concurrent cycle, and those can be nested (i.e., a Full GC can
2396   // interrupt a concurrent cycle), the number of full collections
2397   // completed should be either one (in the case where there was no
2398   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2399   // behind the number of full collections started.
2400 
2401   // This is the case for the inner caller, i.e. a Full GC.
2402   assert(concurrent ||
2403          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2404          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2405          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2406                  "is inconsistent with _old_marking_cycles_completed = %u",
2407                  _old_marking_cycles_started, _old_marking_cycles_completed));
2408 
2409   // This is the case for the outer caller, i.e. the concurrent cycle.
2410   assert(!concurrent ||
2411          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2412          err_msg("for outer caller (concurrent cycle): "
2413                  "_old_marking_cycles_started = %u "
2414                  "is inconsistent with _old_marking_cycles_completed = %u",
2415                  _old_marking_cycles_started, _old_marking_cycles_completed));
2416 
2417   _old_marking_cycles_completed += 1;
2418 
2419   // We need to clear the "in_progress" flag in the CM thread before
2420   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2421   // is set) so that if a waiter requests another System.gc() it doesn't
2422   // incorrectly see that a marking cycle is still in progress.
2423   if (concurrent) {
2424     _cmThread->clear_in_progress();
2425   }
2426 
2427   // This notify_all() will ensure that a thread that called
2428   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2429   // and it's waiting for a full GC to finish will be woken up. It is
2430   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2431   FullGCCount_lock->notify_all();
2432 }
2433 
2434 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2435   _concurrent_cycle_started = true;
2436   _gc_timer_cm->register_gc_start(start_time);
2437 
2438   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2439   trace_heap_before_gc(_gc_tracer_cm);
2440 }
2441 
2442 void G1CollectedHeap::register_concurrent_cycle_end() {
2443   if (_concurrent_cycle_started) {
2444     if (_cm->has_aborted()) {
2445       _gc_tracer_cm->report_concurrent_mode_failure();
2446     }
2447 
2448     _gc_timer_cm->register_gc_end();
2449     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2450 
2451     _concurrent_cycle_started = false;
2452   }
2453 }
2454 
2455 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2456   if (_concurrent_cycle_started) {
2457     trace_heap_after_gc(_gc_tracer_cm);
2458   }
2459 }
2460 
2461 G1YCType G1CollectedHeap::yc_type() {
2462   bool is_young = g1_policy()->gcs_are_young();
2463   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2464   bool is_during_mark = mark_in_progress();
2465 
2466   if (is_initial_mark) {
2467     return InitialMark;
2468   } else if (is_during_mark) {
2469     return DuringMark;
2470   } else if (is_young) {
2471     return Normal;
2472   } else {
2473     return Mixed;
2474   }
2475 }
2476 
2477 void G1CollectedHeap::collect(GCCause::Cause cause) {
2478   assert_heap_not_locked();
2479 
2480   unsigned int gc_count_before;
2481   unsigned int old_marking_count_before;
2482   unsigned int full_gc_count_before;
2483   bool retry_gc;
2484 
2485   do {
2486     retry_gc = false;
2487 
2488     {
2489       MutexLocker ml(Heap_lock);
2490 
2491       // Read the GC count while holding the Heap_lock
2492       gc_count_before = total_collections();
2493       full_gc_count_before = total_full_collections();
2494       old_marking_count_before = _old_marking_cycles_started;
2495     }
2496 
2497     if (should_do_concurrent_full_gc(cause)) {
2498       // Schedule an initial-mark evacuation pause that will start a
2499       // concurrent cycle. We're setting word_size to 0 which means that
2500       // we are not requesting a post-GC allocation.
2501       VM_G1IncCollectionPause op(gc_count_before,
2502                                  0,     /* word_size */
2503                                  true,  /* should_initiate_conc_mark */
2504                                  g1_policy()->max_pause_time_ms(),
2505                                  cause);
2506       op.set_allocation_context(AllocationContext::current());
2507 
2508       VMThread::execute(&op);
2509       if (!op.pause_succeeded()) {
2510         if (old_marking_count_before == _old_marking_cycles_started) {
2511           retry_gc = op.should_retry_gc();
2512         } else {
2513           // A Full GC happened while we were trying to schedule the
2514           // initial-mark GC. No point in starting a new cycle given
2515           // that the whole heap was collected anyway.
2516         }
2517 
2518         if (retry_gc) {
2519           if (GC_locker::is_active_and_needs_gc()) {
2520             GC_locker::stall_until_clear();
2521           }
2522         }
2523       }
2524     } else {
2525       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2526           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2527 
2528         // Schedule a standard evacuation pause. We're setting word_size
2529         // to 0 which means that we are not requesting a post-GC allocation.
2530         VM_G1IncCollectionPause op(gc_count_before,
2531                                    0,     /* word_size */
2532                                    false, /* should_initiate_conc_mark */
2533                                    g1_policy()->max_pause_time_ms(),
2534                                    cause);
2535         VMThread::execute(&op);
2536       } else {
2537         // Schedule a Full GC.
2538         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2539         VMThread::execute(&op);
2540       }
2541     }
2542   } while (retry_gc);
2543 }
2544 
2545 bool G1CollectedHeap::is_in(const void* p) const {
2546   if (_hrm.reserved().contains(p)) {
2547     // Given that we know that p is in the reserved space,
2548     // heap_region_containing_raw() should successfully
2549     // return the containing region.
2550     HeapRegion* hr = heap_region_containing_raw(p);
2551     return hr->is_in(p);
2552   } else {
2553     return false;
2554   }
2555 }
2556 
2557 #ifdef ASSERT
2558 bool G1CollectedHeap::is_in_exact(const void* p) const {
2559   bool contains = reserved_region().contains(p);
2560   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2561   if (contains && available) {
2562     return true;
2563   } else {
2564     return false;
2565   }
2566 }
2567 #endif
2568 
2569 // Iteration functions.
2570 
2571 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2572 
2573 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2574   ExtendedOopClosure* _cl;
2575 public:
2576   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2577   bool doHeapRegion(HeapRegion* r) {
2578     if (!r->continuesHumongous()) {
2579       r->oop_iterate(_cl);
2580     }
2581     return false;
2582   }
2583 };
2584 
2585 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2586   IterateOopClosureRegionClosure blk(cl);
2587   heap_region_iterate(&blk);
2588 }
2589 
2590 // Iterates an ObjectClosure over all objects within a HeapRegion.
2591 
2592 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2593   ObjectClosure* _cl;
2594 public:
2595   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2596   bool doHeapRegion(HeapRegion* r) {
2597     if (! r->continuesHumongous()) {
2598       r->object_iterate(_cl);
2599     }
2600     return false;
2601   }
2602 };
2603 
2604 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2605   IterateObjectClosureRegionClosure blk(cl);
2606   heap_region_iterate(&blk);
2607 }
2608 
2609 // Calls a SpaceClosure on a HeapRegion.
2610 
2611 class SpaceClosureRegionClosure: public HeapRegionClosure {
2612   SpaceClosure* _cl;
2613 public:
2614   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2615   bool doHeapRegion(HeapRegion* r) {
2616     _cl->do_space(r);
2617     return false;
2618   }
2619 };
2620 
2621 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2622   SpaceClosureRegionClosure blk(cl);
2623   heap_region_iterate(&blk);
2624 }
2625 
2626 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2627   _hrm.iterate(cl);
2628 }
2629 
2630 void
2631 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2632                                                  uint worker_id,
2633                                                  uint num_workers,
2634                                                  jint claim_value) const {
2635   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2636 }
2637 
2638 class ResetClaimValuesClosure: public HeapRegionClosure {
2639 public:
2640   bool doHeapRegion(HeapRegion* r) {
2641     r->set_claim_value(HeapRegion::InitialClaimValue);
2642     return false;
2643   }
2644 };
2645 
2646 void G1CollectedHeap::reset_heap_region_claim_values() {
2647   ResetClaimValuesClosure blk;
2648   heap_region_iterate(&blk);
2649 }
2650 
2651 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2652   ResetClaimValuesClosure blk;
2653   collection_set_iterate(&blk);
2654 }
2655 
2656 #ifdef ASSERT
2657 // This checks whether all regions in the heap have the correct claim
2658 // value. I also piggy-backed on this a check to ensure that the
2659 // humongous_start_region() information on "continues humongous"
2660 // regions is correct.
2661 
2662 class CheckClaimValuesClosure : public HeapRegionClosure {
2663 private:
2664   jint _claim_value;
2665   uint _failures;
2666   HeapRegion* _sh_region;
2667 
2668 public:
2669   CheckClaimValuesClosure(jint claim_value) :
2670     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2671   bool doHeapRegion(HeapRegion* r) {
2672     if (r->claim_value() != _claim_value) {
2673       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2674                              "claim value = %d, should be %d",
2675                              HR_FORMAT_PARAMS(r),
2676                              r->claim_value(), _claim_value);
2677       ++_failures;
2678     }
2679     if (!r->isHumongous()) {
2680       _sh_region = NULL;
2681     } else if (r->startsHumongous()) {
2682       _sh_region = r;
2683     } else if (r->continuesHumongous()) {
2684       if (r->humongous_start_region() != _sh_region) {
2685         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2686                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2687                                HR_FORMAT_PARAMS(r),
2688                                r->humongous_start_region(),
2689                                _sh_region);
2690         ++_failures;
2691       }
2692     }
2693     return false;
2694   }
2695   uint failures() { return _failures; }
2696 };
2697 
2698 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2699   CheckClaimValuesClosure cl(claim_value);
2700   heap_region_iterate(&cl);
2701   return cl.failures() == 0;
2702 }
2703 
2704 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2705 private:
2706   jint _claim_value;
2707   uint _failures;
2708 
2709 public:
2710   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2711     _claim_value(claim_value), _failures(0) { }
2712 
2713   uint failures() { return _failures; }
2714 
2715   bool doHeapRegion(HeapRegion* hr) {
2716     assert(hr->in_collection_set(), "how?");
2717     assert(!hr->isHumongous(), "H-region in CSet");
2718     if (hr->claim_value() != _claim_value) {
2719       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2720                              "claim value = %d, should be %d",
2721                              HR_FORMAT_PARAMS(hr),
2722                              hr->claim_value(), _claim_value);
2723       _failures += 1;
2724     }
2725     return false;
2726   }
2727 };
2728 
2729 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2730   CheckClaimValuesInCSetHRClosure cl(claim_value);
2731   collection_set_iterate(&cl);
2732   return cl.failures() == 0;
2733 }
2734 #endif // ASSERT
2735 
2736 // Clear the cached CSet starting regions and (more importantly)
2737 // the time stamps. Called when we reset the GC time stamp.
2738 void G1CollectedHeap::clear_cset_start_regions() {
2739   assert(_worker_cset_start_region != NULL, "sanity");
2740   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2741 
2742   int n_queues = MAX2((int)ParallelGCThreads, 1);
2743   for (int i = 0; i < n_queues; i++) {
2744     _worker_cset_start_region[i] = NULL;
2745     _worker_cset_start_region_time_stamp[i] = 0;
2746   }
2747 }
2748 
2749 // Given the id of a worker, obtain or calculate a suitable
2750 // starting region for iterating over the current collection set.
2751 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2752   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2753 
2754   HeapRegion* result = NULL;
2755   unsigned gc_time_stamp = get_gc_time_stamp();
2756 
2757   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2758     // Cached starting region for current worker was set
2759     // during the current pause - so it's valid.
2760     // Note: the cached starting heap region may be NULL
2761     // (when the collection set is empty).
2762     result = _worker_cset_start_region[worker_i];
2763     assert(result == NULL || result->in_collection_set(), "sanity");
2764     return result;
2765   }
2766 
2767   // The cached entry was not valid so let's calculate
2768   // a suitable starting heap region for this worker.
2769 
2770   // We want the parallel threads to start their collection
2771   // set iteration at different collection set regions to
2772   // avoid contention.
2773   // If we have:
2774   //          n collection set regions
2775   //          p threads
2776   // Then thread t will start at region floor ((t * n) / p)
2777 
2778   result = g1_policy()->collection_set();
2779   if (G1CollectedHeap::use_parallel_gc_threads()) {
2780     uint cs_size = g1_policy()->cset_region_length();
2781     uint active_workers = workers()->active_workers();
2782     assert(UseDynamicNumberOfGCThreads ||
2783              active_workers == workers()->total_workers(),
2784              "Unless dynamic should use total workers");
2785 
2786     uint end_ind   = (cs_size * worker_i) / active_workers;
2787     uint start_ind = 0;
2788 
2789     if (worker_i > 0 &&
2790         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2791       // Previous workers starting region is valid
2792       // so let's iterate from there
2793       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2794       result = _worker_cset_start_region[worker_i - 1];
2795     }
2796 
2797     for (uint i = start_ind; i < end_ind; i++) {
2798       result = result->next_in_collection_set();
2799     }
2800   }
2801 
2802   // Note: the calculated starting heap region may be NULL
2803   // (when the collection set is empty).
2804   assert(result == NULL || result->in_collection_set(), "sanity");
2805   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2806          "should be updated only once per pause");
2807   _worker_cset_start_region[worker_i] = result;
2808   OrderAccess::storestore();
2809   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2810   return result;
2811 }
2812 
2813 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2814   HeapRegion* r = g1_policy()->collection_set();
2815   while (r != NULL) {
2816     HeapRegion* next = r->next_in_collection_set();
2817     if (cl->doHeapRegion(r)) {
2818       cl->incomplete();
2819       return;
2820     }
2821     r = next;
2822   }
2823 }
2824 
2825 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2826                                                   HeapRegionClosure *cl) {
2827   if (r == NULL) {
2828     // The CSet is empty so there's nothing to do.
2829     return;
2830   }
2831 
2832   assert(r->in_collection_set(),
2833          "Start region must be a member of the collection set.");
2834   HeapRegion* cur = r;
2835   while (cur != NULL) {
2836     HeapRegion* next = cur->next_in_collection_set();
2837     if (cl->doHeapRegion(cur) && false) {
2838       cl->incomplete();
2839       return;
2840     }
2841     cur = next;
2842   }
2843   cur = g1_policy()->collection_set();
2844   while (cur != r) {
2845     HeapRegion* next = cur->next_in_collection_set();
2846     if (cl->doHeapRegion(cur) && false) {
2847       cl->incomplete();
2848       return;
2849     }
2850     cur = next;
2851   }
2852 }
2853 
2854 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2855   HeapRegion* result = _hrm.next_region_in_heap(from);
2856   while (result != NULL && result->isHumongous()) {
2857     result = _hrm.next_region_in_heap(result);
2858   }
2859   return result;
2860 }
2861 
2862 Space* G1CollectedHeap::space_containing(const void* addr) const {
2863   return heap_region_containing(addr);
2864 }
2865 
2866 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2867   Space* sp = space_containing(addr);
2868   return sp->block_start(addr);
2869 }
2870 
2871 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2872   Space* sp = space_containing(addr);
2873   return sp->block_size(addr);
2874 }
2875 
2876 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2877   Space* sp = space_containing(addr);
2878   return sp->block_is_obj(addr);
2879 }
2880 
2881 bool G1CollectedHeap::supports_tlab_allocation() const {
2882   return true;
2883 }
2884 
2885 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2886   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2887 }
2888 
2889 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2890   return young_list()->eden_used_bytes();
2891 }
2892 
2893 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2894 // must be smaller than the humongous object limit.
2895 size_t G1CollectedHeap::max_tlab_size() const {
2896   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2897 }
2898 
2899 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2900   // Return the remaining space in the cur alloc region, but not less than
2901   // the min TLAB size.
2902 
2903   // Also, this value can be at most the humongous object threshold,
2904   // since we can't allow tlabs to grow big enough to accommodate
2905   // humongous objects.
2906 
2907   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2908   size_t max_tlab = max_tlab_size() * wordSize;
2909   if (hr == NULL) {
2910     return max_tlab;
2911   } else {
2912     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2913   }
2914 }
2915 
2916 size_t G1CollectedHeap::max_capacity() const {
2917   return _hrm.reserved().byte_size();
2918 }
2919 
2920 jlong G1CollectedHeap::millis_since_last_gc() {
2921   // assert(false, "NYI");
2922   return 0;
2923 }
2924 
2925 void G1CollectedHeap::prepare_for_verify() {
2926   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2927     ensure_parsability(false);
2928   }
2929   g1_rem_set()->prepare_for_verify();
2930 }
2931 
2932 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2933                                               VerifyOption vo) {
2934   switch (vo) {
2935   case VerifyOption_G1UsePrevMarking:
2936     return hr->obj_allocated_since_prev_marking(obj);
2937   case VerifyOption_G1UseNextMarking:
2938     return hr->obj_allocated_since_next_marking(obj);
2939   case VerifyOption_G1UseMarkWord:
2940     return false;
2941   default:
2942     ShouldNotReachHere();
2943   }
2944   return false; // keep some compilers happy
2945 }
2946 
2947 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2948   switch (vo) {
2949   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2950   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2951   case VerifyOption_G1UseMarkWord:    return NULL;
2952   default:                            ShouldNotReachHere();
2953   }
2954   return NULL; // keep some compilers happy
2955 }
2956 
2957 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2958   switch (vo) {
2959   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2960   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2961   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2962   default:                            ShouldNotReachHere();
2963   }
2964   return false; // keep some compilers happy
2965 }
2966 
2967 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2968   switch (vo) {
2969   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2970   case VerifyOption_G1UseNextMarking: return "NTAMS";
2971   case VerifyOption_G1UseMarkWord:    return "NONE";
2972   default:                            ShouldNotReachHere();
2973   }
2974   return NULL; // keep some compilers happy
2975 }
2976 
2977 class VerifyRootsClosure: public OopClosure {
2978 private:
2979   G1CollectedHeap* _g1h;
2980   VerifyOption     _vo;
2981   bool             _failures;
2982 public:
2983   // _vo == UsePrevMarking -> use "prev" marking information,
2984   // _vo == UseNextMarking -> use "next" marking information,
2985   // _vo == UseMarkWord    -> use mark word from object header.
2986   VerifyRootsClosure(VerifyOption vo) :
2987     _g1h(G1CollectedHeap::heap()),
2988     _vo(vo),
2989     _failures(false) { }
2990 
2991   bool failures() { return _failures; }
2992 
2993   template <class T> void do_oop_nv(T* p) {
2994     T heap_oop = oopDesc::load_heap_oop(p);
2995     if (!oopDesc::is_null(heap_oop)) {
2996       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2997       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2998         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2999                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3000         if (_vo == VerifyOption_G1UseMarkWord) {
3001           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3002         }
3003         obj->print_on(gclog_or_tty);
3004         _failures = true;
3005       }
3006     }
3007   }
3008 
3009   void do_oop(oop* p)       { do_oop_nv(p); }
3010   void do_oop(narrowOop* p) { do_oop_nv(p); }
3011 };
3012 
3013 class G1VerifyCodeRootOopClosure: public OopClosure {
3014   G1CollectedHeap* _g1h;
3015   OopClosure* _root_cl;
3016   nmethod* _nm;
3017   VerifyOption _vo;
3018   bool _failures;
3019 
3020   template <class T> void do_oop_work(T* p) {
3021     // First verify that this root is live
3022     _root_cl->do_oop(p);
3023 
3024     if (!G1VerifyHeapRegionCodeRoots) {
3025       // We're not verifying the code roots attached to heap region.
3026       return;
3027     }
3028 
3029     // Don't check the code roots during marking verification in a full GC
3030     if (_vo == VerifyOption_G1UseMarkWord) {
3031       return;
3032     }
3033 
3034     // Now verify that the current nmethod (which contains p) is
3035     // in the code root list of the heap region containing the
3036     // object referenced by p.
3037 
3038     T heap_oop = oopDesc::load_heap_oop(p);
3039     if (!oopDesc::is_null(heap_oop)) {
3040       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3041 
3042       // Now fetch the region containing the object
3043       HeapRegion* hr = _g1h->heap_region_containing(obj);
3044       HeapRegionRemSet* hrrs = hr->rem_set();
3045       // Verify that the strong code root list for this region
3046       // contains the nmethod
3047       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3048         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3049                               "from nmethod "PTR_FORMAT" not in strong "
3050                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3051                               p, _nm, hr->bottom(), hr->end());
3052         _failures = true;
3053       }
3054     }
3055   }
3056 
3057 public:
3058   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3059     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3060 
3061   void do_oop(oop* p) { do_oop_work(p); }
3062   void do_oop(narrowOop* p) { do_oop_work(p); }
3063 
3064   void set_nmethod(nmethod* nm) { _nm = nm; }
3065   bool failures() { return _failures; }
3066 };
3067 
3068 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3069   G1VerifyCodeRootOopClosure* _oop_cl;
3070 
3071 public:
3072   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3073     _oop_cl(oop_cl) {}
3074 
3075   void do_code_blob(CodeBlob* cb) {
3076     nmethod* nm = cb->as_nmethod_or_null();
3077     if (nm != NULL) {
3078       _oop_cl->set_nmethod(nm);
3079       nm->oops_do(_oop_cl);
3080     }
3081   }
3082 };
3083 
3084 class YoungRefCounterClosure : public OopClosure {
3085   G1CollectedHeap* _g1h;
3086   int              _count;
3087  public:
3088   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3089   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3090   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3091 
3092   int count() { return _count; }
3093   void reset_count() { _count = 0; };
3094 };
3095 
3096 class VerifyKlassClosure: public KlassClosure {
3097   YoungRefCounterClosure _young_ref_counter_closure;
3098   OopClosure *_oop_closure;
3099  public:
3100   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3101   void do_klass(Klass* k) {
3102     k->oops_do(_oop_closure);
3103 
3104     _young_ref_counter_closure.reset_count();
3105     k->oops_do(&_young_ref_counter_closure);
3106     if (_young_ref_counter_closure.count() > 0) {
3107       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3108     }
3109   }
3110 };
3111 
3112 class VerifyLivenessOopClosure: public OopClosure {
3113   G1CollectedHeap* _g1h;
3114   VerifyOption _vo;
3115 public:
3116   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3117     _g1h(g1h), _vo(vo)
3118   { }
3119   void do_oop(narrowOop *p) { do_oop_work(p); }
3120   void do_oop(      oop *p) { do_oop_work(p); }
3121 
3122   template <class T> void do_oop_work(T *p) {
3123     oop obj = oopDesc::load_decode_heap_oop(p);
3124     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3125               "Dead object referenced by a not dead object");
3126   }
3127 };
3128 
3129 class VerifyObjsInRegionClosure: public ObjectClosure {
3130 private:
3131   G1CollectedHeap* _g1h;
3132   size_t _live_bytes;
3133   HeapRegion *_hr;
3134   VerifyOption _vo;
3135 public:
3136   // _vo == UsePrevMarking -> use "prev" marking information,
3137   // _vo == UseNextMarking -> use "next" marking information,
3138   // _vo == UseMarkWord    -> use mark word from object header.
3139   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3140     : _live_bytes(0), _hr(hr), _vo(vo) {
3141     _g1h = G1CollectedHeap::heap();
3142   }
3143   void do_object(oop o) {
3144     VerifyLivenessOopClosure isLive(_g1h, _vo);
3145     assert(o != NULL, "Huh?");
3146     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3147       // If the object is alive according to the mark word,
3148       // then verify that the marking information agrees.
3149       // Note we can't verify the contra-positive of the
3150       // above: if the object is dead (according to the mark
3151       // word), it may not be marked, or may have been marked
3152       // but has since became dead, or may have been allocated
3153       // since the last marking.
3154       if (_vo == VerifyOption_G1UseMarkWord) {
3155         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3156       }
3157 
3158       o->oop_iterate_no_header(&isLive);
3159       if (!_hr->obj_allocated_since_prev_marking(o)) {
3160         size_t obj_size = o->size();    // Make sure we don't overflow
3161         _live_bytes += (obj_size * HeapWordSize);
3162       }
3163     }
3164   }
3165   size_t live_bytes() { return _live_bytes; }
3166 };
3167 
3168 class PrintObjsInRegionClosure : public ObjectClosure {
3169   HeapRegion *_hr;
3170   G1CollectedHeap *_g1;
3171 public:
3172   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3173     _g1 = G1CollectedHeap::heap();
3174   };
3175 
3176   void do_object(oop o) {
3177     if (o != NULL) {
3178       HeapWord *start = (HeapWord *) o;
3179       size_t word_sz = o->size();
3180       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3181                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3182                           (void*) o, word_sz,
3183                           _g1->isMarkedPrev(o),
3184                           _g1->isMarkedNext(o),
3185                           _hr->obj_allocated_since_prev_marking(o));
3186       HeapWord *end = start + word_sz;
3187       HeapWord *cur;
3188       int *val;
3189       for (cur = start; cur < end; cur++) {
3190         val = (int *) cur;
3191         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3192       }
3193     }
3194   }
3195 };
3196 
3197 class VerifyRegionClosure: public HeapRegionClosure {
3198 private:
3199   bool             _par;
3200   VerifyOption     _vo;
3201   bool             _failures;
3202 public:
3203   // _vo == UsePrevMarking -> use "prev" marking information,
3204   // _vo == UseNextMarking -> use "next" marking information,
3205   // _vo == UseMarkWord    -> use mark word from object header.
3206   VerifyRegionClosure(bool par, VerifyOption vo)
3207     : _par(par),
3208       _vo(vo),
3209       _failures(false) {}
3210 
3211   bool failures() {
3212     return _failures;
3213   }
3214 
3215   bool doHeapRegion(HeapRegion* r) {
3216     if (!r->continuesHumongous()) {
3217       bool failures = false;
3218       r->verify(_vo, &failures);
3219       if (failures) {
3220         _failures = true;
3221       } else {
3222         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3223         r->object_iterate(&not_dead_yet_cl);
3224         if (_vo != VerifyOption_G1UseNextMarking) {
3225           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3226             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3227                                    "max_live_bytes "SIZE_FORMAT" "
3228                                    "< calculated "SIZE_FORMAT,
3229                                    r->bottom(), r->end(),
3230                                    r->max_live_bytes(),
3231                                  not_dead_yet_cl.live_bytes());
3232             _failures = true;
3233           }
3234         } else {
3235           // When vo == UseNextMarking we cannot currently do a sanity
3236           // check on the live bytes as the calculation has not been
3237           // finalized yet.
3238         }
3239       }
3240     }
3241     return false; // stop the region iteration if we hit a failure
3242   }
3243 };
3244 
3245 // This is the task used for parallel verification of the heap regions
3246 
3247 class G1ParVerifyTask: public AbstractGangTask {
3248 private:
3249   G1CollectedHeap* _g1h;
3250   VerifyOption     _vo;
3251   bool             _failures;
3252 
3253 public:
3254   // _vo == UsePrevMarking -> use "prev" marking information,
3255   // _vo == UseNextMarking -> use "next" marking information,
3256   // _vo == UseMarkWord    -> use mark word from object header.
3257   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3258     AbstractGangTask("Parallel verify task"),
3259     _g1h(g1h),
3260     _vo(vo),
3261     _failures(false) { }
3262 
3263   bool failures() {
3264     return _failures;
3265   }
3266 
3267   void work(uint worker_id) {
3268     HandleMark hm;
3269     VerifyRegionClosure blk(true, _vo);
3270     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3271                                           _g1h->workers()->active_workers(),
3272                                           HeapRegion::ParVerifyClaimValue);
3273     if (blk.failures()) {
3274       _failures = true;
3275     }
3276   }
3277 };
3278 
3279 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3280   if (SafepointSynchronize::is_at_safepoint()) {
3281     assert(Thread::current()->is_VM_thread(),
3282            "Expected to be executed serially by the VM thread at this point");
3283 
3284     if (!silent) { gclog_or_tty->print("Roots "); }
3285     VerifyRootsClosure rootsCl(vo);
3286     VerifyKlassClosure klassCl(this, &rootsCl);
3287     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3288 
3289     // We apply the relevant closures to all the oops in the
3290     // system dictionary, class loader data graph, the string table
3291     // and the nmethods in the code cache.
3292     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3293     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3294 
3295     process_all_roots(true,            // activate StrongRootsScope
3296                       SO_AllCodeCache, // roots scanning options
3297                       &rootsCl,
3298                       &cldCl,
3299                       &blobsCl);
3300 
3301     bool failures = rootsCl.failures() || codeRootsCl.failures();
3302 
3303     if (vo != VerifyOption_G1UseMarkWord) {
3304       // If we're verifying during a full GC then the region sets
3305       // will have been torn down at the start of the GC. Therefore
3306       // verifying the region sets will fail. So we only verify
3307       // the region sets when not in a full GC.
3308       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3309       verify_region_sets();
3310     }
3311 
3312     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3313     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3314       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3315              "sanity check");
3316 
3317       G1ParVerifyTask task(this, vo);
3318       assert(UseDynamicNumberOfGCThreads ||
3319         workers()->active_workers() == workers()->total_workers(),
3320         "If not dynamic should be using all the workers");
3321       int n_workers = workers()->active_workers();
3322       set_par_threads(n_workers);
3323       workers()->run_task(&task);
3324       set_par_threads(0);
3325       if (task.failures()) {
3326         failures = true;
3327       }
3328 
3329       // Checks that the expected amount of parallel work was done.
3330       // The implication is that n_workers is > 0.
3331       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3332              "sanity check");
3333 
3334       reset_heap_region_claim_values();
3335 
3336       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3337              "sanity check");
3338     } else {
3339       VerifyRegionClosure blk(false, vo);
3340       heap_region_iterate(&blk);
3341       if (blk.failures()) {
3342         failures = true;
3343       }
3344     }
3345     if (!silent) gclog_or_tty->print("RemSet ");
3346     rem_set()->verify();
3347 
3348     if (G1StringDedup::is_enabled()) {
3349       if (!silent) gclog_or_tty->print("StrDedup ");
3350       G1StringDedup::verify();
3351     }
3352 
3353     if (failures) {
3354       gclog_or_tty->print_cr("Heap:");
3355       // It helps to have the per-region information in the output to
3356       // help us track down what went wrong. This is why we call
3357       // print_extended_on() instead of print_on().
3358       print_extended_on(gclog_or_tty);
3359       gclog_or_tty->cr();
3360 #ifndef PRODUCT
3361       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3362         concurrent_mark()->print_reachable("at-verification-failure",
3363                                            vo, false /* all */);
3364       }
3365 #endif
3366       gclog_or_tty->flush();
3367     }
3368     guarantee(!failures, "there should not have been any failures");
3369   } else {
3370     if (!silent) {
3371       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3372       if (G1StringDedup::is_enabled()) {
3373         gclog_or_tty->print(", StrDedup");
3374       }
3375       gclog_or_tty->print(") ");
3376     }
3377   }
3378 }
3379 
3380 void G1CollectedHeap::verify(bool silent) {
3381   verify(silent, VerifyOption_G1UsePrevMarking);
3382 }
3383 
3384 double G1CollectedHeap::verify(bool guard, const char* msg) {
3385   double verify_time_ms = 0.0;
3386 
3387   if (guard && total_collections() >= VerifyGCStartAt) {
3388     double verify_start = os::elapsedTime();
3389     HandleMark hm;  // Discard invalid handles created during verification
3390     prepare_for_verify();
3391     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3392     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3393   }
3394 
3395   return verify_time_ms;
3396 }
3397 
3398 void G1CollectedHeap::verify_before_gc() {
3399   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3400   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3401 }
3402 
3403 void G1CollectedHeap::verify_after_gc() {
3404   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3405   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3406 }
3407 
3408 class PrintRegionClosure: public HeapRegionClosure {
3409   outputStream* _st;
3410 public:
3411   PrintRegionClosure(outputStream* st) : _st(st) {}
3412   bool doHeapRegion(HeapRegion* r) {
3413     r->print_on(_st);
3414     return false;
3415   }
3416 };
3417 
3418 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3419                                        const HeapRegion* hr,
3420                                        const VerifyOption vo) const {
3421   switch (vo) {
3422   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3423   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3424   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3425   default:                            ShouldNotReachHere();
3426   }
3427   return false; // keep some compilers happy
3428 }
3429 
3430 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3431                                        const VerifyOption vo) const {
3432   switch (vo) {
3433   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3434   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3435   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3436   default:                            ShouldNotReachHere();
3437   }
3438   return false; // keep some compilers happy
3439 }
3440 
3441 void G1CollectedHeap::print_on(outputStream* st) const {
3442   st->print(" %-20s", "garbage-first heap");
3443   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3444             capacity()/K, used_unlocked()/K);
3445   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3446             _hrm.reserved().start(),
3447             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3448             _hrm.reserved().end());
3449   st->cr();
3450   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3451   uint young_regions = _young_list->length();
3452   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3453             (size_t) young_regions * HeapRegion::GrainBytes / K);
3454   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3455   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3456             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3457   st->cr();
3458   MetaspaceAux::print_on(st);
3459 }
3460 
3461 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3462   print_on(st);
3463 
3464   // Print the per-region information.
3465   st->cr();
3466   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3467                "HS=humongous(starts), HC=humongous(continues), "
3468                "CS=collection set, F=free, TS=gc time stamp, "
3469                "PTAMS=previous top-at-mark-start, "
3470                "NTAMS=next top-at-mark-start)");
3471   PrintRegionClosure blk(st);
3472   heap_region_iterate(&blk);
3473 }
3474 
3475 void G1CollectedHeap::print_on_error(outputStream* st) const {
3476   this->CollectedHeap::print_on_error(st);
3477 
3478   if (_cm != NULL) {
3479     st->cr();
3480     _cm->print_on_error(st);
3481   }
3482 }
3483 
3484 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3485   if (G1CollectedHeap::use_parallel_gc_threads()) {
3486     workers()->print_worker_threads_on(st);
3487   }
3488   _cmThread->print_on(st);
3489   st->cr();
3490   _cm->print_worker_threads_on(st);
3491   _cg1r->print_worker_threads_on(st);
3492   if (G1StringDedup::is_enabled()) {
3493     G1StringDedup::print_worker_threads_on(st);
3494   }
3495 }
3496 
3497 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3498   if (G1CollectedHeap::use_parallel_gc_threads()) {
3499     workers()->threads_do(tc);
3500   }
3501   tc->do_thread(_cmThread);
3502   _cg1r->threads_do(tc);
3503   if (G1StringDedup::is_enabled()) {
3504     G1StringDedup::threads_do(tc);
3505   }
3506 }
3507 
3508 void G1CollectedHeap::print_tracing_info() const {
3509   // We'll overload this to mean "trace GC pause statistics."
3510   if (TraceGen0Time || TraceGen1Time) {
3511     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3512     // to that.
3513     g1_policy()->print_tracing_info();
3514   }
3515   if (G1SummarizeRSetStats) {
3516     g1_rem_set()->print_summary_info();
3517   }
3518   if (G1SummarizeConcMark) {
3519     concurrent_mark()->print_summary_info();
3520   }
3521   g1_policy()->print_yg_surv_rate_info();
3522   SpecializationStats::print();
3523 }
3524 
3525 #ifndef PRODUCT
3526 // Helpful for debugging RSet issues.
3527 
3528 class PrintRSetsClosure : public HeapRegionClosure {
3529 private:
3530   const char* _msg;
3531   size_t _occupied_sum;
3532 
3533 public:
3534   bool doHeapRegion(HeapRegion* r) {
3535     HeapRegionRemSet* hrrs = r->rem_set();
3536     size_t occupied = hrrs->occupied();
3537     _occupied_sum += occupied;
3538 
3539     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3540                            HR_FORMAT_PARAMS(r));
3541     if (occupied == 0) {
3542       gclog_or_tty->print_cr("  RSet is empty");
3543     } else {
3544       hrrs->print();
3545     }
3546     gclog_or_tty->print_cr("----------");
3547     return false;
3548   }
3549 
3550   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3551     gclog_or_tty->cr();
3552     gclog_or_tty->print_cr("========================================");
3553     gclog_or_tty->print_cr("%s", msg);
3554     gclog_or_tty->cr();
3555   }
3556 
3557   ~PrintRSetsClosure() {
3558     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3559     gclog_or_tty->print_cr("========================================");
3560     gclog_or_tty->cr();
3561   }
3562 };
3563 
3564 void G1CollectedHeap::print_cset_rsets() {
3565   PrintRSetsClosure cl("Printing CSet RSets");
3566   collection_set_iterate(&cl);
3567 }
3568 
3569 void G1CollectedHeap::print_all_rsets() {
3570   PrintRSetsClosure cl("Printing All RSets");;
3571   heap_region_iterate(&cl);
3572 }
3573 #endif // PRODUCT
3574 
3575 G1CollectedHeap* G1CollectedHeap::heap() {
3576   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3577          "not a garbage-first heap");
3578   return _g1h;
3579 }
3580 
3581 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3582   // always_do_update_barrier = false;
3583   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3584   // Fill TLAB's and such
3585   accumulate_statistics_all_tlabs();
3586   ensure_parsability(true);
3587 
3588   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3589       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3590     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3591   }
3592 }
3593 
3594 void G1CollectedHeap::gc_epilogue(bool full) {
3595 
3596   if (G1SummarizeRSetStats &&
3597       (G1SummarizeRSetStatsPeriod > 0) &&
3598       // we are at the end of the GC. Total collections has already been increased.
3599       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3600     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3601   }
3602 
3603   // FIXME: what is this about?
3604   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3605   // is set.
3606   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3607                         "derived pointer present"));
3608   // always_do_update_barrier = true;
3609 
3610   resize_all_tlabs();
3611   allocation_context_stats().update(full);
3612 
3613   // We have just completed a GC. Update the soft reference
3614   // policy with the new heap occupancy
3615   Universe::update_heap_info_at_gc();
3616 }
3617 
3618 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3619                                                unsigned int gc_count_before,
3620                                                bool* succeeded,
3621                                                GCCause::Cause gc_cause) {
3622   assert_heap_not_locked_and_not_at_safepoint();
3623   g1_policy()->record_stop_world_start();
3624   VM_G1IncCollectionPause op(gc_count_before,
3625                              word_size,
3626                              false, /* should_initiate_conc_mark */
3627                              g1_policy()->max_pause_time_ms(),
3628                              gc_cause);
3629 
3630   op.set_allocation_context(AllocationContext::current());
3631   VMThread::execute(&op);
3632 
3633   HeapWord* result = op.result();
3634   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3635   assert(result == NULL || ret_succeeded,
3636          "the result should be NULL if the VM did not succeed");
3637   *succeeded = ret_succeeded;
3638 
3639   assert_heap_not_locked();
3640   return result;
3641 }
3642 
3643 void
3644 G1CollectedHeap::doConcurrentMark() {
3645   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3646   if (!_cmThread->in_progress()) {
3647     _cmThread->set_started();
3648     CGC_lock->notify();
3649   }
3650 }
3651 
3652 size_t G1CollectedHeap::pending_card_num() {
3653   size_t extra_cards = 0;
3654   JavaThread *curr = Threads::first();
3655   while (curr != NULL) {
3656     DirtyCardQueue& dcq = curr->dirty_card_queue();
3657     extra_cards += dcq.size();
3658     curr = curr->next();
3659   }
3660   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3661   size_t buffer_size = dcqs.buffer_size();
3662   size_t buffer_num = dcqs.completed_buffers_num();
3663 
3664   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3665   // in bytes - not the number of 'entries'. We need to convert
3666   // into a number of cards.
3667   return (buffer_size * buffer_num + extra_cards) / oopSize;
3668 }
3669 
3670 size_t G1CollectedHeap::cards_scanned() {
3671   return g1_rem_set()->cardsScanned();
3672 }
3673 
3674 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3675   HeapRegion* region = region_at(index);
3676   assert(region->startsHumongous(), "Must start a humongous object");
3677   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3678 }
3679 
3680 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3681  private:
3682   size_t _total_humongous;
3683   size_t _candidate_humongous;
3684  public:
3685   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
3686   }
3687 
3688   virtual bool doHeapRegion(HeapRegion* r) {
3689     if (!r->startsHumongous()) {
3690       return false;
3691     }
3692     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3693 
3694     uint region_idx = r->hrm_index();
3695     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
3696     // Is_candidate already filters out humongous regions with some remembered set.
3697     // This will not lead to humongous object that we mistakenly keep alive because
3698     // during young collection the remembered sets will only be added to.
3699     if (is_candidate) {
3700       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3701       _candidate_humongous++;
3702     }
3703     _total_humongous++;
3704 
3705     return false;
3706   }
3707 
3708   size_t total_humongous() const { return _total_humongous; }
3709   size_t candidate_humongous() const { return _candidate_humongous; }
3710 };
3711 
3712 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3713   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
3714     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
3715     return;
3716   }
3717 
3718   RegisterHumongousWithInCSetFastTestClosure cl;
3719   heap_region_iterate(&cl);
3720   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
3721                                                                   cl.candidate_humongous());
3722   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3723 
3724   if (_has_humongous_reclaim_candidates) {
3725     clear_humongous_is_live_table();
3726   }
3727 }
3728 
3729 void
3730 G1CollectedHeap::setup_surviving_young_words() {
3731   assert(_surviving_young_words == NULL, "pre-condition");
3732   uint array_length = g1_policy()->young_cset_region_length();
3733   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3734   if (_surviving_young_words == NULL) {
3735     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3736                           "Not enough space for young surv words summary.");
3737   }
3738   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3739 #ifdef ASSERT
3740   for (uint i = 0;  i < array_length; ++i) {
3741     assert( _surviving_young_words[i] == 0, "memset above" );
3742   }
3743 #endif // !ASSERT
3744 }
3745 
3746 void
3747 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3748   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3749   uint array_length = g1_policy()->young_cset_region_length();
3750   for (uint i = 0; i < array_length; ++i) {
3751     _surviving_young_words[i] += surv_young_words[i];
3752   }
3753 }
3754 
3755 void
3756 G1CollectedHeap::cleanup_surviving_young_words() {
3757   guarantee( _surviving_young_words != NULL, "pre-condition" );
3758   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3759   _surviving_young_words = NULL;
3760 }
3761 
3762 #ifdef ASSERT
3763 class VerifyCSetClosure: public HeapRegionClosure {
3764 public:
3765   bool doHeapRegion(HeapRegion* hr) {
3766     // Here we check that the CSet region's RSet is ready for parallel
3767     // iteration. The fields that we'll verify are only manipulated
3768     // when the region is part of a CSet and is collected. Afterwards,
3769     // we reset these fields when we clear the region's RSet (when the
3770     // region is freed) so they are ready when the region is
3771     // re-allocated. The only exception to this is if there's an
3772     // evacuation failure and instead of freeing the region we leave
3773     // it in the heap. In that case, we reset these fields during
3774     // evacuation failure handling.
3775     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3776 
3777     // Here's a good place to add any other checks we'd like to
3778     // perform on CSet regions.
3779     return false;
3780   }
3781 };
3782 #endif // ASSERT
3783 
3784 #if TASKQUEUE_STATS
3785 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3786   st->print_raw_cr("GC Task Stats");
3787   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3788   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3789 }
3790 
3791 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3792   print_taskqueue_stats_hdr(st);
3793 
3794   TaskQueueStats totals;
3795   const int n = workers() != NULL ? workers()->total_workers() : 1;
3796   for (int i = 0; i < n; ++i) {
3797     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3798     totals += task_queue(i)->stats;
3799   }
3800   st->print_raw("tot "); totals.print(st); st->cr();
3801 
3802   DEBUG_ONLY(totals.verify());
3803 }
3804 
3805 void G1CollectedHeap::reset_taskqueue_stats() {
3806   const int n = workers() != NULL ? workers()->total_workers() : 1;
3807   for (int i = 0; i < n; ++i) {
3808     task_queue(i)->stats.reset();
3809   }
3810 }
3811 #endif // TASKQUEUE_STATS
3812 
3813 void G1CollectedHeap::log_gc_header() {
3814   if (!G1Log::fine()) {
3815     return;
3816   }
3817 
3818   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3819 
3820   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3821     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3822     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3823 
3824   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3825 }
3826 
3827 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3828   if (!G1Log::fine()) {
3829     return;
3830   }
3831 
3832   if (G1Log::finer()) {
3833     if (evacuation_failed()) {
3834       gclog_or_tty->print(" (to-space exhausted)");
3835     }
3836     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3837     g1_policy()->phase_times()->note_gc_end();
3838     g1_policy()->phase_times()->print(pause_time_sec);
3839     g1_policy()->print_detailed_heap_transition();
3840   } else {
3841     if (evacuation_failed()) {
3842       gclog_or_tty->print("--");
3843     }
3844     g1_policy()->print_heap_transition();
3845     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3846   }
3847   gclog_or_tty->flush();
3848 }
3849 
3850 bool
3851 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3852   assert_at_safepoint(true /* should_be_vm_thread */);
3853   guarantee(!is_gc_active(), "collection is not reentrant");
3854 
3855   if (GC_locker::check_active_before_gc()) {
3856     return false;
3857   }
3858 
3859   _gc_timer_stw->register_gc_start();
3860 
3861   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3862 
3863   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3864   ResourceMark rm;
3865 
3866   print_heap_before_gc();
3867   trace_heap_before_gc(_gc_tracer_stw);
3868 
3869   verify_region_sets_optional();
3870   verify_dirty_young_regions();
3871 
3872   // This call will decide whether this pause is an initial-mark
3873   // pause. If it is, during_initial_mark_pause() will return true
3874   // for the duration of this pause.
3875   g1_policy()->decide_on_conc_mark_initiation();
3876 
3877   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3878   assert(!g1_policy()->during_initial_mark_pause() ||
3879           g1_policy()->gcs_are_young(), "sanity");
3880 
3881   // We also do not allow mixed GCs during marking.
3882   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3883 
3884   // Record whether this pause is an initial mark. When the current
3885   // thread has completed its logging output and it's safe to signal
3886   // the CM thread, the flag's value in the policy has been reset.
3887   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3888 
3889   // Inner scope for scope based logging, timers, and stats collection
3890   {
3891     EvacuationInfo evacuation_info;
3892 
3893     if (g1_policy()->during_initial_mark_pause()) {
3894       // We are about to start a marking cycle, so we increment the
3895       // full collection counter.
3896       increment_old_marking_cycles_started();
3897       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3898     }
3899 
3900     _gc_tracer_stw->report_yc_type(yc_type());
3901 
3902     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3903 
3904     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3905                                 workers()->active_workers() : 1);
3906     double pause_start_sec = os::elapsedTime();
3907     g1_policy()->phase_times()->note_gc_start(active_workers);
3908     log_gc_header();
3909 
3910     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3911     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3912 
3913     // If the secondary_free_list is not empty, append it to the
3914     // free_list. No need to wait for the cleanup operation to finish;
3915     // the region allocation code will check the secondary_free_list
3916     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3917     // set, skip this step so that the region allocation code has to
3918     // get entries from the secondary_free_list.
3919     if (!G1StressConcRegionFreeing) {
3920       append_secondary_free_list_if_not_empty_with_lock();
3921     }
3922 
3923     assert(check_young_list_well_formed(), "young list should be well formed");
3924     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3925            "sanity check");
3926 
3927     // Don't dynamically change the number of GC threads this early.  A value of
3928     // 0 is used to indicate serial work.  When parallel work is done,
3929     // it will be set.
3930 
3931     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3932       IsGCActiveMark x;
3933 
3934       gc_prologue(false);
3935       increment_total_collections(false /* full gc */);
3936       increment_gc_time_stamp();
3937 
3938       verify_before_gc();
3939       check_bitmaps("GC Start");
3940 
3941       COMPILER2_PRESENT(DerivedPointerTable::clear());
3942 
3943       // Please see comment in g1CollectedHeap.hpp and
3944       // G1CollectedHeap::ref_processing_init() to see how
3945       // reference processing currently works in G1.
3946 
3947       // Enable discovery in the STW reference processor
3948       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3949                                             true /*verify_no_refs*/);
3950 
3951       {
3952         // We want to temporarily turn off discovery by the
3953         // CM ref processor, if necessary, and turn it back on
3954         // on again later if we do. Using a scoped
3955         // NoRefDiscovery object will do this.
3956         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3957 
3958         // Forget the current alloc region (we might even choose it to be part
3959         // of the collection set!).
3960         _allocator->release_mutator_alloc_region();
3961 
3962         // We should call this after we retire the mutator alloc
3963         // region(s) so that all the ALLOC / RETIRE events are generated
3964         // before the start GC event.
3965         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3966 
3967         // This timing is only used by the ergonomics to handle our pause target.
3968         // It is unclear why this should not include the full pause. We will
3969         // investigate this in CR 7178365.
3970         //
3971         // Preserving the old comment here if that helps the investigation:
3972         //
3973         // The elapsed time induced by the start time below deliberately elides
3974         // the possible verification above.
3975         double sample_start_time_sec = os::elapsedTime();
3976 
3977 #if YOUNG_LIST_VERBOSE
3978         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3979         _young_list->print();
3980         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3981 #endif // YOUNG_LIST_VERBOSE
3982 
3983         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3984 
3985         double scan_wait_start = os::elapsedTime();
3986         // We have to wait until the CM threads finish scanning the
3987         // root regions as it's the only way to ensure that all the
3988         // objects on them have been correctly scanned before we start
3989         // moving them during the GC.
3990         bool waited = _cm->root_regions()->wait_until_scan_finished();
3991         double wait_time_ms = 0.0;
3992         if (waited) {
3993           double scan_wait_end = os::elapsedTime();
3994           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3995         }
3996         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3997 
3998 #if YOUNG_LIST_VERBOSE
3999         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4000         _young_list->print();
4001 #endif // YOUNG_LIST_VERBOSE
4002 
4003         if (g1_policy()->during_initial_mark_pause()) {
4004           concurrent_mark()->checkpointRootsInitialPre();
4005         }
4006 
4007 #if YOUNG_LIST_VERBOSE
4008         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4009         _young_list->print();
4010         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4011 #endif // YOUNG_LIST_VERBOSE
4012 
4013         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4014 
4015         register_humongous_regions_with_in_cset_fast_test();
4016 
4017         _cm->note_start_of_gc();
4018         // We should not verify the per-thread SATB buffers given that
4019         // we have not filtered them yet (we'll do so during the
4020         // GC). We also call this after finalize_cset() to
4021         // ensure that the CSet has been finalized.
4022         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4023                                  true  /* verify_enqueued_buffers */,
4024                                  false /* verify_thread_buffers */,
4025                                  true  /* verify_fingers */);
4026 
4027         if (_hr_printer.is_active()) {
4028           HeapRegion* hr = g1_policy()->collection_set();
4029           while (hr != NULL) {
4030             _hr_printer.cset(hr);
4031             hr = hr->next_in_collection_set();
4032           }
4033         }
4034 
4035 #ifdef ASSERT
4036         VerifyCSetClosure cl;
4037         collection_set_iterate(&cl);
4038 #endif // ASSERT
4039 
4040         setup_surviving_young_words();
4041 
4042         // Initialize the GC alloc regions.
4043         _allocator->init_gc_alloc_regions(evacuation_info);
4044 
4045         // Actually do the work...
4046         evacuate_collection_set(evacuation_info);
4047 
4048         // We do this to mainly verify the per-thread SATB buffers
4049         // (which have been filtered by now) since we didn't verify
4050         // them earlier. No point in re-checking the stacks / enqueued
4051         // buffers given that the CSet has not changed since last time
4052         // we checked.
4053         _cm->verify_no_cset_oops(false /* verify_stacks */,
4054                                  false /* verify_enqueued_buffers */,
4055                                  true  /* verify_thread_buffers */,
4056                                  true  /* verify_fingers */);
4057 
4058         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4059 
4060         eagerly_reclaim_humongous_regions();
4061 
4062         g1_policy()->clear_collection_set();
4063 
4064         cleanup_surviving_young_words();
4065 
4066         // Start a new incremental collection set for the next pause.
4067         g1_policy()->start_incremental_cset_building();
4068 
4069         clear_cset_fast_test();
4070 
4071         _young_list->reset_sampled_info();
4072 
4073         // Don't check the whole heap at this point as the
4074         // GC alloc regions from this pause have been tagged
4075         // as survivors and moved on to the survivor list.
4076         // Survivor regions will fail the !is_young() check.
4077         assert(check_young_list_empty(false /* check_heap */),
4078           "young list should be empty");
4079 
4080 #if YOUNG_LIST_VERBOSE
4081         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4082         _young_list->print();
4083 #endif // YOUNG_LIST_VERBOSE
4084 
4085         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4086                                              _young_list->first_survivor_region(),
4087                                              _young_list->last_survivor_region());
4088 
4089         _young_list->reset_auxilary_lists();
4090 
4091         if (evacuation_failed()) {
4092           _allocator->set_used(recalculate_used());
4093           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4094           for (uint i = 0; i < n_queues; i++) {
4095             if (_evacuation_failed_info_array[i].has_failed()) {
4096               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4097             }
4098           }
4099         } else {
4100           // The "used" of the the collection set have already been subtracted
4101           // when they were freed.  Add in the bytes evacuated.
4102           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4103         }
4104 
4105         if (g1_policy()->during_initial_mark_pause()) {
4106           // We have to do this before we notify the CM threads that
4107           // they can start working to make sure that all the
4108           // appropriate initialization is done on the CM object.
4109           concurrent_mark()->checkpointRootsInitialPost();
4110           set_marking_started();
4111           // Note that we don't actually trigger the CM thread at
4112           // this point. We do that later when we're sure that
4113           // the current thread has completed its logging output.
4114         }
4115 
4116         allocate_dummy_regions();
4117 
4118 #if YOUNG_LIST_VERBOSE
4119         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4120         _young_list->print();
4121         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4122 #endif // YOUNG_LIST_VERBOSE
4123 
4124         _allocator->init_mutator_alloc_region();
4125 
4126         {
4127           size_t expand_bytes = g1_policy()->expansion_amount();
4128           if (expand_bytes > 0) {
4129             size_t bytes_before = capacity();
4130             // No need for an ergo verbose message here,
4131             // expansion_amount() does this when it returns a value > 0.
4132             if (!expand(expand_bytes)) {
4133               // We failed to expand the heap. Cannot do anything about it.
4134             }
4135           }
4136         }
4137 
4138         // We redo the verification but now wrt to the new CSet which
4139         // has just got initialized after the previous CSet was freed.
4140         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4141                                  true  /* verify_enqueued_buffers */,
4142                                  true  /* verify_thread_buffers */,
4143                                  true  /* verify_fingers */);
4144         _cm->note_end_of_gc();
4145 
4146         // This timing is only used by the ergonomics to handle our pause target.
4147         // It is unclear why this should not include the full pause. We will
4148         // investigate this in CR 7178365.
4149         double sample_end_time_sec = os::elapsedTime();
4150         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4151         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4152 
4153         MemoryService::track_memory_usage();
4154 
4155         // In prepare_for_verify() below we'll need to scan the deferred
4156         // update buffers to bring the RSets up-to-date if
4157         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4158         // the update buffers we'll probably need to scan cards on the
4159         // regions we just allocated to (i.e., the GC alloc
4160         // regions). However, during the last GC we called
4161         // set_saved_mark() on all the GC alloc regions, so card
4162         // scanning might skip the [saved_mark_word()...top()] area of
4163         // those regions (i.e., the area we allocated objects into
4164         // during the last GC). But it shouldn't. Given that
4165         // saved_mark_word() is conditional on whether the GC time stamp
4166         // on the region is current or not, by incrementing the GC time
4167         // stamp here we invalidate all the GC time stamps on all the
4168         // regions and saved_mark_word() will simply return top() for
4169         // all the regions. This is a nicer way of ensuring this rather
4170         // than iterating over the regions and fixing them. In fact, the
4171         // GC time stamp increment here also ensures that
4172         // saved_mark_word() will return top() between pauses, i.e.,
4173         // during concurrent refinement. So we don't need the
4174         // is_gc_active() check to decided which top to use when
4175         // scanning cards (see CR 7039627).
4176         increment_gc_time_stamp();
4177 
4178         verify_after_gc();
4179         check_bitmaps("GC End");
4180 
4181         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4182         ref_processor_stw()->verify_no_references_recorded();
4183 
4184         // CM reference discovery will be re-enabled if necessary.
4185       }
4186 
4187       // We should do this after we potentially expand the heap so
4188       // that all the COMMIT events are generated before the end GC
4189       // event, and after we retire the GC alloc regions so that all
4190       // RETIRE events are generated before the end GC event.
4191       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4192 
4193 #ifdef TRACESPINNING
4194       ParallelTaskTerminator::print_termination_counts();
4195 #endif
4196 
4197       gc_epilogue(false);
4198     }
4199 
4200     // Print the remainder of the GC log output.
4201     log_gc_footer(os::elapsedTime() - pause_start_sec);
4202 
4203     // It is not yet to safe to tell the concurrent mark to
4204     // start as we have some optional output below. We don't want the
4205     // output from the concurrent mark thread interfering with this
4206     // logging output either.
4207 
4208     _hrm.verify_optional();
4209     verify_region_sets_optional();
4210 
4211     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4212     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4213 
4214     print_heap_after_gc();
4215     trace_heap_after_gc(_gc_tracer_stw);
4216 
4217     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4218     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4219     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4220     // before any GC notifications are raised.
4221     g1mm()->update_sizes();
4222 
4223     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4224     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4225     _gc_timer_stw->register_gc_end();
4226     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4227   }
4228   // It should now be safe to tell the concurrent mark thread to start
4229   // without its logging output interfering with the logging output
4230   // that came from the pause.
4231 
4232   if (should_start_conc_mark) {
4233     // CAUTION: after the doConcurrentMark() call below,
4234     // the concurrent marking thread(s) could be running
4235     // concurrently with us. Make sure that anything after
4236     // this point does not assume that we are the only GC thread
4237     // running. Note: of course, the actual marking work will
4238     // not start until the safepoint itself is released in
4239     // SuspendibleThreadSet::desynchronize().
4240     doConcurrentMark();
4241   }
4242 
4243   return true;
4244 }
4245 
4246 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4247 {
4248   size_t gclab_word_size;
4249   switch (purpose) {
4250     case GCAllocForSurvived:
4251       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4252       break;
4253     case GCAllocForTenured:
4254       gclab_word_size = _old_plab_stats.desired_plab_sz();
4255       break;
4256     default:
4257       assert(false, "unknown GCAllocPurpose");
4258       gclab_word_size = _old_plab_stats.desired_plab_sz();
4259       break;
4260   }
4261 
4262   // Prevent humongous PLAB sizes for two reasons:
4263   // * PLABs are allocated using a similar paths as oops, but should
4264   //   never be in a humongous region
4265   // * Allowing humongous PLABs needlessly churns the region free lists
4266   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4267 }
4268 
4269 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4270   _drain_in_progress = false;
4271   set_evac_failure_closure(cl);
4272   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4273 }
4274 
4275 void G1CollectedHeap::finalize_for_evac_failure() {
4276   assert(_evac_failure_scan_stack != NULL &&
4277          _evac_failure_scan_stack->length() == 0,
4278          "Postcondition");
4279   assert(!_drain_in_progress, "Postcondition");
4280   delete _evac_failure_scan_stack;
4281   _evac_failure_scan_stack = NULL;
4282 }
4283 
4284 void G1CollectedHeap::remove_self_forwarding_pointers() {
4285   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4286 
4287   double remove_self_forwards_start = os::elapsedTime();
4288 
4289   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4290 
4291   if (G1CollectedHeap::use_parallel_gc_threads()) {
4292     set_par_threads();
4293     workers()->run_task(&rsfp_task);
4294     set_par_threads(0);
4295   } else {
4296     rsfp_task.work(0);
4297   }
4298 
4299   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4300 
4301   // Reset the claim values in the regions in the collection set.
4302   reset_cset_heap_region_claim_values();
4303 
4304   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4305 
4306   // Now restore saved marks, if any.
4307   assert(_objs_with_preserved_marks.size() ==
4308             _preserved_marks_of_objs.size(), "Both or none.");
4309   while (!_objs_with_preserved_marks.is_empty()) {
4310     oop obj = _objs_with_preserved_marks.pop();
4311     markOop m = _preserved_marks_of_objs.pop();
4312     obj->set_mark(m);
4313   }
4314   _objs_with_preserved_marks.clear(true);
4315   _preserved_marks_of_objs.clear(true);
4316 
4317   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4318 }
4319 
4320 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4321   _evac_failure_scan_stack->push(obj);
4322 }
4323 
4324 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4325   assert(_evac_failure_scan_stack != NULL, "precondition");
4326 
4327   while (_evac_failure_scan_stack->length() > 0) {
4328      oop obj = _evac_failure_scan_stack->pop();
4329      _evac_failure_closure->set_region(heap_region_containing(obj));
4330      obj->oop_iterate_backwards(_evac_failure_closure);
4331   }
4332 }
4333 
4334 oop
4335 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4336                                                oop old) {
4337   assert(obj_in_cs(old),
4338          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4339                  (HeapWord*) old));
4340   markOop m = old->mark();
4341   oop forward_ptr = old->forward_to_atomic(old);
4342   if (forward_ptr == NULL) {
4343     // Forward-to-self succeeded.
4344     assert(_par_scan_state != NULL, "par scan state");
4345     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4346     uint queue_num = _par_scan_state->queue_num();
4347 
4348     _evacuation_failed = true;
4349     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4350     if (_evac_failure_closure != cl) {
4351       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4352       assert(!_drain_in_progress,
4353              "Should only be true while someone holds the lock.");
4354       // Set the global evac-failure closure to the current thread's.
4355       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4356       set_evac_failure_closure(cl);
4357       // Now do the common part.
4358       handle_evacuation_failure_common(old, m);
4359       // Reset to NULL.
4360       set_evac_failure_closure(NULL);
4361     } else {
4362       // The lock is already held, and this is recursive.
4363       assert(_drain_in_progress, "This should only be the recursive case.");
4364       handle_evacuation_failure_common(old, m);
4365     }
4366     return old;
4367   } else {
4368     // Forward-to-self failed. Either someone else managed to allocate
4369     // space for this object (old != forward_ptr) or they beat us in
4370     // self-forwarding it (old == forward_ptr).
4371     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4372            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4373                    "should not be in the CSet",
4374                    (HeapWord*) old, (HeapWord*) forward_ptr));
4375     return forward_ptr;
4376   }
4377 }
4378 
4379 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4380   preserve_mark_if_necessary(old, m);
4381 
4382   HeapRegion* r = heap_region_containing(old);
4383   if (!r->evacuation_failed()) {
4384     r->set_evacuation_failed(true);
4385     _hr_printer.evac_failure(r);
4386   }
4387 
4388   push_on_evac_failure_scan_stack(old);
4389 
4390   if (!_drain_in_progress) {
4391     // prevent recursion in copy_to_survivor_space()
4392     _drain_in_progress = true;
4393     drain_evac_failure_scan_stack();
4394     _drain_in_progress = false;
4395   }
4396 }
4397 
4398 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4399   assert(evacuation_failed(), "Oversaving!");
4400   // We want to call the "for_promotion_failure" version only in the
4401   // case of a promotion failure.
4402   if (m->must_be_preserved_for_promotion_failure(obj)) {
4403     _objs_with_preserved_marks.push(obj);
4404     _preserved_marks_of_objs.push(m);
4405   }
4406 }
4407 
4408 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4409                                                   size_t word_size,
4410                                                   AllocationContext_t context) {
4411   if (purpose == GCAllocForSurvived) {
4412     HeapWord* result = survivor_attempt_allocation(word_size, context);
4413     if (result != NULL) {
4414       return result;
4415     } else {
4416       // Let's try to allocate in the old gen in case we can fit the
4417       // object there.
4418       return old_attempt_allocation(word_size, context);
4419     }
4420   } else {
4421     assert(purpose ==  GCAllocForTenured, "sanity");
4422     HeapWord* result = old_attempt_allocation(word_size, context);
4423     if (result != NULL) {
4424       return result;
4425     } else {
4426       // Let's try to allocate in the survivors in case we can fit the
4427       // object there.
4428       return survivor_attempt_allocation(word_size, context);
4429     }
4430   }
4431 
4432   ShouldNotReachHere();
4433   // Trying to keep some compilers happy.
4434   return NULL;
4435 }
4436 
4437 void G1ParCopyHelper::mark_object(oop obj) {
4438   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4439 
4440   // We know that the object is not moving so it's safe to read its size.
4441   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4442 }
4443 
4444 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4445   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4446   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4447   assert(from_obj != to_obj, "should not be self-forwarded");
4448 
4449   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4450   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4451 
4452   // The object might be in the process of being copied by another
4453   // worker so we cannot trust that its to-space image is
4454   // well-formed. So we have to read its size from its from-space
4455   // image which we know should not be changing.
4456   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4457 }
4458 
4459 template <class T>
4460 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4461   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4462     _scanned_klass->record_modified_oops();
4463   }
4464 }
4465 
4466 template <G1Barrier barrier, G1Mark do_mark_object>
4467 template <class T>
4468 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4469   T heap_oop = oopDesc::load_heap_oop(p);
4470 
4471   if (oopDesc::is_null(heap_oop)) {
4472     return;
4473   }
4474 
4475   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4476 
4477   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4478 
4479   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
4480 
4481   if (state == G1CollectedHeap::InCSet) {
4482     oop forwardee;
4483     if (obj->is_forwarded()) {
4484       forwardee = obj->forwardee();
4485     } else {
4486       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4487     }
4488     assert(forwardee != NULL, "forwardee should not be NULL");
4489     oopDesc::encode_store_heap_oop(p, forwardee);
4490     if (do_mark_object != G1MarkNone && forwardee != obj) {
4491       // If the object is self-forwarded we don't need to explicitly
4492       // mark it, the evacuation failure protocol will do so.
4493       mark_forwarded_object(obj, forwardee);
4494     }
4495 
4496     if (barrier == G1BarrierKlass) {
4497       do_klass_barrier(p, forwardee);
4498     }
4499   } else {
4500     if (state == G1CollectedHeap::IsHumongous) {
4501       _g1->set_humongous_is_live(obj);
4502     }
4503     // The object is not in collection set. If we're a root scanning
4504     // closure during an initial mark pause then attempt to mark the object.
4505     if (do_mark_object == G1MarkFromRoot) {
4506       mark_object(obj);
4507     }
4508   }
4509 
4510   if (barrier == G1BarrierEvac) {
4511     _par_scan_state->update_rs(_from, p, _worker_id);
4512   }
4513 }
4514 
4515 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4516 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4517 
4518 class G1ParEvacuateFollowersClosure : public VoidClosure {
4519 protected:
4520   G1CollectedHeap*              _g1h;
4521   G1ParScanThreadState*         _par_scan_state;
4522   RefToScanQueueSet*            _queues;
4523   ParallelTaskTerminator*       _terminator;
4524 
4525   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4526   RefToScanQueueSet*      queues()         { return _queues; }
4527   ParallelTaskTerminator* terminator()     { return _terminator; }
4528 
4529 public:
4530   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4531                                 G1ParScanThreadState* par_scan_state,
4532                                 RefToScanQueueSet* queues,
4533                                 ParallelTaskTerminator* terminator)
4534     : _g1h(g1h), _par_scan_state(par_scan_state),
4535       _queues(queues), _terminator(terminator) {}
4536 
4537   void do_void();
4538 
4539 private:
4540   inline bool offer_termination();
4541 };
4542 
4543 bool G1ParEvacuateFollowersClosure::offer_termination() {
4544   G1ParScanThreadState* const pss = par_scan_state();
4545   pss->start_term_time();
4546   const bool res = terminator()->offer_termination();
4547   pss->end_term_time();
4548   return res;
4549 }
4550 
4551 void G1ParEvacuateFollowersClosure::do_void() {
4552   G1ParScanThreadState* const pss = par_scan_state();
4553   pss->trim_queue();
4554   do {
4555     pss->steal_and_trim_queue(queues());
4556   } while (!offer_termination());
4557 }
4558 
4559 class G1KlassScanClosure : public KlassClosure {
4560  G1ParCopyHelper* _closure;
4561  bool             _process_only_dirty;
4562  int              _count;
4563  public:
4564   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4565       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4566   void do_klass(Klass* klass) {
4567     // If the klass has not been dirtied we know that there's
4568     // no references into  the young gen and we can skip it.
4569    if (!_process_only_dirty || klass->has_modified_oops()) {
4570       // Clean the klass since we're going to scavenge all the metadata.
4571       klass->clear_modified_oops();
4572 
4573       // Tell the closure that this klass is the Klass to scavenge
4574       // and is the one to dirty if oops are left pointing into the young gen.
4575       _closure->set_scanned_klass(klass);
4576 
4577       klass->oops_do(_closure);
4578 
4579       _closure->set_scanned_klass(NULL);
4580     }
4581     _count++;
4582   }
4583 };
4584 
4585 class G1CodeBlobClosure : public CodeBlobClosure {
4586   class HeapRegionGatheringOopClosure : public OopClosure {
4587     G1CollectedHeap* _g1h;
4588     OopClosure* _work;
4589     nmethod* _nm;
4590 
4591     template <typename T>
4592     void do_oop_work(T* p) {
4593       _work->do_oop(p);
4594       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4595       if (!oopDesc::is_null(oop_or_narrowoop)) {
4596         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4597         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4598         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4599         hr->add_strong_code_root(_nm);
4600       }
4601     }
4602 
4603   public:
4604     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4605 
4606     void do_oop(oop* o) {
4607       do_oop_work(o);
4608     }
4609 
4610     void do_oop(narrowOop* o) {
4611       do_oop_work(o);
4612     }
4613 
4614     void set_nm(nmethod* nm) {
4615       _nm = nm;
4616     }
4617   };
4618 
4619   HeapRegionGatheringOopClosure _oc;
4620 public:
4621   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4622 
4623   void do_code_blob(CodeBlob* cb) {
4624     nmethod* nm = cb->as_nmethod_or_null();
4625     if (nm != NULL) {
4626       if (!nm->test_set_oops_do_mark()) {
4627         _oc.set_nm(nm);
4628         nm->oops_do(&_oc);
4629         nm->fix_oop_relocations();
4630       }
4631     }
4632   }
4633 };
4634 
4635 class G1ParTask : public AbstractGangTask {
4636 protected:
4637   G1CollectedHeap*       _g1h;
4638   RefToScanQueueSet      *_queues;
4639   ParallelTaskTerminator _terminator;
4640   uint _n_workers;
4641 
4642   Mutex _stats_lock;
4643   Mutex* stats_lock() { return &_stats_lock; }
4644 
4645 public:
4646   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4647     : AbstractGangTask("G1 collection"),
4648       _g1h(g1h),
4649       _queues(task_queues),
4650       _terminator(0, _queues),
4651       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4652   {}
4653 
4654   RefToScanQueueSet* queues() { return _queues; }
4655 
4656   RefToScanQueue *work_queue(int i) {
4657     return queues()->queue(i);
4658   }
4659 
4660   ParallelTaskTerminator* terminator() { return &_terminator; }
4661 
4662   virtual void set_for_termination(int active_workers) {
4663     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4664     // in the young space (_par_seq_tasks) in the G1 heap
4665     // for SequentialSubTasksDone.
4666     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4667     // both of which need setting by set_n_termination().
4668     _g1h->SharedHeap::set_n_termination(active_workers);
4669     _g1h->set_n_termination(active_workers);
4670     terminator()->reset_for_reuse(active_workers);
4671     _n_workers = active_workers;
4672   }
4673 
4674   // Helps out with CLD processing.
4675   //
4676   // During InitialMark we need to:
4677   // 1) Scavenge all CLDs for the young GC.
4678   // 2) Mark all objects directly reachable from strong CLDs.
4679   template <G1Mark do_mark_object>
4680   class G1CLDClosure : public CLDClosure {
4681     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4682     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4683     G1KlassScanClosure                                _klass_in_cld_closure;
4684     bool                                              _claim;
4685 
4686    public:
4687     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4688                  bool only_young, bool claim)
4689         : _oop_closure(oop_closure),
4690           _oop_in_klass_closure(oop_closure->g1(),
4691                                 oop_closure->pss(),
4692                                 oop_closure->rp()),
4693           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4694           _claim(claim) {
4695 
4696     }
4697 
4698     void do_cld(ClassLoaderData* cld) {
4699       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4700     }
4701   };
4702 
4703   void work(uint worker_id) {
4704     if (worker_id >= _n_workers) return;  // no work needed this round
4705 
4706     double start_time_ms = os::elapsedTime() * 1000.0;
4707     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4708 
4709     {
4710       ResourceMark rm;
4711       HandleMark   hm;
4712 
4713       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4714 
4715       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4716       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4717 
4718       pss.set_evac_failure_closure(&evac_failure_cl);
4719 
4720       bool only_young = _g1h->g1_policy()->gcs_are_young();
4721 
4722       // Non-IM young GC.
4723       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4724       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4725                                                                                only_young, // Only process dirty klasses.
4726                                                                                false);     // No need to claim CLDs.
4727       // IM young GC.
4728       //    Strong roots closures.
4729       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4730       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4731                                                                                false, // Process all klasses.
4732                                                                                true); // Need to claim CLDs.
4733       //    Weak roots closures.
4734       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4735       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4736                                                                                     false, // Process all klasses.
4737                                                                                     true); // Need to claim CLDs.
4738 
4739       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4740       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4741       // IM Weak code roots are handled later.
4742 
4743       OopClosure* strong_root_cl;
4744       OopClosure* weak_root_cl;
4745       CLDClosure* strong_cld_cl;
4746       CLDClosure* weak_cld_cl;
4747       CodeBlobClosure* strong_code_cl;
4748 
4749       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4750         // We also need to mark copied objects.
4751         strong_root_cl = &scan_mark_root_cl;
4752         strong_cld_cl  = &scan_mark_cld_cl;
4753         strong_code_cl = &scan_mark_code_cl;
4754         if (ClassUnloadingWithConcurrentMark) {
4755           weak_root_cl = &scan_mark_weak_root_cl;
4756           weak_cld_cl  = &scan_mark_weak_cld_cl;
4757         } else {
4758           weak_root_cl = &scan_mark_root_cl;
4759           weak_cld_cl  = &scan_mark_cld_cl;
4760         }
4761       } else {
4762         strong_root_cl = &scan_only_root_cl;
4763         weak_root_cl   = &scan_only_root_cl;
4764         strong_cld_cl  = &scan_only_cld_cl;
4765         weak_cld_cl    = &scan_only_cld_cl;
4766         strong_code_cl = &scan_only_code_cl;
4767       }
4768 
4769 
4770       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4771 
4772       pss.start_strong_roots();
4773       _g1h->g1_process_roots(strong_root_cl,
4774                              weak_root_cl,
4775                              &push_heap_rs_cl,
4776                              strong_cld_cl,
4777                              weak_cld_cl,
4778                              strong_code_cl,
4779                              worker_id);
4780 
4781       pss.end_strong_roots();
4782 
4783       {
4784         double start = os::elapsedTime();
4785         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4786         evac.do_void();
4787         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4788         double term_ms = pss.term_time()*1000.0;
4789         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4790         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4791       }
4792       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4793       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4794 
4795       if (ParallelGCVerbose) {
4796         MutexLocker x(stats_lock());
4797         pss.print_termination_stats(worker_id);
4798       }
4799 
4800       assert(pss.queue_is_empty(), "should be empty");
4801 
4802       // Close the inner scope so that the ResourceMark and HandleMark
4803       // destructors are executed here and are included as part of the
4804       // "GC Worker Time".
4805     }
4806 
4807     double end_time_ms = os::elapsedTime() * 1000.0;
4808     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4809   }
4810 };
4811 
4812 // *** Common G1 Evacuation Stuff
4813 
4814 // This method is run in a GC worker.
4815 
4816 void
4817 G1CollectedHeap::
4818 g1_process_roots(OopClosure* scan_non_heap_roots,
4819                  OopClosure* scan_non_heap_weak_roots,
4820                  OopsInHeapRegionClosure* scan_rs,
4821                  CLDClosure* scan_strong_clds,
4822                  CLDClosure* scan_weak_clds,
4823                  CodeBlobClosure* scan_strong_code,
4824                  uint worker_i) {
4825 
4826   // First scan the shared roots.
4827   double ext_roots_start = os::elapsedTime();
4828   double closure_app_time_sec = 0.0;
4829 
4830   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4831   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4832 
4833   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4834   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4835 
4836   process_roots(false, // no scoping; this is parallel code
4837                 SharedHeap::SO_None,
4838                 &buf_scan_non_heap_roots,
4839                 &buf_scan_non_heap_weak_roots,
4840                 scan_strong_clds,
4841                 // Unloading Initial Marks handle the weak CLDs separately.
4842                 (trace_metadata ? NULL : scan_weak_clds),
4843                 scan_strong_code);
4844 
4845   // Now the CM ref_processor roots.
4846   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4847     // We need to treat the discovered reference lists of the
4848     // concurrent mark ref processor as roots and keep entries
4849     // (which are added by the marking threads) on them live
4850     // until they can be processed at the end of marking.
4851     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4852   }
4853 
4854   if (trace_metadata) {
4855     // Barrier to make sure all workers passed
4856     // the strong CLD and strong nmethods phases.
4857     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4858 
4859     // Now take the complement of the strong CLDs.
4860     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4861   }
4862 
4863   // Finish up any enqueued closure apps (attributed as object copy time).
4864   buf_scan_non_heap_roots.done();
4865   buf_scan_non_heap_weak_roots.done();
4866 
4867   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4868       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4869 
4870   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4871 
4872   double ext_root_time_ms =
4873     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4874 
4875   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4876 
4877   // During conc marking we have to filter the per-thread SATB buffers
4878   // to make sure we remove any oops into the CSet (which will show up
4879   // as implicitly live).
4880   double satb_filtering_ms = 0.0;
4881   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4882     if (mark_in_progress()) {
4883       double satb_filter_start = os::elapsedTime();
4884 
4885       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4886 
4887       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4888     }
4889   }
4890   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4891 
4892   // Now scan the complement of the collection set.
4893   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4894 
4895   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4896 
4897   _process_strong_tasks->all_tasks_completed();
4898 }
4899 
4900 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4901 private:
4902   BoolObjectClosure* _is_alive;
4903   int _initial_string_table_size;
4904   int _initial_symbol_table_size;
4905 
4906   bool  _process_strings;
4907   int _strings_processed;
4908   int _strings_removed;
4909 
4910   bool  _process_symbols;
4911   int _symbols_processed;
4912   int _symbols_removed;
4913 
4914   bool _do_in_parallel;
4915 public:
4916   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4917     AbstractGangTask("String/Symbol Unlinking"),
4918     _is_alive(is_alive),
4919     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4920     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4921     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4922 
4923     _initial_string_table_size = StringTable::the_table()->table_size();
4924     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4925     if (process_strings) {
4926       StringTable::clear_parallel_claimed_index();
4927     }
4928     if (process_symbols) {
4929       SymbolTable::clear_parallel_claimed_index();
4930     }
4931   }
4932 
4933   ~G1StringSymbolTableUnlinkTask() {
4934     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4935               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
4936                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4937     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4938               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
4939                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4940 
4941     if (G1TraceStringSymbolTableScrubbing) {
4942       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4943                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4944                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4945                              strings_processed(), strings_removed(),
4946                              symbols_processed(), symbols_removed());
4947     }
4948   }
4949 
4950   void work(uint worker_id) {
4951     if (_do_in_parallel) {
4952       int strings_processed = 0;
4953       int strings_removed = 0;
4954       int symbols_processed = 0;
4955       int symbols_removed = 0;
4956       if (_process_strings) {
4957         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4958         Atomic::add(strings_processed, &_strings_processed);
4959         Atomic::add(strings_removed, &_strings_removed);
4960       }
4961       if (_process_symbols) {
4962         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4963         Atomic::add(symbols_processed, &_symbols_processed);
4964         Atomic::add(symbols_removed, &_symbols_removed);
4965       }
4966     } else {
4967       if (_process_strings) {
4968         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
4969       }
4970       if (_process_symbols) {
4971         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
4972       }
4973     }
4974   }
4975 
4976   size_t strings_processed() const { return (size_t)_strings_processed; }
4977   size_t strings_removed()   const { return (size_t)_strings_removed; }
4978 
4979   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4980   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4981 };
4982 
4983 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4984 private:
4985   static Monitor* _lock;
4986 
4987   BoolObjectClosure* const _is_alive;
4988   const bool               _unloading_occurred;
4989   const uint               _num_workers;
4990 
4991   // Variables used to claim nmethods.
4992   nmethod* _first_nmethod;
4993   volatile nmethod* _claimed_nmethod;
4994 
4995   // The list of nmethods that need to be processed by the second pass.
4996   volatile nmethod* _postponed_list;
4997   volatile uint     _num_entered_barrier;
4998 
4999  public:
5000   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
5001       _is_alive(is_alive),
5002       _unloading_occurred(unloading_occurred),
5003       _num_workers(num_workers),
5004       _first_nmethod(NULL),
5005       _claimed_nmethod(NULL),
5006       _postponed_list(NULL),
5007       _num_entered_barrier(0)
5008   {
5009     nmethod::increase_unloading_clock();
5010     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
5011     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
5012   }
5013 
5014   ~G1CodeCacheUnloadingTask() {
5015     CodeCache::verify_clean_inline_caches();
5016 
5017     CodeCache::set_needs_cache_clean(false);
5018     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
5019 
5020     CodeCache::verify_icholder_relocations();
5021   }
5022 
5023  private:
5024   void add_to_postponed_list(nmethod* nm) {
5025       nmethod* old;
5026       do {
5027         old = (nmethod*)_postponed_list;
5028         nm->set_unloading_next(old);
5029       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
5030   }
5031 
5032   void clean_nmethod(nmethod* nm) {
5033     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
5034 
5035     if (postponed) {
5036       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
5037       add_to_postponed_list(nm);
5038     }
5039 
5040     // Mark that this thread has been cleaned/unloaded.
5041     // After this call, it will be safe to ask if this nmethod was unloaded or not.
5042     nm->set_unloading_clock(nmethod::global_unloading_clock());
5043   }
5044 
5045   void clean_nmethod_postponed(nmethod* nm) {
5046     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
5047   }
5048 
5049   static const int MaxClaimNmethods = 16;
5050 
5051   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
5052     nmethod* first;
5053     nmethod* last;
5054 
5055     do {
5056       *num_claimed_nmethods = 0;
5057 
5058       first = last = (nmethod*)_claimed_nmethod;
5059 
5060       if (first != NULL) {
5061         for (int i = 0; i < MaxClaimNmethods; i++) {
5062           last = CodeCache::alive_nmethod(CodeCache::next(last));
5063 
5064           if (last == NULL) {
5065             break;
5066           }
5067 
5068           claimed_nmethods[i] = last;
5069           (*num_claimed_nmethods)++;
5070         }
5071       }
5072 
5073     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
5074   }
5075 
5076   nmethod* claim_postponed_nmethod() {
5077     nmethod* claim;
5078     nmethod* next;
5079 
5080     do {
5081       claim = (nmethod*)_postponed_list;
5082       if (claim == NULL) {
5083         return NULL;
5084       }
5085 
5086       next = claim->unloading_next();
5087 
5088     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
5089 
5090     return claim;
5091   }
5092 
5093  public:
5094   // Mark that we're done with the first pass of nmethod cleaning.
5095   void barrier_mark(uint worker_id) {
5096     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5097     _num_entered_barrier++;
5098     if (_num_entered_barrier == _num_workers) {
5099       ml.notify_all();
5100     }
5101   }
5102 
5103   // See if we have to wait for the other workers to
5104   // finish their first-pass nmethod cleaning work.
5105   void barrier_wait(uint worker_id) {
5106     if (_num_entered_barrier < _num_workers) {
5107       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5108       while (_num_entered_barrier < _num_workers) {
5109           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
5110       }
5111     }
5112   }
5113 
5114   // Cleaning and unloading of nmethods. Some work has to be postponed
5115   // to the second pass, when we know which nmethods survive.
5116   void work_first_pass(uint worker_id) {
5117     // The first nmethods is claimed by the first worker.
5118     if (worker_id == 0 && _first_nmethod != NULL) {
5119       clean_nmethod(_first_nmethod);
5120       _first_nmethod = NULL;
5121     }
5122 
5123     int num_claimed_nmethods;
5124     nmethod* claimed_nmethods[MaxClaimNmethods];
5125 
5126     while (true) {
5127       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
5128 
5129       if (num_claimed_nmethods == 0) {
5130         break;
5131       }
5132 
5133       for (int i = 0; i < num_claimed_nmethods; i++) {
5134         clean_nmethod(claimed_nmethods[i]);
5135       }
5136     }
5137 
5138     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
5139     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
5140     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
5141   }
5142 
5143   void work_second_pass(uint worker_id) {
5144     nmethod* nm;
5145     // Take care of postponed nmethods.
5146     while ((nm = claim_postponed_nmethod()) != NULL) {
5147       clean_nmethod_postponed(nm);
5148     }
5149   }
5150 };
5151 
5152 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5153 
5154 class G1KlassCleaningTask : public StackObj {
5155   BoolObjectClosure*                      _is_alive;
5156   volatile jint                           _clean_klass_tree_claimed;
5157   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5158 
5159  public:
5160   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5161       _is_alive(is_alive),
5162       _clean_klass_tree_claimed(0),
5163       _klass_iterator() {
5164   }
5165 
5166  private:
5167   bool claim_clean_klass_tree_task() {
5168     if (_clean_klass_tree_claimed) {
5169       return false;
5170     }
5171 
5172     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5173   }
5174 
5175   InstanceKlass* claim_next_klass() {
5176     Klass* klass;
5177     do {
5178       klass =_klass_iterator.next_klass();
5179     } while (klass != NULL && !klass->oop_is_instance());
5180 
5181     return (InstanceKlass*)klass;
5182   }
5183 
5184 public:
5185 
5186   void clean_klass(InstanceKlass* ik) {
5187     ik->clean_implementors_list(_is_alive);
5188     ik->clean_method_data(_is_alive);
5189 
5190     // G1 specific cleanup work that has
5191     // been moved here to be done in parallel.
5192     ik->clean_dependent_nmethods();
5193     if (JvmtiExport::has_redefined_a_class()) {
5194       InstanceKlass::purge_previous_versions(ik);
5195     }
5196   }
5197 
5198   void work() {
5199     ResourceMark rm;
5200 
5201     // One worker will clean the subklass/sibling klass tree.
5202     if (claim_clean_klass_tree_task()) {
5203       Klass::clean_subklass_tree(_is_alive);
5204     }
5205 
5206     // All workers will help cleaning the classes,
5207     InstanceKlass* klass;
5208     while ((klass = claim_next_klass()) != NULL) {
5209       clean_klass(klass);
5210     }
5211   }
5212 };
5213 
5214 // To minimize the remark pause times, the tasks below are done in parallel.
5215 class G1ParallelCleaningTask : public AbstractGangTask {
5216 private:
5217   G1StringSymbolTableUnlinkTask _string_symbol_task;
5218   G1CodeCacheUnloadingTask      _code_cache_task;
5219   G1KlassCleaningTask           _klass_cleaning_task;
5220 
5221 public:
5222   // The constructor is run in the VMThread.
5223   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5224       AbstractGangTask("Parallel Cleaning"),
5225       _string_symbol_task(is_alive, process_strings, process_symbols),
5226       _code_cache_task(num_workers, is_alive, unloading_occurred),
5227       _klass_cleaning_task(is_alive) {
5228   }
5229 
5230   void pre_work_verification() {
5231     // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
5232     assert(Thread::current()->is_VM_thread()
5233            || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5234   }
5235 
5236   void post_work_verification() {
5237     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5238   }
5239 
5240   // The parallel work done by all worker threads.
5241   void work(uint worker_id) {
5242     pre_work_verification();
5243 
5244     // Do first pass of code cache cleaning.
5245     _code_cache_task.work_first_pass(worker_id);
5246 
5247     // Let the threads mark that the first pass is done.
5248     _code_cache_task.barrier_mark(worker_id);
5249 
5250     // Clean the Strings and Symbols.
5251     _string_symbol_task.work(worker_id);
5252 
5253     // Wait for all workers to finish the first code cache cleaning pass.
5254     _code_cache_task.barrier_wait(worker_id);
5255 
5256     // Do the second code cache cleaning work, which realize on
5257     // the liveness information gathered during the first pass.
5258     _code_cache_task.work_second_pass(worker_id);
5259 
5260     // Clean all klasses that were not unloaded.
5261     _klass_cleaning_task.work();
5262 
5263     post_work_verification();
5264   }
5265 };
5266 
5267 
5268 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5269                                         bool process_strings,
5270                                         bool process_symbols,
5271                                         bool class_unloading_occurred) {
5272   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5273                     workers()->active_workers() : 1);
5274 
5275   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5276                                         n_workers, class_unloading_occurred);
5277   if (G1CollectedHeap::use_parallel_gc_threads()) {
5278     set_par_threads(n_workers);
5279     workers()->run_task(&g1_unlink_task);
5280     set_par_threads(0);
5281   } else {
5282     g1_unlink_task.work(0);
5283   }
5284 }
5285 
5286 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5287                                                      bool process_strings, bool process_symbols) {
5288   {
5289     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5290                      _g1h->workers()->active_workers() : 1);
5291     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5292     if (G1CollectedHeap::use_parallel_gc_threads()) {
5293       set_par_threads(n_workers);
5294       workers()->run_task(&g1_unlink_task);
5295       set_par_threads(0);
5296     } else {
5297       g1_unlink_task.work(0);
5298     }
5299   }
5300 
5301   if (G1StringDedup::is_enabled()) {
5302     G1StringDedup::unlink(is_alive);
5303   }
5304 }
5305 
5306 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5307  private:
5308   DirtyCardQueueSet* _queue;
5309  public:
5310   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5311 
5312   virtual void work(uint worker_id) {
5313     double start_time = os::elapsedTime();
5314 
5315     RedirtyLoggedCardTableEntryClosure cl;
5316     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5317       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5318     } else {
5319       _queue->apply_closure_to_all_completed_buffers(&cl);
5320     }
5321 
5322     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5323     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5324     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5325   }
5326 };
5327 
5328 void G1CollectedHeap::redirty_logged_cards() {
5329   double redirty_logged_cards_start = os::elapsedTime();
5330 
5331   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5332                    _g1h->workers()->active_workers() : 1);
5333 
5334   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5335   dirty_card_queue_set().reset_for_par_iteration();
5336   if (use_parallel_gc_threads()) {
5337     set_par_threads(n_workers);
5338     workers()->run_task(&redirty_task);
5339     set_par_threads(0);
5340   } else {
5341     redirty_task.work(0);
5342   }
5343 
5344   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5345   dcq.merge_bufferlists(&dirty_card_queue_set());
5346   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5347 
5348   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5349 }
5350 
5351 // Weak Reference Processing support
5352 
5353 // An always "is_alive" closure that is used to preserve referents.
5354 // If the object is non-null then it's alive.  Used in the preservation
5355 // of referent objects that are pointed to by reference objects
5356 // discovered by the CM ref processor.
5357 class G1AlwaysAliveClosure: public BoolObjectClosure {
5358   G1CollectedHeap* _g1;
5359 public:
5360   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5361   bool do_object_b(oop p) {
5362     if (p != NULL) {
5363       return true;
5364     }
5365     return false;
5366   }
5367 };
5368 
5369 bool G1STWIsAliveClosure::do_object_b(oop p) {
5370   // An object is reachable if it is outside the collection set,
5371   // or is inside and copied.
5372   return !_g1->obj_in_cs(p) || p->is_forwarded();
5373 }
5374 
5375 // Non Copying Keep Alive closure
5376 class G1KeepAliveClosure: public OopClosure {
5377   G1CollectedHeap* _g1;
5378 public:
5379   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5380   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5381   void do_oop(oop* p) {
5382     oop obj = *p;
5383     assert(obj != NULL, "the caller should have filtered out NULL values");
5384 
5385     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5386     if (cset_state == G1CollectedHeap::InNeither) {
5387       return;
5388     }
5389     if (cset_state == G1CollectedHeap::InCSet) {
5390       assert( obj->is_forwarded(), "invariant" );
5391       *p = obj->forwardee();
5392     } else {
5393       assert(!obj->is_forwarded(), "invariant" );
5394       assert(cset_state == G1CollectedHeap::IsHumongous,
5395              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
5396       _g1->set_humongous_is_live(obj);
5397     }
5398   }
5399 };
5400 
5401 // Copying Keep Alive closure - can be called from both
5402 // serial and parallel code as long as different worker
5403 // threads utilize different G1ParScanThreadState instances
5404 // and different queues.
5405 
5406 class G1CopyingKeepAliveClosure: public OopClosure {
5407   G1CollectedHeap*         _g1h;
5408   OopClosure*              _copy_non_heap_obj_cl;
5409   G1ParScanThreadState*    _par_scan_state;
5410 
5411 public:
5412   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5413                             OopClosure* non_heap_obj_cl,
5414                             G1ParScanThreadState* pss):
5415     _g1h(g1h),
5416     _copy_non_heap_obj_cl(non_heap_obj_cl),
5417     _par_scan_state(pss)
5418   {}
5419 
5420   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5421   virtual void do_oop(      oop* p) { do_oop_work(p); }
5422 
5423   template <class T> void do_oop_work(T* p) {
5424     oop obj = oopDesc::load_decode_heap_oop(p);
5425 
5426     if (_g1h->is_in_cset_or_humongous(obj)) {
5427       // If the referent object has been forwarded (either copied
5428       // to a new location or to itself in the event of an
5429       // evacuation failure) then we need to update the reference
5430       // field and, if both reference and referent are in the G1
5431       // heap, update the RSet for the referent.
5432       //
5433       // If the referent has not been forwarded then we have to keep
5434       // it alive by policy. Therefore we have copy the referent.
5435       //
5436       // If the reference field is in the G1 heap then we can push
5437       // on the PSS queue. When the queue is drained (after each
5438       // phase of reference processing) the object and it's followers
5439       // will be copied, the reference field set to point to the
5440       // new location, and the RSet updated. Otherwise we need to
5441       // use the the non-heap or metadata closures directly to copy
5442       // the referent object and update the pointer, while avoiding
5443       // updating the RSet.
5444 
5445       if (_g1h->is_in_g1_reserved(p)) {
5446         _par_scan_state->push_on_queue(p);
5447       } else {
5448         assert(!Metaspace::contains((const void*)p),
5449                err_msg("Unexpectedly found a pointer from metadata: "
5450                               PTR_FORMAT, p));
5451         _copy_non_heap_obj_cl->do_oop(p);
5452       }
5453     }
5454   }
5455 };
5456 
5457 // Serial drain queue closure. Called as the 'complete_gc'
5458 // closure for each discovered list in some of the
5459 // reference processing phases.
5460 
5461 class G1STWDrainQueueClosure: public VoidClosure {
5462 protected:
5463   G1CollectedHeap* _g1h;
5464   G1ParScanThreadState* _par_scan_state;
5465 
5466   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5467 
5468 public:
5469   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5470     _g1h(g1h),
5471     _par_scan_state(pss)
5472   { }
5473 
5474   void do_void() {
5475     G1ParScanThreadState* const pss = par_scan_state();
5476     pss->trim_queue();
5477   }
5478 };
5479 
5480 // Parallel Reference Processing closures
5481 
5482 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5483 // processing during G1 evacuation pauses.
5484 
5485 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5486 private:
5487   G1CollectedHeap*   _g1h;
5488   RefToScanQueueSet* _queues;
5489   FlexibleWorkGang*  _workers;
5490   int                _active_workers;
5491 
5492 public:
5493   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5494                         FlexibleWorkGang* workers,
5495                         RefToScanQueueSet *task_queues,
5496                         int n_workers) :
5497     _g1h(g1h),
5498     _queues(task_queues),
5499     _workers(workers),
5500     _active_workers(n_workers)
5501   {
5502     assert(n_workers > 0, "shouldn't call this otherwise");
5503   }
5504 
5505   // Executes the given task using concurrent marking worker threads.
5506   virtual void execute(ProcessTask& task);
5507   virtual void execute(EnqueueTask& task);
5508 };
5509 
5510 // Gang task for possibly parallel reference processing
5511 
5512 class G1STWRefProcTaskProxy: public AbstractGangTask {
5513   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5514   ProcessTask&     _proc_task;
5515   G1CollectedHeap* _g1h;
5516   RefToScanQueueSet *_task_queues;
5517   ParallelTaskTerminator* _terminator;
5518 
5519 public:
5520   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5521                      G1CollectedHeap* g1h,
5522                      RefToScanQueueSet *task_queues,
5523                      ParallelTaskTerminator* terminator) :
5524     AbstractGangTask("Process reference objects in parallel"),
5525     _proc_task(proc_task),
5526     _g1h(g1h),
5527     _task_queues(task_queues),
5528     _terminator(terminator)
5529   {}
5530 
5531   virtual void work(uint worker_id) {
5532     // The reference processing task executed by a single worker.
5533     ResourceMark rm;
5534     HandleMark   hm;
5535 
5536     G1STWIsAliveClosure is_alive(_g1h);
5537 
5538     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5539     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5540 
5541     pss.set_evac_failure_closure(&evac_failure_cl);
5542 
5543     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5544 
5545     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5546 
5547     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5548 
5549     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5550       // We also need to mark copied objects.
5551       copy_non_heap_cl = &copy_mark_non_heap_cl;
5552     }
5553 
5554     // Keep alive closure.
5555     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5556 
5557     // Complete GC closure
5558     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5559 
5560     // Call the reference processing task's work routine.
5561     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5562 
5563     // Note we cannot assert that the refs array is empty here as not all
5564     // of the processing tasks (specifically phase2 - pp2_work) execute
5565     // the complete_gc closure (which ordinarily would drain the queue) so
5566     // the queue may not be empty.
5567   }
5568 };
5569 
5570 // Driver routine for parallel reference processing.
5571 // Creates an instance of the ref processing gang
5572 // task and has the worker threads execute it.
5573 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5574   assert(_workers != NULL, "Need parallel worker threads.");
5575 
5576   ParallelTaskTerminator terminator(_active_workers, _queues);
5577   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5578 
5579   _g1h->set_par_threads(_active_workers);
5580   _workers->run_task(&proc_task_proxy);
5581   _g1h->set_par_threads(0);
5582 }
5583 
5584 // Gang task for parallel reference enqueueing.
5585 
5586 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5587   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5588   EnqueueTask& _enq_task;
5589 
5590 public:
5591   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5592     AbstractGangTask("Enqueue reference objects in parallel"),
5593     _enq_task(enq_task)
5594   { }
5595 
5596   virtual void work(uint worker_id) {
5597     _enq_task.work(worker_id);
5598   }
5599 };
5600 
5601 // Driver routine for parallel reference enqueueing.
5602 // Creates an instance of the ref enqueueing gang
5603 // task and has the worker threads execute it.
5604 
5605 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5606   assert(_workers != NULL, "Need parallel worker threads.");
5607 
5608   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5609 
5610   _g1h->set_par_threads(_active_workers);
5611   _workers->run_task(&enq_task_proxy);
5612   _g1h->set_par_threads(0);
5613 }
5614 
5615 // End of weak reference support closures
5616 
5617 // Abstract task used to preserve (i.e. copy) any referent objects
5618 // that are in the collection set and are pointed to by reference
5619 // objects discovered by the CM ref processor.
5620 
5621 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5622 protected:
5623   G1CollectedHeap* _g1h;
5624   RefToScanQueueSet      *_queues;
5625   ParallelTaskTerminator _terminator;
5626   uint _n_workers;
5627 
5628 public:
5629   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5630     AbstractGangTask("ParPreserveCMReferents"),
5631     _g1h(g1h),
5632     _queues(task_queues),
5633     _terminator(workers, _queues),
5634     _n_workers(workers)
5635   { }
5636 
5637   void work(uint worker_id) {
5638     ResourceMark rm;
5639     HandleMark   hm;
5640 
5641     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5642     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5643 
5644     pss.set_evac_failure_closure(&evac_failure_cl);
5645 
5646     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5647 
5648     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5649 
5650     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5651 
5652     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5653 
5654     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5655       // We also need to mark copied objects.
5656       copy_non_heap_cl = &copy_mark_non_heap_cl;
5657     }
5658 
5659     // Is alive closure
5660     G1AlwaysAliveClosure always_alive(_g1h);
5661 
5662     // Copying keep alive closure. Applied to referent objects that need
5663     // to be copied.
5664     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5665 
5666     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5667 
5668     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5669     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5670 
5671     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5672     // So this must be true - but assert just in case someone decides to
5673     // change the worker ids.
5674     assert(0 <= worker_id && worker_id < limit, "sanity");
5675     assert(!rp->discovery_is_atomic(), "check this code");
5676 
5677     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5678     for (uint idx = worker_id; idx < limit; idx += stride) {
5679       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5680 
5681       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5682       while (iter.has_next()) {
5683         // Since discovery is not atomic for the CM ref processor, we
5684         // can see some null referent objects.
5685         iter.load_ptrs(DEBUG_ONLY(true));
5686         oop ref = iter.obj();
5687 
5688         // This will filter nulls.
5689         if (iter.is_referent_alive()) {
5690           iter.make_referent_alive();
5691         }
5692         iter.move_to_next();
5693       }
5694     }
5695 
5696     // Drain the queue - which may cause stealing
5697     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5698     drain_queue.do_void();
5699     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5700     assert(pss.queue_is_empty(), "should be");
5701   }
5702 };
5703 
5704 // Weak Reference processing during an evacuation pause (part 1).
5705 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5706   double ref_proc_start = os::elapsedTime();
5707 
5708   ReferenceProcessor* rp = _ref_processor_stw;
5709   assert(rp->discovery_enabled(), "should have been enabled");
5710 
5711   // Any reference objects, in the collection set, that were 'discovered'
5712   // by the CM ref processor should have already been copied (either by
5713   // applying the external root copy closure to the discovered lists, or
5714   // by following an RSet entry).
5715   //
5716   // But some of the referents, that are in the collection set, that these
5717   // reference objects point to may not have been copied: the STW ref
5718   // processor would have seen that the reference object had already
5719   // been 'discovered' and would have skipped discovering the reference,
5720   // but would not have treated the reference object as a regular oop.
5721   // As a result the copy closure would not have been applied to the
5722   // referent object.
5723   //
5724   // We need to explicitly copy these referent objects - the references
5725   // will be processed at the end of remarking.
5726   //
5727   // We also need to do this copying before we process the reference
5728   // objects discovered by the STW ref processor in case one of these
5729   // referents points to another object which is also referenced by an
5730   // object discovered by the STW ref processor.
5731 
5732   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5733            no_of_gc_workers == workers()->active_workers(),
5734            "Need to reset active GC workers");
5735 
5736   set_par_threads(no_of_gc_workers);
5737   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5738                                                  no_of_gc_workers,
5739                                                  _task_queues);
5740 
5741   if (G1CollectedHeap::use_parallel_gc_threads()) {
5742     workers()->run_task(&keep_cm_referents);
5743   } else {
5744     keep_cm_referents.work(0);
5745   }
5746 
5747   set_par_threads(0);
5748 
5749   // Closure to test whether a referent is alive.
5750   G1STWIsAliveClosure is_alive(this);
5751 
5752   // Even when parallel reference processing is enabled, the processing
5753   // of JNI refs is serial and performed serially by the current thread
5754   // rather than by a worker. The following PSS will be used for processing
5755   // JNI refs.
5756 
5757   // Use only a single queue for this PSS.
5758   G1ParScanThreadState            pss(this, 0, NULL);
5759 
5760   // We do not embed a reference processor in the copying/scanning
5761   // closures while we're actually processing the discovered
5762   // reference objects.
5763   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5764 
5765   pss.set_evac_failure_closure(&evac_failure_cl);
5766 
5767   assert(pss.queue_is_empty(), "pre-condition");
5768 
5769   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5770 
5771   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5772 
5773   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5774 
5775   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5776     // We also need to mark copied objects.
5777     copy_non_heap_cl = &copy_mark_non_heap_cl;
5778   }
5779 
5780   // Keep alive closure.
5781   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5782 
5783   // Serial Complete GC closure
5784   G1STWDrainQueueClosure drain_queue(this, &pss);
5785 
5786   // Setup the soft refs policy...
5787   rp->setup_policy(false);
5788 
5789   ReferenceProcessorStats stats;
5790   if (!rp->processing_is_mt()) {
5791     // Serial reference processing...
5792     stats = rp->process_discovered_references(&is_alive,
5793                                               &keep_alive,
5794                                               &drain_queue,
5795                                               NULL,
5796                                               _gc_timer_stw,
5797                                               _gc_tracer_stw->gc_id());
5798   } else {
5799     // Parallel reference processing
5800     assert(rp->num_q() == no_of_gc_workers, "sanity");
5801     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5802 
5803     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5804     stats = rp->process_discovered_references(&is_alive,
5805                                               &keep_alive,
5806                                               &drain_queue,
5807                                               &par_task_executor,
5808                                               _gc_timer_stw,
5809                                               _gc_tracer_stw->gc_id());
5810   }
5811 
5812   _gc_tracer_stw->report_gc_reference_stats(stats);
5813 
5814   // We have completed copying any necessary live referent objects.
5815   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5816 
5817   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5818   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5819 }
5820 
5821 // Weak Reference processing during an evacuation pause (part 2).
5822 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5823   double ref_enq_start = os::elapsedTime();
5824 
5825   ReferenceProcessor* rp = _ref_processor_stw;
5826   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5827 
5828   // Now enqueue any remaining on the discovered lists on to
5829   // the pending list.
5830   if (!rp->processing_is_mt()) {
5831     // Serial reference processing...
5832     rp->enqueue_discovered_references();
5833   } else {
5834     // Parallel reference enqueueing
5835 
5836     assert(no_of_gc_workers == workers()->active_workers(),
5837            "Need to reset active workers");
5838     assert(rp->num_q() == no_of_gc_workers, "sanity");
5839     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5840 
5841     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5842     rp->enqueue_discovered_references(&par_task_executor);
5843   }
5844 
5845   rp->verify_no_references_recorded();
5846   assert(!rp->discovery_enabled(), "should have been disabled");
5847 
5848   // FIXME
5849   // CM's reference processing also cleans up the string and symbol tables.
5850   // Should we do that here also? We could, but it is a serial operation
5851   // and could significantly increase the pause time.
5852 
5853   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5854   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5855 }
5856 
5857 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5858   _expand_heap_after_alloc_failure = true;
5859   _evacuation_failed = false;
5860 
5861   // Should G1EvacuationFailureALot be in effect for this GC?
5862   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5863 
5864   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5865 
5866   // Disable the hot card cache.
5867   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5868   hot_card_cache->reset_hot_cache_claimed_index();
5869   hot_card_cache->set_use_cache(false);
5870 
5871   uint n_workers;
5872   if (G1CollectedHeap::use_parallel_gc_threads()) {
5873     n_workers =
5874       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5875                                      workers()->active_workers(),
5876                                      Threads::number_of_non_daemon_threads());
5877     assert(UseDynamicNumberOfGCThreads ||
5878            n_workers == workers()->total_workers(),
5879            "If not dynamic should be using all the  workers");
5880     workers()->set_active_workers(n_workers);
5881     set_par_threads(n_workers);
5882   } else {
5883     assert(n_par_threads() == 0,
5884            "Should be the original non-parallel value");
5885     n_workers = 1;
5886   }
5887 
5888   G1ParTask g1_par_task(this, _task_queues);
5889 
5890   init_for_evac_failure(NULL);
5891 
5892   rem_set()->prepare_for_younger_refs_iterate(true);
5893 
5894   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5895   double start_par_time_sec = os::elapsedTime();
5896   double end_par_time_sec;
5897 
5898   {
5899     StrongRootsScope srs(this);
5900     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5901     if (g1_policy()->during_initial_mark_pause()) {
5902       ClassLoaderDataGraph::clear_claimed_marks();
5903     }
5904 
5905     if (G1CollectedHeap::use_parallel_gc_threads()) {
5906       // The individual threads will set their evac-failure closures.
5907       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5908       // These tasks use ShareHeap::_process_strong_tasks
5909       assert(UseDynamicNumberOfGCThreads ||
5910              workers()->active_workers() == workers()->total_workers(),
5911              "If not dynamic should be using all the  workers");
5912       workers()->run_task(&g1_par_task);
5913     } else {
5914       g1_par_task.set_for_termination(n_workers);
5915       g1_par_task.work(0);
5916     }
5917     end_par_time_sec = os::elapsedTime();
5918 
5919     // Closing the inner scope will execute the destructor
5920     // for the StrongRootsScope object. We record the current
5921     // elapsed time before closing the scope so that time
5922     // taken for the SRS destructor is NOT included in the
5923     // reported parallel time.
5924   }
5925 
5926   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5927   g1_policy()->phase_times()->record_par_time(par_time_ms);
5928 
5929   double code_root_fixup_time_ms =
5930         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5931   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5932 
5933   set_par_threads(0);
5934 
5935   // Process any discovered reference objects - we have
5936   // to do this _before_ we retire the GC alloc regions
5937   // as we may have to copy some 'reachable' referent
5938   // objects (and their reachable sub-graphs) that were
5939   // not copied during the pause.
5940   process_discovered_references(n_workers);
5941 
5942   // Weak root processing.
5943   {
5944     G1STWIsAliveClosure is_alive(this);
5945     G1KeepAliveClosure keep_alive(this);
5946     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5947     if (G1StringDedup::is_enabled()) {
5948       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5949     }
5950   }
5951 
5952   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5953   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5954 
5955   // Reset and re-enable the hot card cache.
5956   // Note the counts for the cards in the regions in the
5957   // collection set are reset when the collection set is freed.
5958   hot_card_cache->reset_hot_cache();
5959   hot_card_cache->set_use_cache(true);
5960 
5961   purge_code_root_memory();
5962 
5963   if (g1_policy()->during_initial_mark_pause()) {
5964     // Reset the claim values set during marking the strong code roots
5965     reset_heap_region_claim_values();
5966   }
5967 
5968   finalize_for_evac_failure();
5969 
5970   if (evacuation_failed()) {
5971     remove_self_forwarding_pointers();
5972 
5973     // Reset the G1EvacuationFailureALot counters and flags
5974     // Note: the values are reset only when an actual
5975     // evacuation failure occurs.
5976     NOT_PRODUCT(reset_evacuation_should_fail();)
5977   }
5978 
5979   // Enqueue any remaining references remaining on the STW
5980   // reference processor's discovered lists. We need to do
5981   // this after the card table is cleaned (and verified) as
5982   // the act of enqueueing entries on to the pending list
5983   // will log these updates (and dirty their associated
5984   // cards). We need these updates logged to update any
5985   // RSets.
5986   enqueue_discovered_references(n_workers);
5987 
5988   redirty_logged_cards();
5989   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5990 }
5991 
5992 void G1CollectedHeap::free_region(HeapRegion* hr,
5993                                   FreeRegionList* free_list,
5994                                   bool par,
5995                                   bool locked) {
5996   assert(!hr->is_free(), "the region should not be free");
5997   assert(!hr->is_empty(), "the region should not be empty");
5998   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5999   assert(free_list != NULL, "pre-condition");
6000 
6001   if (G1VerifyBitmaps) {
6002     MemRegion mr(hr->bottom(), hr->end());
6003     concurrent_mark()->clearRangePrevBitmap(mr);
6004   }
6005 
6006   // Clear the card counts for this region.
6007   // Note: we only need to do this if the region is not young
6008   // (since we don't refine cards in young regions).
6009   if (!hr->is_young()) {
6010     _cg1r->hot_card_cache()->reset_card_counts(hr);
6011   }
6012   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
6013   free_list->add_ordered(hr);
6014 }
6015 
6016 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
6017                                      FreeRegionList* free_list,
6018                                      bool par) {
6019   assert(hr->startsHumongous(), "this is only for starts humongous regions");
6020   assert(free_list != NULL, "pre-condition");
6021 
6022   size_t hr_capacity = hr->capacity();
6023   // We need to read this before we make the region non-humongous,
6024   // otherwise the information will be gone.
6025   uint last_index = hr->last_hc_index();
6026   hr->clear_humongous();
6027   free_region(hr, free_list, par);
6028 
6029   uint i = hr->hrm_index() + 1;
6030   while (i < last_index) {
6031     HeapRegion* curr_hr = region_at(i);
6032     assert(curr_hr->continuesHumongous(), "invariant");
6033     curr_hr->clear_humongous();
6034     free_region(curr_hr, free_list, par);
6035     i += 1;
6036   }
6037 }
6038 
6039 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6040                                        const HeapRegionSetCount& humongous_regions_removed) {
6041   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6042     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6043     _old_set.bulk_remove(old_regions_removed);
6044     _humongous_set.bulk_remove(humongous_regions_removed);
6045   }
6046 
6047 }
6048 
6049 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6050   assert(list != NULL, "list can't be null");
6051   if (!list->is_empty()) {
6052     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6053     _hrm.insert_list_into_free_list(list);
6054   }
6055 }
6056 
6057 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6058   _allocator->decrease_used(bytes);
6059 }
6060 
6061 class G1ParCleanupCTTask : public AbstractGangTask {
6062   G1SATBCardTableModRefBS* _ct_bs;
6063   G1CollectedHeap* _g1h;
6064   HeapRegion* volatile _su_head;
6065 public:
6066   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6067                      G1CollectedHeap* g1h) :
6068     AbstractGangTask("G1 Par Cleanup CT Task"),
6069     _ct_bs(ct_bs), _g1h(g1h) { }
6070 
6071   void work(uint worker_id) {
6072     HeapRegion* r;
6073     while (r = _g1h->pop_dirty_cards_region()) {
6074       clear_cards(r);
6075     }
6076   }
6077 
6078   void clear_cards(HeapRegion* r) {
6079     // Cards of the survivors should have already been dirtied.
6080     if (!r->is_survivor()) {
6081       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6082     }
6083   }
6084 };
6085 
6086 #ifndef PRODUCT
6087 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6088   G1CollectedHeap* _g1h;
6089   G1SATBCardTableModRefBS* _ct_bs;
6090 public:
6091   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6092     : _g1h(g1h), _ct_bs(ct_bs) { }
6093   virtual bool doHeapRegion(HeapRegion* r) {
6094     if (r->is_survivor()) {
6095       _g1h->verify_dirty_region(r);
6096     } else {
6097       _g1h->verify_not_dirty_region(r);
6098     }
6099     return false;
6100   }
6101 };
6102 
6103 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6104   // All of the region should be clean.
6105   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6106   MemRegion mr(hr->bottom(), hr->end());
6107   ct_bs->verify_not_dirty_region(mr);
6108 }
6109 
6110 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6111   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6112   // dirty allocated blocks as they allocate them. The thread that
6113   // retires each region and replaces it with a new one will do a
6114   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6115   // not dirty that area (one less thing to have to do while holding
6116   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6117   // is dirty.
6118   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6119   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6120   if (hr->is_young()) {
6121     ct_bs->verify_g1_young_region(mr);
6122   } else {
6123     ct_bs->verify_dirty_region(mr);
6124   }
6125 }
6126 
6127 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6128   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6129   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6130     verify_dirty_region(hr);
6131   }
6132 }
6133 
6134 void G1CollectedHeap::verify_dirty_young_regions() {
6135   verify_dirty_young_list(_young_list->first_region());
6136 }
6137 
6138 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6139                                                HeapWord* tams, HeapWord* end) {
6140   guarantee(tams <= end,
6141             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
6142   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6143   if (result < end) {
6144     gclog_or_tty->cr();
6145     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6146                            bitmap_name, result);
6147     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6148                            bitmap_name, tams, end);
6149     return false;
6150   }
6151   return true;
6152 }
6153 
6154 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6155   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6156   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6157 
6158   HeapWord* bottom = hr->bottom();
6159   HeapWord* ptams  = hr->prev_top_at_mark_start();
6160   HeapWord* ntams  = hr->next_top_at_mark_start();
6161   HeapWord* end    = hr->end();
6162 
6163   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6164 
6165   bool res_n = true;
6166   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6167   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6168   // if we happen to be in that state.
6169   if (mark_in_progress() || !_cmThread->in_progress()) {
6170     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6171   }
6172   if (!res_p || !res_n) {
6173     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6174                            HR_FORMAT_PARAMS(hr));
6175     gclog_or_tty->print_cr("#### Caller: %s", caller);
6176     return false;
6177   }
6178   return true;
6179 }
6180 
6181 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6182   if (!G1VerifyBitmaps) return;
6183 
6184   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6185 }
6186 
6187 class G1VerifyBitmapClosure : public HeapRegionClosure {
6188 private:
6189   const char* _caller;
6190   G1CollectedHeap* _g1h;
6191   bool _failures;
6192 
6193 public:
6194   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6195     _caller(caller), _g1h(g1h), _failures(false) { }
6196 
6197   bool failures() { return _failures; }
6198 
6199   virtual bool doHeapRegion(HeapRegion* hr) {
6200     if (hr->continuesHumongous()) return false;
6201 
6202     bool result = _g1h->verify_bitmaps(_caller, hr);
6203     if (!result) {
6204       _failures = true;
6205     }
6206     return false;
6207   }
6208 };
6209 
6210 void G1CollectedHeap::check_bitmaps(const char* caller) {
6211   if (!G1VerifyBitmaps) return;
6212 
6213   G1VerifyBitmapClosure cl(caller, this);
6214   heap_region_iterate(&cl);
6215   guarantee(!cl.failures(), "bitmap verification");
6216 }
6217 #endif // PRODUCT
6218 
6219 void G1CollectedHeap::cleanUpCardTable() {
6220   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6221   double start = os::elapsedTime();
6222 
6223   {
6224     // Iterate over the dirty cards region list.
6225     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6226 
6227     if (G1CollectedHeap::use_parallel_gc_threads()) {
6228       set_par_threads();
6229       workers()->run_task(&cleanup_task);
6230       set_par_threads(0);
6231     } else {
6232       while (_dirty_cards_region_list) {
6233         HeapRegion* r = _dirty_cards_region_list;
6234         cleanup_task.clear_cards(r);
6235         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6236         if (_dirty_cards_region_list == r) {
6237           // The last region.
6238           _dirty_cards_region_list = NULL;
6239         }
6240         r->set_next_dirty_cards_region(NULL);
6241       }
6242     }
6243 #ifndef PRODUCT
6244     if (G1VerifyCTCleanup || VerifyAfterGC) {
6245       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6246       heap_region_iterate(&cleanup_verifier);
6247     }
6248 #endif
6249   }
6250 
6251   double elapsed = os::elapsedTime() - start;
6252   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6253 }
6254 
6255 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6256   size_t pre_used = 0;
6257   FreeRegionList local_free_list("Local List for CSet Freeing");
6258 
6259   double young_time_ms     = 0.0;
6260   double non_young_time_ms = 0.0;
6261 
6262   // Since the collection set is a superset of the the young list,
6263   // all we need to do to clear the young list is clear its
6264   // head and length, and unlink any young regions in the code below
6265   _young_list->clear();
6266 
6267   G1CollectorPolicy* policy = g1_policy();
6268 
6269   double start_sec = os::elapsedTime();
6270   bool non_young = true;
6271 
6272   HeapRegion* cur = cs_head;
6273   int age_bound = -1;
6274   size_t rs_lengths = 0;
6275 
6276   while (cur != NULL) {
6277     assert(!is_on_master_free_list(cur), "sanity");
6278     if (non_young) {
6279       if (cur->is_young()) {
6280         double end_sec = os::elapsedTime();
6281         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6282         non_young_time_ms += elapsed_ms;
6283 
6284         start_sec = os::elapsedTime();
6285         non_young = false;
6286       }
6287     } else {
6288       if (!cur->is_young()) {
6289         double end_sec = os::elapsedTime();
6290         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6291         young_time_ms += elapsed_ms;
6292 
6293         start_sec = os::elapsedTime();
6294         non_young = true;
6295       }
6296     }
6297 
6298     rs_lengths += cur->rem_set()->occupied_locked();
6299 
6300     HeapRegion* next = cur->next_in_collection_set();
6301     assert(cur->in_collection_set(), "bad CS");
6302     cur->set_next_in_collection_set(NULL);
6303     cur->set_in_collection_set(false);
6304 
6305     if (cur->is_young()) {
6306       int index = cur->young_index_in_cset();
6307       assert(index != -1, "invariant");
6308       assert((uint) index < policy->young_cset_region_length(), "invariant");
6309       size_t words_survived = _surviving_young_words[index];
6310       cur->record_surv_words_in_group(words_survived);
6311 
6312       // At this point the we have 'popped' cur from the collection set
6313       // (linked via next_in_collection_set()) but it is still in the
6314       // young list (linked via next_young_region()). Clear the
6315       // _next_young_region field.
6316       cur->set_next_young_region(NULL);
6317     } else {
6318       int index = cur->young_index_in_cset();
6319       assert(index == -1, "invariant");
6320     }
6321 
6322     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6323             (!cur->is_young() && cur->young_index_in_cset() == -1),
6324             "invariant" );
6325 
6326     if (!cur->evacuation_failed()) {
6327       MemRegion used_mr = cur->used_region();
6328 
6329       // And the region is empty.
6330       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6331       pre_used += cur->used();
6332       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6333     } else {
6334       cur->uninstall_surv_rate_group();
6335       if (cur->is_young()) {
6336         cur->set_young_index_in_cset(-1);
6337       }
6338       cur->set_evacuation_failed(false);
6339       // The region is now considered to be old.
6340       cur->set_old();
6341       _old_set.add(cur);
6342       evacuation_info.increment_collectionset_used_after(cur->used());
6343     }
6344     cur = next;
6345   }
6346 
6347   evacuation_info.set_regions_freed(local_free_list.length());
6348   policy->record_max_rs_lengths(rs_lengths);
6349   policy->cset_regions_freed();
6350 
6351   double end_sec = os::elapsedTime();
6352   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6353 
6354   if (non_young) {
6355     non_young_time_ms += elapsed_ms;
6356   } else {
6357     young_time_ms += elapsed_ms;
6358   }
6359 
6360   prepend_to_freelist(&local_free_list);
6361   decrement_summary_bytes(pre_used);
6362   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6363   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6364 }
6365 
6366 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6367  private:
6368   FreeRegionList* _free_region_list;
6369   HeapRegionSet* _proxy_set;
6370   HeapRegionSetCount _humongous_regions_removed;
6371   size_t _freed_bytes;
6372  public:
6373 
6374   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6375     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6376   }
6377 
6378   virtual bool doHeapRegion(HeapRegion* r) {
6379     if (!r->startsHumongous()) {
6380       return false;
6381     }
6382 
6383     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6384 
6385     oop obj = (oop)r->bottom();
6386     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6387 
6388     // The following checks whether the humongous object is live are sufficient.
6389     // The main additional check (in addition to having a reference from the roots
6390     // or the young gen) is whether the humongous object has a remembered set entry.
6391     //
6392     // A humongous object cannot be live if there is no remembered set for it
6393     // because:
6394     // - there can be no references from within humongous starts regions referencing
6395     // the object because we never allocate other objects into them.
6396     // (I.e. there are no intra-region references that may be missed by the
6397     // remembered set)
6398     // - as soon there is a remembered set entry to the humongous starts region
6399     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6400     // until the end of a concurrent mark.
6401     //
6402     // It is not required to check whether the object has been found dead by marking
6403     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6404     // all objects allocated during that time are considered live.
6405     // SATB marking is even more conservative than the remembered set.
6406     // So if at this point in the collection there is no remembered set entry,
6407     // nobody has a reference to it.
6408     // At the start of collection we flush all refinement logs, and remembered sets
6409     // are completely up-to-date wrt to references to the humongous object.
6410     //
6411     // Other implementation considerations:
6412     // - never consider object arrays: while they are a valid target, they have not
6413     // been observed to be used as temporary objects.
6414     // - they would also pose considerable effort for cleaning up the the remembered
6415     // sets.
6416     // While this cleanup is not strictly necessary to be done (or done instantly),
6417     // given that their occurrence is very low, this saves us this additional
6418     // complexity.
6419     uint region_idx = r->hrm_index();
6420     if (g1h->humongous_is_live(region_idx) ||
6421         g1h->humongous_region_is_always_live(region_idx)) {
6422 
6423       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6424         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6425                                r->isHumongous(),
6426                                region_idx,
6427                                r->rem_set()->occupied(),
6428                                r->rem_set()->strong_code_roots_list_length(),
6429                                next_bitmap->isMarked(r->bottom()),
6430                                g1h->humongous_is_live(region_idx),
6431                                obj->is_objArray()
6432                               );
6433       }
6434 
6435       return false;
6436     }
6437 
6438     guarantee(!obj->is_objArray(),
6439               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6440                       r->bottom()));
6441 
6442     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6443       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6444                              r->isHumongous(),
6445                              r->bottom(),
6446                              region_idx,
6447                              r->region_num(),
6448                              r->rem_set()->occupied(),
6449                              r->rem_set()->strong_code_roots_list_length(),
6450                              next_bitmap->isMarked(r->bottom()),
6451                              g1h->humongous_is_live(region_idx),
6452                              obj->is_objArray()
6453                             );
6454     }
6455     // Need to clear mark bit of the humongous object if already set.
6456     if (next_bitmap->isMarked(r->bottom())) {
6457       next_bitmap->clear(r->bottom());
6458     }
6459     _freed_bytes += r->used();
6460     r->set_containing_set(NULL);
6461     _humongous_regions_removed.increment(1u, r->capacity());
6462     g1h->free_humongous_region(r, _free_region_list, false);
6463 
6464     return false;
6465   }
6466 
6467   HeapRegionSetCount& humongous_free_count() {
6468     return _humongous_regions_removed;
6469   }
6470 
6471   size_t bytes_freed() const {
6472     return _freed_bytes;
6473   }
6474 
6475   size_t humongous_reclaimed() const {
6476     return _humongous_regions_removed.length();
6477   }
6478 };
6479 
6480 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6481   assert_at_safepoint(true);
6482 
6483   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
6484     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6485     return;
6486   }
6487 
6488   double start_time = os::elapsedTime();
6489 
6490   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6491 
6492   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6493   heap_region_iterate(&cl);
6494 
6495   HeapRegionSetCount empty_set;
6496   remove_from_old_sets(empty_set, cl.humongous_free_count());
6497 
6498   G1HRPrinter* hr_printer = _g1h->hr_printer();
6499   if (hr_printer->is_active()) {
6500     FreeRegionListIterator iter(&local_cleanup_list);
6501     while (iter.more_available()) {
6502       HeapRegion* hr = iter.get_next();
6503       hr_printer->cleanup(hr);
6504     }
6505   }
6506 
6507   prepend_to_freelist(&local_cleanup_list);
6508   decrement_summary_bytes(cl.bytes_freed());
6509 
6510   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6511                                                                     cl.humongous_reclaimed());
6512 }
6513 
6514 // This routine is similar to the above but does not record
6515 // any policy statistics or update free lists; we are abandoning
6516 // the current incremental collection set in preparation of a
6517 // full collection. After the full GC we will start to build up
6518 // the incremental collection set again.
6519 // This is only called when we're doing a full collection
6520 // and is immediately followed by the tearing down of the young list.
6521 
6522 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6523   HeapRegion* cur = cs_head;
6524 
6525   while (cur != NULL) {
6526     HeapRegion* next = cur->next_in_collection_set();
6527     assert(cur->in_collection_set(), "bad CS");
6528     cur->set_next_in_collection_set(NULL);
6529     cur->set_in_collection_set(false);
6530     cur->set_young_index_in_cset(-1);
6531     cur = next;
6532   }
6533 }
6534 
6535 void G1CollectedHeap::set_free_regions_coming() {
6536   if (G1ConcRegionFreeingVerbose) {
6537     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6538                            "setting free regions coming");
6539   }
6540 
6541   assert(!free_regions_coming(), "pre-condition");
6542   _free_regions_coming = true;
6543 }
6544 
6545 void G1CollectedHeap::reset_free_regions_coming() {
6546   assert(free_regions_coming(), "pre-condition");
6547 
6548   {
6549     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6550     _free_regions_coming = false;
6551     SecondaryFreeList_lock->notify_all();
6552   }
6553 
6554   if (G1ConcRegionFreeingVerbose) {
6555     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6556                            "reset free regions coming");
6557   }
6558 }
6559 
6560 void G1CollectedHeap::wait_while_free_regions_coming() {
6561   // Most of the time we won't have to wait, so let's do a quick test
6562   // first before we take the lock.
6563   if (!free_regions_coming()) {
6564     return;
6565   }
6566 
6567   if (G1ConcRegionFreeingVerbose) {
6568     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6569                            "waiting for free regions");
6570   }
6571 
6572   {
6573     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6574     while (free_regions_coming()) {
6575       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6576     }
6577   }
6578 
6579   if (G1ConcRegionFreeingVerbose) {
6580     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6581                            "done waiting for free regions");
6582   }
6583 }
6584 
6585 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6586   assert(heap_lock_held_for_gc(),
6587               "the heap lock should already be held by or for this thread");
6588   _young_list->push_region(hr);
6589 }
6590 
6591 class NoYoungRegionsClosure: public HeapRegionClosure {
6592 private:
6593   bool _success;
6594 public:
6595   NoYoungRegionsClosure() : _success(true) { }
6596   bool doHeapRegion(HeapRegion* r) {
6597     if (r->is_young()) {
6598       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6599                              r->bottom(), r->end());
6600       _success = false;
6601     }
6602     return false;
6603   }
6604   bool success() { return _success; }
6605 };
6606 
6607 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6608   bool ret = _young_list->check_list_empty(check_sample);
6609 
6610   if (check_heap) {
6611     NoYoungRegionsClosure closure;
6612     heap_region_iterate(&closure);
6613     ret = ret && closure.success();
6614   }
6615 
6616   return ret;
6617 }
6618 
6619 class TearDownRegionSetsClosure : public HeapRegionClosure {
6620 private:
6621   HeapRegionSet *_old_set;
6622 
6623 public:
6624   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6625 
6626   bool doHeapRegion(HeapRegion* r) {
6627     if (r->is_old()) {
6628       _old_set->remove(r);
6629     } else {
6630       // We ignore free regions, we'll empty the free list afterwards.
6631       // We ignore young regions, we'll empty the young list afterwards.
6632       // We ignore humongous regions, we're not tearing down the
6633       // humongous regions set.
6634       assert(r->is_free() || r->is_young() || r->isHumongous(),
6635              "it cannot be another type");
6636     }
6637     return false;
6638   }
6639 
6640   ~TearDownRegionSetsClosure() {
6641     assert(_old_set->is_empty(), "post-condition");
6642   }
6643 };
6644 
6645 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6646   assert_at_safepoint(true /* should_be_vm_thread */);
6647 
6648   if (!free_list_only) {
6649     TearDownRegionSetsClosure cl(&_old_set);
6650     heap_region_iterate(&cl);
6651 
6652     // Note that emptying the _young_list is postponed and instead done as
6653     // the first step when rebuilding the regions sets again. The reason for
6654     // this is that during a full GC string deduplication needs to know if
6655     // a collected region was young or old when the full GC was initiated.
6656   }
6657   _hrm.remove_all_free_regions();
6658 }
6659 
6660 class RebuildRegionSetsClosure : public HeapRegionClosure {
6661 private:
6662   bool            _free_list_only;
6663   HeapRegionSet*   _old_set;
6664   HeapRegionManager*   _hrm;
6665   size_t          _total_used;
6666 
6667 public:
6668   RebuildRegionSetsClosure(bool free_list_only,
6669                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6670     _free_list_only(free_list_only),
6671     _old_set(old_set), _hrm(hrm), _total_used(0) {
6672     assert(_hrm->num_free_regions() == 0, "pre-condition");
6673     if (!free_list_only) {
6674       assert(_old_set->is_empty(), "pre-condition");
6675     }
6676   }
6677 
6678   bool doHeapRegion(HeapRegion* r) {
6679     if (r->continuesHumongous()) {
6680       return false;
6681     }
6682 
6683     if (r->is_empty()) {
6684       // Add free regions to the free list
6685       r->set_free();
6686       r->set_allocation_context(AllocationContext::system());
6687       _hrm->insert_into_free_list(r);
6688     } else if (!_free_list_only) {
6689       assert(!r->is_young(), "we should not come across young regions");
6690 
6691       if (r->isHumongous()) {
6692         // We ignore humongous regions, we left the humongous set unchanged
6693       } else {
6694         // Objects that were compacted would have ended up on regions
6695         // that were previously old or free.
6696         assert(r->is_free() || r->is_old(), "invariant");
6697         // We now consider them old, so register as such.
6698         r->set_old();
6699         _old_set->add(r);
6700       }
6701       _total_used += r->used();
6702     }
6703 
6704     return false;
6705   }
6706 
6707   size_t total_used() {
6708     return _total_used;
6709   }
6710 };
6711 
6712 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6713   assert_at_safepoint(true /* should_be_vm_thread */);
6714 
6715   if (!free_list_only) {
6716     _young_list->empty_list();
6717   }
6718 
6719   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6720   heap_region_iterate(&cl);
6721 
6722   if (!free_list_only) {
6723     _allocator->set_used(cl.total_used());
6724   }
6725   assert(_allocator->used_unlocked() == recalculate_used(),
6726          err_msg("inconsistent _allocator->used_unlocked(), "
6727                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6728                  _allocator->used_unlocked(), recalculate_used()));
6729 }
6730 
6731 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6732   _refine_cte_cl->set_concurrent(concurrent);
6733 }
6734 
6735 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6736   HeapRegion* hr = heap_region_containing(p);
6737   return hr->is_in(p);
6738 }
6739 
6740 // Methods for the mutator alloc region
6741 
6742 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6743                                                       bool force) {
6744   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6745   assert(!force || g1_policy()->can_expand_young_list(),
6746          "if force is true we should be able to expand the young list");
6747   bool young_list_full = g1_policy()->is_young_list_full();
6748   if (force || !young_list_full) {
6749     HeapRegion* new_alloc_region = new_region(word_size,
6750                                               false /* is_old */,
6751                                               false /* do_expand */);
6752     if (new_alloc_region != NULL) {
6753       set_region_short_lived_locked(new_alloc_region);
6754       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6755       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6756       return new_alloc_region;
6757     }
6758   }
6759   return NULL;
6760 }
6761 
6762 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6763                                                   size_t allocated_bytes) {
6764   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6765   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6766 
6767   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6768   _allocator->increase_used(allocated_bytes);
6769   _hr_printer.retire(alloc_region);
6770   // We update the eden sizes here, when the region is retired,
6771   // instead of when it's allocated, since this is the point that its
6772   // used space has been recored in _summary_bytes_used.
6773   g1mm()->update_eden_size();
6774 }
6775 
6776 void G1CollectedHeap::set_par_threads() {
6777   // Don't change the number of workers.  Use the value previously set
6778   // in the workgroup.
6779   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6780   uint n_workers = workers()->active_workers();
6781   assert(UseDynamicNumberOfGCThreads ||
6782            n_workers == workers()->total_workers(),
6783       "Otherwise should be using the total number of workers");
6784   if (n_workers == 0) {
6785     assert(false, "Should have been set in prior evacuation pause.");
6786     n_workers = ParallelGCThreads;
6787     workers()->set_active_workers(n_workers);
6788   }
6789   set_par_threads(n_workers);
6790 }
6791 
6792 // Methods for the GC alloc regions
6793 
6794 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6795                                                  uint count,
6796                                                  GCAllocPurpose ap) {
6797   assert(FreeList_lock->owned_by_self(), "pre-condition");
6798 
6799   if (count < g1_policy()->max_regions(ap)) {
6800     bool survivor = (ap == GCAllocForSurvived);
6801     HeapRegion* new_alloc_region = new_region(word_size,
6802                                               !survivor,
6803                                               true /* do_expand */);
6804     if (new_alloc_region != NULL) {
6805       // We really only need to do this for old regions given that we
6806       // should never scan survivors. But it doesn't hurt to do it
6807       // for survivors too.
6808       new_alloc_region->record_top_and_timestamp();
6809       if (survivor) {
6810         new_alloc_region->set_survivor();
6811         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6812         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6813       } else {
6814         new_alloc_region->set_old();
6815         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6816         check_bitmaps("Old Region Allocation", new_alloc_region);
6817       }
6818       bool during_im = g1_policy()->during_initial_mark_pause();
6819       new_alloc_region->note_start_of_copying(during_im);
6820       return new_alloc_region;
6821     } else {
6822       g1_policy()->note_alloc_region_limit_reached(ap);
6823     }
6824   }
6825   return NULL;
6826 }
6827 
6828 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6829                                              size_t allocated_bytes,
6830                                              GCAllocPurpose ap) {
6831   bool during_im = g1_policy()->during_initial_mark_pause();
6832   alloc_region->note_end_of_copying(during_im);
6833   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6834   if (ap == GCAllocForSurvived) {
6835     young_list()->add_survivor_region(alloc_region);
6836   } else {
6837     _old_set.add(alloc_region);
6838   }
6839   _hr_printer.retire(alloc_region);
6840 }
6841 
6842 // Heap region set verification
6843 
6844 class VerifyRegionListsClosure : public HeapRegionClosure {
6845 private:
6846   HeapRegionSet*   _old_set;
6847   HeapRegionSet*   _humongous_set;
6848   HeapRegionManager*   _hrm;
6849 
6850 public:
6851   HeapRegionSetCount _old_count;
6852   HeapRegionSetCount _humongous_count;
6853   HeapRegionSetCount _free_count;
6854 
6855   VerifyRegionListsClosure(HeapRegionSet* old_set,
6856                            HeapRegionSet* humongous_set,
6857                            HeapRegionManager* hrm) :
6858     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6859     _old_count(), _humongous_count(), _free_count(){ }
6860 
6861   bool doHeapRegion(HeapRegion* hr) {
6862     if (hr->continuesHumongous()) {
6863       return false;
6864     }
6865 
6866     if (hr->is_young()) {
6867       // TODO
6868     } else if (hr->startsHumongous()) {
6869       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6870       _humongous_count.increment(1u, hr->capacity());
6871     } else if (hr->is_empty()) {
6872       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6873       _free_count.increment(1u, hr->capacity());
6874     } else if (hr->is_old()) {
6875       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6876       _old_count.increment(1u, hr->capacity());
6877     } else {
6878       ShouldNotReachHere();
6879     }
6880     return false;
6881   }
6882 
6883   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6884     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6885     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6886         old_set->total_capacity_bytes(), _old_count.capacity()));
6887 
6888     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6889     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6890         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6891 
6892     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6893     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6894         free_list->total_capacity_bytes(), _free_count.capacity()));
6895   }
6896 };
6897 
6898 void G1CollectedHeap::verify_region_sets() {
6899   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6900 
6901   // First, check the explicit lists.
6902   _hrm.verify();
6903   {
6904     // Given that a concurrent operation might be adding regions to
6905     // the secondary free list we have to take the lock before
6906     // verifying it.
6907     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6908     _secondary_free_list.verify_list();
6909   }
6910 
6911   // If a concurrent region freeing operation is in progress it will
6912   // be difficult to correctly attributed any free regions we come
6913   // across to the correct free list given that they might belong to
6914   // one of several (free_list, secondary_free_list, any local lists,
6915   // etc.). So, if that's the case we will skip the rest of the
6916   // verification operation. Alternatively, waiting for the concurrent
6917   // operation to complete will have a non-trivial effect on the GC's
6918   // operation (no concurrent operation will last longer than the
6919   // interval between two calls to verification) and it might hide
6920   // any issues that we would like to catch during testing.
6921   if (free_regions_coming()) {
6922     return;
6923   }
6924 
6925   // Make sure we append the secondary_free_list on the free_list so
6926   // that all free regions we will come across can be safely
6927   // attributed to the free_list.
6928   append_secondary_free_list_if_not_empty_with_lock();
6929 
6930   // Finally, make sure that the region accounting in the lists is
6931   // consistent with what we see in the heap.
6932 
6933   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6934   heap_region_iterate(&cl);
6935   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6936 }
6937 
6938 // Optimized nmethod scanning
6939 
6940 class RegisterNMethodOopClosure: public OopClosure {
6941   G1CollectedHeap* _g1h;
6942   nmethod* _nm;
6943 
6944   template <class T> void do_oop_work(T* p) {
6945     T heap_oop = oopDesc::load_heap_oop(p);
6946     if (!oopDesc::is_null(heap_oop)) {
6947       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6948       HeapRegion* hr = _g1h->heap_region_containing(obj);
6949       assert(!hr->continuesHumongous(),
6950              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6951                      " starting at "HR_FORMAT,
6952                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6953 
6954       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6955       hr->add_strong_code_root_locked(_nm);
6956     }
6957   }
6958 
6959 public:
6960   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6961     _g1h(g1h), _nm(nm) {}
6962 
6963   void do_oop(oop* p)       { do_oop_work(p); }
6964   void do_oop(narrowOop* p) { do_oop_work(p); }
6965 };
6966 
6967 class UnregisterNMethodOopClosure: public OopClosure {
6968   G1CollectedHeap* _g1h;
6969   nmethod* _nm;
6970 
6971   template <class T> void do_oop_work(T* p) {
6972     T heap_oop = oopDesc::load_heap_oop(p);
6973     if (!oopDesc::is_null(heap_oop)) {
6974       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6975       HeapRegion* hr = _g1h->heap_region_containing(obj);
6976       assert(!hr->continuesHumongous(),
6977              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6978                      " starting at "HR_FORMAT,
6979                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6980 
6981       hr->remove_strong_code_root(_nm);
6982     }
6983   }
6984 
6985 public:
6986   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6987     _g1h(g1h), _nm(nm) {}
6988 
6989   void do_oop(oop* p)       { do_oop_work(p); }
6990   void do_oop(narrowOop* p) { do_oop_work(p); }
6991 };
6992 
6993 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6994   CollectedHeap::register_nmethod(nm);
6995 
6996   guarantee(nm != NULL, "sanity");
6997   RegisterNMethodOopClosure reg_cl(this, nm);
6998   nm->oops_do(&reg_cl);
6999 }
7000 
7001 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
7002   CollectedHeap::unregister_nmethod(nm);
7003 
7004   guarantee(nm != NULL, "sanity");
7005   UnregisterNMethodOopClosure reg_cl(this, nm);
7006   nm->oops_do(&reg_cl, true);
7007 }
7008 
7009 void G1CollectedHeap::purge_code_root_memory() {
7010   double purge_start = os::elapsedTime();
7011   G1CodeRootSet::purge();
7012   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
7013   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
7014 }
7015 
7016 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
7017   G1CollectedHeap* _g1h;
7018 
7019 public:
7020   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
7021     _g1h(g1h) {}
7022 
7023   void do_code_blob(CodeBlob* cb) {
7024     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7025     if (nm == NULL) {
7026       return;
7027     }
7028 
7029     if (ScavengeRootsInCode) {
7030       _g1h->register_nmethod(nm);
7031     }
7032   }
7033 };
7034 
7035 void G1CollectedHeap::rebuild_strong_code_roots() {
7036   RebuildStrongCodeRootClosure blob_cl(this);
7037   CodeCache::blobs_do(&blob_cl);
7038 }