1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/g1StringDedup.hpp"
  38 #include "gc_implementation/g1/heapRegion.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  40 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  41 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  42 #include "gc_implementation/shared/vmGCOperations.hpp"
  43 #include "gc_implementation/shared/gcTimer.hpp"
  44 #include "gc_implementation/shared/gcTrace.hpp"
  45 #include "gc_implementation/shared/gcTraceTime.hpp"
  46 #include "memory/allocation.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/referencePolicy.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/strongRootsScope.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/prefetch.inline.hpp"
  56 #include "services/memTracker.hpp"
  57 
  58 // Concurrent marking bit map wrapper
  59 
  60 CMBitMapRO::CMBitMapRO(int shifter) :
  61   _bm(),
  62   _shifter(shifter) {
  63   _bmStartWord = 0;
  64   _bmWordSize = 0;
  65 }
  66 
  67 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  68                                                const HeapWord* limit) const {
  69   // First we must round addr *up* to a possible object boundary.
  70   addr = (HeapWord*)align_size_up((intptr_t)addr,
  71                                   HeapWordSize << _shifter);
  72   size_t addrOffset = heapWordToOffset(addr);
  73   if (limit == NULL) {
  74     limit = _bmStartWord + _bmWordSize;
  75   }
  76   size_t limitOffset = heapWordToOffset(limit);
  77   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  78   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  79   assert(nextAddr >= addr, "get_next_one postcondition");
  80   assert(nextAddr == limit || isMarked(nextAddr),
  81          "get_next_one postcondition");
  82   return nextAddr;
  83 }
  84 
  85 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  86                                                  const HeapWord* limit) const {
  87   size_t addrOffset = heapWordToOffset(addr);
  88   if (limit == NULL) {
  89     limit = _bmStartWord + _bmWordSize;
  90   }
  91   size_t limitOffset = heapWordToOffset(limit);
  92   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  93   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  94   assert(nextAddr >= addr, "get_next_one postcondition");
  95   assert(nextAddr == limit || !isMarked(nextAddr),
  96          "get_next_one postcondition");
  97   return nextAddr;
  98 }
  99 
 100 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 101   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 102   return (int) (diff >> _shifter);
 103 }
 104 
 105 #ifndef PRODUCT
 106 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 107   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 108   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 109          "size inconsistency");
 110   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 111          _bmWordSize  == heap_rs.word_size();
 112 }
 113 #endif
 114 
 115 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 116   _bm.print_on_error(st, prefix);
 117 }
 118 
 119 size_t CMBitMap::compute_size(size_t heap_size) {
 120   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 121 }
 122 
 123 size_t CMBitMap::mark_distance() {
 124   return MinObjAlignmentInBytes * BitsPerByte;
 125 }
 126 
 127 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 128   _bmStartWord = heap.start();
 129   _bmWordSize = heap.word_size();
 130 
 131   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 132   _bm.set_size(_bmWordSize >> _shifter);
 133 
 134   storage->set_mapping_changed_listener(&_listener);
 135 }
 136 
 137 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 138   if (zero_filled) {
 139     return;
 140   }
 141   // We need to clear the bitmap on commit, removing any existing information.
 142   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 143   _bm->clearRange(mr);
 144 }
 145 
 146 // Closure used for clearing the given mark bitmap.
 147 class ClearBitmapHRClosure : public HeapRegionClosure {
 148  private:
 149   ConcurrentMark* _cm;
 150   CMBitMap* _bitmap;
 151   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 152  public:
 153   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 154     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 155   }
 156 
 157   virtual bool doHeapRegion(HeapRegion* r) {
 158     size_t const chunk_size_in_words = M / HeapWordSize;
 159 
 160     HeapWord* cur = r->bottom();
 161     HeapWord* const end = r->end();
 162 
 163     while (cur < end) {
 164       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 165       _bitmap->clearRange(mr);
 166 
 167       cur += chunk_size_in_words;
 168 
 169       // Abort iteration if after yielding the marking has been aborted.
 170       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 171         return true;
 172       }
 173       // Repeat the asserts from before the start of the closure. We will do them
 174       // as asserts here to minimize their overhead on the product. However, we
 175       // will have them as guarantees at the beginning / end of the bitmap
 176       // clearing to get some checking in the product.
 177       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 178       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 179     }
 180 
 181     return false;
 182   }
 183 };
 184 
 185 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 186   ClearBitmapHRClosure* _cl;
 187   HeapRegionClaimer     _hrclaimer;
 188   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 189 
 190 public:
 191   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 192       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 193 
 194   void work(uint worker_id) {
 195     if (_suspendible) {
 196       SuspendibleThreadSet::join();
 197     }
 198     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 199     if (_suspendible) {
 200       SuspendibleThreadSet::leave();
 201     }
 202   }
 203 };
 204 
 205 void CMBitMap::clearAll() {
 206   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 207   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 208   uint n_workers = g1h->workers()->active_workers();
 209   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 210   g1h->workers()->run_task(&task);
 211   guarantee(cl.complete(), "Must have completed iteration.");
 212   return;
 213 }
 214 
 215 void CMBitMap::markRange(MemRegion mr) {
 216   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 217   assert(!mr.is_empty(), "unexpected empty region");
 218   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 219           ((HeapWord *) mr.end())),
 220          "markRange memory region end is not card aligned");
 221   // convert address range into offset range
 222   _bm.at_put_range(heapWordToOffset(mr.start()),
 223                    heapWordToOffset(mr.end()), true);
 224 }
 225 
 226 void CMBitMap::clearRange(MemRegion mr) {
 227   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 228   assert(!mr.is_empty(), "unexpected empty region");
 229   // convert address range into offset range
 230   _bm.at_put_range(heapWordToOffset(mr.start()),
 231                    heapWordToOffset(mr.end()), false);
 232 }
 233 
 234 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 235                                             HeapWord* end_addr) {
 236   HeapWord* start = getNextMarkedWordAddress(addr);
 237   start = MIN2(start, end_addr);
 238   HeapWord* end   = getNextUnmarkedWordAddress(start);
 239   end = MIN2(end, end_addr);
 240   assert(start <= end, "Consistency check");
 241   MemRegion mr(start, end);
 242   if (!mr.is_empty()) {
 243     clearRange(mr);
 244   }
 245   return mr;
 246 }
 247 
 248 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 249   _base(NULL), _cm(cm)
 250 #ifdef ASSERT
 251   , _drain_in_progress(false)
 252   , _drain_in_progress_yields(false)
 253 #endif
 254 {}
 255 
 256 bool CMMarkStack::allocate(size_t capacity) {
 257   // allocate a stack of the requisite depth
 258   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 259   if (!rs.is_reserved()) {
 260     warning("ConcurrentMark MarkStack allocation failure");
 261     return false;
 262   }
 263   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 264   if (!_virtual_space.initialize(rs, rs.size())) {
 265     warning("ConcurrentMark MarkStack backing store failure");
 266     // Release the virtual memory reserved for the marking stack
 267     rs.release();
 268     return false;
 269   }
 270   assert(_virtual_space.committed_size() == rs.size(),
 271          "Didn't reserve backing store for all of ConcurrentMark stack?");
 272   _base = (oop*) _virtual_space.low();
 273   setEmpty();
 274   _capacity = (jint) capacity;
 275   _saved_index = -1;
 276   _should_expand = false;
 277   NOT_PRODUCT(_max_depth = 0);
 278   return true;
 279 }
 280 
 281 void CMMarkStack::expand() {
 282   // Called, during remark, if we've overflown the marking stack during marking.
 283   assert(isEmpty(), "stack should been emptied while handling overflow");
 284   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 285   // Clear expansion flag
 286   _should_expand = false;
 287   if (_capacity == (jint) MarkStackSizeMax) {
 288     if (PrintGCDetails && Verbose) {
 289       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 290     }
 291     return;
 292   }
 293   // Double capacity if possible
 294   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 295   // Do not give up existing stack until we have managed to
 296   // get the double capacity that we desired.
 297   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 298                                                            sizeof(oop)));
 299   if (rs.is_reserved()) {
 300     // Release the backing store associated with old stack
 301     _virtual_space.release();
 302     // Reinitialize virtual space for new stack
 303     if (!_virtual_space.initialize(rs, rs.size())) {
 304       fatal("Not enough swap for expanded marking stack capacity");
 305     }
 306     _base = (oop*)(_virtual_space.low());
 307     _index = 0;
 308     _capacity = new_capacity;
 309   } else {
 310     if (PrintGCDetails && Verbose) {
 311       // Failed to double capacity, continue;
 312       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 313                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 314                           _capacity / K, new_capacity / K);
 315     }
 316   }
 317 }
 318 
 319 void CMMarkStack::set_should_expand() {
 320   // If we're resetting the marking state because of an
 321   // marking stack overflow, record that we should, if
 322   // possible, expand the stack.
 323   _should_expand = _cm->has_overflown();
 324 }
 325 
 326 CMMarkStack::~CMMarkStack() {
 327   if (_base != NULL) {
 328     _base = NULL;
 329     _virtual_space.release();
 330   }
 331 }
 332 
 333 void CMMarkStack::par_push(oop ptr) {
 334   while (true) {
 335     if (isFull()) {
 336       _overflow = true;
 337       return;
 338     }
 339     // Otherwise...
 340     jint index = _index;
 341     jint next_index = index+1;
 342     jint res = Atomic::cmpxchg(next_index, &_index, index);
 343     if (res == index) {
 344       _base[index] = ptr;
 345       // Note that we don't maintain this atomically.  We could, but it
 346       // doesn't seem necessary.
 347       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 348       return;
 349     }
 350     // Otherwise, we need to try again.
 351   }
 352 }
 353 
 354 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 355   while (true) {
 356     if (isFull()) {
 357       _overflow = true;
 358       return;
 359     }
 360     // Otherwise...
 361     jint index = _index;
 362     jint next_index = index + n;
 363     if (next_index > _capacity) {
 364       _overflow = true;
 365       return;
 366     }
 367     jint res = Atomic::cmpxchg(next_index, &_index, index);
 368     if (res == index) {
 369       for (int i = 0; i < n; i++) {
 370         int  ind = index + i;
 371         assert(ind < _capacity, "By overflow test above.");
 372         _base[ind] = ptr_arr[i];
 373       }
 374       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 375       return;
 376     }
 377     // Otherwise, we need to try again.
 378   }
 379 }
 380 
 381 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 382   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 383   jint start = _index;
 384   jint next_index = start + n;
 385   if (next_index > _capacity) {
 386     _overflow = true;
 387     return;
 388   }
 389   // Otherwise.
 390   _index = next_index;
 391   for (int i = 0; i < n; i++) {
 392     int ind = start + i;
 393     assert(ind < _capacity, "By overflow test above.");
 394     _base[ind] = ptr_arr[i];
 395   }
 396   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 397 }
 398 
 399 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 400   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 401   jint index = _index;
 402   if (index == 0) {
 403     *n = 0;
 404     return false;
 405   } else {
 406     int k = MIN2(max, index);
 407     jint  new_ind = index - k;
 408     for (int j = 0; j < k; j++) {
 409       ptr_arr[j] = _base[new_ind + j];
 410     }
 411     _index = new_ind;
 412     *n = k;
 413     return true;
 414   }
 415 }
 416 
 417 template<class OopClosureClass>
 418 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 419   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 420          || SafepointSynchronize::is_at_safepoint(),
 421          "Drain recursion must be yield-safe.");
 422   bool res = true;
 423   debug_only(_drain_in_progress = true);
 424   debug_only(_drain_in_progress_yields = yield_after);
 425   while (!isEmpty()) {
 426     oop newOop = pop();
 427     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 428     assert(newOop->is_oop(), "Expected an oop");
 429     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 430            "only grey objects on this stack");
 431     newOop->oop_iterate(cl);
 432     if (yield_after && _cm->do_yield_check()) {
 433       res = false;
 434       break;
 435     }
 436   }
 437   debug_only(_drain_in_progress = false);
 438   return res;
 439 }
 440 
 441 void CMMarkStack::note_start_of_gc() {
 442   assert(_saved_index == -1,
 443          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 444   _saved_index = _index;
 445 }
 446 
 447 void CMMarkStack::note_end_of_gc() {
 448   // This is intentionally a guarantee, instead of an assert. If we
 449   // accidentally add something to the mark stack during GC, it
 450   // will be a correctness issue so it's better if we crash. we'll
 451   // only check this once per GC anyway, so it won't be a performance
 452   // issue in any way.
 453   guarantee(_saved_index == _index,
 454             err_msg("saved index: %d index: %d", _saved_index, _index));
 455   _saved_index = -1;
 456 }
 457 
 458 void CMMarkStack::oops_do(OopClosure* f) {
 459   assert(_saved_index == _index,
 460          err_msg("saved index: %d index: %d", _saved_index, _index));
 461   for (int i = 0; i < _index; i += 1) {
 462     f->do_oop(&_base[i]);
 463   }
 464 }
 465 
 466 CMRootRegions::CMRootRegions() :
 467   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 468   _should_abort(false),  _next_survivor(NULL) { }
 469 
 470 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 471   _young_list = g1h->young_list();
 472   _cm = cm;
 473 }
 474 
 475 void CMRootRegions::prepare_for_scan() {
 476   assert(!scan_in_progress(), "pre-condition");
 477 
 478   // Currently, only survivors can be root regions.
 479   assert(_next_survivor == NULL, "pre-condition");
 480   _next_survivor = _young_list->first_survivor_region();
 481   _scan_in_progress = (_next_survivor != NULL);
 482   _should_abort = false;
 483 }
 484 
 485 HeapRegion* CMRootRegions::claim_next() {
 486   if (_should_abort) {
 487     // If someone has set the should_abort flag, we return NULL to
 488     // force the caller to bail out of their loop.
 489     return NULL;
 490   }
 491 
 492   // Currently, only survivors can be root regions.
 493   HeapRegion* res = _next_survivor;
 494   if (res != NULL) {
 495     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 496     // Read it again in case it changed while we were waiting for the lock.
 497     res = _next_survivor;
 498     if (res != NULL) {
 499       if (res == _young_list->last_survivor_region()) {
 500         // We just claimed the last survivor so store NULL to indicate
 501         // that we're done.
 502         _next_survivor = NULL;
 503       } else {
 504         _next_survivor = res->get_next_young_region();
 505       }
 506     } else {
 507       // Someone else claimed the last survivor while we were trying
 508       // to take the lock so nothing else to do.
 509     }
 510   }
 511   assert(res == NULL || res->is_survivor(), "post-condition");
 512 
 513   return res;
 514 }
 515 
 516 void CMRootRegions::scan_finished() {
 517   assert(scan_in_progress(), "pre-condition");
 518 
 519   // Currently, only survivors can be root regions.
 520   if (!_should_abort) {
 521     assert(_next_survivor == NULL, "we should have claimed all survivors");
 522   }
 523   _next_survivor = NULL;
 524 
 525   {
 526     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 527     _scan_in_progress = false;
 528     RootRegionScan_lock->notify_all();
 529   }
 530 }
 531 
 532 bool CMRootRegions::wait_until_scan_finished() {
 533   if (!scan_in_progress()) return false;
 534 
 535   {
 536     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 537     while (scan_in_progress()) {
 538       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 539     }
 540   }
 541   return true;
 542 }
 543 
 544 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 545 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 546 #endif // _MSC_VER
 547 
 548 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 549   return MAX2((n_par_threads + 2) / 4, 1U);
 550 }
 551 
 552 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 553   _g1h(g1h),
 554   _markBitMap1(),
 555   _markBitMap2(),
 556   _parallel_marking_threads(0),
 557   _max_parallel_marking_threads(0),
 558   _sleep_factor(0.0),
 559   _marking_task_overhead(1.0),
 560   _cleanup_sleep_factor(0.0),
 561   _cleanup_task_overhead(1.0),
 562   _cleanup_list("Cleanup List"),
 563   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 564   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 565             CardTableModRefBS::card_shift,
 566             false /* in_resource_area*/),
 567 
 568   _prevMarkBitMap(&_markBitMap1),
 569   _nextMarkBitMap(&_markBitMap2),
 570 
 571   _markStack(this),
 572   // _finger set in set_non_marking_state
 573 
 574   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 575   // _active_tasks set in set_non_marking_state
 576   // _tasks set inside the constructor
 577   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 578   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 579 
 580   _has_overflown(false),
 581   _concurrent(false),
 582   _has_aborted(false),
 583   _aborted_gc_id(GCId::undefined()),
 584   _restart_for_overflow(false),
 585   _concurrent_marking_in_progress(false),
 586 
 587   // _verbose_level set below
 588 
 589   _init_times(),
 590   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 591   _cleanup_times(),
 592   _total_counting_time(0.0),
 593   _total_rs_scrub_time(0.0),
 594 
 595   _parallel_workers(NULL),
 596 
 597   _count_card_bitmaps(NULL),
 598   _count_marked_bytes(NULL),
 599   _completed_initialization(false) {
 600   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 601   if (verbose_level < no_verbose) {
 602     verbose_level = no_verbose;
 603   }
 604   if (verbose_level > high_verbose) {
 605     verbose_level = high_verbose;
 606   }
 607   _verbose_level = verbose_level;
 608 
 609   if (verbose_low()) {
 610     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 611                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 612   }
 613 
 614   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 615   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 616 
 617   // Create & start a ConcurrentMark thread.
 618   _cmThread = new ConcurrentMarkThread(this);
 619   assert(cmThread() != NULL, "CM Thread should have been created");
 620   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 621   if (_cmThread->osthread() == NULL) {
 622       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 623   }
 624 
 625   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 626   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 627   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 628 
 629   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 630   satb_qs.set_buffer_size(G1SATBBufferSize);
 631 
 632   _root_regions.init(_g1h, this);
 633 
 634   if (ConcGCThreads > ParallelGCThreads) {
 635     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 636             "than ParallelGCThreads (" UINTX_FORMAT ").",
 637             ConcGCThreads, ParallelGCThreads);
 638     return;
 639   }
 640   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 641     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 642     // if both are set
 643     _sleep_factor             = 0.0;
 644     _marking_task_overhead    = 1.0;
 645   } else if (G1MarkingOverheadPercent > 0) {
 646     // We will calculate the number of parallel marking threads based
 647     // on a target overhead with respect to the soft real-time goal
 648     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 649     double overall_cm_overhead =
 650       (double) MaxGCPauseMillis * marking_overhead /
 651       (double) GCPauseIntervalMillis;
 652     double cpu_ratio = 1.0 / (double) os::processor_count();
 653     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 654     double marking_task_overhead =
 655       overall_cm_overhead / marking_thread_num *
 656                                               (double) os::processor_count();
 657     double sleep_factor =
 658                        (1.0 - marking_task_overhead) / marking_task_overhead;
 659 
 660     FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 661     _sleep_factor             = sleep_factor;
 662     _marking_task_overhead    = marking_task_overhead;
 663   } else {
 664     // Calculate the number of parallel marking threads by scaling
 665     // the number of parallel GC threads.
 666     uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 667     FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 668     _sleep_factor             = 0.0;
 669     _marking_task_overhead    = 1.0;
 670   }
 671 
 672   assert(ConcGCThreads > 0, "Should have been set");
 673   _parallel_marking_threads = (uint) ConcGCThreads;
 674   _max_parallel_marking_threads = _parallel_marking_threads;
 675 
 676   if (parallel_marking_threads() > 1) {
 677     _cleanup_task_overhead = 1.0;
 678   } else {
 679     _cleanup_task_overhead = marking_task_overhead();
 680   }
 681   _cleanup_sleep_factor =
 682                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 683 
 684 #if 0
 685   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 686   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 687   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 688   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 689   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 690 #endif
 691 
 692   _parallel_workers = new FlexibleWorkGang("G1 Marker",
 693        _max_parallel_marking_threads, false, true);
 694   if (_parallel_workers == NULL) {
 695     vm_exit_during_initialization("Failed necessary allocation.");
 696   } else {
 697     _parallel_workers->initialize_workers();
 698   }
 699 
 700   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 701     size_t mark_stack_size =
 702       MIN2(MarkStackSizeMax,
 703           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 704     // Verify that the calculated value for MarkStackSize is in range.
 705     // It would be nice to use the private utility routine from Arguments.
 706     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 707       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 708               "must be between 1 and " SIZE_FORMAT,
 709               mark_stack_size, MarkStackSizeMax);
 710       return;
 711     }
 712     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 713   } else {
 714     // Verify MarkStackSize is in range.
 715     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 716       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 717         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 718           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 719                   "must be between 1 and " SIZE_FORMAT,
 720                   MarkStackSize, MarkStackSizeMax);
 721           return;
 722         }
 723       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 724         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 725           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 726                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 727                   MarkStackSize, MarkStackSizeMax);
 728           return;
 729         }
 730       }
 731     }
 732   }
 733 
 734   if (!_markStack.allocate(MarkStackSize)) {
 735     warning("Failed to allocate CM marking stack");
 736     return;
 737   }
 738 
 739   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 740   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 741 
 742   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 743   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 744 
 745   BitMap::idx_t card_bm_size = _card_bm.size();
 746 
 747   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 748   _active_tasks = _max_worker_id;
 749 
 750   uint max_regions = _g1h->max_regions();
 751   for (uint i = 0; i < _max_worker_id; ++i) {
 752     CMTaskQueue* task_queue = new CMTaskQueue();
 753     task_queue->initialize();
 754     _task_queues->register_queue(i, task_queue);
 755 
 756     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 757     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 758 
 759     _tasks[i] = new CMTask(i, this,
 760                            _count_marked_bytes[i],
 761                            &_count_card_bitmaps[i],
 762                            task_queue, _task_queues);
 763 
 764     _accum_task_vtime[i] = 0.0;
 765   }
 766 
 767   // Calculate the card number for the bottom of the heap. Used
 768   // in biasing indexes into the accounting card bitmaps.
 769   _heap_bottom_card_num =
 770     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 771                                 CardTableModRefBS::card_shift);
 772 
 773   // Clear all the liveness counting data
 774   clear_all_count_data();
 775 
 776   // so that the call below can read a sensible value
 777   _heap_start = g1h->reserved_region().start();
 778   set_non_marking_state();
 779   _completed_initialization = true;
 780 }
 781 
 782 void ConcurrentMark::reset() {
 783   // Starting values for these two. This should be called in a STW
 784   // phase.
 785   MemRegion reserved = _g1h->g1_reserved();
 786   _heap_start = reserved.start();
 787   _heap_end   = reserved.end();
 788 
 789   // Separated the asserts so that we know which one fires.
 790   assert(_heap_start != NULL, "heap bounds should look ok");
 791   assert(_heap_end != NULL, "heap bounds should look ok");
 792   assert(_heap_start < _heap_end, "heap bounds should look ok");
 793 
 794   // Reset all the marking data structures and any necessary flags
 795   reset_marking_state();
 796 
 797   if (verbose_low()) {
 798     gclog_or_tty->print_cr("[global] resetting");
 799   }
 800 
 801   // We do reset all of them, since different phases will use
 802   // different number of active threads. So, it's easiest to have all
 803   // of them ready.
 804   for (uint i = 0; i < _max_worker_id; ++i) {
 805     _tasks[i]->reset(_nextMarkBitMap);
 806   }
 807 
 808   // we need this to make sure that the flag is on during the evac
 809   // pause with initial mark piggy-backed
 810   set_concurrent_marking_in_progress();
 811 }
 812 
 813 
 814 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 815   _markStack.set_should_expand();
 816   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 817   if (clear_overflow) {
 818     clear_has_overflown();
 819   } else {
 820     assert(has_overflown(), "pre-condition");
 821   }
 822   _finger = _heap_start;
 823 
 824   for (uint i = 0; i < _max_worker_id; ++i) {
 825     CMTaskQueue* queue = _task_queues->queue(i);
 826     queue->set_empty();
 827   }
 828 }
 829 
 830 void ConcurrentMark::set_concurrency(uint active_tasks) {
 831   assert(active_tasks <= _max_worker_id, "we should not have more");
 832 
 833   _active_tasks = active_tasks;
 834   // Need to update the three data structures below according to the
 835   // number of active threads for this phase.
 836   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 837   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 838   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 839 }
 840 
 841 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 842   set_concurrency(active_tasks);
 843 
 844   _concurrent = concurrent;
 845   // We propagate this to all tasks, not just the active ones.
 846   for (uint i = 0; i < _max_worker_id; ++i)
 847     _tasks[i]->set_concurrent(concurrent);
 848 
 849   if (concurrent) {
 850     set_concurrent_marking_in_progress();
 851   } else {
 852     // We currently assume that the concurrent flag has been set to
 853     // false before we start remark. At this point we should also be
 854     // in a STW phase.
 855     assert(!concurrent_marking_in_progress(), "invariant");
 856     assert(out_of_regions(),
 857            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 858                    p2i(_finger), p2i(_heap_end)));
 859   }
 860 }
 861 
 862 void ConcurrentMark::set_non_marking_state() {
 863   // We set the global marking state to some default values when we're
 864   // not doing marking.
 865   reset_marking_state();
 866   _active_tasks = 0;
 867   clear_concurrent_marking_in_progress();
 868 }
 869 
 870 void ConcurrentMark::clearNextBitmap() {
 871   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 872 
 873   // Make sure that the concurrent mark thread looks to still be in
 874   // the current cycle.
 875   guarantee(cmThread()->during_cycle(), "invariant");
 876 
 877   // We are finishing up the current cycle by clearing the next
 878   // marking bitmap and getting it ready for the next cycle. During
 879   // this time no other cycle can start. So, let's make sure that this
 880   // is the case.
 881   guarantee(!g1h->mark_in_progress(), "invariant");
 882 
 883   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 884   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 885   _parallel_workers->run_task(&task);
 886 
 887   // Clear the liveness counting data. If the marking has been aborted, the abort()
 888   // call already did that.
 889   if (cl.complete()) {
 890     clear_all_count_data();
 891   }
 892 
 893   // Repeat the asserts from above.
 894   guarantee(cmThread()->during_cycle(), "invariant");
 895   guarantee(!g1h->mark_in_progress(), "invariant");
 896 }
 897 
 898 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 899   CMBitMap* _bitmap;
 900   bool _error;
 901  public:
 902   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 903   }
 904 
 905   virtual bool doHeapRegion(HeapRegion* r) {
 906     // This closure can be called concurrently to the mutator, so we must make sure
 907     // that the result of the getNextMarkedWordAddress() call is compared to the
 908     // value passed to it as limit to detect any found bits.
 909     // We can use the region's orig_end() for the limit and the comparison value
 910     // as it always contains the "real" end of the region that never changes and
 911     // has no side effects.
 912     // Due to the latter, there can also be no problem with the compiler generating
 913     // reloads of the orig_end() call.
 914     HeapWord* end = r->orig_end();
 915     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 916   }
 917 };
 918 
 919 bool ConcurrentMark::nextMarkBitmapIsClear() {
 920   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 921   _g1h->heap_region_iterate(&cl);
 922   return cl.complete();
 923 }
 924 
 925 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 926 public:
 927   bool doHeapRegion(HeapRegion* r) {
 928     if (!r->is_continues_humongous()) {
 929       r->note_start_of_marking();
 930     }
 931     return false;
 932   }
 933 };
 934 
 935 void ConcurrentMark::checkpointRootsInitialPre() {
 936   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 937   G1CollectorPolicy* g1p = g1h->g1_policy();
 938 
 939   _has_aborted = false;
 940 
 941 #ifndef PRODUCT
 942   if (G1PrintReachableAtInitialMark) {
 943     print_reachable("at-cycle-start",
 944                     VerifyOption_G1UsePrevMarking, true /* all */);
 945   }
 946 #endif
 947 
 948   // Initialize marking structures. This has to be done in a STW phase.
 949   reset();
 950 
 951   // For each region note start of marking.
 952   NoteStartOfMarkHRClosure startcl;
 953   g1h->heap_region_iterate(&startcl);
 954 }
 955 
 956 
 957 void ConcurrentMark::checkpointRootsInitialPost() {
 958   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 959 
 960   // If we force an overflow during remark, the remark operation will
 961   // actually abort and we'll restart concurrent marking. If we always
 962   // force an overflow during remark we'll never actually complete the
 963   // marking phase. So, we initialize this here, at the start of the
 964   // cycle, so that at the remaining overflow number will decrease at
 965   // every remark and we'll eventually not need to cause one.
 966   force_overflow_stw()->init();
 967 
 968   // Start Concurrent Marking weak-reference discovery.
 969   ReferenceProcessor* rp = g1h->ref_processor_cm();
 970   // enable ("weak") refs discovery
 971   rp->enable_discovery();
 972   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 973 
 974   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 975   // This is the start of  the marking cycle, we're expected all
 976   // threads to have SATB queues with active set to false.
 977   satb_mq_set.set_active_all_threads(true, /* new active value */
 978                                      false /* expected_active */);
 979 
 980   _root_regions.prepare_for_scan();
 981 
 982   // update_g1_committed() will be called at the end of an evac pause
 983   // when marking is on. So, it's also called at the end of the
 984   // initial-mark pause to update the heap end, if the heap expands
 985   // during it. No need to call it here.
 986 }
 987 
 988 /*
 989  * Notice that in the next two methods, we actually leave the STS
 990  * during the barrier sync and join it immediately afterwards. If we
 991  * do not do this, the following deadlock can occur: one thread could
 992  * be in the barrier sync code, waiting for the other thread to also
 993  * sync up, whereas another one could be trying to yield, while also
 994  * waiting for the other threads to sync up too.
 995  *
 996  * Note, however, that this code is also used during remark and in
 997  * this case we should not attempt to leave / enter the STS, otherwise
 998  * we'll either hit an assert (debug / fastdebug) or deadlock
 999  * (product). So we should only leave / enter the STS if we are
1000  * operating concurrently.
1001  *
1002  * Because the thread that does the sync barrier has left the STS, it
1003  * is possible to be suspended for a Full GC or an evacuation pause
1004  * could occur. This is actually safe, since the entering the sync
1005  * barrier is one of the last things do_marking_step() does, and it
1006  * doesn't manipulate any data structures afterwards.
1007  */
1008 
1009 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
1010   if (verbose_low()) {
1011     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1012   }
1013 
1014   if (concurrent()) {
1015     SuspendibleThreadSet::leave();
1016   }
1017 
1018   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1019 
1020   if (concurrent()) {
1021     SuspendibleThreadSet::join();
1022   }
1023   // at this point everyone should have synced up and not be doing any
1024   // more work
1025 
1026   if (verbose_low()) {
1027     if (barrier_aborted) {
1028       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1029     } else {
1030       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1031     }
1032   }
1033 
1034   if (barrier_aborted) {
1035     // If the barrier aborted we ignore the overflow condition and
1036     // just abort the whole marking phase as quickly as possible.
1037     return;
1038   }
1039 
1040   // If we're executing the concurrent phase of marking, reset the marking
1041   // state; otherwise the marking state is reset after reference processing,
1042   // during the remark pause.
1043   // If we reset here as a result of an overflow during the remark we will
1044   // see assertion failures from any subsequent set_concurrency_and_phase()
1045   // calls.
1046   if (concurrent()) {
1047     // let the task associated with with worker 0 do this
1048     if (worker_id == 0) {
1049       // task 0 is responsible for clearing the global data structures
1050       // We should be here because of an overflow. During STW we should
1051       // not clear the overflow flag since we rely on it being true when
1052       // we exit this method to abort the pause and restart concurrent
1053       // marking.
1054       reset_marking_state(true /* clear_overflow */);
1055       force_overflow()->update();
1056 
1057       if (G1Log::fine()) {
1058         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1059         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1060       }
1061     }
1062   }
1063 
1064   // after this, each task should reset its own data structures then
1065   // then go into the second barrier
1066 }
1067 
1068 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1069   if (verbose_low()) {
1070     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1071   }
1072 
1073   if (concurrent()) {
1074     SuspendibleThreadSet::leave();
1075   }
1076 
1077   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1078 
1079   if (concurrent()) {
1080     SuspendibleThreadSet::join();
1081   }
1082   // at this point everything should be re-initialized and ready to go
1083 
1084   if (verbose_low()) {
1085     if (barrier_aborted) {
1086       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1087     } else {
1088       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1089     }
1090   }
1091 }
1092 
1093 #ifndef PRODUCT
1094 void ForceOverflowSettings::init() {
1095   _num_remaining = G1ConcMarkForceOverflow;
1096   _force = false;
1097   update();
1098 }
1099 
1100 void ForceOverflowSettings::update() {
1101   if (_num_remaining > 0) {
1102     _num_remaining -= 1;
1103     _force = true;
1104   } else {
1105     _force = false;
1106   }
1107 }
1108 
1109 bool ForceOverflowSettings::should_force() {
1110   if (_force) {
1111     _force = false;
1112     return true;
1113   } else {
1114     return false;
1115   }
1116 }
1117 #endif // !PRODUCT
1118 
1119 class CMConcurrentMarkingTask: public AbstractGangTask {
1120 private:
1121   ConcurrentMark*       _cm;
1122   ConcurrentMarkThread* _cmt;
1123 
1124 public:
1125   void work(uint worker_id) {
1126     assert(Thread::current()->is_ConcurrentGC_thread(),
1127            "this should only be done by a conc GC thread");
1128     ResourceMark rm;
1129 
1130     double start_vtime = os::elapsedVTime();
1131 
1132     SuspendibleThreadSet::join();
1133 
1134     assert(worker_id < _cm->active_tasks(), "invariant");
1135     CMTask* the_task = _cm->task(worker_id);
1136     the_task->record_start_time();
1137     if (!_cm->has_aborted()) {
1138       do {
1139         double start_vtime_sec = os::elapsedVTime();
1140         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1141 
1142         the_task->do_marking_step(mark_step_duration_ms,
1143                                   true  /* do_termination */,
1144                                   false /* is_serial*/);
1145 
1146         double end_vtime_sec = os::elapsedVTime();
1147         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1148         _cm->clear_has_overflown();
1149 
1150         _cm->do_yield_check(worker_id);
1151 
1152         jlong sleep_time_ms;
1153         if (!_cm->has_aborted() && the_task->has_aborted()) {
1154           sleep_time_ms =
1155             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1156           SuspendibleThreadSet::leave();
1157           os::sleep(Thread::current(), sleep_time_ms, false);
1158           SuspendibleThreadSet::join();
1159         }
1160       } while (!_cm->has_aborted() && the_task->has_aborted());
1161     }
1162     the_task->record_end_time();
1163     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1164 
1165     SuspendibleThreadSet::leave();
1166 
1167     double end_vtime = os::elapsedVTime();
1168     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1169   }
1170 
1171   CMConcurrentMarkingTask(ConcurrentMark* cm,
1172                           ConcurrentMarkThread* cmt) :
1173       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1174 
1175   ~CMConcurrentMarkingTask() { }
1176 };
1177 
1178 // Calculates the number of active workers for a concurrent
1179 // phase.
1180 uint ConcurrentMark::calc_parallel_marking_threads() {
1181   uint n_conc_workers = 0;
1182   if (!UseDynamicNumberOfGCThreads ||
1183       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1184        !ForceDynamicNumberOfGCThreads)) {
1185     n_conc_workers = max_parallel_marking_threads();
1186   } else {
1187     n_conc_workers =
1188       AdaptiveSizePolicy::calc_default_active_workers(
1189                                    max_parallel_marking_threads(),
1190                                    1, /* Minimum workers */
1191                                    parallel_marking_threads(),
1192                                    Threads::number_of_non_daemon_threads());
1193     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1194     // that scaling has already gone into "_max_parallel_marking_threads".
1195   }
1196   assert(n_conc_workers > 0, "Always need at least 1");
1197   return n_conc_workers;
1198 }
1199 
1200 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1201   // Currently, only survivors can be root regions.
1202   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1203   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1204 
1205   const uintx interval = PrefetchScanIntervalInBytes;
1206   HeapWord* curr = hr->bottom();
1207   const HeapWord* end = hr->top();
1208   while (curr < end) {
1209     Prefetch::read(curr, interval);
1210     oop obj = oop(curr);
1211     int size = obj->oop_iterate(&cl);
1212     assert(size == obj->size(), "sanity");
1213     curr += size;
1214   }
1215 }
1216 
1217 class CMRootRegionScanTask : public AbstractGangTask {
1218 private:
1219   ConcurrentMark* _cm;
1220 
1221 public:
1222   CMRootRegionScanTask(ConcurrentMark* cm) :
1223     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1224 
1225   void work(uint worker_id) {
1226     assert(Thread::current()->is_ConcurrentGC_thread(),
1227            "this should only be done by a conc GC thread");
1228 
1229     CMRootRegions* root_regions = _cm->root_regions();
1230     HeapRegion* hr = root_regions->claim_next();
1231     while (hr != NULL) {
1232       _cm->scanRootRegion(hr, worker_id);
1233       hr = root_regions->claim_next();
1234     }
1235   }
1236 };
1237 
1238 void ConcurrentMark::scanRootRegions() {
1239   // Start of concurrent marking.
1240   ClassLoaderDataGraph::clear_claimed_marks();
1241 
1242   // scan_in_progress() will have been set to true only if there was
1243   // at least one root region to scan. So, if it's false, we
1244   // should not attempt to do any further work.
1245   if (root_regions()->scan_in_progress()) {
1246     _parallel_marking_threads = calc_parallel_marking_threads();
1247     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1248            "Maximum number of marking threads exceeded");
1249     uint active_workers = MAX2(1U, parallel_marking_threads());
1250 
1251     CMRootRegionScanTask task(this);
1252     _parallel_workers->set_active_workers(active_workers);
1253     _parallel_workers->run_task(&task);
1254 
1255     // It's possible that has_aborted() is true here without actually
1256     // aborting the survivor scan earlier. This is OK as it's
1257     // mainly used for sanity checking.
1258     root_regions()->scan_finished();
1259   }
1260 }
1261 
1262 void ConcurrentMark::markFromRoots() {
1263   // we might be tempted to assert that:
1264   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1265   //        "inconsistent argument?");
1266   // However that wouldn't be right, because it's possible that
1267   // a safepoint is indeed in progress as a younger generation
1268   // stop-the-world GC happens even as we mark in this generation.
1269 
1270   _restart_for_overflow = false;
1271   force_overflow_conc()->init();
1272 
1273   // _g1h has _n_par_threads
1274   _parallel_marking_threads = calc_parallel_marking_threads();
1275   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1276     "Maximum number of marking threads exceeded");
1277 
1278   uint active_workers = MAX2(1U, parallel_marking_threads());
1279 
1280   // Parallel task terminator is set in "set_concurrency_and_phase()"
1281   set_concurrency_and_phase(active_workers, true /* concurrent */);
1282 
1283   CMConcurrentMarkingTask markingTask(this, cmThread());
1284   _parallel_workers->set_active_workers(active_workers);
1285   // Don't set _n_par_threads because it affects MT in process_roots()
1286   // and the decisions on that MT processing is made elsewhere.
1287   assert(_parallel_workers->active_workers() > 0, "Should have been set");
1288   _parallel_workers->run_task(&markingTask);
1289   print_stats();
1290 }
1291 
1292 // Helper class to get rid of some boilerplate code.
1293 class G1CMTraceTime : public GCTraceTime {
1294   static bool doit_and_prepend(bool doit) {
1295     if (doit) {
1296       gclog_or_tty->put(' ');
1297     }
1298     return doit;
1299   }
1300 
1301  public:
1302   G1CMTraceTime(const char* title, bool doit)
1303     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1304         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1305   }
1306 };
1307 
1308 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1309   // world is stopped at this checkpoint
1310   assert(SafepointSynchronize::is_at_safepoint(),
1311          "world should be stopped");
1312 
1313   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1314 
1315   // If a full collection has happened, we shouldn't do this.
1316   if (has_aborted()) {
1317     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1318     return;
1319   }
1320 
1321   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1322 
1323   if (VerifyDuringGC) {
1324     HandleMark hm;  // handle scope
1325     g1h->prepare_for_verify();
1326     Universe::verify(VerifyOption_G1UsePrevMarking,
1327                      " VerifyDuringGC:(before)");
1328   }
1329   g1h->check_bitmaps("Remark Start");
1330 
1331   G1CollectorPolicy* g1p = g1h->g1_policy();
1332   g1p->record_concurrent_mark_remark_start();
1333 
1334   double start = os::elapsedTime();
1335 
1336   checkpointRootsFinalWork();
1337 
1338   double mark_work_end = os::elapsedTime();
1339 
1340   weakRefsWork(clear_all_soft_refs);
1341 
1342   if (has_overflown()) {
1343     // Oops.  We overflowed.  Restart concurrent marking.
1344     _restart_for_overflow = true;
1345     if (G1TraceMarkStackOverflow) {
1346       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1347     }
1348 
1349     // Verify the heap w.r.t. the previous marking bitmap.
1350     if (VerifyDuringGC) {
1351       HandleMark hm;  // handle scope
1352       g1h->prepare_for_verify();
1353       Universe::verify(VerifyOption_G1UsePrevMarking,
1354                        " VerifyDuringGC:(overflow)");
1355     }
1356 
1357     // Clear the marking state because we will be restarting
1358     // marking due to overflowing the global mark stack.
1359     reset_marking_state();
1360   } else {
1361     {
1362       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1363 
1364       // Aggregate the per-task counting data that we have accumulated
1365       // while marking.
1366       aggregate_count_data();
1367     }
1368 
1369     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1370     // We're done with marking.
1371     // This is the end of  the marking cycle, we're expected all
1372     // threads to have SATB queues with active set to true.
1373     satb_mq_set.set_active_all_threads(false, /* new active value */
1374                                        true /* expected_active */);
1375 
1376     if (VerifyDuringGC) {
1377       HandleMark hm;  // handle scope
1378       g1h->prepare_for_verify();
1379       Universe::verify(VerifyOption_G1UseNextMarking,
1380                        " VerifyDuringGC:(after)");
1381     }
1382     g1h->check_bitmaps("Remark End");
1383     assert(!restart_for_overflow(), "sanity");
1384     // Completely reset the marking state since marking completed
1385     set_non_marking_state();
1386   }
1387 
1388   // Expand the marking stack, if we have to and if we can.
1389   if (_markStack.should_expand()) {
1390     _markStack.expand();
1391   }
1392 
1393   // Statistics
1394   double now = os::elapsedTime();
1395   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1396   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1397   _remark_times.add((now - start) * 1000.0);
1398 
1399   g1p->record_concurrent_mark_remark_end();
1400 
1401   G1CMIsAliveClosure is_alive(g1h);
1402   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1403 }
1404 
1405 // Base class of the closures that finalize and verify the
1406 // liveness counting data.
1407 class CMCountDataClosureBase: public HeapRegionClosure {
1408 protected:
1409   G1CollectedHeap* _g1h;
1410   ConcurrentMark* _cm;
1411   CardTableModRefBS* _ct_bs;
1412 
1413   BitMap* _region_bm;
1414   BitMap* _card_bm;
1415 
1416   // Takes a region that's not empty (i.e., it has at least one
1417   // live object in it and sets its corresponding bit on the region
1418   // bitmap to 1. If the region is "starts humongous" it will also set
1419   // to 1 the bits on the region bitmap that correspond to its
1420   // associated "continues humongous" regions.
1421   void set_bit_for_region(HeapRegion* hr) {
1422     assert(!hr->is_continues_humongous(), "should have filtered those out");
1423 
1424     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1425     if (!hr->is_starts_humongous()) {
1426       // Normal (non-humongous) case: just set the bit.
1427       _region_bm->par_at_put(index, true);
1428     } else {
1429       // Starts humongous case: calculate how many regions are part of
1430       // this humongous region and then set the bit range.
1431       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1432       _region_bm->par_at_put_range(index, end_index, true);
1433     }
1434   }
1435 
1436 public:
1437   CMCountDataClosureBase(G1CollectedHeap* g1h,
1438                          BitMap* region_bm, BitMap* card_bm):
1439     _g1h(g1h), _cm(g1h->concurrent_mark()),
1440     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1441     _region_bm(region_bm), _card_bm(card_bm) { }
1442 };
1443 
1444 // Closure that calculates the # live objects per region. Used
1445 // for verification purposes during the cleanup pause.
1446 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1447   CMBitMapRO* _bm;
1448   size_t _region_marked_bytes;
1449 
1450 public:
1451   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1452                          BitMap* region_bm, BitMap* card_bm) :
1453     CMCountDataClosureBase(g1h, region_bm, card_bm),
1454     _bm(bm), _region_marked_bytes(0) { }
1455 
1456   bool doHeapRegion(HeapRegion* hr) {
1457 
1458     if (hr->is_continues_humongous()) {
1459       // We will ignore these here and process them when their
1460       // associated "starts humongous" region is processed (see
1461       // set_bit_for_heap_region()). Note that we cannot rely on their
1462       // associated "starts humongous" region to have their bit set to
1463       // 1 since, due to the region chunking in the parallel region
1464       // iteration, a "continues humongous" region might be visited
1465       // before its associated "starts humongous".
1466       return false;
1467     }
1468 
1469     HeapWord* ntams = hr->next_top_at_mark_start();
1470     HeapWord* start = hr->bottom();
1471 
1472     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1473            err_msg("Preconditions not met - "
1474                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1475                    p2i(start), p2i(ntams), p2i(hr->end())));
1476 
1477     // Find the first marked object at or after "start".
1478     start = _bm->getNextMarkedWordAddress(start, ntams);
1479 
1480     size_t marked_bytes = 0;
1481 
1482     while (start < ntams) {
1483       oop obj = oop(start);
1484       int obj_sz = obj->size();
1485       HeapWord* obj_end = start + obj_sz;
1486 
1487       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1488       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1489 
1490       // Note: if we're looking at the last region in heap - obj_end
1491       // could be actually just beyond the end of the heap; end_idx
1492       // will then correspond to a (non-existent) card that is also
1493       // just beyond the heap.
1494       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1495         // end of object is not card aligned - increment to cover
1496         // all the cards spanned by the object
1497         end_idx += 1;
1498       }
1499 
1500       // Set the bits in the card BM for the cards spanned by this object.
1501       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1502 
1503       // Add the size of this object to the number of marked bytes.
1504       marked_bytes += (size_t)obj_sz * HeapWordSize;
1505 
1506       // Find the next marked object after this one.
1507       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1508     }
1509 
1510     // Mark the allocated-since-marking portion...
1511     HeapWord* top = hr->top();
1512     if (ntams < top) {
1513       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1514       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1515 
1516       // Note: if we're looking at the last region in heap - top
1517       // could be actually just beyond the end of the heap; end_idx
1518       // will then correspond to a (non-existent) card that is also
1519       // just beyond the heap.
1520       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1521         // end of object is not card aligned - increment to cover
1522         // all the cards spanned by the object
1523         end_idx += 1;
1524       }
1525       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1526 
1527       // This definitely means the region has live objects.
1528       set_bit_for_region(hr);
1529     }
1530 
1531     // Update the live region bitmap.
1532     if (marked_bytes > 0) {
1533       set_bit_for_region(hr);
1534     }
1535 
1536     // Set the marked bytes for the current region so that
1537     // it can be queried by a calling verification routine
1538     _region_marked_bytes = marked_bytes;
1539 
1540     return false;
1541   }
1542 
1543   size_t region_marked_bytes() const { return _region_marked_bytes; }
1544 };
1545 
1546 // Heap region closure used for verifying the counting data
1547 // that was accumulated concurrently and aggregated during
1548 // the remark pause. This closure is applied to the heap
1549 // regions during the STW cleanup pause.
1550 
1551 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1552   G1CollectedHeap* _g1h;
1553   ConcurrentMark* _cm;
1554   CalcLiveObjectsClosure _calc_cl;
1555   BitMap* _region_bm;   // Region BM to be verified
1556   BitMap* _card_bm;     // Card BM to be verified
1557   bool _verbose;        // verbose output?
1558 
1559   BitMap* _exp_region_bm; // Expected Region BM values
1560   BitMap* _exp_card_bm;   // Expected card BM values
1561 
1562   int _failures;
1563 
1564 public:
1565   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1566                                 BitMap* region_bm,
1567                                 BitMap* card_bm,
1568                                 BitMap* exp_region_bm,
1569                                 BitMap* exp_card_bm,
1570                                 bool verbose) :
1571     _g1h(g1h), _cm(g1h->concurrent_mark()),
1572     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1573     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1574     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1575     _failures(0) { }
1576 
1577   int failures() const { return _failures; }
1578 
1579   bool doHeapRegion(HeapRegion* hr) {
1580     if (hr->is_continues_humongous()) {
1581       // We will ignore these here and process them when their
1582       // associated "starts humongous" region is processed (see
1583       // set_bit_for_heap_region()). Note that we cannot rely on their
1584       // associated "starts humongous" region to have their bit set to
1585       // 1 since, due to the region chunking in the parallel region
1586       // iteration, a "continues humongous" region might be visited
1587       // before its associated "starts humongous".
1588       return false;
1589     }
1590 
1591     int failures = 0;
1592 
1593     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1594     // this region and set the corresponding bits in the expected region
1595     // and card bitmaps.
1596     bool res = _calc_cl.doHeapRegion(hr);
1597     assert(res == false, "should be continuing");
1598 
1599     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1600                     Mutex::_no_safepoint_check_flag);
1601 
1602     // Verify the marked bytes for this region.
1603     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1604     size_t act_marked_bytes = hr->next_marked_bytes();
1605 
1606     // We're not OK if expected marked bytes > actual marked bytes. It means
1607     // we have missed accounting some objects during the actual marking.
1608     if (exp_marked_bytes > act_marked_bytes) {
1609       if (_verbose) {
1610         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1611                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1612                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1613       }
1614       failures += 1;
1615     }
1616 
1617     // Verify the bit, for this region, in the actual and expected
1618     // (which was just calculated) region bit maps.
1619     // We're not OK if the bit in the calculated expected region
1620     // bitmap is set and the bit in the actual region bitmap is not.
1621     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1622 
1623     bool expected = _exp_region_bm->at(index);
1624     bool actual = _region_bm->at(index);
1625     if (expected && !actual) {
1626       if (_verbose) {
1627         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1628                                "expected: %s, actual: %s",
1629                                hr->hrm_index(),
1630                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1631       }
1632       failures += 1;
1633     }
1634 
1635     // Verify that the card bit maps for the cards spanned by the current
1636     // region match. We have an error if we have a set bit in the expected
1637     // bit map and the corresponding bit in the actual bitmap is not set.
1638 
1639     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1640     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1641 
1642     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1643       expected = _exp_card_bm->at(i);
1644       actual = _card_bm->at(i);
1645 
1646       if (expected && !actual) {
1647         if (_verbose) {
1648           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1649                                  "expected: %s, actual: %s",
1650                                  hr->hrm_index(), i,
1651                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1652         }
1653         failures += 1;
1654       }
1655     }
1656 
1657     if (failures > 0 && _verbose)  {
1658       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1659                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1660                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1661                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1662     }
1663 
1664     _failures += failures;
1665 
1666     // We could stop iteration over the heap when we
1667     // find the first violating region by returning true.
1668     return false;
1669   }
1670 };
1671 
1672 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1673 protected:
1674   G1CollectedHeap* _g1h;
1675   ConcurrentMark* _cm;
1676   BitMap* _actual_region_bm;
1677   BitMap* _actual_card_bm;
1678 
1679   uint    _n_workers;
1680 
1681   BitMap* _expected_region_bm;
1682   BitMap* _expected_card_bm;
1683 
1684   int  _failures;
1685   bool _verbose;
1686 
1687   HeapRegionClaimer _hrclaimer;
1688 
1689 public:
1690   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1691                             BitMap* region_bm, BitMap* card_bm,
1692                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1693     : AbstractGangTask("G1 verify final counting"),
1694       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1695       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1696       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1697       _failures(0), _verbose(false),
1698       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1699     assert(VerifyDuringGC, "don't call this otherwise");
1700     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1701     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1702 
1703     _verbose = _cm->verbose_medium();
1704   }
1705 
1706   void work(uint worker_id) {
1707     assert(worker_id < _n_workers, "invariant");
1708 
1709     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1710                                             _actual_region_bm, _actual_card_bm,
1711                                             _expected_region_bm,
1712                                             _expected_card_bm,
1713                                             _verbose);
1714 
1715     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1716 
1717     Atomic::add(verify_cl.failures(), &_failures);
1718   }
1719 
1720   int failures() const { return _failures; }
1721 };
1722 
1723 // Closure that finalizes the liveness counting data.
1724 // Used during the cleanup pause.
1725 // Sets the bits corresponding to the interval [NTAMS, top]
1726 // (which contains the implicitly live objects) in the
1727 // card liveness bitmap. Also sets the bit for each region,
1728 // containing live data, in the region liveness bitmap.
1729 
1730 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1731  public:
1732   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1733                               BitMap* region_bm,
1734                               BitMap* card_bm) :
1735     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1736 
1737   bool doHeapRegion(HeapRegion* hr) {
1738 
1739     if (hr->is_continues_humongous()) {
1740       // We will ignore these here and process them when their
1741       // associated "starts humongous" region is processed (see
1742       // set_bit_for_heap_region()). Note that we cannot rely on their
1743       // associated "starts humongous" region to have their bit set to
1744       // 1 since, due to the region chunking in the parallel region
1745       // iteration, a "continues humongous" region might be visited
1746       // before its associated "starts humongous".
1747       return false;
1748     }
1749 
1750     HeapWord* ntams = hr->next_top_at_mark_start();
1751     HeapWord* top   = hr->top();
1752 
1753     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1754 
1755     // Mark the allocated-since-marking portion...
1756     if (ntams < top) {
1757       // This definitely means the region has live objects.
1758       set_bit_for_region(hr);
1759 
1760       // Now set the bits in the card bitmap for [ntams, top)
1761       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1762       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1763 
1764       // Note: if we're looking at the last region in heap - top
1765       // could be actually just beyond the end of the heap; end_idx
1766       // will then correspond to a (non-existent) card that is also
1767       // just beyond the heap.
1768       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1769         // end of object is not card aligned - increment to cover
1770         // all the cards spanned by the object
1771         end_idx += 1;
1772       }
1773 
1774       assert(end_idx <= _card_bm->size(),
1775              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1776                      end_idx, _card_bm->size()));
1777       assert(start_idx < _card_bm->size(),
1778              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1779                      start_idx, _card_bm->size()));
1780 
1781       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1782     }
1783 
1784     // Set the bit for the region if it contains live data
1785     if (hr->next_marked_bytes() > 0) {
1786       set_bit_for_region(hr);
1787     }
1788 
1789     return false;
1790   }
1791 };
1792 
1793 class G1ParFinalCountTask: public AbstractGangTask {
1794 protected:
1795   G1CollectedHeap* _g1h;
1796   ConcurrentMark* _cm;
1797   BitMap* _actual_region_bm;
1798   BitMap* _actual_card_bm;
1799 
1800   uint    _n_workers;
1801   HeapRegionClaimer _hrclaimer;
1802 
1803 public:
1804   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1805     : AbstractGangTask("G1 final counting"),
1806       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1807       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1808       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1809   }
1810 
1811   void work(uint worker_id) {
1812     assert(worker_id < _n_workers, "invariant");
1813 
1814     FinalCountDataUpdateClosure final_update_cl(_g1h,
1815                                                 _actual_region_bm,
1816                                                 _actual_card_bm);
1817 
1818     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1819   }
1820 };
1821 
1822 class G1ParNoteEndTask;
1823 
1824 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1825   G1CollectedHeap* _g1;
1826   size_t _max_live_bytes;
1827   uint _regions_claimed;
1828   size_t _freed_bytes;
1829   FreeRegionList* _local_cleanup_list;
1830   HeapRegionSetCount _old_regions_removed;
1831   HeapRegionSetCount _humongous_regions_removed;
1832   HRRSCleanupTask* _hrrs_cleanup_task;
1833   double _claimed_region_time;
1834   double _max_region_time;
1835 
1836 public:
1837   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1838                              FreeRegionList* local_cleanup_list,
1839                              HRRSCleanupTask* hrrs_cleanup_task) :
1840     _g1(g1),
1841     _max_live_bytes(0), _regions_claimed(0),
1842     _freed_bytes(0),
1843     _claimed_region_time(0.0), _max_region_time(0.0),
1844     _local_cleanup_list(local_cleanup_list),
1845     _old_regions_removed(),
1846     _humongous_regions_removed(),
1847     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1848 
1849   size_t freed_bytes() { return _freed_bytes; }
1850   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1851   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1852 
1853   bool doHeapRegion(HeapRegion *hr) {
1854     if (hr->is_continues_humongous()) {
1855       return false;
1856     }
1857     // We use a claim value of zero here because all regions
1858     // were claimed with value 1 in the FinalCount task.
1859     _g1->reset_gc_time_stamps(hr);
1860     double start = os::elapsedTime();
1861     _regions_claimed++;
1862     hr->note_end_of_marking();
1863     _max_live_bytes += hr->max_live_bytes();
1864 
1865     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1866       _freed_bytes += hr->used();
1867       hr->set_containing_set(NULL);
1868       if (hr->is_humongous()) {
1869         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1870         _humongous_regions_removed.increment(1u, hr->capacity());
1871         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1872       } else {
1873         _old_regions_removed.increment(1u, hr->capacity());
1874         _g1->free_region(hr, _local_cleanup_list, true);
1875       }
1876     } else {
1877       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1878     }
1879 
1880     double region_time = (os::elapsedTime() - start);
1881     _claimed_region_time += region_time;
1882     if (region_time > _max_region_time) {
1883       _max_region_time = region_time;
1884     }
1885     return false;
1886   }
1887 
1888   size_t max_live_bytes() { return _max_live_bytes; }
1889   uint regions_claimed() { return _regions_claimed; }
1890   double claimed_region_time_sec() { return _claimed_region_time; }
1891   double max_region_time_sec() { return _max_region_time; }
1892 };
1893 
1894 class G1ParNoteEndTask: public AbstractGangTask {
1895   friend class G1NoteEndOfConcMarkClosure;
1896 
1897 protected:
1898   G1CollectedHeap* _g1h;
1899   size_t _max_live_bytes;
1900   size_t _freed_bytes;
1901   FreeRegionList* _cleanup_list;
1902   HeapRegionClaimer _hrclaimer;
1903 
1904 public:
1905   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1906       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1907   }
1908 
1909   void work(uint worker_id) {
1910     FreeRegionList local_cleanup_list("Local Cleanup List");
1911     HRRSCleanupTask hrrs_cleanup_task;
1912     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1913                                            &hrrs_cleanup_task);
1914     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1915     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1916 
1917     // Now update the lists
1918     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1919     {
1920       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1921       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1922       _max_live_bytes += g1_note_end.max_live_bytes();
1923       _freed_bytes += g1_note_end.freed_bytes();
1924 
1925       // If we iterate over the global cleanup list at the end of
1926       // cleanup to do this printing we will not guarantee to only
1927       // generate output for the newly-reclaimed regions (the list
1928       // might not be empty at the beginning of cleanup; we might
1929       // still be working on its previous contents). So we do the
1930       // printing here, before we append the new regions to the global
1931       // cleanup list.
1932 
1933       G1HRPrinter* hr_printer = _g1h->hr_printer();
1934       if (hr_printer->is_active()) {
1935         FreeRegionListIterator iter(&local_cleanup_list);
1936         while (iter.more_available()) {
1937           HeapRegion* hr = iter.get_next();
1938           hr_printer->cleanup(hr);
1939         }
1940       }
1941 
1942       _cleanup_list->add_ordered(&local_cleanup_list);
1943       assert(local_cleanup_list.is_empty(), "post-condition");
1944 
1945       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1946     }
1947   }
1948   size_t max_live_bytes() { return _max_live_bytes; }
1949   size_t freed_bytes() { return _freed_bytes; }
1950 };
1951 
1952 class G1ParScrubRemSetTask: public AbstractGangTask {
1953 protected:
1954   G1RemSet* _g1rs;
1955   BitMap* _region_bm;
1956   BitMap* _card_bm;
1957   HeapRegionClaimer _hrclaimer;
1958 
1959 public:
1960   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1961       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1962   }
1963 
1964   void work(uint worker_id) {
1965     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1966   }
1967 
1968 };
1969 
1970 void ConcurrentMark::cleanup() {
1971   // world is stopped at this checkpoint
1972   assert(SafepointSynchronize::is_at_safepoint(),
1973          "world should be stopped");
1974   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1975 
1976   // If a full collection has happened, we shouldn't do this.
1977   if (has_aborted()) {
1978     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1979     return;
1980   }
1981 
1982   g1h->verify_region_sets_optional();
1983 
1984   if (VerifyDuringGC) {
1985     HandleMark hm;  // handle scope
1986     g1h->prepare_for_verify();
1987     Universe::verify(VerifyOption_G1UsePrevMarking,
1988                      " VerifyDuringGC:(before)");
1989   }
1990   g1h->check_bitmaps("Cleanup Start");
1991 
1992   G1CollectorPolicy* g1p = g1h->g1_policy();
1993   g1p->record_concurrent_mark_cleanup_start();
1994 
1995   double start = os::elapsedTime();
1996 
1997   HeapRegionRemSet::reset_for_cleanup_tasks();
1998 
1999   uint n_workers;
2000 
2001   // Do counting once more with the world stopped for good measure.
2002   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2003 
2004   g1h->set_par_threads();
2005   n_workers = g1h->n_par_threads();
2006   assert(g1h->n_par_threads() == n_workers,
2007          "Should not have been reset");
2008   g1h->workers()->run_task(&g1_par_count_task);
2009   // Done with the parallel phase so reset to 0.
2010   g1h->set_par_threads(0);
2011 
2012   if (VerifyDuringGC) {
2013     // Verify that the counting data accumulated during marking matches
2014     // that calculated by walking the marking bitmap.
2015 
2016     // Bitmaps to hold expected values
2017     BitMap expected_region_bm(_region_bm.size(), true);
2018     BitMap expected_card_bm(_card_bm.size(), true);
2019 
2020     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2021                                                  &_region_bm,
2022                                                  &_card_bm,
2023                                                  &expected_region_bm,
2024                                                  &expected_card_bm);
2025 
2026     g1h->set_par_threads((int)n_workers);
2027     g1h->workers()->run_task(&g1_par_verify_task);
2028     // Done with the parallel phase so reset to 0.
2029     g1h->set_par_threads(0);
2030 
2031     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2032   }
2033 
2034   size_t start_used_bytes = g1h->used();
2035   g1h->set_marking_complete();
2036 
2037   double count_end = os::elapsedTime();
2038   double this_final_counting_time = (count_end - start);
2039   _total_counting_time += this_final_counting_time;
2040 
2041   if (G1PrintRegionLivenessInfo) {
2042     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2043     _g1h->heap_region_iterate(&cl);
2044   }
2045 
2046   // Install newly created mark bitMap as "prev".
2047   swapMarkBitMaps();
2048 
2049   g1h->reset_gc_time_stamp();
2050 
2051   // Note end of marking in all heap regions.
2052   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2053   g1h->set_par_threads((int)n_workers);
2054   g1h->workers()->run_task(&g1_par_note_end_task);
2055   g1h->set_par_threads(0);
2056   g1h->check_gc_time_stamps();
2057 
2058   if (!cleanup_list_is_empty()) {
2059     // The cleanup list is not empty, so we'll have to process it
2060     // concurrently. Notify anyone else that might be wanting free
2061     // regions that there will be more free regions coming soon.
2062     g1h->set_free_regions_coming();
2063   }
2064 
2065   // call below, since it affects the metric by which we sort the heap
2066   // regions.
2067   if (G1ScrubRemSets) {
2068     double rs_scrub_start = os::elapsedTime();
2069     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2070     g1h->set_par_threads((int)n_workers);
2071     g1h->workers()->run_task(&g1_par_scrub_rs_task);
2072     g1h->set_par_threads(0);
2073 
2074     double rs_scrub_end = os::elapsedTime();
2075     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2076     _total_rs_scrub_time += this_rs_scrub_time;
2077   }
2078 
2079   // this will also free any regions totally full of garbage objects,
2080   // and sort the regions.
2081   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2082 
2083   // Statistics.
2084   double end = os::elapsedTime();
2085   _cleanup_times.add((end - start) * 1000.0);
2086 
2087   if (G1Log::fine()) {
2088     g1h->g1_policy()->print_heap_transition(start_used_bytes);
2089   }
2090 
2091   // Clean up will have freed any regions completely full of garbage.
2092   // Update the soft reference policy with the new heap occupancy.
2093   Universe::update_heap_info_at_gc();
2094 
2095   if (VerifyDuringGC) {
2096     HandleMark hm;  // handle scope
2097     g1h->prepare_for_verify();
2098     Universe::verify(VerifyOption_G1UsePrevMarking,
2099                      " VerifyDuringGC:(after)");
2100   }
2101 
2102   g1h->check_bitmaps("Cleanup End");
2103 
2104   g1h->verify_region_sets_optional();
2105 
2106   // We need to make this be a "collection" so any collection pause that
2107   // races with it goes around and waits for completeCleanup to finish.
2108   g1h->increment_total_collections();
2109 
2110   // Clean out dead classes and update Metaspace sizes.
2111   if (ClassUnloadingWithConcurrentMark) {
2112     ClassLoaderDataGraph::purge();
2113   }
2114   MetaspaceGC::compute_new_size();
2115 
2116   // We reclaimed old regions so we should calculate the sizes to make
2117   // sure we update the old gen/space data.
2118   g1h->g1mm()->update_sizes();
2119   g1h->allocation_context_stats().update_after_mark();
2120 
2121   g1h->trace_heap_after_concurrent_cycle();
2122 }
2123 
2124 void ConcurrentMark::completeCleanup() {
2125   if (has_aborted()) return;
2126 
2127   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2128 
2129   _cleanup_list.verify_optional();
2130   FreeRegionList tmp_free_list("Tmp Free List");
2131 
2132   if (G1ConcRegionFreeingVerbose) {
2133     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2134                            "cleanup list has %u entries",
2135                            _cleanup_list.length());
2136   }
2137 
2138   // No one else should be accessing the _cleanup_list at this point,
2139   // so it is not necessary to take any locks
2140   while (!_cleanup_list.is_empty()) {
2141     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2142     assert(hr != NULL, "Got NULL from a non-empty list");
2143     hr->par_clear();
2144     tmp_free_list.add_ordered(hr);
2145 
2146     // Instead of adding one region at a time to the secondary_free_list,
2147     // we accumulate them in the local list and move them a few at a
2148     // time. This also cuts down on the number of notify_all() calls
2149     // we do during this process. We'll also append the local list when
2150     // _cleanup_list is empty (which means we just removed the last
2151     // region from the _cleanup_list).
2152     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2153         _cleanup_list.is_empty()) {
2154       if (G1ConcRegionFreeingVerbose) {
2155         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2156                                "appending %u entries to the secondary_free_list, "
2157                                "cleanup list still has %u entries",
2158                                tmp_free_list.length(),
2159                                _cleanup_list.length());
2160       }
2161 
2162       {
2163         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2164         g1h->secondary_free_list_add(&tmp_free_list);
2165         SecondaryFreeList_lock->notify_all();
2166       }
2167 #ifndef PRODUCT
2168       if (G1StressConcRegionFreeing) {
2169         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2170           os::sleep(Thread::current(), (jlong) 1, false);
2171         }
2172       }
2173 #endif
2174     }
2175   }
2176   assert(tmp_free_list.is_empty(), "post-condition");
2177 }
2178 
2179 // Supporting Object and Oop closures for reference discovery
2180 // and processing in during marking
2181 
2182 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2183   HeapWord* addr = (HeapWord*)obj;
2184   return addr != NULL &&
2185          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2186 }
2187 
2188 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2189 // Uses the CMTask associated with a worker thread (for serial reference
2190 // processing the CMTask for worker 0 is used) to preserve (mark) and
2191 // trace referent objects.
2192 //
2193 // Using the CMTask and embedded local queues avoids having the worker
2194 // threads operating on the global mark stack. This reduces the risk
2195 // of overflowing the stack - which we would rather avoid at this late
2196 // state. Also using the tasks' local queues removes the potential
2197 // of the workers interfering with each other that could occur if
2198 // operating on the global stack.
2199 
2200 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2201   ConcurrentMark* _cm;
2202   CMTask*         _task;
2203   int             _ref_counter_limit;
2204   int             _ref_counter;
2205   bool            _is_serial;
2206  public:
2207   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2208     _cm(cm), _task(task), _is_serial(is_serial),
2209     _ref_counter_limit(G1RefProcDrainInterval) {
2210     assert(_ref_counter_limit > 0, "sanity");
2211     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2212     _ref_counter = _ref_counter_limit;
2213   }
2214 
2215   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2216   virtual void do_oop(      oop* p) { do_oop_work(p); }
2217 
2218   template <class T> void do_oop_work(T* p) {
2219     if (!_cm->has_overflown()) {
2220       oop obj = oopDesc::load_decode_heap_oop(p);
2221       if (_cm->verbose_high()) {
2222         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2223                                "*"PTR_FORMAT" = "PTR_FORMAT,
2224                                _task->worker_id(), p2i(p), p2i((void*) obj));
2225       }
2226 
2227       _task->deal_with_reference(obj);
2228       _ref_counter--;
2229 
2230       if (_ref_counter == 0) {
2231         // We have dealt with _ref_counter_limit references, pushing them
2232         // and objects reachable from them on to the local stack (and
2233         // possibly the global stack). Call CMTask::do_marking_step() to
2234         // process these entries.
2235         //
2236         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2237         // there's nothing more to do (i.e. we're done with the entries that
2238         // were pushed as a result of the CMTask::deal_with_reference() calls
2239         // above) or we overflow.
2240         //
2241         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2242         // flag while there may still be some work to do. (See the comment at
2243         // the beginning of CMTask::do_marking_step() for those conditions -
2244         // one of which is reaching the specified time target.) It is only
2245         // when CMTask::do_marking_step() returns without setting the
2246         // has_aborted() flag that the marking step has completed.
2247         do {
2248           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2249           _task->do_marking_step(mark_step_duration_ms,
2250                                  false      /* do_termination */,
2251                                  _is_serial);
2252         } while (_task->has_aborted() && !_cm->has_overflown());
2253         _ref_counter = _ref_counter_limit;
2254       }
2255     } else {
2256       if (_cm->verbose_high()) {
2257          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2258       }
2259     }
2260   }
2261 };
2262 
2263 // 'Drain' oop closure used by both serial and parallel reference processing.
2264 // Uses the CMTask associated with a given worker thread (for serial
2265 // reference processing the CMtask for worker 0 is used). Calls the
2266 // do_marking_step routine, with an unbelievably large timeout value,
2267 // to drain the marking data structures of the remaining entries
2268 // added by the 'keep alive' oop closure above.
2269 
2270 class G1CMDrainMarkingStackClosure: public VoidClosure {
2271   ConcurrentMark* _cm;
2272   CMTask*         _task;
2273   bool            _is_serial;
2274  public:
2275   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2276     _cm(cm), _task(task), _is_serial(is_serial) {
2277     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2278   }
2279 
2280   void do_void() {
2281     do {
2282       if (_cm->verbose_high()) {
2283         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2284                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2285       }
2286 
2287       // We call CMTask::do_marking_step() to completely drain the local
2288       // and global marking stacks of entries pushed by the 'keep alive'
2289       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2290       //
2291       // CMTask::do_marking_step() is called in a loop, which we'll exit
2292       // if there's nothing more to do (i.e. we've completely drained the
2293       // entries that were pushed as a a result of applying the 'keep alive'
2294       // closure to the entries on the discovered ref lists) or we overflow
2295       // the global marking stack.
2296       //
2297       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2298       // flag while there may still be some work to do. (See the comment at
2299       // the beginning of CMTask::do_marking_step() for those conditions -
2300       // one of which is reaching the specified time target.) It is only
2301       // when CMTask::do_marking_step() returns without setting the
2302       // has_aborted() flag that the marking step has completed.
2303 
2304       _task->do_marking_step(1000000000.0 /* something very large */,
2305                              true         /* do_termination */,
2306                              _is_serial);
2307     } while (_task->has_aborted() && !_cm->has_overflown());
2308   }
2309 };
2310 
2311 // Implementation of AbstractRefProcTaskExecutor for parallel
2312 // reference processing at the end of G1 concurrent marking
2313 
2314 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2315 private:
2316   G1CollectedHeap* _g1h;
2317   ConcurrentMark*  _cm;
2318   WorkGang*        _workers;
2319   int              _active_workers;
2320 
2321 public:
2322   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2323                         ConcurrentMark* cm,
2324                         WorkGang* workers,
2325                         int n_workers) :
2326     _g1h(g1h), _cm(cm),
2327     _workers(workers), _active_workers(n_workers) { }
2328 
2329   // Executes the given task using concurrent marking worker threads.
2330   virtual void execute(ProcessTask& task);
2331   virtual void execute(EnqueueTask& task);
2332 };
2333 
2334 class G1CMRefProcTaskProxy: public AbstractGangTask {
2335   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2336   ProcessTask&     _proc_task;
2337   G1CollectedHeap* _g1h;
2338   ConcurrentMark*  _cm;
2339 
2340 public:
2341   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2342                      G1CollectedHeap* g1h,
2343                      ConcurrentMark* cm) :
2344     AbstractGangTask("Process reference objects in parallel"),
2345     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2346     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2347     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2348   }
2349 
2350   virtual void work(uint worker_id) {
2351     ResourceMark rm;
2352     HandleMark hm;
2353     CMTask* task = _cm->task(worker_id);
2354     G1CMIsAliveClosure g1_is_alive(_g1h);
2355     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2356     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2357 
2358     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2359   }
2360 };
2361 
2362 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2363   assert(_workers != NULL, "Need parallel worker threads.");
2364   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2365 
2366   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2367 
2368   // We need to reset the concurrency level before each
2369   // proxy task execution, so that the termination protocol
2370   // and overflow handling in CMTask::do_marking_step() knows
2371   // how many workers to wait for.
2372   _cm->set_concurrency(_active_workers);
2373   _g1h->set_par_threads(_active_workers);
2374   _workers->run_task(&proc_task_proxy);
2375   _g1h->set_par_threads(0);
2376 }
2377 
2378 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2379   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2380   EnqueueTask& _enq_task;
2381 
2382 public:
2383   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2384     AbstractGangTask("Enqueue reference objects in parallel"),
2385     _enq_task(enq_task) { }
2386 
2387   virtual void work(uint worker_id) {
2388     _enq_task.work(worker_id);
2389   }
2390 };
2391 
2392 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2393   assert(_workers != NULL, "Need parallel worker threads.");
2394   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2395 
2396   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2397 
2398   // Not strictly necessary but...
2399   //
2400   // We need to reset the concurrency level before each
2401   // proxy task execution, so that the termination protocol
2402   // and overflow handling in CMTask::do_marking_step() knows
2403   // how many workers to wait for.
2404   _cm->set_concurrency(_active_workers);
2405   _g1h->set_par_threads(_active_workers);
2406   _workers->run_task(&enq_task_proxy);
2407   _g1h->set_par_threads(0);
2408 }
2409 
2410 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2411   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2412 }
2413 
2414 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2415   if (has_overflown()) {
2416     // Skip processing the discovered references if we have
2417     // overflown the global marking stack. Reference objects
2418     // only get discovered once so it is OK to not
2419     // de-populate the discovered reference lists. We could have,
2420     // but the only benefit would be that, when marking restarts,
2421     // less reference objects are discovered.
2422     return;
2423   }
2424 
2425   ResourceMark rm;
2426   HandleMark   hm;
2427 
2428   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2429 
2430   // Is alive closure.
2431   G1CMIsAliveClosure g1_is_alive(g1h);
2432 
2433   // Inner scope to exclude the cleaning of the string and symbol
2434   // tables from the displayed time.
2435   {
2436     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2437 
2438     ReferenceProcessor* rp = g1h->ref_processor_cm();
2439 
2440     // See the comment in G1CollectedHeap::ref_processing_init()
2441     // about how reference processing currently works in G1.
2442 
2443     // Set the soft reference policy
2444     rp->setup_policy(clear_all_soft_refs);
2445     assert(_markStack.isEmpty(), "mark stack should be empty");
2446 
2447     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2448     // in serial reference processing. Note these closures are also
2449     // used for serially processing (by the the current thread) the
2450     // JNI references during parallel reference processing.
2451     //
2452     // These closures do not need to synchronize with the worker
2453     // threads involved in parallel reference processing as these
2454     // instances are executed serially by the current thread (e.g.
2455     // reference processing is not multi-threaded and is thus
2456     // performed by the current thread instead of a gang worker).
2457     //
2458     // The gang tasks involved in parallel reference processing create
2459     // their own instances of these closures, which do their own
2460     // synchronization among themselves.
2461     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2462     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2463 
2464     // We need at least one active thread. If reference processing
2465     // is not multi-threaded we use the current (VMThread) thread,
2466     // otherwise we use the work gang from the G1CollectedHeap and
2467     // we utilize all the worker threads we can.
2468     bool processing_is_mt = rp->processing_is_mt();
2469     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2470     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2471 
2472     // Parallel processing task executor.
2473     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2474                                               g1h->workers(), active_workers);
2475     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2476 
2477     // Set the concurrency level. The phase was already set prior to
2478     // executing the remark task.
2479     set_concurrency(active_workers);
2480 
2481     // Set the degree of MT processing here.  If the discovery was done MT,
2482     // the number of threads involved during discovery could differ from
2483     // the number of active workers.  This is OK as long as the discovered
2484     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2485     rp->set_active_mt_degree(active_workers);
2486 
2487     // Process the weak references.
2488     const ReferenceProcessorStats& stats =
2489         rp->process_discovered_references(&g1_is_alive,
2490                                           &g1_keep_alive,
2491                                           &g1_drain_mark_stack,
2492                                           executor,
2493                                           g1h->gc_timer_cm(),
2494                                           concurrent_gc_id());
2495     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2496 
2497     // The do_oop work routines of the keep_alive and drain_marking_stack
2498     // oop closures will set the has_overflown flag if we overflow the
2499     // global marking stack.
2500 
2501     assert(_markStack.overflow() || _markStack.isEmpty(),
2502             "mark stack should be empty (unless it overflowed)");
2503 
2504     if (_markStack.overflow()) {
2505       // This should have been done already when we tried to push an
2506       // entry on to the global mark stack. But let's do it again.
2507       set_has_overflown();
2508     }
2509 
2510     assert(rp->num_q() == active_workers, "why not");
2511 
2512     rp->enqueue_discovered_references(executor);
2513 
2514     rp->verify_no_references_recorded();
2515     assert(!rp->discovery_enabled(), "Post condition");
2516   }
2517 
2518   if (has_overflown()) {
2519     // We can not trust g1_is_alive if the marking stack overflowed
2520     return;
2521   }
2522 
2523   assert(_markStack.isEmpty(), "Marking should have completed");
2524 
2525   // Unload Klasses, String, Symbols, Code Cache, etc.
2526   {
2527     G1CMTraceTime trace("Unloading", G1Log::finer());
2528 
2529     if (ClassUnloadingWithConcurrentMark) {
2530       bool purged_classes;
2531 
2532       {
2533         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2534         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2535       }
2536 
2537       {
2538         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2539         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2540       }
2541     }
2542 
2543     if (G1StringDedup::is_enabled()) {
2544       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2545       G1StringDedup::unlink(&g1_is_alive);
2546     }
2547   }
2548 }
2549 
2550 void ConcurrentMark::swapMarkBitMaps() {
2551   CMBitMapRO* temp = _prevMarkBitMap;
2552   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2553   _nextMarkBitMap  = (CMBitMap*)  temp;
2554 }
2555 
2556 class CMObjectClosure;
2557 
2558 // Closure for iterating over objects, currently only used for
2559 // processing SATB buffers.
2560 class CMObjectClosure : public ObjectClosure {
2561 private:
2562   CMTask* _task;
2563 
2564 public:
2565   void do_object(oop obj) {
2566     _task->deal_with_reference(obj);
2567   }
2568 
2569   CMObjectClosure(CMTask* task) : _task(task) { }
2570 };
2571 
2572 class G1RemarkThreadsClosure : public ThreadClosure {
2573   CMObjectClosure _cm_obj;
2574   G1CMOopClosure _cm_cl;
2575   MarkingCodeBlobClosure _code_cl;
2576   int _thread_parity;
2577 
2578  public:
2579   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2580     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2581     _thread_parity(Threads::thread_claim_parity()) {}
2582 
2583   void do_thread(Thread* thread) {
2584     if (thread->is_Java_thread()) {
2585       if (thread->claim_oops_do(true, _thread_parity)) {
2586         JavaThread* jt = (JavaThread*)thread;
2587 
2588         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2589         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2590         // * Alive if on the stack of an executing method
2591         // * Weakly reachable otherwise
2592         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2593         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2594         jt->nmethods_do(&_code_cl);
2595 
2596         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2597       }
2598     } else if (thread->is_VM_thread()) {
2599       if (thread->claim_oops_do(true, _thread_parity)) {
2600         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2601       }
2602     }
2603   }
2604 };
2605 
2606 class CMRemarkTask: public AbstractGangTask {
2607 private:
2608   ConcurrentMark* _cm;
2609 public:
2610   void work(uint worker_id) {
2611     // Since all available tasks are actually started, we should
2612     // only proceed if we're supposed to be active.
2613     if (worker_id < _cm->active_tasks()) {
2614       CMTask* task = _cm->task(worker_id);
2615       task->record_start_time();
2616       {
2617         ResourceMark rm;
2618         HandleMark hm;
2619 
2620         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2621         Threads::threads_do(&threads_f);
2622       }
2623 
2624       do {
2625         task->do_marking_step(1000000000.0 /* something very large */,
2626                               true         /* do_termination       */,
2627                               false        /* is_serial            */);
2628       } while (task->has_aborted() && !_cm->has_overflown());
2629       // If we overflow, then we do not want to restart. We instead
2630       // want to abort remark and do concurrent marking again.
2631       task->record_end_time();
2632     }
2633   }
2634 
2635   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2636     AbstractGangTask("Par Remark"), _cm(cm) {
2637     _cm->terminator()->reset_for_reuse(active_workers);
2638   }
2639 };
2640 
2641 void ConcurrentMark::checkpointRootsFinalWork() {
2642   ResourceMark rm;
2643   HandleMark   hm;
2644   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2645 
2646   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2647 
2648   g1h->ensure_parsability(false);
2649 
2650   StrongRootsScope srs;
2651   // this is remark, so we'll use up all active threads
2652   uint active_workers = g1h->workers()->active_workers();
2653   if (active_workers == 0) {
2654     assert(active_workers > 0, "Should have been set earlier");
2655     active_workers = (uint) ParallelGCThreads;
2656     g1h->workers()->set_active_workers(active_workers);
2657   }
2658   set_concurrency_and_phase(active_workers, false /* concurrent */);
2659   // Leave _parallel_marking_threads at it's
2660   // value originally calculated in the ConcurrentMark
2661   // constructor and pass values of the active workers
2662   // through the gang in the task.
2663 
2664   CMRemarkTask remarkTask(this, active_workers);
2665   // We will start all available threads, even if we decide that the
2666   // active_workers will be fewer. The extra ones will just bail out
2667   // immediately.
2668   g1h->set_par_threads(active_workers);
2669   g1h->workers()->run_task(&remarkTask);
2670   g1h->set_par_threads(0);
2671 
2672   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2673   guarantee(has_overflown() ||
2674             satb_mq_set.completed_buffers_num() == 0,
2675             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2676                     BOOL_TO_STR(has_overflown()),
2677                     satb_mq_set.completed_buffers_num()));
2678 
2679   print_stats();
2680 }
2681 
2682 #ifndef PRODUCT
2683 
2684 class PrintReachableOopClosure: public OopClosure {
2685 private:
2686   G1CollectedHeap* _g1h;
2687   outputStream*    _out;
2688   VerifyOption     _vo;
2689   bool             _all;
2690 
2691 public:
2692   PrintReachableOopClosure(outputStream* out,
2693                            VerifyOption  vo,
2694                            bool          all) :
2695     _g1h(G1CollectedHeap::heap()),
2696     _out(out), _vo(vo), _all(all) { }
2697 
2698   void do_oop(narrowOop* p) { do_oop_work(p); }
2699   void do_oop(      oop* p) { do_oop_work(p); }
2700 
2701   template <class T> void do_oop_work(T* p) {
2702     oop         obj = oopDesc::load_decode_heap_oop(p);
2703     const char* str = NULL;
2704     const char* str2 = "";
2705 
2706     if (obj == NULL) {
2707       str = "";
2708     } else if (!_g1h->is_in_g1_reserved(obj)) {
2709       str = " O";
2710     } else {
2711       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2712       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2713       bool marked = _g1h->is_marked(obj, _vo);
2714 
2715       if (over_tams) {
2716         str = " >";
2717         if (marked) {
2718           str2 = " AND MARKED";
2719         }
2720       } else if (marked) {
2721         str = " M";
2722       } else {
2723         str = " NOT";
2724       }
2725     }
2726 
2727     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2728                    p2i(p), p2i((void*) obj), str, str2);
2729   }
2730 };
2731 
2732 class PrintReachableObjectClosure : public ObjectClosure {
2733 private:
2734   G1CollectedHeap* _g1h;
2735   outputStream*    _out;
2736   VerifyOption     _vo;
2737   bool             _all;
2738   HeapRegion*      _hr;
2739 
2740 public:
2741   PrintReachableObjectClosure(outputStream* out,
2742                               VerifyOption  vo,
2743                               bool          all,
2744                               HeapRegion*   hr) :
2745     _g1h(G1CollectedHeap::heap()),
2746     _out(out), _vo(vo), _all(all), _hr(hr) { }
2747 
2748   void do_object(oop o) {
2749     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2750     bool marked = _g1h->is_marked(o, _vo);
2751     bool print_it = _all || over_tams || marked;
2752 
2753     if (print_it) {
2754       _out->print_cr(" "PTR_FORMAT"%s",
2755                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2756       PrintReachableOopClosure oopCl(_out, _vo, _all);
2757       o->oop_iterate_no_header(&oopCl);
2758     }
2759   }
2760 };
2761 
2762 class PrintReachableRegionClosure : public HeapRegionClosure {
2763 private:
2764   G1CollectedHeap* _g1h;
2765   outputStream*    _out;
2766   VerifyOption     _vo;
2767   bool             _all;
2768 
2769 public:
2770   bool doHeapRegion(HeapRegion* hr) {
2771     HeapWord* b = hr->bottom();
2772     HeapWord* e = hr->end();
2773     HeapWord* t = hr->top();
2774     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2775     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2776                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2777     _out->cr();
2778 
2779     HeapWord* from = b;
2780     HeapWord* to   = t;
2781 
2782     if (to > from) {
2783       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2784       _out->cr();
2785       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2786       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2787       _out->cr();
2788     }
2789 
2790     return false;
2791   }
2792 
2793   PrintReachableRegionClosure(outputStream* out,
2794                               VerifyOption  vo,
2795                               bool          all) :
2796     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2797 };
2798 
2799 void ConcurrentMark::print_reachable(const char* str,
2800                                      VerifyOption vo,
2801                                      bool all) {
2802   gclog_or_tty->cr();
2803   gclog_or_tty->print_cr("== Doing heap dump... ");
2804 
2805   if (G1PrintReachableBaseFile == NULL) {
2806     gclog_or_tty->print_cr("  #### error: no base file defined");
2807     return;
2808   }
2809 
2810   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2811       (JVM_MAXPATHLEN - 1)) {
2812     gclog_or_tty->print_cr("  #### error: file name too long");
2813     return;
2814   }
2815 
2816   char file_name[JVM_MAXPATHLEN];
2817   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2818   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2819 
2820   fileStream fout(file_name);
2821   if (!fout.is_open()) {
2822     gclog_or_tty->print_cr("  #### error: could not open file");
2823     return;
2824   }
2825 
2826   outputStream* out = &fout;
2827   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2828   out->cr();
2829 
2830   out->print_cr("--- ITERATING OVER REGIONS");
2831   out->cr();
2832   PrintReachableRegionClosure rcl(out, vo, all);
2833   _g1h->heap_region_iterate(&rcl);
2834   out->cr();
2835 
2836   gclog_or_tty->print_cr("  done");
2837   gclog_or_tty->flush();
2838 }
2839 
2840 #endif // PRODUCT
2841 
2842 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2843   // Note we are overriding the read-only view of the prev map here, via
2844   // the cast.
2845   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2846 }
2847 
2848 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2849   _nextMarkBitMap->clearRange(mr);
2850 }
2851 
2852 HeapRegion*
2853 ConcurrentMark::claim_region(uint worker_id) {
2854   // "checkpoint" the finger
2855   HeapWord* finger = _finger;
2856 
2857   // _heap_end will not change underneath our feet; it only changes at
2858   // yield points.
2859   while (finger < _heap_end) {
2860     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2861 
2862     // Note on how this code handles humongous regions. In the
2863     // normal case the finger will reach the start of a "starts
2864     // humongous" (SH) region. Its end will either be the end of the
2865     // last "continues humongous" (CH) region in the sequence, or the
2866     // standard end of the SH region (if the SH is the only region in
2867     // the sequence). That way claim_region() will skip over the CH
2868     // regions. However, there is a subtle race between a CM thread
2869     // executing this method and a mutator thread doing a humongous
2870     // object allocation. The two are not mutually exclusive as the CM
2871     // thread does not need to hold the Heap_lock when it gets
2872     // here. So there is a chance that claim_region() will come across
2873     // a free region that's in the progress of becoming a SH or a CH
2874     // region. In the former case, it will either
2875     //   a) Miss the update to the region's end, in which case it will
2876     //      visit every subsequent CH region, will find their bitmaps
2877     //      empty, and do nothing, or
2878     //   b) Will observe the update of the region's end (in which case
2879     //      it will skip the subsequent CH regions).
2880     // If it comes across a region that suddenly becomes CH, the
2881     // scenario will be similar to b). So, the race between
2882     // claim_region() and a humongous object allocation might force us
2883     // to do a bit of unnecessary work (due to some unnecessary bitmap
2884     // iterations) but it should not introduce and correctness issues.
2885     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2886 
2887     // Above heap_region_containing_raw may return NULL as we always scan claim
2888     // until the end of the heap. In this case, just jump to the next region.
2889     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2890 
2891     // Is the gap between reading the finger and doing the CAS too long?
2892     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2893     if (res == finger && curr_region != NULL) {
2894       // we succeeded
2895       HeapWord*   bottom        = curr_region->bottom();
2896       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2897 
2898       if (verbose_low()) {
2899         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2900                                "["PTR_FORMAT", "PTR_FORMAT"), "
2901                                "limit = "PTR_FORMAT,
2902                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2903       }
2904 
2905       // notice that _finger == end cannot be guaranteed here since,
2906       // someone else might have moved the finger even further
2907       assert(_finger >= end, "the finger should have moved forward");
2908 
2909       if (verbose_low()) {
2910         gclog_or_tty->print_cr("[%u] we were successful with region = "
2911                                PTR_FORMAT, worker_id, p2i(curr_region));
2912       }
2913 
2914       if (limit > bottom) {
2915         if (verbose_low()) {
2916           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2917                                  "returning it ", worker_id, p2i(curr_region));
2918         }
2919         return curr_region;
2920       } else {
2921         assert(limit == bottom,
2922                "the region limit should be at bottom");
2923         if (verbose_low()) {
2924           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2925                                  "returning NULL", worker_id, p2i(curr_region));
2926         }
2927         // we return NULL and the caller should try calling
2928         // claim_region() again.
2929         return NULL;
2930       }
2931     } else {
2932       assert(_finger > finger, "the finger should have moved forward");
2933       if (verbose_low()) {
2934         if (curr_region == NULL) {
2935           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2936                                  "global finger = "PTR_FORMAT", "
2937                                  "our finger = "PTR_FORMAT,
2938                                  worker_id, p2i(_finger), p2i(finger));
2939         } else {
2940           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2941                                  "global finger = "PTR_FORMAT", "
2942                                  "our finger = "PTR_FORMAT,
2943                                  worker_id, p2i(_finger), p2i(finger));
2944         }
2945       }
2946 
2947       // read it again
2948       finger = _finger;
2949     }
2950   }
2951 
2952   return NULL;
2953 }
2954 
2955 #ifndef PRODUCT
2956 enum VerifyNoCSetOopsPhase {
2957   VerifyNoCSetOopsStack,
2958   VerifyNoCSetOopsQueues,
2959   VerifyNoCSetOopsSATBCompleted,
2960   VerifyNoCSetOopsSATBThread
2961 };
2962 
2963 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2964 private:
2965   G1CollectedHeap* _g1h;
2966   VerifyNoCSetOopsPhase _phase;
2967   int _info;
2968 
2969   const char* phase_str() {
2970     switch (_phase) {
2971     case VerifyNoCSetOopsStack:         return "Stack";
2972     case VerifyNoCSetOopsQueues:        return "Queue";
2973     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2974     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2975     default:                            ShouldNotReachHere();
2976     }
2977     return NULL;
2978   }
2979 
2980   void do_object_work(oop obj) {
2981     guarantee(!_g1h->obj_in_cs(obj),
2982               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2983                       p2i((void*) obj), phase_str(), _info));
2984   }
2985 
2986 public:
2987   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2988 
2989   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2990     _phase = phase;
2991     _info = info;
2992   }
2993 
2994   virtual void do_oop(oop* p) {
2995     oop obj = oopDesc::load_decode_heap_oop(p);
2996     do_object_work(obj);
2997   }
2998 
2999   virtual void do_oop(narrowOop* p) {
3000     // We should not come across narrow oops while scanning marking
3001     // stacks and SATB buffers.
3002     ShouldNotReachHere();
3003   }
3004 
3005   virtual void do_object(oop obj) {
3006     do_object_work(obj);
3007   }
3008 };
3009 
3010 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3011                                          bool verify_enqueued_buffers,
3012                                          bool verify_thread_buffers,
3013                                          bool verify_fingers) {
3014   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3015   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3016     return;
3017   }
3018 
3019   VerifyNoCSetOopsClosure cl;
3020 
3021   if (verify_stacks) {
3022     // Verify entries on the global mark stack
3023     cl.set_phase(VerifyNoCSetOopsStack);
3024     _markStack.oops_do(&cl);
3025 
3026     // Verify entries on the task queues
3027     for (uint i = 0; i < _max_worker_id; i += 1) {
3028       cl.set_phase(VerifyNoCSetOopsQueues, i);
3029       CMTaskQueue* queue = _task_queues->queue(i);
3030       queue->oops_do(&cl);
3031     }
3032   }
3033 
3034   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3035 
3036   // Verify entries on the enqueued SATB buffers
3037   if (verify_enqueued_buffers) {
3038     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3039     satb_qs.iterate_completed_buffers_read_only(&cl);
3040   }
3041 
3042   // Verify entries on the per-thread SATB buffers
3043   if (verify_thread_buffers) {
3044     cl.set_phase(VerifyNoCSetOopsSATBThread);
3045     satb_qs.iterate_thread_buffers_read_only(&cl);
3046   }
3047 
3048   if (verify_fingers) {
3049     // Verify the global finger
3050     HeapWord* global_finger = finger();
3051     if (global_finger != NULL && global_finger < _heap_end) {
3052       // The global finger always points to a heap region boundary. We
3053       // use heap_region_containing_raw() to get the containing region
3054       // given that the global finger could be pointing to a free region
3055       // which subsequently becomes continues humongous. If that
3056       // happens, heap_region_containing() will return the bottom of the
3057       // corresponding starts humongous region and the check below will
3058       // not hold any more.
3059       // Since we always iterate over all regions, we might get a NULL HeapRegion
3060       // here.
3061       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3062       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3063                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3064                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3065     }
3066 
3067     // Verify the task fingers
3068     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3069     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3070       CMTask* task = _tasks[i];
3071       HeapWord* task_finger = task->finger();
3072       if (task_finger != NULL && task_finger < _heap_end) {
3073         // See above note on the global finger verification.
3074         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3075         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3076                   !task_hr->in_collection_set(),
3077                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3078                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3079       }
3080     }
3081   }
3082 }
3083 #endif // PRODUCT
3084 
3085 // Aggregate the counting data that was constructed concurrently
3086 // with marking.
3087 class AggregateCountDataHRClosure: public HeapRegionClosure {
3088   G1CollectedHeap* _g1h;
3089   ConcurrentMark* _cm;
3090   CardTableModRefBS* _ct_bs;
3091   BitMap* _cm_card_bm;
3092   uint _max_worker_id;
3093 
3094  public:
3095   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3096                               BitMap* cm_card_bm,
3097                               uint max_worker_id) :
3098     _g1h(g1h), _cm(g1h->concurrent_mark()),
3099     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
3100     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3101 
3102   bool doHeapRegion(HeapRegion* hr) {
3103     if (hr->is_continues_humongous()) {
3104       // We will ignore these here and process them when their
3105       // associated "starts humongous" region is processed.
3106       // Note that we cannot rely on their associated
3107       // "starts humongous" region to have their bit set to 1
3108       // since, due to the region chunking in the parallel region
3109       // iteration, a "continues humongous" region might be visited
3110       // before its associated "starts humongous".
3111       return false;
3112     }
3113 
3114     HeapWord* start = hr->bottom();
3115     HeapWord* limit = hr->next_top_at_mark_start();
3116     HeapWord* end = hr->end();
3117 
3118     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3119            err_msg("Preconditions not met - "
3120                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3121                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3122                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3123 
3124     assert(hr->next_marked_bytes() == 0, "Precondition");
3125 
3126     if (start == limit) {
3127       // NTAMS of this region has not been set so nothing to do.
3128       return false;
3129     }
3130 
3131     // 'start' should be in the heap.
3132     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3133     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3134     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3135 
3136     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3137     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3138     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3139 
3140     // If ntams is not card aligned then we bump card bitmap index
3141     // for limit so that we get the all the cards spanned by
3142     // the object ending at ntams.
3143     // Note: if this is the last region in the heap then ntams
3144     // could be actually just beyond the end of the the heap;
3145     // limit_idx will then  correspond to a (non-existent) card
3146     // that is also outside the heap.
3147     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3148       limit_idx += 1;
3149     }
3150 
3151     assert(limit_idx <= end_idx, "or else use atomics");
3152 
3153     // Aggregate the "stripe" in the count data associated with hr.
3154     uint hrm_index = hr->hrm_index();
3155     size_t marked_bytes = 0;
3156 
3157     for (uint i = 0; i < _max_worker_id; i += 1) {
3158       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3159       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3160 
3161       // Fetch the marked_bytes in this region for task i and
3162       // add it to the running total for this region.
3163       marked_bytes += marked_bytes_array[hrm_index];
3164 
3165       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3166       // into the global card bitmap.
3167       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3168 
3169       while (scan_idx < limit_idx) {
3170         assert(task_card_bm->at(scan_idx) == true, "should be");
3171         _cm_card_bm->set_bit(scan_idx);
3172         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3173 
3174         // BitMap::get_next_one_offset() can handle the case when
3175         // its left_offset parameter is greater than its right_offset
3176         // parameter. It does, however, have an early exit if
3177         // left_offset == right_offset. So let's limit the value
3178         // passed in for left offset here.
3179         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3180         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3181       }
3182     }
3183 
3184     // Update the marked bytes for this region.
3185     hr->add_to_marked_bytes(marked_bytes);
3186 
3187     // Next heap region
3188     return false;
3189   }
3190 };
3191 
3192 class G1AggregateCountDataTask: public AbstractGangTask {
3193 protected:
3194   G1CollectedHeap* _g1h;
3195   ConcurrentMark* _cm;
3196   BitMap* _cm_card_bm;
3197   uint _max_worker_id;
3198   int _active_workers;
3199   HeapRegionClaimer _hrclaimer;
3200 
3201 public:
3202   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3203                            ConcurrentMark* cm,
3204                            BitMap* cm_card_bm,
3205                            uint max_worker_id,
3206                            int n_workers) :
3207       AbstractGangTask("Count Aggregation"),
3208       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3209       _max_worker_id(max_worker_id),
3210       _active_workers(n_workers),
3211       _hrclaimer(_active_workers) {
3212   }
3213 
3214   void work(uint worker_id) {
3215     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3216 
3217     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3218   }
3219 };
3220 
3221 
3222 void ConcurrentMark::aggregate_count_data() {
3223   int n_workers = _g1h->workers()->active_workers();
3224 
3225   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3226                                            _max_worker_id, n_workers);
3227 
3228   _g1h->set_par_threads(n_workers);
3229   _g1h->workers()->run_task(&g1_par_agg_task);
3230   _g1h->set_par_threads(0);
3231 }
3232 
3233 // Clear the per-worker arrays used to store the per-region counting data
3234 void ConcurrentMark::clear_all_count_data() {
3235   // Clear the global card bitmap - it will be filled during
3236   // liveness count aggregation (during remark) and the
3237   // final counting task.
3238   _card_bm.clear();
3239 
3240   // Clear the global region bitmap - it will be filled as part
3241   // of the final counting task.
3242   _region_bm.clear();
3243 
3244   uint max_regions = _g1h->max_regions();
3245   assert(_max_worker_id > 0, "uninitialized");
3246 
3247   for (uint i = 0; i < _max_worker_id; i += 1) {
3248     BitMap* task_card_bm = count_card_bitmap_for(i);
3249     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3250 
3251     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3252     assert(marked_bytes_array != NULL, "uninitialized");
3253 
3254     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3255     task_card_bm->clear();
3256   }
3257 }
3258 
3259 void ConcurrentMark::print_stats() {
3260   if (verbose_stats()) {
3261     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3262     for (size_t i = 0; i < _active_tasks; ++i) {
3263       _tasks[i]->print_stats();
3264       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3265     }
3266   }
3267 }
3268 
3269 // abandon current marking iteration due to a Full GC
3270 void ConcurrentMark::abort() {
3271   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3272   // concurrent bitmap clearing.
3273   _nextMarkBitMap->clearAll();
3274 
3275   // Note we cannot clear the previous marking bitmap here
3276   // since VerifyDuringGC verifies the objects marked during
3277   // a full GC against the previous bitmap.
3278 
3279   // Clear the liveness counting data
3280   clear_all_count_data();
3281   // Empty mark stack
3282   reset_marking_state();
3283   for (uint i = 0; i < _max_worker_id; ++i) {
3284     _tasks[i]->clear_region_fields();
3285   }
3286   _first_overflow_barrier_sync.abort();
3287   _second_overflow_barrier_sync.abort();
3288   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3289   if (!gc_id.is_undefined()) {
3290     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3291     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3292     _aborted_gc_id = gc_id;
3293    }
3294   _has_aborted = true;
3295 
3296   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3297   satb_mq_set.abandon_partial_marking();
3298   // This can be called either during or outside marking, we'll read
3299   // the expected_active value from the SATB queue set.
3300   satb_mq_set.set_active_all_threads(
3301                                  false, /* new active value */
3302                                  satb_mq_set.is_active() /* expected_active */);
3303 
3304   _g1h->trace_heap_after_concurrent_cycle();
3305   _g1h->register_concurrent_cycle_end();
3306 }
3307 
3308 const GCId& ConcurrentMark::concurrent_gc_id() {
3309   if (has_aborted()) {
3310     return _aborted_gc_id;
3311   }
3312   return _g1h->gc_tracer_cm()->gc_id();
3313 }
3314 
3315 static void print_ms_time_info(const char* prefix, const char* name,
3316                                NumberSeq& ns) {
3317   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3318                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3319   if (ns.num() > 0) {
3320     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3321                            prefix, ns.sd(), ns.maximum());
3322   }
3323 }
3324 
3325 void ConcurrentMark::print_summary_info() {
3326   gclog_or_tty->print_cr(" Concurrent marking:");
3327   print_ms_time_info("  ", "init marks", _init_times);
3328   print_ms_time_info("  ", "remarks", _remark_times);
3329   {
3330     print_ms_time_info("     ", "final marks", _remark_mark_times);
3331     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3332 
3333   }
3334   print_ms_time_info("  ", "cleanups", _cleanup_times);
3335   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3336                          _total_counting_time,
3337                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3338                           (double)_cleanup_times.num()
3339                          : 0.0));
3340   if (G1ScrubRemSets) {
3341     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3342                            _total_rs_scrub_time,
3343                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3344                             (double)_cleanup_times.num()
3345                            : 0.0));
3346   }
3347   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3348                          (_init_times.sum() + _remark_times.sum() +
3349                           _cleanup_times.sum())/1000.0);
3350   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3351                 "(%8.2f s marking).",
3352                 cmThread()->vtime_accum(),
3353                 cmThread()->vtime_mark_accum());
3354 }
3355 
3356 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3357   _parallel_workers->print_worker_threads_on(st);
3358 }
3359 
3360 void ConcurrentMark::print_on_error(outputStream* st) const {
3361   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3362       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3363   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3364   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3365 }
3366 
3367 // We take a break if someone is trying to stop the world.
3368 bool ConcurrentMark::do_yield_check(uint worker_id) {
3369   if (SuspendibleThreadSet::should_yield()) {
3370     if (worker_id == 0) {
3371       _g1h->g1_policy()->record_concurrent_pause();
3372     }
3373     SuspendibleThreadSet::yield();
3374     return true;
3375   } else {
3376     return false;
3377   }
3378 }
3379 
3380 #ifndef PRODUCT
3381 // for debugging purposes
3382 void ConcurrentMark::print_finger() {
3383   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3384                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3385   for (uint i = 0; i < _max_worker_id; ++i) {
3386     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3387   }
3388   gclog_or_tty->cr();
3389 }
3390 #endif
3391 
3392 void CMTask::scan_object(oop obj) {
3393   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3394 
3395   if (_cm->verbose_high()) {
3396     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3397                            _worker_id, p2i((void*) obj));
3398   }
3399 
3400   size_t obj_size = obj->size();
3401   _words_scanned += obj_size;
3402 
3403   obj->oop_iterate(_cm_oop_closure);
3404   statsOnly( ++_objs_scanned );
3405   check_limits();
3406 }
3407 
3408 // Closure for iteration over bitmaps
3409 class CMBitMapClosure : public BitMapClosure {
3410 private:
3411   // the bitmap that is being iterated over
3412   CMBitMap*                   _nextMarkBitMap;
3413   ConcurrentMark*             _cm;
3414   CMTask*                     _task;
3415 
3416 public:
3417   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3418     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3419 
3420   bool do_bit(size_t offset) {
3421     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3422     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3423     assert( addr < _cm->finger(), "invariant");
3424 
3425     statsOnly( _task->increase_objs_found_on_bitmap() );
3426     assert(addr >= _task->finger(), "invariant");
3427 
3428     // We move that task's local finger along.
3429     _task->move_finger_to(addr);
3430 
3431     _task->scan_object(oop(addr));
3432     // we only partially drain the local queue and global stack
3433     _task->drain_local_queue(true);
3434     _task->drain_global_stack(true);
3435 
3436     // if the has_aborted flag has been raised, we need to bail out of
3437     // the iteration
3438     return !_task->has_aborted();
3439   }
3440 };
3441 
3442 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3443                                ConcurrentMark* cm,
3444                                CMTask* task)
3445   : _g1h(g1h), _cm(cm), _task(task) {
3446   assert(_ref_processor == NULL, "should be initialized to NULL");
3447 
3448   if (G1UseConcMarkReferenceProcessing) {
3449     _ref_processor = g1h->ref_processor_cm();
3450     assert(_ref_processor != NULL, "should not be NULL");
3451   }
3452 }
3453 
3454 void CMTask::setup_for_region(HeapRegion* hr) {
3455   assert(hr != NULL,
3456         "claim_region() should have filtered out NULL regions");
3457   assert(!hr->is_continues_humongous(),
3458         "claim_region() should have filtered out continues humongous regions");
3459 
3460   if (_cm->verbose_low()) {
3461     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3462                            _worker_id, p2i(hr));
3463   }
3464 
3465   _curr_region  = hr;
3466   _finger       = hr->bottom();
3467   update_region_limit();
3468 }
3469 
3470 void CMTask::update_region_limit() {
3471   HeapRegion* hr            = _curr_region;
3472   HeapWord* bottom          = hr->bottom();
3473   HeapWord* limit           = hr->next_top_at_mark_start();
3474 
3475   if (limit == bottom) {
3476     if (_cm->verbose_low()) {
3477       gclog_or_tty->print_cr("[%u] found an empty region "
3478                              "["PTR_FORMAT", "PTR_FORMAT")",
3479                              _worker_id, p2i(bottom), p2i(limit));
3480     }
3481     // The region was collected underneath our feet.
3482     // We set the finger to bottom to ensure that the bitmap
3483     // iteration that will follow this will not do anything.
3484     // (this is not a condition that holds when we set the region up,
3485     // as the region is not supposed to be empty in the first place)
3486     _finger = bottom;
3487   } else if (limit >= _region_limit) {
3488     assert(limit >= _finger, "peace of mind");
3489   } else {
3490     assert(limit < _region_limit, "only way to get here");
3491     // This can happen under some pretty unusual circumstances.  An
3492     // evacuation pause empties the region underneath our feet (NTAMS
3493     // at bottom). We then do some allocation in the region (NTAMS
3494     // stays at bottom), followed by the region being used as a GC
3495     // alloc region (NTAMS will move to top() and the objects
3496     // originally below it will be grayed). All objects now marked in
3497     // the region are explicitly grayed, if below the global finger,
3498     // and we do not need in fact to scan anything else. So, we simply
3499     // set _finger to be limit to ensure that the bitmap iteration
3500     // doesn't do anything.
3501     _finger = limit;
3502   }
3503 
3504   _region_limit = limit;
3505 }
3506 
3507 void CMTask::giveup_current_region() {
3508   assert(_curr_region != NULL, "invariant");
3509   if (_cm->verbose_low()) {
3510     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3511                            _worker_id, p2i(_curr_region));
3512   }
3513   clear_region_fields();
3514 }
3515 
3516 void CMTask::clear_region_fields() {
3517   // Values for these three fields that indicate that we're not
3518   // holding on to a region.
3519   _curr_region   = NULL;
3520   _finger        = NULL;
3521   _region_limit  = NULL;
3522 }
3523 
3524 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3525   if (cm_oop_closure == NULL) {
3526     assert(_cm_oop_closure != NULL, "invariant");
3527   } else {
3528     assert(_cm_oop_closure == NULL, "invariant");
3529   }
3530   _cm_oop_closure = cm_oop_closure;
3531 }
3532 
3533 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3534   guarantee(nextMarkBitMap != NULL, "invariant");
3535 
3536   if (_cm->verbose_low()) {
3537     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3538   }
3539 
3540   _nextMarkBitMap                = nextMarkBitMap;
3541   clear_region_fields();
3542 
3543   _calls                         = 0;
3544   _elapsed_time_ms               = 0.0;
3545   _termination_time_ms           = 0.0;
3546   _termination_start_time_ms     = 0.0;
3547 
3548 #if _MARKING_STATS_
3549   _aborted                       = 0;
3550   _aborted_overflow              = 0;
3551   _aborted_cm_aborted            = 0;
3552   _aborted_yield                 = 0;
3553   _aborted_timed_out             = 0;
3554   _aborted_satb                  = 0;
3555   _aborted_termination           = 0;
3556   _steal_attempts                = 0;
3557   _steals                        = 0;
3558   _local_pushes                  = 0;
3559   _local_pops                    = 0;
3560   _local_max_size                = 0;
3561   _objs_scanned                  = 0;
3562   _global_pushes                 = 0;
3563   _global_pops                   = 0;
3564   _global_max_size               = 0;
3565   _global_transfers_to           = 0;
3566   _global_transfers_from         = 0;
3567   _regions_claimed               = 0;
3568   _objs_found_on_bitmap          = 0;
3569   _satb_buffers_processed        = 0;
3570 #endif // _MARKING_STATS_
3571 }
3572 
3573 bool CMTask::should_exit_termination() {
3574   regular_clock_call();
3575   // This is called when we are in the termination protocol. We should
3576   // quit if, for some reason, this task wants to abort or the global
3577   // stack is not empty (this means that we can get work from it).
3578   return !_cm->mark_stack_empty() || has_aborted();
3579 }
3580 
3581 void CMTask::reached_limit() {
3582   assert(_words_scanned >= _words_scanned_limit ||
3583          _refs_reached >= _refs_reached_limit ,
3584          "shouldn't have been called otherwise");
3585   regular_clock_call();
3586 }
3587 
3588 void CMTask::regular_clock_call() {
3589   if (has_aborted()) return;
3590 
3591   // First, we need to recalculate the words scanned and refs reached
3592   // limits for the next clock call.
3593   recalculate_limits();
3594 
3595   // During the regular clock call we do the following
3596 
3597   // (1) If an overflow has been flagged, then we abort.
3598   if (_cm->has_overflown()) {
3599     set_has_aborted();
3600     return;
3601   }
3602 
3603   // If we are not concurrent (i.e. we're doing remark) we don't need
3604   // to check anything else. The other steps are only needed during
3605   // the concurrent marking phase.
3606   if (!concurrent()) return;
3607 
3608   // (2) If marking has been aborted for Full GC, then we also abort.
3609   if (_cm->has_aborted()) {
3610     set_has_aborted();
3611     statsOnly( ++_aborted_cm_aborted );
3612     return;
3613   }
3614 
3615   double curr_time_ms = os::elapsedVTime() * 1000.0;
3616 
3617   // (3) If marking stats are enabled, then we update the step history.
3618 #if _MARKING_STATS_
3619   if (_words_scanned >= _words_scanned_limit) {
3620     ++_clock_due_to_scanning;
3621   }
3622   if (_refs_reached >= _refs_reached_limit) {
3623     ++_clock_due_to_marking;
3624   }
3625 
3626   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3627   _interval_start_time_ms = curr_time_ms;
3628   _all_clock_intervals_ms.add(last_interval_ms);
3629 
3630   if (_cm->verbose_medium()) {
3631       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3632                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3633                         _worker_id, last_interval_ms,
3634                         _words_scanned,
3635                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3636                         _refs_reached,
3637                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3638   }
3639 #endif // _MARKING_STATS_
3640 
3641   // (4) We check whether we should yield. If we have to, then we abort.
3642   if (SuspendibleThreadSet::should_yield()) {
3643     // We should yield. To do this we abort the task. The caller is
3644     // responsible for yielding.
3645     set_has_aborted();
3646     statsOnly( ++_aborted_yield );
3647     return;
3648   }
3649 
3650   // (5) We check whether we've reached our time quota. If we have,
3651   // then we abort.
3652   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3653   if (elapsed_time_ms > _time_target_ms) {
3654     set_has_aborted();
3655     _has_timed_out = true;
3656     statsOnly( ++_aborted_timed_out );
3657     return;
3658   }
3659 
3660   // (6) Finally, we check whether there are enough completed STAB
3661   // buffers available for processing. If there are, we abort.
3662   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3663   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3664     if (_cm->verbose_low()) {
3665       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3666                              _worker_id);
3667     }
3668     // we do need to process SATB buffers, we'll abort and restart
3669     // the marking task to do so
3670     set_has_aborted();
3671     statsOnly( ++_aborted_satb );
3672     return;
3673   }
3674 }
3675 
3676 void CMTask::recalculate_limits() {
3677   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3678   _words_scanned_limit      = _real_words_scanned_limit;
3679 
3680   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3681   _refs_reached_limit       = _real_refs_reached_limit;
3682 }
3683 
3684 void CMTask::decrease_limits() {
3685   // This is called when we believe that we're going to do an infrequent
3686   // operation which will increase the per byte scanned cost (i.e. move
3687   // entries to/from the global stack). It basically tries to decrease the
3688   // scanning limit so that the clock is called earlier.
3689 
3690   if (_cm->verbose_medium()) {
3691     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3692   }
3693 
3694   _words_scanned_limit = _real_words_scanned_limit -
3695     3 * words_scanned_period / 4;
3696   _refs_reached_limit  = _real_refs_reached_limit -
3697     3 * refs_reached_period / 4;
3698 }
3699 
3700 void CMTask::move_entries_to_global_stack() {
3701   // local array where we'll store the entries that will be popped
3702   // from the local queue
3703   oop buffer[global_stack_transfer_size];
3704 
3705   int n = 0;
3706   oop obj;
3707   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3708     buffer[n] = obj;
3709     ++n;
3710   }
3711 
3712   if (n > 0) {
3713     // we popped at least one entry from the local queue
3714 
3715     statsOnly( ++_global_transfers_to; _local_pops += n );
3716 
3717     if (!_cm->mark_stack_push(buffer, n)) {
3718       if (_cm->verbose_low()) {
3719         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3720                                _worker_id);
3721       }
3722       set_has_aborted();
3723     } else {
3724       // the transfer was successful
3725 
3726       if (_cm->verbose_medium()) {
3727         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3728                                _worker_id, n);
3729       }
3730       statsOnly( size_t tmp_size = _cm->mark_stack_size();
3731                  if (tmp_size > _global_max_size) {
3732                    _global_max_size = tmp_size;
3733                  }
3734                  _global_pushes += n );
3735     }
3736   }
3737 
3738   // this operation was quite expensive, so decrease the limits
3739   decrease_limits();
3740 }
3741 
3742 void CMTask::get_entries_from_global_stack() {
3743   // local array where we'll store the entries that will be popped
3744   // from the global stack.
3745   oop buffer[global_stack_transfer_size];
3746   int n;
3747   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3748   assert(n <= global_stack_transfer_size,
3749          "we should not pop more than the given limit");
3750   if (n > 0) {
3751     // yes, we did actually pop at least one entry
3752 
3753     statsOnly( ++_global_transfers_from; _global_pops += n );
3754     if (_cm->verbose_medium()) {
3755       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3756                              _worker_id, n);
3757     }
3758     for (int i = 0; i < n; ++i) {
3759       bool success = _task_queue->push(buffer[i]);
3760       // We only call this when the local queue is empty or under a
3761       // given target limit. So, we do not expect this push to fail.
3762       assert(success, "invariant");
3763     }
3764 
3765     statsOnly( size_t tmp_size = (size_t)_task_queue->size();
3766                if (tmp_size > _local_max_size) {
3767                  _local_max_size = tmp_size;
3768                }
3769                _local_pushes += n );
3770   }
3771 
3772   // this operation was quite expensive, so decrease the limits
3773   decrease_limits();
3774 }
3775 
3776 void CMTask::drain_local_queue(bool partially) {
3777   if (has_aborted()) return;
3778 
3779   // Decide what the target size is, depending whether we're going to
3780   // drain it partially (so that other tasks can steal if they run out
3781   // of things to do) or totally (at the very end).
3782   size_t target_size;
3783   if (partially) {
3784     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3785   } else {
3786     target_size = 0;
3787   }
3788 
3789   if (_task_queue->size() > target_size) {
3790     if (_cm->verbose_high()) {
3791       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3792                              _worker_id, target_size);
3793     }
3794 
3795     oop obj;
3796     bool ret = _task_queue->pop_local(obj);
3797     while (ret) {
3798       statsOnly( ++_local_pops );
3799 
3800       if (_cm->verbose_high()) {
3801         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3802                                p2i((void*) obj));
3803       }
3804 
3805       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3806       assert(!_g1h->is_on_master_free_list(
3807                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3808 
3809       scan_object(obj);
3810 
3811       if (_task_queue->size() <= target_size || has_aborted()) {
3812         ret = false;
3813       } else {
3814         ret = _task_queue->pop_local(obj);
3815       }
3816     }
3817 
3818     if (_cm->verbose_high()) {
3819       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3820                              _worker_id, _task_queue->size());
3821     }
3822   }
3823 }
3824 
3825 void CMTask::drain_global_stack(bool partially) {
3826   if (has_aborted()) return;
3827 
3828   // We have a policy to drain the local queue before we attempt to
3829   // drain the global stack.
3830   assert(partially || _task_queue->size() == 0, "invariant");
3831 
3832   // Decide what the target size is, depending whether we're going to
3833   // drain it partially (so that other tasks can steal if they run out
3834   // of things to do) or totally (at the very end).  Notice that,
3835   // because we move entries from the global stack in chunks or
3836   // because another task might be doing the same, we might in fact
3837   // drop below the target. But, this is not a problem.
3838   size_t target_size;
3839   if (partially) {
3840     target_size = _cm->partial_mark_stack_size_target();
3841   } else {
3842     target_size = 0;
3843   }
3844 
3845   if (_cm->mark_stack_size() > target_size) {
3846     if (_cm->verbose_low()) {
3847       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3848                              _worker_id, target_size);
3849     }
3850 
3851     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3852       get_entries_from_global_stack();
3853       drain_local_queue(partially);
3854     }
3855 
3856     if (_cm->verbose_low()) {
3857       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3858                              _worker_id, _cm->mark_stack_size());
3859     }
3860   }
3861 }
3862 
3863 // SATB Queue has several assumptions on whether to call the par or
3864 // non-par versions of the methods. this is why some of the code is
3865 // replicated. We should really get rid of the single-threaded version
3866 // of the code to simplify things.
3867 void CMTask::drain_satb_buffers() {
3868   if (has_aborted()) return;
3869 
3870   // We set this so that the regular clock knows that we're in the
3871   // middle of draining buffers and doesn't set the abort flag when it
3872   // notices that SATB buffers are available for draining. It'd be
3873   // very counter productive if it did that. :-)
3874   _draining_satb_buffers = true;
3875 
3876   CMObjectClosure oc(this);
3877   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3878   satb_mq_set.set_closure(_worker_id, &oc);
3879 
3880   // This keeps claiming and applying the closure to completed buffers
3881   // until we run out of buffers or we need to abort.
3882   while (!has_aborted() &&
3883          satb_mq_set.apply_closure_to_completed_buffer(_worker_id)) {
3884     if (_cm->verbose_medium()) {
3885       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3886     }
3887     statsOnly( ++_satb_buffers_processed );
3888     regular_clock_call();
3889   }
3890 
3891   _draining_satb_buffers = false;
3892 
3893   assert(has_aborted() ||
3894          concurrent() ||
3895          satb_mq_set.completed_buffers_num() == 0, "invariant");
3896 
3897   satb_mq_set.set_closure(_worker_id, NULL);
3898 
3899   // again, this was a potentially expensive operation, decrease the
3900   // limits to get the regular clock call early
3901   decrease_limits();
3902 }
3903 
3904 void CMTask::print_stats() {
3905   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3906                          _worker_id, _calls);
3907   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3908                          _elapsed_time_ms, _termination_time_ms);
3909   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3910                          _step_times_ms.num(), _step_times_ms.avg(),
3911                          _step_times_ms.sd());
3912   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3913                          _step_times_ms.maximum(), _step_times_ms.sum());
3914 
3915 #if _MARKING_STATS_
3916   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3917                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3918                          _all_clock_intervals_ms.sd());
3919   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3920                          _all_clock_intervals_ms.maximum(),
3921                          _all_clock_intervals_ms.sum());
3922   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = " SIZE_FORMAT ", marking = " SIZE_FORMAT,
3923                          _clock_due_to_scanning, _clock_due_to_marking);
3924   gclog_or_tty->print_cr("  Objects: scanned = " SIZE_FORMAT ", found on the bitmap = " SIZE_FORMAT,
3925                          _objs_scanned, _objs_found_on_bitmap);
3926   gclog_or_tty->print_cr("  Local Queue:  pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3927                          _local_pushes, _local_pops, _local_max_size);
3928   gclog_or_tty->print_cr("  Global Stack: pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3929                          _global_pushes, _global_pops, _global_max_size);
3930   gclog_or_tty->print_cr("                transfers to = " SIZE_FORMAT ", transfers from = " SIZE_FORMAT,
3931                          _global_transfers_to,_global_transfers_from);
3932   gclog_or_tty->print_cr("  Regions: claimed = " SIZE_FORMAT, _regions_claimed);
3933   gclog_or_tty->print_cr("  SATB buffers: processed = " SIZE_FORMAT, _satb_buffers_processed);
3934   gclog_or_tty->print_cr("  Steals: attempts = " SIZE_FORMAT ", successes = " SIZE_FORMAT,
3935                          _steal_attempts, _steals);
3936   gclog_or_tty->print_cr("  Aborted: " SIZE_FORMAT ", due to", _aborted);
3937   gclog_or_tty->print_cr("    overflow: " SIZE_FORMAT ", global abort: " SIZE_FORMAT ", yield: " SIZE_FORMAT,
3938                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3939   gclog_or_tty->print_cr("    time out: " SIZE_FORMAT ", SATB: " SIZE_FORMAT ", termination: " SIZE_FORMAT,
3940                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3941 #endif // _MARKING_STATS_
3942 }
3943 
3944 /*****************************************************************************
3945 
3946     The do_marking_step(time_target_ms, ...) method is the building
3947     block of the parallel marking framework. It can be called in parallel
3948     with other invocations of do_marking_step() on different tasks
3949     (but only one per task, obviously) and concurrently with the
3950     mutator threads, or during remark, hence it eliminates the need
3951     for two versions of the code. When called during remark, it will
3952     pick up from where the task left off during the concurrent marking
3953     phase. Interestingly, tasks are also claimable during evacuation
3954     pauses too, since do_marking_step() ensures that it aborts before
3955     it needs to yield.
3956 
3957     The data structures that it uses to do marking work are the
3958     following:
3959 
3960       (1) Marking Bitmap. If there are gray objects that appear only
3961       on the bitmap (this happens either when dealing with an overflow
3962       or when the initial marking phase has simply marked the roots
3963       and didn't push them on the stack), then tasks claim heap
3964       regions whose bitmap they then scan to find gray objects. A
3965       global finger indicates where the end of the last claimed region
3966       is. A local finger indicates how far into the region a task has
3967       scanned. The two fingers are used to determine how to gray an
3968       object (i.e. whether simply marking it is OK, as it will be
3969       visited by a task in the future, or whether it needs to be also
3970       pushed on a stack).
3971 
3972       (2) Local Queue. The local queue of the task which is accessed
3973       reasonably efficiently by the task. Other tasks can steal from
3974       it when they run out of work. Throughout the marking phase, a
3975       task attempts to keep its local queue short but not totally
3976       empty, so that entries are available for stealing by other
3977       tasks. Only when there is no more work, a task will totally
3978       drain its local queue.
3979 
3980       (3) Global Mark Stack. This handles local queue overflow. During
3981       marking only sets of entries are moved between it and the local
3982       queues, as access to it requires a mutex and more fine-grain
3983       interaction with it which might cause contention. If it
3984       overflows, then the marking phase should restart and iterate
3985       over the bitmap to identify gray objects. Throughout the marking
3986       phase, tasks attempt to keep the global mark stack at a small
3987       length but not totally empty, so that entries are available for
3988       popping by other tasks. Only when there is no more work, tasks
3989       will totally drain the global mark stack.
3990 
3991       (4) SATB Buffer Queue. This is where completed SATB buffers are
3992       made available. Buffers are regularly removed from this queue
3993       and scanned for roots, so that the queue doesn't get too
3994       long. During remark, all completed buffers are processed, as
3995       well as the filled in parts of any uncompleted buffers.
3996 
3997     The do_marking_step() method tries to abort when the time target
3998     has been reached. There are a few other cases when the
3999     do_marking_step() method also aborts:
4000 
4001       (1) When the marking phase has been aborted (after a Full GC).
4002 
4003       (2) When a global overflow (on the global stack) has been
4004       triggered. Before the task aborts, it will actually sync up with
4005       the other tasks to ensure that all the marking data structures
4006       (local queues, stacks, fingers etc.)  are re-initialized so that
4007       when do_marking_step() completes, the marking phase can
4008       immediately restart.
4009 
4010       (3) When enough completed SATB buffers are available. The
4011       do_marking_step() method only tries to drain SATB buffers right
4012       at the beginning. So, if enough buffers are available, the
4013       marking step aborts and the SATB buffers are processed at
4014       the beginning of the next invocation.
4015 
4016       (4) To yield. when we have to yield then we abort and yield
4017       right at the end of do_marking_step(). This saves us from a lot
4018       of hassle as, by yielding we might allow a Full GC. If this
4019       happens then objects will be compacted underneath our feet, the
4020       heap might shrink, etc. We save checking for this by just
4021       aborting and doing the yield right at the end.
4022 
4023     From the above it follows that the do_marking_step() method should
4024     be called in a loop (or, otherwise, regularly) until it completes.
4025 
4026     If a marking step completes without its has_aborted() flag being
4027     true, it means it has completed the current marking phase (and
4028     also all other marking tasks have done so and have all synced up).
4029 
4030     A method called regular_clock_call() is invoked "regularly" (in
4031     sub ms intervals) throughout marking. It is this clock method that
4032     checks all the abort conditions which were mentioned above and
4033     decides when the task should abort. A work-based scheme is used to
4034     trigger this clock method: when the number of object words the
4035     marking phase has scanned or the number of references the marking
4036     phase has visited reach a given limit. Additional invocations to
4037     the method clock have been planted in a few other strategic places
4038     too. The initial reason for the clock method was to avoid calling
4039     vtime too regularly, as it is quite expensive. So, once it was in
4040     place, it was natural to piggy-back all the other conditions on it
4041     too and not constantly check them throughout the code.
4042 
4043     If do_termination is true then do_marking_step will enter its
4044     termination protocol.
4045 
4046     The value of is_serial must be true when do_marking_step is being
4047     called serially (i.e. by the VMThread) and do_marking_step should
4048     skip any synchronization in the termination and overflow code.
4049     Examples include the serial remark code and the serial reference
4050     processing closures.
4051 
4052     The value of is_serial must be false when do_marking_step is
4053     being called by any of the worker threads in a work gang.
4054     Examples include the concurrent marking code (CMMarkingTask),
4055     the MT remark code, and the MT reference processing closures.
4056 
4057  *****************************************************************************/
4058 
4059 void CMTask::do_marking_step(double time_target_ms,
4060                              bool do_termination,
4061                              bool is_serial) {
4062   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4063   assert(concurrent() == _cm->concurrent(), "they should be the same");
4064 
4065   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4066   assert(_task_queues != NULL, "invariant");
4067   assert(_task_queue != NULL, "invariant");
4068   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4069 
4070   assert(!_claimed,
4071          "only one thread should claim this task at any one time");
4072 
4073   // OK, this doesn't safeguard again all possible scenarios, as it is
4074   // possible for two threads to set the _claimed flag at the same
4075   // time. But it is only for debugging purposes anyway and it will
4076   // catch most problems.
4077   _claimed = true;
4078 
4079   _start_time_ms = os::elapsedVTime() * 1000.0;
4080   statsOnly( _interval_start_time_ms = _start_time_ms );
4081 
4082   // If do_stealing is true then do_marking_step will attempt to
4083   // steal work from the other CMTasks. It only makes sense to
4084   // enable stealing when the termination protocol is enabled
4085   // and do_marking_step() is not being called serially.
4086   bool do_stealing = do_termination && !is_serial;
4087 
4088   double diff_prediction_ms =
4089     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4090   _time_target_ms = time_target_ms - diff_prediction_ms;
4091 
4092   // set up the variables that are used in the work-based scheme to
4093   // call the regular clock method
4094   _words_scanned = 0;
4095   _refs_reached  = 0;
4096   recalculate_limits();
4097 
4098   // clear all flags
4099   clear_has_aborted();
4100   _has_timed_out = false;
4101   _draining_satb_buffers = false;
4102 
4103   ++_calls;
4104 
4105   if (_cm->verbose_low()) {
4106     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4107                            "target = %1.2lfms >>>>>>>>>>",
4108                            _worker_id, _calls, _time_target_ms);
4109   }
4110 
4111   // Set up the bitmap and oop closures. Anything that uses them is
4112   // eventually called from this method, so it is OK to allocate these
4113   // statically.
4114   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4115   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4116   set_cm_oop_closure(&cm_oop_closure);
4117 
4118   if (_cm->has_overflown()) {
4119     // This can happen if the mark stack overflows during a GC pause
4120     // and this task, after a yield point, restarts. We have to abort
4121     // as we need to get into the overflow protocol which happens
4122     // right at the end of this task.
4123     set_has_aborted();
4124   }
4125 
4126   // First drain any available SATB buffers. After this, we will not
4127   // look at SATB buffers before the next invocation of this method.
4128   // If enough completed SATB buffers are queued up, the regular clock
4129   // will abort this task so that it restarts.
4130   drain_satb_buffers();
4131   // ...then partially drain the local queue and the global stack
4132   drain_local_queue(true);
4133   drain_global_stack(true);
4134 
4135   do {
4136     if (!has_aborted() && _curr_region != NULL) {
4137       // This means that we're already holding on to a region.
4138       assert(_finger != NULL, "if region is not NULL, then the finger "
4139              "should not be NULL either");
4140 
4141       // We might have restarted this task after an evacuation pause
4142       // which might have evacuated the region we're holding on to
4143       // underneath our feet. Let's read its limit again to make sure
4144       // that we do not iterate over a region of the heap that
4145       // contains garbage (update_region_limit() will also move
4146       // _finger to the start of the region if it is found empty).
4147       update_region_limit();
4148       // We will start from _finger not from the start of the region,
4149       // as we might be restarting this task after aborting half-way
4150       // through scanning this region. In this case, _finger points to
4151       // the address where we last found a marked object. If this is a
4152       // fresh region, _finger points to start().
4153       MemRegion mr = MemRegion(_finger, _region_limit);
4154 
4155       if (_cm->verbose_low()) {
4156         gclog_or_tty->print_cr("[%u] we're scanning part "
4157                                "["PTR_FORMAT", "PTR_FORMAT") "
4158                                "of region "HR_FORMAT,
4159                                _worker_id, p2i(_finger), p2i(_region_limit),
4160                                HR_FORMAT_PARAMS(_curr_region));
4161       }
4162 
4163       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4164              "humongous regions should go around loop once only");
4165 
4166       // Some special cases:
4167       // If the memory region is empty, we can just give up the region.
4168       // If the current region is humongous then we only need to check
4169       // the bitmap for the bit associated with the start of the object,
4170       // scan the object if it's live, and give up the region.
4171       // Otherwise, let's iterate over the bitmap of the part of the region
4172       // that is left.
4173       // If the iteration is successful, give up the region.
4174       if (mr.is_empty()) {
4175         giveup_current_region();
4176         regular_clock_call();
4177       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4178         if (_nextMarkBitMap->isMarked(mr.start())) {
4179           // The object is marked - apply the closure
4180           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4181           bitmap_closure.do_bit(offset);
4182         }
4183         // Even if this task aborted while scanning the humongous object
4184         // we can (and should) give up the current region.
4185         giveup_current_region();
4186         regular_clock_call();
4187       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4188         giveup_current_region();
4189         regular_clock_call();
4190       } else {
4191         assert(has_aborted(), "currently the only way to do so");
4192         // The only way to abort the bitmap iteration is to return
4193         // false from the do_bit() method. However, inside the
4194         // do_bit() method we move the _finger to point to the
4195         // object currently being looked at. So, if we bail out, we
4196         // have definitely set _finger to something non-null.
4197         assert(_finger != NULL, "invariant");
4198 
4199         // Region iteration was actually aborted. So now _finger
4200         // points to the address of the object we last scanned. If we
4201         // leave it there, when we restart this task, we will rescan
4202         // the object. It is easy to avoid this. We move the finger by
4203         // enough to point to the next possible object header (the
4204         // bitmap knows by how much we need to move it as it knows its
4205         // granularity).
4206         assert(_finger < _region_limit, "invariant");
4207         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4208         // Check if bitmap iteration was aborted while scanning the last object
4209         if (new_finger >= _region_limit) {
4210           giveup_current_region();
4211         } else {
4212           move_finger_to(new_finger);
4213         }
4214       }
4215     }
4216     // At this point we have either completed iterating over the
4217     // region we were holding on to, or we have aborted.
4218 
4219     // We then partially drain the local queue and the global stack.
4220     // (Do we really need this?)
4221     drain_local_queue(true);
4222     drain_global_stack(true);
4223 
4224     // Read the note on the claim_region() method on why it might
4225     // return NULL with potentially more regions available for
4226     // claiming and why we have to check out_of_regions() to determine
4227     // whether we're done or not.
4228     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4229       // We are going to try to claim a new region. We should have
4230       // given up on the previous one.
4231       // Separated the asserts so that we know which one fires.
4232       assert(_curr_region  == NULL, "invariant");
4233       assert(_finger       == NULL, "invariant");
4234       assert(_region_limit == NULL, "invariant");
4235       if (_cm->verbose_low()) {
4236         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4237       }
4238       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4239       if (claimed_region != NULL) {
4240         // Yes, we managed to claim one
4241         statsOnly( ++_regions_claimed );
4242 
4243         if (_cm->verbose_low()) {
4244           gclog_or_tty->print_cr("[%u] we successfully claimed "
4245                                  "region "PTR_FORMAT,
4246                                  _worker_id, p2i(claimed_region));
4247         }
4248 
4249         setup_for_region(claimed_region);
4250         assert(_curr_region == claimed_region, "invariant");
4251       }
4252       // It is important to call the regular clock here. It might take
4253       // a while to claim a region if, for example, we hit a large
4254       // block of empty regions. So we need to call the regular clock
4255       // method once round the loop to make sure it's called
4256       // frequently enough.
4257       regular_clock_call();
4258     }
4259 
4260     if (!has_aborted() && _curr_region == NULL) {
4261       assert(_cm->out_of_regions(),
4262              "at this point we should be out of regions");
4263     }
4264   } while ( _curr_region != NULL && !has_aborted());
4265 
4266   if (!has_aborted()) {
4267     // We cannot check whether the global stack is empty, since other
4268     // tasks might be pushing objects to it concurrently.
4269     assert(_cm->out_of_regions(),
4270            "at this point we should be out of regions");
4271 
4272     if (_cm->verbose_low()) {
4273       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4274     }
4275 
4276     // Try to reduce the number of available SATB buffers so that
4277     // remark has less work to do.
4278     drain_satb_buffers();
4279   }
4280 
4281   // Since we've done everything else, we can now totally drain the
4282   // local queue and global stack.
4283   drain_local_queue(false);
4284   drain_global_stack(false);
4285 
4286   // Attempt at work stealing from other task's queues.
4287   if (do_stealing && !has_aborted()) {
4288     // We have not aborted. This means that we have finished all that
4289     // we could. Let's try to do some stealing...
4290 
4291     // We cannot check whether the global stack is empty, since other
4292     // tasks might be pushing objects to it concurrently.
4293     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4294            "only way to reach here");
4295 
4296     if (_cm->verbose_low()) {
4297       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4298     }
4299 
4300     while (!has_aborted()) {
4301       oop obj;
4302       statsOnly( ++_steal_attempts );
4303 
4304       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4305         if (_cm->verbose_medium()) {
4306           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4307                                  _worker_id, p2i((void*) obj));
4308         }
4309 
4310         statsOnly( ++_steals );
4311 
4312         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4313                "any stolen object should be marked");
4314         scan_object(obj);
4315 
4316         // And since we're towards the end, let's totally drain the
4317         // local queue and global stack.
4318         drain_local_queue(false);
4319         drain_global_stack(false);
4320       } else {
4321         break;
4322       }
4323     }
4324   }
4325 
4326   // If we are about to wrap up and go into termination, check if we
4327   // should raise the overflow flag.
4328   if (do_termination && !has_aborted()) {
4329     if (_cm->force_overflow()->should_force()) {
4330       _cm->set_has_overflown();
4331       regular_clock_call();
4332     }
4333   }
4334 
4335   // We still haven't aborted. Now, let's try to get into the
4336   // termination protocol.
4337   if (do_termination && !has_aborted()) {
4338     // We cannot check whether the global stack is empty, since other
4339     // tasks might be concurrently pushing objects on it.
4340     // Separated the asserts so that we know which one fires.
4341     assert(_cm->out_of_regions(), "only way to reach here");
4342     assert(_task_queue->size() == 0, "only way to reach here");
4343 
4344     if (_cm->verbose_low()) {
4345       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4346     }
4347 
4348     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4349 
4350     // The CMTask class also extends the TerminatorTerminator class,
4351     // hence its should_exit_termination() method will also decide
4352     // whether to exit the termination protocol or not.
4353     bool finished = (is_serial ||
4354                      _cm->terminator()->offer_termination(this));
4355     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4356     _termination_time_ms +=
4357       termination_end_time_ms - _termination_start_time_ms;
4358 
4359     if (finished) {
4360       // We're all done.
4361 
4362       if (_worker_id == 0) {
4363         // let's allow task 0 to do this
4364         if (concurrent()) {
4365           assert(_cm->concurrent_marking_in_progress(), "invariant");
4366           // we need to set this to false before the next
4367           // safepoint. This way we ensure that the marking phase
4368           // doesn't observe any more heap expansions.
4369           _cm->clear_concurrent_marking_in_progress();
4370         }
4371       }
4372 
4373       // We can now guarantee that the global stack is empty, since
4374       // all other tasks have finished. We separated the guarantees so
4375       // that, if a condition is false, we can immediately find out
4376       // which one.
4377       guarantee(_cm->out_of_regions(), "only way to reach here");
4378       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4379       guarantee(_task_queue->size() == 0, "only way to reach here");
4380       guarantee(!_cm->has_overflown(), "only way to reach here");
4381       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4382 
4383       if (_cm->verbose_low()) {
4384         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4385       }
4386     } else {
4387       // Apparently there's more work to do. Let's abort this task. It
4388       // will restart it and we can hopefully find more things to do.
4389 
4390       if (_cm->verbose_low()) {
4391         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4392                                _worker_id);
4393       }
4394 
4395       set_has_aborted();
4396       statsOnly( ++_aborted_termination );
4397     }
4398   }
4399 
4400   // Mainly for debugging purposes to make sure that a pointer to the
4401   // closure which was statically allocated in this frame doesn't
4402   // escape it by accident.
4403   set_cm_oop_closure(NULL);
4404   double end_time_ms = os::elapsedVTime() * 1000.0;
4405   double elapsed_time_ms = end_time_ms - _start_time_ms;
4406   // Update the step history.
4407   _step_times_ms.add(elapsed_time_ms);
4408 
4409   if (has_aborted()) {
4410     // The task was aborted for some reason.
4411 
4412     statsOnly( ++_aborted );
4413 
4414     if (_has_timed_out) {
4415       double diff_ms = elapsed_time_ms - _time_target_ms;
4416       // Keep statistics of how well we did with respect to hitting
4417       // our target only if we actually timed out (if we aborted for
4418       // other reasons, then the results might get skewed).
4419       _marking_step_diffs_ms.add(diff_ms);
4420     }
4421 
4422     if (_cm->has_overflown()) {
4423       // This is the interesting one. We aborted because a global
4424       // overflow was raised. This means we have to restart the
4425       // marking phase and start iterating over regions. However, in
4426       // order to do this we have to make sure that all tasks stop
4427       // what they are doing and re-initialize in a safe manner. We
4428       // will achieve this with the use of two barrier sync points.
4429 
4430       if (_cm->verbose_low()) {
4431         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4432       }
4433 
4434       if (!is_serial) {
4435         // We only need to enter the sync barrier if being called
4436         // from a parallel context
4437         _cm->enter_first_sync_barrier(_worker_id);
4438 
4439         // When we exit this sync barrier we know that all tasks have
4440         // stopped doing marking work. So, it's now safe to
4441         // re-initialize our data structures. At the end of this method,
4442         // task 0 will clear the global data structures.
4443       }
4444 
4445       statsOnly( ++_aborted_overflow );
4446 
4447       // We clear the local state of this task...
4448       clear_region_fields();
4449 
4450       if (!is_serial) {
4451         // ...and enter the second barrier.
4452         _cm->enter_second_sync_barrier(_worker_id);
4453       }
4454       // At this point, if we're during the concurrent phase of
4455       // marking, everything has been re-initialized and we're
4456       // ready to restart.
4457     }
4458 
4459     if (_cm->verbose_low()) {
4460       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4461                              "elapsed = %1.2lfms <<<<<<<<<<",
4462                              _worker_id, _time_target_ms, elapsed_time_ms);
4463       if (_cm->has_aborted()) {
4464         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4465                                _worker_id);
4466       }
4467     }
4468   } else {
4469     if (_cm->verbose_low()) {
4470       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4471                              "elapsed = %1.2lfms <<<<<<<<<<",
4472                              _worker_id, _time_target_ms, elapsed_time_ms);
4473     }
4474   }
4475 
4476   _claimed = false;
4477 }
4478 
4479 CMTask::CMTask(uint worker_id,
4480                ConcurrentMark* cm,
4481                size_t* marked_bytes,
4482                BitMap* card_bm,
4483                CMTaskQueue* task_queue,
4484                CMTaskQueueSet* task_queues)
4485   : _g1h(G1CollectedHeap::heap()),
4486     _worker_id(worker_id), _cm(cm),
4487     _claimed(false),
4488     _nextMarkBitMap(NULL), _hash_seed(17),
4489     _task_queue(task_queue),
4490     _task_queues(task_queues),
4491     _cm_oop_closure(NULL),
4492     _marked_bytes_array(marked_bytes),
4493     _card_bm(card_bm) {
4494   guarantee(task_queue != NULL, "invariant");
4495   guarantee(task_queues != NULL, "invariant");
4496 
4497   statsOnly( _clock_due_to_scanning = 0;
4498              _clock_due_to_marking  = 0 );
4499 
4500   _marking_step_diffs_ms.add(0.5);
4501 }
4502 
4503 // These are formatting macros that are used below to ensure
4504 // consistent formatting. The *_H_* versions are used to format the
4505 // header for a particular value and they should be kept consistent
4506 // with the corresponding macro. Also note that most of the macros add
4507 // the necessary white space (as a prefix) which makes them a bit
4508 // easier to compose.
4509 
4510 // All the output lines are prefixed with this string to be able to
4511 // identify them easily in a large log file.
4512 #define G1PPRL_LINE_PREFIX            "###"
4513 
4514 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4515 #ifdef _LP64
4516 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4517 #else // _LP64
4518 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4519 #endif // _LP64
4520 
4521 // For per-region info
4522 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4523 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4524 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4525 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4526 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4527 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4528 
4529 // For summary info
4530 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4531 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4532 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4533 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4534 
4535 G1PrintRegionLivenessInfoClosure::
4536 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4537   : _out(out),
4538     _total_used_bytes(0), _total_capacity_bytes(0),
4539     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4540     _hum_used_bytes(0), _hum_capacity_bytes(0),
4541     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4542     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4543   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4544   MemRegion g1_reserved = g1h->g1_reserved();
4545   double now = os::elapsedTime();
4546 
4547   // Print the header of the output.
4548   _out->cr();
4549   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4550   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4551                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4552                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4553                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4554                  HeapRegion::GrainBytes);
4555   _out->print_cr(G1PPRL_LINE_PREFIX);
4556   _out->print_cr(G1PPRL_LINE_PREFIX
4557                 G1PPRL_TYPE_H_FORMAT
4558                 G1PPRL_ADDR_BASE_H_FORMAT
4559                 G1PPRL_BYTE_H_FORMAT
4560                 G1PPRL_BYTE_H_FORMAT
4561                 G1PPRL_BYTE_H_FORMAT
4562                 G1PPRL_DOUBLE_H_FORMAT
4563                 G1PPRL_BYTE_H_FORMAT
4564                 G1PPRL_BYTE_H_FORMAT,
4565                 "type", "address-range",
4566                 "used", "prev-live", "next-live", "gc-eff",
4567                 "remset", "code-roots");
4568   _out->print_cr(G1PPRL_LINE_PREFIX
4569                 G1PPRL_TYPE_H_FORMAT
4570                 G1PPRL_ADDR_BASE_H_FORMAT
4571                 G1PPRL_BYTE_H_FORMAT
4572                 G1PPRL_BYTE_H_FORMAT
4573                 G1PPRL_BYTE_H_FORMAT
4574                 G1PPRL_DOUBLE_H_FORMAT
4575                 G1PPRL_BYTE_H_FORMAT
4576                 G1PPRL_BYTE_H_FORMAT,
4577                 "", "",
4578                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4579                 "(bytes)", "(bytes)");
4580 }
4581 
4582 // It takes as a parameter a reference to one of the _hum_* fields, it
4583 // deduces the corresponding value for a region in a humongous region
4584 // series (either the region size, or what's left if the _hum_* field
4585 // is < the region size), and updates the _hum_* field accordingly.
4586 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4587   size_t bytes = 0;
4588   // The > 0 check is to deal with the prev and next live bytes which
4589   // could be 0.
4590   if (*hum_bytes > 0) {
4591     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4592     *hum_bytes -= bytes;
4593   }
4594   return bytes;
4595 }
4596 
4597 // It deduces the values for a region in a humongous region series
4598 // from the _hum_* fields and updates those accordingly. It assumes
4599 // that that _hum_* fields have already been set up from the "starts
4600 // humongous" region and we visit the regions in address order.
4601 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4602                                                      size_t* capacity_bytes,
4603                                                      size_t* prev_live_bytes,
4604                                                      size_t* next_live_bytes) {
4605   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4606   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4607   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4608   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4609   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4610 }
4611 
4612 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4613   const char* type       = r->get_type_str();
4614   HeapWord* bottom       = r->bottom();
4615   HeapWord* end          = r->end();
4616   size_t capacity_bytes  = r->capacity();
4617   size_t used_bytes      = r->used();
4618   size_t prev_live_bytes = r->live_bytes();
4619   size_t next_live_bytes = r->next_live_bytes();
4620   double gc_eff          = r->gc_efficiency();
4621   size_t remset_bytes    = r->rem_set()->mem_size();
4622   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4623 
4624   if (r->is_starts_humongous()) {
4625     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4626            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4627            "they should have been zeroed after the last time we used them");
4628     // Set up the _hum_* fields.
4629     _hum_capacity_bytes  = capacity_bytes;
4630     _hum_used_bytes      = used_bytes;
4631     _hum_prev_live_bytes = prev_live_bytes;
4632     _hum_next_live_bytes = next_live_bytes;
4633     get_hum_bytes(&used_bytes, &capacity_bytes,
4634                   &prev_live_bytes, &next_live_bytes);
4635     end = bottom + HeapRegion::GrainWords;
4636   } else if (r->is_continues_humongous()) {
4637     get_hum_bytes(&used_bytes, &capacity_bytes,
4638                   &prev_live_bytes, &next_live_bytes);
4639     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4640   }
4641 
4642   _total_used_bytes      += used_bytes;
4643   _total_capacity_bytes  += capacity_bytes;
4644   _total_prev_live_bytes += prev_live_bytes;
4645   _total_next_live_bytes += next_live_bytes;
4646   _total_remset_bytes    += remset_bytes;
4647   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4648 
4649   // Print a line for this particular region.
4650   _out->print_cr(G1PPRL_LINE_PREFIX
4651                  G1PPRL_TYPE_FORMAT
4652                  G1PPRL_ADDR_BASE_FORMAT
4653                  G1PPRL_BYTE_FORMAT
4654                  G1PPRL_BYTE_FORMAT
4655                  G1PPRL_BYTE_FORMAT
4656                  G1PPRL_DOUBLE_FORMAT
4657                  G1PPRL_BYTE_FORMAT
4658                  G1PPRL_BYTE_FORMAT,
4659                  type, p2i(bottom), p2i(end),
4660                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4661                  remset_bytes, strong_code_roots_bytes);
4662 
4663   return false;
4664 }
4665 
4666 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4667   // add static memory usages to remembered set sizes
4668   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4669   // Print the footer of the output.
4670   _out->print_cr(G1PPRL_LINE_PREFIX);
4671   _out->print_cr(G1PPRL_LINE_PREFIX
4672                  " SUMMARY"
4673                  G1PPRL_SUM_MB_FORMAT("capacity")
4674                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4675                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4676                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4677                  G1PPRL_SUM_MB_FORMAT("remset")
4678                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4679                  bytes_to_mb(_total_capacity_bytes),
4680                  bytes_to_mb(_total_used_bytes),
4681                  perc(_total_used_bytes, _total_capacity_bytes),
4682                  bytes_to_mb(_total_prev_live_bytes),
4683                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4684                  bytes_to_mb(_total_next_live_bytes),
4685                  perc(_total_next_live_bytes, _total_capacity_bytes),
4686                  bytes_to_mb(_total_remset_bytes),
4687                  bytes_to_mb(_total_strong_code_roots_bytes));
4688   _out->cr();
4689 }