1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  27 
  28 #include "gc_interface/gcCause.hpp"
  29 #include "gc_implementation/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/barrierSet.hpp"
  32 #include "runtime/handles.hpp"
  33 #include "runtime/perfData.hpp"
  34 #include "runtime/safepoint.hpp"
  35 #include "utilities/events.hpp"
  36 
  37 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  38 // is an abstract class: there may be many different kinds of heaps.  This
  39 // class defines the functions that a heap must implement, and contains
  40 // infrastructure common to all heaps.
  41 
  42 class AdaptiveSizePolicy;
  43 class BarrierSet;
  44 class CollectorPolicy;
  45 class GCHeapSummary;
  46 class GCTimer;
  47 class GCTracer;
  48 class MetaspaceSummary;
  49 class Thread;
  50 class ThreadClosure;
  51 class VirtualSpaceSummary;
  52 class nmethod;
  53 
  54 class GCMessage : public FormatBuffer<1024> {
  55  public:
  56   bool is_before;
  57 
  58  public:
  59   GCMessage() {}
  60 };
  61 
  62 class GCHeapLog : public EventLogBase<GCMessage> {
  63  private:
  64   void log_heap(bool before);
  65 
  66  public:
  67   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  68 
  69   void log_heap_before() {
  70     log_heap(true);
  71   }
  72   void log_heap_after() {
  73     log_heap(false);
  74   }
  75 };
  76 
  77 //
  78 // CollectedHeap
  79 //   SharedHeap
  80 //     GenCollectedHeap
  81 //     G1CollectedHeap
  82 //   ParallelScavengeHeap
  83 //
  84 class CollectedHeap : public CHeapObj<mtInternal> {
  85   friend class VMStructs;
  86   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  87 
  88  private:
  89 #ifdef ASSERT
  90   static int       _fire_out_of_memory_count;
  91 #endif
  92 
  93   // Used for filler objects (static, but initialized in ctor).
  94   static size_t _filler_array_max_size;
  95 
  96   GCHeapLog* _gc_heap_log;
  97 
  98   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
  99   bool _defer_initial_card_mark;
 100 
 101   MemRegion _reserved;
 102 
 103  protected:
 104   BarrierSet* _barrier_set;
 105   bool _is_gc_active;
 106   uint _n_par_threads;
 107 
 108   unsigned int _total_collections;          // ... started
 109   unsigned int _total_full_collections;     // ... started
 110   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 111   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 112 
 113   // Reason for current garbage collection.  Should be set to
 114   // a value reflecting no collection between collections.
 115   GCCause::Cause _gc_cause;
 116   GCCause::Cause _gc_lastcause;
 117   PerfStringVariable* _perf_gc_cause;
 118   PerfStringVariable* _perf_gc_lastcause;
 119 
 120   // Constructor
 121   CollectedHeap();
 122 
 123   // Do common initializations that must follow instance construction,
 124   // for example, those needing virtual calls.
 125   // This code could perhaps be moved into initialize() but would
 126   // be slightly more awkward because we want the latter to be a
 127   // pure virtual.
 128   void pre_initialize();
 129 
 130   // Create a new tlab. All TLAB allocations must go through this.
 131   virtual HeapWord* allocate_new_tlab(size_t size);
 132 
 133   // Accumulate statistics on all tlabs.
 134   virtual void accumulate_statistics_all_tlabs();
 135 
 136   // Reinitialize tlabs before resuming mutators.
 137   virtual void resize_all_tlabs();
 138 
 139   // Allocate from the current thread's TLAB, with broken-out slow path.
 140   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
 141   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
 142 
 143   // Allocate an uninitialized block of the given size, or returns NULL if
 144   // this is impossible.
 145   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
 146 
 147   // Like allocate_init, but the block returned by a successful allocation
 148   // is guaranteed initialized to zeros.
 149   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
 150 
 151   // Helper functions for (VM) allocation.
 152   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
 153   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 154                                                             HeapWord* objPtr);
 155 
 156   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
 157 
 158   inline static void post_allocation_setup_array(KlassHandle klass,
 159                                                  HeapWord* obj, int length);
 160 
 161   // Clears an allocated object.
 162   inline static void init_obj(HeapWord* obj, size_t size);
 163 
 164   // Filler object utilities.
 165   static inline size_t filler_array_hdr_size();
 166   static inline size_t filler_array_min_size();
 167 
 168   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 169   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 170 
 171   // Fill with a single array; caller must ensure filler_array_min_size() <=
 172   // words <= filler_array_max_size().
 173   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 174 
 175   // Fill with a single object (either an int array or a java.lang.Object).
 176   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 177 
 178   virtual void trace_heap(GCWhen::Type when, GCTracer* tracer);
 179 
 180   // Verification functions
 181   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 182     PRODUCT_RETURN;
 183   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 184     PRODUCT_RETURN;
 185   debug_only(static void check_for_valid_allocation_state();)
 186 
 187  public:
 188   enum Name {
 189     Abstract,
 190     SharedHeap,
 191     GenCollectedHeap,
 192     ParallelScavengeHeap,
 193     G1CollectedHeap
 194   };
 195 
 196   static inline size_t filler_array_max_size() {
 197     return _filler_array_max_size;
 198   }
 199 
 200   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
 201 
 202   /**
 203    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 204    * and JNI_OK on success.
 205    */
 206   virtual jint initialize() = 0;
 207 
 208   // In many heaps, there will be a need to perform some initialization activities
 209   // after the Universe is fully formed, but before general heap allocation is allowed.
 210   // This is the correct place to place such initialization methods.
 211   virtual void post_initialize() = 0;
 212 
 213   // Stop any onging concurrent work and prepare for exit.
 214   virtual void stop() {}
 215 
 216   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 217   MemRegion reserved_region() const { return _reserved; }
 218   address base() const { return (address)reserved_region().start(); }
 219 
 220   virtual size_t capacity() const = 0;
 221   virtual size_t used() const = 0;
 222 
 223   // Return "true" if the part of the heap that allocates Java
 224   // objects has reached the maximal committed limit that it can
 225   // reach, without a garbage collection.
 226   virtual bool is_maximal_no_gc() const = 0;
 227 
 228   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 229   // memory that the vm could make available for storing 'normal' java objects.
 230   // This is based on the reserved address space, but should not include space
 231   // that the vm uses internally for bookkeeping or temporary storage
 232   // (e.g., in the case of the young gen, one of the survivor
 233   // spaces).
 234   virtual size_t max_capacity() const = 0;
 235 
 236   // Returns "TRUE" if "p" points into the reserved area of the heap.
 237   bool is_in_reserved(const void* p) const {
 238     return _reserved.contains(p);
 239   }
 240 
 241   bool is_in_reserved_or_null(const void* p) const {
 242     return p == NULL || is_in_reserved(p);
 243   }
 244 
 245   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 246   // Since this method can be expensive in general, we restrict its
 247   // use to assertion checking only.
 248   virtual bool is_in(const void* p) const = 0;
 249 
 250   bool is_in_or_null(const void* p) const {
 251     return p == NULL || is_in(p);
 252   }
 253 
 254   bool is_in_place(Metadata** p) {
 255     return !Universe::heap()->is_in(p);
 256   }
 257   bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
 258   bool is_in_place(narrowOop* p) {
 259     oop o = oopDesc::load_decode_heap_oop_not_null(p);
 260     return Universe::heap()->is_in((const void*)o);
 261   }
 262 
 263   // Let's define some terms: a "closed" subset of a heap is one that
 264   //
 265   // 1) contains all currently-allocated objects, and
 266   //
 267   // 2) is closed under reference: no object in the closed subset
 268   //    references one outside the closed subset.
 269   //
 270   // Membership in a heap's closed subset is useful for assertions.
 271   // Clearly, the entire heap is a closed subset, so the default
 272   // implementation is to use "is_in_reserved".  But this may not be too
 273   // liberal to perform useful checking.  Also, the "is_in" predicate
 274   // defines a closed subset, but may be too expensive, since "is_in"
 275   // verifies that its argument points to an object head.  The
 276   // "closed_subset" method allows a heap to define an intermediate
 277   // predicate, allowing more precise checking than "is_in_reserved" at
 278   // lower cost than "is_in."
 279 
 280   // One important case is a heap composed of disjoint contiguous spaces,
 281   // such as the Garbage-First collector.  Such heaps have a convenient
 282   // closed subset consisting of the allocated portions of those
 283   // contiguous spaces.
 284 
 285   // Return "TRUE" iff the given pointer points into the heap's defined
 286   // closed subset (which defaults to the entire heap).
 287   virtual bool is_in_closed_subset(const void* p) const {
 288     return is_in_reserved(p);
 289   }
 290 
 291   bool is_in_closed_subset_or_null(const void* p) const {
 292     return p == NULL || is_in_closed_subset(p);
 293   }
 294 
 295 #ifdef ASSERT
 296   // Returns true if "p" is in the part of the
 297   // heap being collected.
 298   virtual bool is_in_partial_collection(const void *p) = 0;
 299 #endif
 300 
 301   // An object is scavengable if its location may move during a scavenge.
 302   // (A scavenge is a GC which is not a full GC.)
 303   virtual bool is_scavengable(const void *p) = 0;
 304 
 305   void set_gc_cause(GCCause::Cause v) {
 306      if (UsePerfData) {
 307        _gc_lastcause = _gc_cause;
 308        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 309        _perf_gc_cause->set_value(GCCause::to_string(v));
 310      }
 311     _gc_cause = v;
 312   }
 313   GCCause::Cause gc_cause() { return _gc_cause; }
 314 
 315   // Number of threads currently working on GC tasks.
 316   uint n_par_threads() { return _n_par_threads; }
 317 
 318   // May be overridden to set additional parallelism.
 319   virtual void set_par_threads(uint t) { _n_par_threads = t; };
 320 
 321   // General obj/array allocation facilities.
 322   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 323   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 324   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
 325 
 326   inline static void post_allocation_install_obj_klass(KlassHandle klass,
 327                                                        oop obj);
 328 
 329   // Raw memory allocation facilities
 330   // The obj and array allocate methods are covers for these methods.
 331   // mem_allocate() should never be
 332   // called to allocate TLABs, only individual objects.
 333   virtual HeapWord* mem_allocate(size_t size,
 334                                  bool* gc_overhead_limit_was_exceeded) = 0;
 335 
 336   // Utilities for turning raw memory into filler objects.
 337   //
 338   // min_fill_size() is the smallest region that can be filled.
 339   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 340   // multiple objects.  fill_with_object() is for regions known to be smaller
 341   // than the largest array of integers; it uses a single object to fill the
 342   // region and has slightly less overhead.
 343   static size_t min_fill_size() {
 344     return size_t(align_object_size(oopDesc::header_size()));
 345   }
 346 
 347   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 348 
 349   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 350   static void fill_with_object(MemRegion region, bool zap = true) {
 351     fill_with_object(region.start(), region.word_size(), zap);
 352   }
 353   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 354     fill_with_object(start, pointer_delta(end, start), zap);
 355   }
 356 
 357   // Return the address "addr" aligned by "alignment_in_bytes" if such
 358   // an address is below "end".  Return NULL otherwise.
 359   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 360                                                    HeapWord* end,
 361                                                    unsigned short alignment_in_bytes);
 362 
 363   // Some heaps may offer a contiguous region for shared non-blocking
 364   // allocation, via inlined code (by exporting the address of the top and
 365   // end fields defining the extent of the contiguous allocation region.)
 366 
 367   // This function returns "true" iff the heap supports this kind of
 368   // allocation.  (Default is "no".)
 369   virtual bool supports_inline_contig_alloc() const {
 370     return false;
 371   }
 372   // These functions return the addresses of the fields that define the
 373   // boundaries of the contiguous allocation area.  (These fields should be
 374   // physically near to one another.)
 375   virtual HeapWord** top_addr() const {
 376     guarantee(false, "inline contiguous allocation not supported");
 377     return NULL;
 378   }
 379   virtual HeapWord** end_addr() const {
 380     guarantee(false, "inline contiguous allocation not supported");
 381     return NULL;
 382   }
 383 
 384   // Some heaps may be in an unparseable state at certain times between
 385   // collections. This may be necessary for efficient implementation of
 386   // certain allocation-related activities. Calling this function before
 387   // attempting to parse a heap ensures that the heap is in a parsable
 388   // state (provided other concurrent activity does not introduce
 389   // unparsability). It is normally expected, therefore, that this
 390   // method is invoked with the world stopped.
 391   // NOTE: if you override this method, make sure you call
 392   // super::ensure_parsability so that the non-generational
 393   // part of the work gets done. See implementation of
 394   // CollectedHeap::ensure_parsability and, for instance,
 395   // that of GenCollectedHeap::ensure_parsability().
 396   // The argument "retire_tlabs" controls whether existing TLABs
 397   // are merely filled or also retired, thus preventing further
 398   // allocation from them and necessitating allocation of new TLABs.
 399   virtual void ensure_parsability(bool retire_tlabs);
 400 
 401   // Section on thread-local allocation buffers (TLABs)
 402   // If the heap supports thread-local allocation buffers, it should override
 403   // the following methods:
 404   // Returns "true" iff the heap supports thread-local allocation buffers.
 405   // The default is "no".
 406   virtual bool supports_tlab_allocation() const = 0;
 407 
 408   // The amount of space available for thread-local allocation buffers.
 409   virtual size_t tlab_capacity(Thread *thr) const = 0;
 410 
 411   // The amount of used space for thread-local allocation buffers for the given thread.
 412   virtual size_t tlab_used(Thread *thr) const = 0;
 413 
 414   virtual size_t max_tlab_size() const;
 415 
 416   // An estimate of the maximum allocation that could be performed
 417   // for thread-local allocation buffers without triggering any
 418   // collection or expansion activity.
 419   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 420     guarantee(false, "thread-local allocation buffers not supported");
 421     return 0;
 422   }
 423 
 424   // Can a compiler initialize a new object without store barriers?
 425   // This permission only extends from the creation of a new object
 426   // via a TLAB up to the first subsequent safepoint. If such permission
 427   // is granted for this heap type, the compiler promises to call
 428   // defer_store_barrier() below on any slow path allocation of
 429   // a new object for which such initializing store barriers will
 430   // have been elided.
 431   virtual bool can_elide_tlab_store_barriers() const = 0;
 432 
 433   // If a compiler is eliding store barriers for TLAB-allocated objects,
 434   // there is probably a corresponding slow path which can produce
 435   // an object allocated anywhere.  The compiler's runtime support
 436   // promises to call this function on such a slow-path-allocated
 437   // object before performing initializations that have elided
 438   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 439   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 440 
 441   // Answers whether an initializing store to a new object currently
 442   // allocated at the given address doesn't need a store
 443   // barrier. Returns "true" if it doesn't need an initializing
 444   // store barrier; answers "false" if it does.
 445   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 446 
 447   // If a compiler is eliding store barriers for TLAB-allocated objects,
 448   // we will be informed of a slow-path allocation by a call
 449   // to new_store_pre_barrier() above. Such a call precedes the
 450   // initialization of the object itself, and no post-store-barriers will
 451   // be issued. Some heap types require that the barrier strictly follows
 452   // the initializing stores. (This is currently implemented by deferring the
 453   // barrier until the next slow-path allocation or gc-related safepoint.)
 454   // This interface answers whether a particular heap type needs the card
 455   // mark to be thus strictly sequenced after the stores.
 456   virtual bool card_mark_must_follow_store() const = 0;
 457 
 458   // If the CollectedHeap was asked to defer a store barrier above,
 459   // this informs it to flush such a deferred store barrier to the
 460   // remembered set.
 461   virtual void flush_deferred_store_barrier(JavaThread* thread);
 462 
 463   // Does this heap support heap inspection (+PrintClassHistogram?)
 464   virtual bool supports_heap_inspection() const = 0;
 465 
 466   // Perform a collection of the heap; intended for use in implementing
 467   // "System.gc".  This probably implies as full a collection as the
 468   // "CollectedHeap" supports.
 469   virtual void collect(GCCause::Cause cause) = 0;
 470 
 471   // Perform a full collection
 472   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 473 
 474   // This interface assumes that it's being called by the
 475   // vm thread. It collects the heap assuming that the
 476   // heap lock is already held and that we are executing in
 477   // the context of the vm thread.
 478   virtual void collect_as_vm_thread(GCCause::Cause cause);
 479 
 480   // Returns the barrier set for this heap
 481   BarrierSet* barrier_set() { return _barrier_set; }
 482 
 483   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 484   // that it should answer "false" for the concurrent part of a concurrent
 485   // collector -- dld).
 486   bool is_gc_active() const { return _is_gc_active; }
 487 
 488   // Total number of GC collections (started)
 489   unsigned int total_collections() const { return _total_collections; }
 490   unsigned int total_full_collections() const { return _total_full_collections;}
 491 
 492   // Increment total number of GC collections (started)
 493   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 494   void increment_total_collections(bool full = false) {
 495     _total_collections++;
 496     if (full) {
 497       increment_total_full_collections();
 498     }
 499   }
 500 
 501   void increment_total_full_collections() { _total_full_collections++; }
 502 
 503   // Return the AdaptiveSizePolicy for the heap.
 504   virtual AdaptiveSizePolicy* size_policy() = 0;
 505 
 506   // Return the CollectorPolicy for the heap
 507   virtual CollectorPolicy* collector_policy() const = 0;
 508 
 509   void oop_iterate_no_header(OopClosure* cl);
 510 
 511   // Iterate over all the ref-containing fields of all objects, calling
 512   // "cl.do_oop" on each.
 513   virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
 514 
 515   // Iterate over all objects, calling "cl.do_object" on each.
 516   virtual void object_iterate(ObjectClosure* cl) = 0;
 517 
 518   // Similar to object_iterate() except iterates only
 519   // over live objects.
 520   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 521 
 522   // NOTE! There is no requirement that a collector implement these
 523   // functions.
 524   //
 525   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 526   // each address in the (reserved) heap is a member of exactly
 527   // one block.  The defining characteristic of a block is that it is
 528   // possible to find its size, and thus to progress forward to the next
 529   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 530   // represent Java objects, or they might be free blocks in a
 531   // free-list-based heap (or subheap), as long as the two kinds are
 532   // distinguishable and the size of each is determinable.
 533 
 534   // Returns the address of the start of the "block" that contains the
 535   // address "addr".  We say "blocks" instead of "object" since some heaps
 536   // may not pack objects densely; a chunk may either be an object or a
 537   // non-object.
 538   virtual HeapWord* block_start(const void* addr) const = 0;
 539 
 540   // Requires "addr" to be the start of a chunk, and returns its size.
 541   // "addr + size" is required to be the start of a new chunk, or the end
 542   // of the active area of the heap.
 543   virtual size_t block_size(const HeapWord* addr) const = 0;
 544 
 545   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 546   // the block is an object.
 547   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 548 
 549   // Returns the longest time (in ms) that has elapsed since the last
 550   // time that any part of the heap was examined by a garbage collection.
 551   virtual jlong millis_since_last_gc() = 0;
 552 
 553   // Perform any cleanup actions necessary before allowing a verification.
 554   virtual void prepare_for_verify() = 0;
 555 
 556   // Generate any dumps preceding or following a full gc
 557   void pre_full_gc_dump(GCTimer* timer);
 558   void post_full_gc_dump(GCTimer* timer);
 559 
 560   VirtualSpaceSummary create_heap_space_summary();
 561   GCHeapSummary create_heap_summary();
 562 
 563   MetaspaceSummary create_metaspace_summary();
 564 
 565   // Print heap information on the given outputStream.
 566   virtual void print_on(outputStream* st) const = 0;
 567   // The default behavior is to call print_on() on tty.
 568   virtual void print() const {
 569     print_on(tty);
 570   }
 571   // Print more detailed heap information on the given
 572   // outputStream. The default behavior is to call print_on(). It is
 573   // up to each subclass to override it and add any additional output
 574   // it needs.
 575   virtual void print_extended_on(outputStream* st) const {
 576     print_on(st);
 577   }
 578 
 579   virtual void print_on_error(outputStream* st) const {
 580     st->print_cr("Heap:");
 581     print_extended_on(st);
 582     st->cr();
 583 
 584     _barrier_set->print_on(st);
 585   }
 586 
 587   // Print all GC threads (other than the VM thread)
 588   // used by this heap.
 589   virtual void print_gc_threads_on(outputStream* st) const = 0;
 590   // The default behavior is to call print_gc_threads_on() on tty.
 591   void print_gc_threads() {
 592     print_gc_threads_on(tty);
 593   }
 594   // Iterator for all GC threads (other than VM thread)
 595   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 596 
 597   // Print any relevant tracing info that flags imply.
 598   // Default implementation does nothing.
 599   virtual void print_tracing_info() const = 0;
 600 
 601   void print_heap_before_gc();
 602   void print_heap_after_gc();
 603 
 604   // Registering and unregistering an nmethod (compiled code) with the heap.
 605   // Override with specific mechanism for each specialized heap type.
 606   virtual void register_nmethod(nmethod* nm);
 607   virtual void unregister_nmethod(nmethod* nm);
 608 
 609   void trace_heap_before_gc(GCTracer* gc_tracer);
 610   void trace_heap_after_gc(GCTracer* gc_tracer);
 611 
 612   // Heap verification
 613   virtual void verify(bool silent, VerifyOption option) = 0;
 614 
 615   // Non product verification and debugging.
 616 #ifndef PRODUCT
 617   // Support for PromotionFailureALot.  Return true if it's time to cause a
 618   // promotion failure.  The no-argument version uses
 619   // this->_promotion_failure_alot_count as the counter.
 620   inline bool promotion_should_fail(volatile size_t* count);
 621   inline bool promotion_should_fail();
 622 
 623   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 624   // GC in which promotion failure occurred.
 625   inline void reset_promotion_should_fail(volatile size_t* count);
 626   inline void reset_promotion_should_fail();
 627 #endif  // #ifndef PRODUCT
 628 
 629 #ifdef ASSERT
 630   static int fired_fake_oom() {
 631     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 632   }
 633 #endif
 634 
 635  public:
 636   // This is a convenience method that is used in cases where
 637   // the actual number of GC worker threads is not pertinent but
 638   // only whether there more than 0.  Use of this method helps
 639   // reduce the occurrence of ParallelGCThreads to uses where the
 640   // actual number may be germane.
 641   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
 642 
 643   // Copy the current allocation context statistics for the specified contexts.
 644   // For each context in contexts, set the corresponding entries in the totals
 645   // and accuracy arrays to the current values held by the statistics.  Each
 646   // array should be of length len.
 647   // Returns true if there are more stats available.
 648   virtual bool copy_allocation_context_stats(const jint* contexts,
 649                                              jlong* totals,
 650                                              jbyte* accuracy,
 651                                              jint len) {
 652     return false;
 653   }
 654 
 655   /////////////// Unit tests ///////////////
 656 
 657   NOT_PRODUCT(static void test_is_in();)
 658 };
 659 
 660 // Class to set and reset the GC cause for a CollectedHeap.
 661 
 662 class GCCauseSetter : StackObj {
 663   CollectedHeap* _heap;
 664   GCCause::Cause _previous_cause;
 665  public:
 666   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 667     assert(SafepointSynchronize::is_at_safepoint(),
 668            "This method manipulates heap state without locking");
 669     _heap = heap;
 670     _previous_cause = _heap->gc_cause();
 671     _heap->set_gc_cause(cause);
 672   }
 673 
 674   ~GCCauseSetter() {
 675     assert(SafepointSynchronize::is_at_safepoint(),
 676           "This method manipulates heap state without locking");
 677     _heap->set_gc_cause(_previous_cause);
 678   }
 679 };
 680 
 681 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP