1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeBlob.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/dependencies.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc_implementation/shared/markSweep.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/gcLocker.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/icache.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/sweeper.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "services/memoryService.hpp"
  50 #include "trace/tracing.hpp"
  51 #include "utilities/xmlstream.hpp"
  52 #ifdef COMPILER1
  53 #include "c1/c1_Compilation.hpp"
  54 #include "c1/c1_Compiler.hpp"
  55 #endif
  56 #ifdef COMPILER2
  57 #include "opto/c2compiler.hpp"
  58 #include "opto/compile.hpp"
  59 #include "opto/node.hpp"
  60 #endif
  61 
  62 // Helper class for printing in CodeCache
  63 class CodeBlob_sizes {
  64  private:
  65   int count;
  66   int total_size;
  67   int header_size;
  68   int code_size;
  69   int stub_size;
  70   int relocation_size;
  71   int scopes_oop_size;
  72   int scopes_metadata_size;
  73   int scopes_data_size;
  74   int scopes_pcs_size;
  75 
  76  public:
  77   CodeBlob_sizes() {
  78     count            = 0;
  79     total_size       = 0;
  80     header_size      = 0;
  81     code_size        = 0;
  82     stub_size        = 0;
  83     relocation_size  = 0;
  84     scopes_oop_size  = 0;
  85     scopes_metadata_size  = 0;
  86     scopes_data_size = 0;
  87     scopes_pcs_size  = 0;
  88   }
  89 
  90   int total()                                    { return total_size; }
  91   bool is_empty()                                { return count == 0; }
  92 
  93   void print(const char* title) {
  94     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  95                   count,
  96                   title,
  97                   (int)(total() / K),
  98                   header_size             * 100 / total_size,
  99                   relocation_size         * 100 / total_size,
 100                   code_size               * 100 / total_size,
 101                   stub_size               * 100 / total_size,
 102                   scopes_oop_size         * 100 / total_size,
 103                   scopes_metadata_size    * 100 / total_size,
 104                   scopes_data_size        * 100 / total_size,
 105                   scopes_pcs_size         * 100 / total_size);
 106   }
 107 
 108   void add(CodeBlob* cb) {
 109     count++;
 110     total_size       += cb->size();
 111     header_size      += cb->header_size();
 112     relocation_size  += cb->relocation_size();
 113     if (cb->is_nmethod()) {
 114       nmethod* nm = cb->as_nmethod_or_null();
 115       code_size        += nm->insts_size();
 116       stub_size        += nm->stub_size();
 117 
 118       scopes_oop_size  += nm->oops_size();
 119       scopes_metadata_size  += nm->metadata_size();
 120       scopes_data_size += nm->scopes_data_size();
 121       scopes_pcs_size  += nm->scopes_pcs_size();
 122     } else {
 123       code_size        += cb->code_size();
 124     }
 125   }
 126 };
 127 
 128 // Iterate over all CodeHeaps
 129 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 130 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 131 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 132 
 133 address CodeCache::_low_bound = 0;
 134 address CodeCache::_high_bound = 0;
 135 int CodeCache::_number_of_blobs = 0;
 136 int CodeCache::_number_of_adapters = 0;
 137 int CodeCache::_number_of_nmethods = 0;
 138 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 139 bool CodeCache::_needs_cache_clean = false;
 140 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 141 int CodeCache::_codemem_full_count = 0;
 142 
 143 // Initialize array of CodeHeaps
 144 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 145 
 146 void CodeCache::initialize_heaps() {
 147   // Determine size of compiler buffers
 148   size_t code_buffers_size = 0;
 149 #ifdef COMPILER1
 150   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 151   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 152   code_buffers_size += c1_count * Compiler::code_buffer_size();
 153 #endif
 154 #ifdef COMPILER2
 155   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 156   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 157   // Initial size of constant table (this may be increased if a compiled method needs more space)
 158   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 159 #endif
 160 
 161   // Calculate default CodeHeap sizes if not set by user
 162   if (!FLAG_IS_CMDLINE(NonNMethodCodeHeapSize) && !FLAG_IS_CMDLINE(ProfiledCodeHeapSize)
 163       && !FLAG_IS_CMDLINE(NonProfiledCodeHeapSize)) {
 164     // Increase default NonNMethodCodeHeapSize to account for compiler buffers
 165     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + code_buffers_size);
 166 
 167     // Check if we have enough space for the non-nmethod code heap
 168     if (ReservedCodeCacheSize > NonNMethodCodeHeapSize) {
 169       // Use the default value for NonNMethodCodeHeapSize and one half of the
 170       // remaining size for non-profiled methods and one half for profiled methods
 171       size_t remaining_size = ReservedCodeCacheSize - NonNMethodCodeHeapSize;
 172       size_t profiled_size = remaining_size / 2;
 173       size_t non_profiled_size = remaining_size - profiled_size;
 174       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 175       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 176     } else {
 177       // Use all space for the non-nmethod heap and set other heaps to minimal size
 178       FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, ReservedCodeCacheSize - os::vm_page_size() * 2);
 179       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, os::vm_page_size());
 180       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, os::vm_page_size());
 181     }
 182   }
 183 
 184   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 185   if(!heap_available(CodeBlobType::MethodProfiled)) {
 186     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, NonProfiledCodeHeapSize + ProfiledCodeHeapSize);
 187     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
 188   }
 189   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 190   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 191     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + NonProfiledCodeHeapSize);
 192     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
 193   }
 194 
 195   // Make sure we have enough space for VM internal code
 196   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 197   if (NonNMethodCodeHeapSize < (min_code_cache_size + code_buffers_size)) {
 198     vm_exit_during_initialization("Not enough space in non-nmethod code heap to run VM.");
 199   }
 200   guarantee(NonProfiledCodeHeapSize + ProfiledCodeHeapSize + NonNMethodCodeHeapSize <= ReservedCodeCacheSize, "Size check");
 201 
 202   // Align CodeHeaps
 203   size_t alignment = heap_alignment();
 204   size_t non_method_size = align_size_up(NonNMethodCodeHeapSize, alignment);
 205   size_t profiled_size   = align_size_down(ProfiledCodeHeapSize, alignment);
 206 
 207   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 208   // parts for the individual heaps. The memory layout looks like this:
 209   // ---------- high -----------
 210   //    Non-profiled nmethods
 211   //      Profiled nmethods
 212   //         Non-nmethods
 213   // ---------- low ------------
 214   ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
 215   ReservedSpace non_method_space    = rs.first_part(non_method_size);
 216   ReservedSpace rest                = rs.last_part(non_method_size);
 217   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 218   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 219 
 220   // Non-nmethods (stubs, adapters, ...)
 221   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 222   // Tier 2 and tier 3 (profiled) methods
 223   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 224   // Tier 1 and tier 4 (non-profiled) methods and native methods
 225   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 226 }
 227 
 228 size_t CodeCache::heap_alignment() {
 229   // If large page support is enabled, align code heaps according to large
 230   // page size to make sure that code cache is covered by large pages.
 231   const size_t page_size = os::can_execute_large_page_memory() ?
 232              os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
 233              os::vm_page_size();
 234   return MAX2(page_size, (size_t) os::vm_allocation_granularity());
 235 }
 236 
 237 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 238   // Determine alignment
 239   const size_t page_size = os::can_execute_large_page_memory() ?
 240           MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
 241                os::page_size_for_region_aligned(size, 8)) :
 242           os::vm_page_size();
 243   const size_t granularity = os::vm_allocation_granularity();
 244   const size_t r_align = MAX2(page_size, granularity);
 245   const size_t r_size = align_size_up(size, r_align);
 246   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 247     MAX2(page_size, granularity);
 248 
 249   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 250 
 251   // Initialize bounds
 252   _low_bound = (address)rs.base();
 253   _high_bound = _low_bound + rs.size();
 254 
 255   return rs;
 256 }
 257 
 258 bool CodeCache::heap_available(int code_blob_type) {
 259   if (!SegmentedCodeCache) {
 260     // No segmentation: use a single code heap
 261     return (code_blob_type == CodeBlobType::All);
 262   } else if (Arguments::mode() == Arguments::_int) {
 263     // Interpreter only: we don't need any method code heaps
 264     return (code_blob_type == CodeBlobType::NonNMethod);
 265   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 266     // Tiered compilation: use all code heaps
 267     return (code_blob_type < CodeBlobType::All);
 268   } else {
 269     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 270     return (code_blob_type == CodeBlobType::NonNMethod) ||
 271            (code_blob_type == CodeBlobType::MethodNonProfiled);
 272   }
 273 }
 274 
 275 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 276   switch(code_blob_type) {
 277   case CodeBlobType::NonNMethod:
 278     return "NonNMethodCodeHeapSize";
 279     break;
 280   case CodeBlobType::MethodNonProfiled:
 281     return "NonProfiledCodeHeapSize";
 282     break;
 283   case CodeBlobType::MethodProfiled:
 284     return "ProfiledCodeHeapSize";
 285     break;
 286   }
 287   ShouldNotReachHere();
 288   return NULL;
 289 }
 290 
 291 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 292   // Check if heap is needed
 293   if (!heap_available(code_blob_type)) {
 294     return;
 295   }
 296 
 297   // Create CodeHeap
 298   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 299   _heaps->append(heap);
 300 
 301   // Reserve Space
 302   size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
 303   size_initial = round_to(size_initial, os::vm_page_size());
 304   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 305     vm_exit_during_initialization("Could not reserve enough space for code cache");
 306   }
 307 
 308   // Register the CodeHeap
 309   MemoryService::add_code_heap_memory_pool(heap, name);
 310 }
 311 
 312 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 313   assert(cb != NULL, "CodeBlob is null");
 314   FOR_ALL_HEAPS(heap) {
 315     if ((*heap)->contains(cb)) {
 316       return *heap;
 317     }
 318   }
 319   ShouldNotReachHere();
 320   return NULL;
 321 }
 322 
 323 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 324   FOR_ALL_HEAPS(heap) {
 325     if ((*heap)->accepts(code_blob_type)) {
 326       return *heap;
 327     }
 328   }
 329   return NULL;
 330 }
 331 
 332 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 333   assert_locked_or_safepoint(CodeCache_lock);
 334   assert(heap != NULL, "heap is null");
 335   return (CodeBlob*)heap->first();
 336 }
 337 
 338 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 339   if (heap_available(code_blob_type)) {
 340     return first_blob(get_code_heap(code_blob_type));
 341   } else {
 342     return NULL;
 343   }
 344 }
 345 
 346 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 347   assert_locked_or_safepoint(CodeCache_lock);
 348   assert(heap != NULL, "heap is null");
 349   return (CodeBlob*)heap->next(cb);
 350 }
 351 
 352 CodeBlob* CodeCache::next_blob(CodeBlob* cb) {
 353   return next_blob(get_code_heap(cb), cb);
 354 }
 355 
 356 /**
 357  * Do not seize the CodeCache lock here--if the caller has not
 358  * already done so, we are going to lose bigtime, since the code
 359  * cache will contain a garbage CodeBlob until the caller can
 360  * run the constructor for the CodeBlob subclass he is busy
 361  * instantiating.
 362  */
 363 CodeBlob* CodeCache::allocate(int size, int code_blob_type) {
 364   // Possibly wakes up the sweeper thread.
 365   NMethodSweeper::notify(code_blob_type);
 366   assert_locked_or_safepoint(CodeCache_lock);
 367   assert(size > 0, err_msg_res("Code cache allocation request must be > 0 but is %d", size));
 368   if (size <= 0) {
 369     return NULL;
 370   }
 371   CodeBlob* cb = NULL;
 372 
 373   // Get CodeHeap for the given CodeBlobType
 374   CodeHeap* heap = get_code_heap(code_blob_type);
 375   assert(heap != NULL, "heap is null");
 376 
 377   while (true) {
 378     cb = (CodeBlob*)heap->allocate(size);
 379     if (cb != NULL) break;
 380     if (!heap->expand_by(CodeCacheExpansionSize)) {
 381       // Expansion failed
 382       if (SegmentedCodeCache && (code_blob_type == CodeBlobType::NonNMethod)) {
 383         // Fallback solution: Store non-nmethod code in the non-profiled code heap.
 384         // Note that at in the sweeper, we check the reverse_free_ratio of the non-profiled
 385         // code heap and force stack scanning if less than 10% if the code heap are free.
 386         return allocate(size, CodeBlobType::MethodNonProfiled);
 387       }
 388       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 389       CompileBroker::handle_full_code_cache(code_blob_type);
 390       return NULL;
 391     }
 392     if (PrintCodeCacheExtension) {
 393       ResourceMark rm;
 394       if (SegmentedCodeCache) {
 395         tty->print("%s", heap->name());
 396       } else {
 397         tty->print("CodeCache");
 398       }
 399       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 400                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 401                     (address)heap->high() - (address)heap->low_boundary());
 402     }
 403   }
 404   print_trace("allocation", cb, size);
 405   _number_of_blobs++;
 406   return cb;
 407 }
 408 
 409 void CodeCache::free(CodeBlob* cb) {
 410   assert_locked_or_safepoint(CodeCache_lock);
 411 
 412   print_trace("free", cb);
 413   if (cb->is_nmethod()) {
 414     _number_of_nmethods--;
 415     if (((nmethod *)cb)->has_dependencies()) {
 416       _number_of_nmethods_with_dependencies--;
 417     }
 418   }
 419   if (cb->is_adapter_blob()) {
 420     _number_of_adapters--;
 421   }
 422   _number_of_blobs--;
 423 
 424   // Get heap for given CodeBlob and deallocate
 425   get_code_heap(cb)->deallocate(cb);
 426 
 427   assert(_number_of_blobs >= 0, "sanity check");
 428 }
 429 
 430 void CodeCache::commit(CodeBlob* cb) {
 431   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 432   assert_locked_or_safepoint(CodeCache_lock);
 433   if (cb->is_nmethod()) {
 434     _number_of_nmethods++;
 435     if (((nmethod *)cb)->has_dependencies()) {
 436       _number_of_nmethods_with_dependencies++;
 437     }
 438   }
 439   if (cb->is_adapter_blob()) {
 440     _number_of_adapters++;
 441   }
 442 
 443   // flush the hardware I-cache
 444   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 445 }
 446 
 447 bool CodeCache::contains(void *p) {
 448   // It should be ok to call contains without holding a lock
 449   FOR_ALL_HEAPS(heap) {
 450     if ((*heap)->contains(p)) {
 451       return true;
 452     }
 453   }
 454   return false;
 455 }
 456 
 457 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 458 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 459 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 460 CodeBlob* CodeCache::find_blob(void* start) {
 461   CodeBlob* result = find_blob_unsafe(start);
 462   // We could potentially look up non_entrant methods
 463   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method");
 464   return result;
 465 }
 466 
 467 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 468 // what you are doing)
 469 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 470   // NMT can walk the stack before code cache is created
 471   if (_heaps == NULL || _heaps->is_empty()) return NULL;
 472 
 473   FOR_ALL_HEAPS(heap) {
 474     CodeBlob* result = (CodeBlob*) (*heap)->find_start(start);
 475     if (result != NULL && result->blob_contains((address)start)) {
 476       return result;
 477     }
 478   }
 479   return NULL;
 480 }
 481 
 482 nmethod* CodeCache::find_nmethod(void* start) {
 483   CodeBlob* cb = find_blob(start);
 484   assert(cb->is_nmethod(), "did not find an nmethod");
 485   return (nmethod*)cb;
 486 }
 487 
 488 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 489   assert_locked_or_safepoint(CodeCache_lock);
 490   FOR_ALL_HEAPS(heap) {
 491     FOR_ALL_BLOBS(cb, *heap) {
 492       f(cb);
 493     }
 494   }
 495 }
 496 
 497 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 498   assert_locked_or_safepoint(CodeCache_lock);
 499   NMethodIterator iter;
 500   while(iter.next()) {
 501     f(iter.method());
 502   }
 503 }
 504 
 505 void CodeCache::alive_nmethods_do(void f(nmethod* nm)) {
 506   assert_locked_or_safepoint(CodeCache_lock);
 507   NMethodIterator iter;
 508   while(iter.next_alive()) {
 509     f(iter.method());
 510   }
 511 }
 512 
 513 int CodeCache::alignment_unit() {
 514   return (int)_heaps->first()->alignment_unit();
 515 }
 516 
 517 int CodeCache::alignment_offset() {
 518   return (int)_heaps->first()->alignment_offset();
 519 }
 520 
 521 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 522 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 523   assert_locked_or_safepoint(CodeCache_lock);
 524   NMethodIterator iter;
 525   while(iter.next_alive()) {
 526     iter.method()->do_unloading(is_alive, unloading_occurred);
 527   }
 528 }
 529 
 530 void CodeCache::blobs_do(CodeBlobClosure* f) {
 531   assert_locked_or_safepoint(CodeCache_lock);
 532   FOR_ALL_HEAPS(heap) {
 533     FOR_ALL_BLOBS(cb, *heap) {
 534       if (cb->is_alive()) {
 535         f->do_code_blob(cb);
 536 
 537 #ifdef ASSERT
 538         if (cb->is_nmethod())
 539         ((nmethod*)cb)->verify_scavenge_root_oops();
 540 #endif //ASSERT
 541       }
 542     }
 543   }
 544 }
 545 
 546 // Walk the list of methods which might contain non-perm oops.
 547 void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
 548   assert_locked_or_safepoint(CodeCache_lock);
 549 
 550   if (UseG1GC) {
 551     return;
 552   }
 553 
 554   debug_only(mark_scavenge_root_nmethods());
 555 
 556   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 557     debug_only(cur->clear_scavenge_root_marked());
 558     assert(cur->scavenge_root_not_marked(), "");
 559     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 560 
 561     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 562 #ifndef PRODUCT
 563     if (TraceScavenge) {
 564       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 565     }
 566 #endif //PRODUCT
 567     if (is_live) {
 568       // Perform cur->oops_do(f), maybe just once per nmethod.
 569       f->do_code_blob(cur);
 570     }
 571   }
 572 
 573   // Check for stray marks.
 574   debug_only(verify_perm_nmethods(NULL));
 575 }
 576 
 577 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 578   assert_locked_or_safepoint(CodeCache_lock);
 579 
 580   if (UseG1GC) {
 581     return;
 582   }
 583 
 584   nm->set_on_scavenge_root_list();
 585   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 586   set_scavenge_root_nmethods(nm);
 587   print_trace("add_scavenge_root", nm);
 588 }
 589 
 590 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 591   assert_locked_or_safepoint(CodeCache_lock);
 592 
 593   if (UseG1GC) {
 594     return;
 595   }
 596 
 597   print_trace("drop_scavenge_root", nm);
 598   nmethod* last = NULL;
 599   nmethod* cur = scavenge_root_nmethods();
 600   while (cur != NULL) {
 601     nmethod* next = cur->scavenge_root_link();
 602     if (cur == nm) {
 603       if (last != NULL)
 604             last->set_scavenge_root_link(next);
 605       else  set_scavenge_root_nmethods(next);
 606       nm->set_scavenge_root_link(NULL);
 607       nm->clear_on_scavenge_root_list();
 608       return;
 609     }
 610     last = cur;
 611     cur = next;
 612   }
 613   assert(false, "should have been on list");
 614 }
 615 
 616 void CodeCache::prune_scavenge_root_nmethods() {
 617   assert_locked_or_safepoint(CodeCache_lock);
 618 
 619   if (UseG1GC) {
 620     return;
 621   }
 622 
 623   debug_only(mark_scavenge_root_nmethods());
 624 
 625   nmethod* last = NULL;
 626   nmethod* cur = scavenge_root_nmethods();
 627   while (cur != NULL) {
 628     nmethod* next = cur->scavenge_root_link();
 629     debug_only(cur->clear_scavenge_root_marked());
 630     assert(cur->scavenge_root_not_marked(), "");
 631     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 632 
 633     if (!cur->is_zombie() && !cur->is_unloaded()
 634         && cur->detect_scavenge_root_oops()) {
 635       // Keep it.  Advance 'last' to prevent deletion.
 636       last = cur;
 637     } else {
 638       // Prune it from the list, so we don't have to look at it any more.
 639       print_trace("prune_scavenge_root", cur);
 640       cur->set_scavenge_root_link(NULL);
 641       cur->clear_on_scavenge_root_list();
 642       if (last != NULL)
 643             last->set_scavenge_root_link(next);
 644       else  set_scavenge_root_nmethods(next);
 645     }
 646     cur = next;
 647   }
 648 
 649   // Check for stray marks.
 650   debug_only(verify_perm_nmethods(NULL));
 651 }
 652 
 653 #ifndef PRODUCT
 654 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 655   if (UseG1GC) {
 656     return;
 657   }
 658 
 659   // While we are here, verify the integrity of the list.
 660   mark_scavenge_root_nmethods();
 661   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 662     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 663     cur->clear_scavenge_root_marked();
 664   }
 665   verify_perm_nmethods(f);
 666 }
 667 
 668 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 669 void CodeCache::mark_scavenge_root_nmethods() {
 670   NMethodIterator iter;
 671   while(iter.next_alive()) {
 672     nmethod* nm = iter.method();
 673     assert(nm->scavenge_root_not_marked(), "clean state");
 674     if (nm->on_scavenge_root_list())
 675       nm->set_scavenge_root_marked();
 676   }
 677 }
 678 
 679 // If the closure is given, run it on the unlisted nmethods.
 680 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 681 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 682   NMethodIterator iter;
 683   while(iter.next_alive()) {
 684     nmethod* nm = iter.method();
 685     bool call_f = (f_or_null != NULL);
 686     assert(nm->scavenge_root_not_marked(), "must be already processed");
 687     if (nm->on_scavenge_root_list())
 688       call_f = false;  // don't show this one to the client
 689     nm->verify_scavenge_root_oops();
 690     if (call_f)  f_or_null->do_code_blob(nm);
 691   }
 692 }
 693 #endif //PRODUCT
 694 
 695 void CodeCache::verify_clean_inline_caches() {
 696 #ifdef ASSERT
 697   NMethodIterator iter;
 698   while(iter.next_alive()) {
 699     nmethod* nm = iter.method();
 700     assert(!nm->is_unloaded(), "Tautology");
 701     nm->verify_clean_inline_caches();
 702     nm->verify();
 703   }
 704 #endif
 705 }
 706 
 707 void CodeCache::verify_icholder_relocations() {
 708 #ifdef ASSERT
 709   // make sure that we aren't leaking icholders
 710   int count = 0;
 711   FOR_ALL_HEAPS(heap) {
 712     FOR_ALL_BLOBS(cb, *heap) {
 713       if (cb->is_nmethod()) {
 714         nmethod* nm = (nmethod*)cb;
 715         count += nm->verify_icholder_relocations();
 716       }
 717     }
 718   }
 719 
 720   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 721          CompiledICHolder::live_count(), "must agree");
 722 #endif
 723 }
 724 
 725 void CodeCache::gc_prologue() {
 726 }
 727 
 728 void CodeCache::gc_epilogue() {
 729   assert_locked_or_safepoint(CodeCache_lock);
 730   NMethodIterator iter;
 731   while(iter.next_alive()) {
 732     nmethod* nm = iter.method();
 733     assert(!nm->is_unloaded(), "Tautology");
 734     if (needs_cache_clean()) {
 735       nm->cleanup_inline_caches();
 736     }
 737     DEBUG_ONLY(nm->verify());
 738     DEBUG_ONLY(nm->verify_oop_relocations());
 739   }
 740   set_needs_cache_clean(false);
 741   prune_scavenge_root_nmethods();
 742 
 743   verify_icholder_relocations();
 744 }
 745 
 746 void CodeCache::verify_oops() {
 747   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 748   VerifyOopClosure voc;
 749   NMethodIterator iter;
 750   while(iter.next_alive()) {
 751     nmethod* nm = iter.method();
 752     nm->oops_do(&voc);
 753     nm->verify_oop_relocations();
 754   }
 755 }
 756 
 757 size_t CodeCache::capacity() {
 758   size_t cap = 0;
 759   FOR_ALL_HEAPS(heap) {
 760     cap += (*heap)->capacity();
 761   }
 762   return cap;
 763 }
 764 
 765 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 766   CodeHeap* heap = get_code_heap(code_blob_type);
 767   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 768 }
 769 
 770 size_t CodeCache::unallocated_capacity() {
 771   size_t unallocated_cap = 0;
 772   FOR_ALL_HEAPS(heap) {
 773     unallocated_cap += (*heap)->unallocated_capacity();
 774   }
 775   return unallocated_cap;
 776 }
 777 
 778 size_t CodeCache::max_capacity() {
 779   size_t max_cap = 0;
 780   FOR_ALL_HEAPS(heap) {
 781     max_cap += (*heap)->max_capacity();
 782   }
 783   return max_cap;
 784 }
 785 
 786 /**
 787  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 788  * is free, reverse_free_ratio() returns 4.
 789  */
 790 double CodeCache::reverse_free_ratio(int code_blob_type) {
 791   CodeHeap* heap = get_code_heap(code_blob_type);
 792   if (heap == NULL) {
 793     return 0;
 794   }
 795 
 796   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
 797   double max_capacity = (double)heap->max_capacity();
 798   double result = max_capacity / unallocated_capacity;
 799   assert (max_capacity >= unallocated_capacity, "Must be");
 800   assert (result >= 1.0, err_msg_res("reverse_free_ratio must be at least 1. It is %f", result));
 801   return result;
 802 }
 803 
 804 size_t CodeCache::bytes_allocated_in_freelists() {
 805   size_t allocated_bytes = 0;
 806   FOR_ALL_HEAPS(heap) {
 807     allocated_bytes += (*heap)->allocated_in_freelist();
 808   }
 809   return allocated_bytes;
 810 }
 811 
 812 int CodeCache::allocated_segments() {
 813   int number_of_segments = 0;
 814   FOR_ALL_HEAPS(heap) {
 815     number_of_segments += (*heap)->allocated_segments();
 816   }
 817   return number_of_segments;
 818 }
 819 
 820 size_t CodeCache::freelists_length() {
 821   size_t length = 0;
 822   FOR_ALL_HEAPS(heap) {
 823     length += (*heap)->freelist_length();
 824   }
 825   return length;
 826 }
 827 
 828 void icache_init();
 829 
 830 void CodeCache::initialize() {
 831   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
 832 #ifdef COMPILER2
 833   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
 834 #endif
 835   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
 836   // This was originally just a check of the alignment, causing failure, instead, round
 837   // the code cache to the page size.  In particular, Solaris is moving to a larger
 838   // default page size.
 839   CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size());
 840 
 841   if (SegmentedCodeCache) {
 842     // Use multiple code heaps
 843     initialize_heaps();
 844   } else {
 845     // Use a single code heap
 846     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
 847     add_heap(rs, "CodeCache", CodeBlobType::All);
 848   }
 849 
 850   // Initialize ICache flush mechanism
 851   // This service is needed for os::register_code_area
 852   icache_init();
 853 
 854   // Give OS a chance to register generated code area.
 855   // This is used on Windows 64 bit platforms to register
 856   // Structured Exception Handlers for our generated code.
 857   os::register_code_area((char*)low_bound(), (char*)high_bound());
 858 }
 859 
 860 void codeCache_init() {
 861   CodeCache::initialize();
 862 }
 863 
 864 //------------------------------------------------------------------------------------------------
 865 
 866 int CodeCache::number_of_nmethods_with_dependencies() {
 867   return _number_of_nmethods_with_dependencies;
 868 }
 869 
 870 void CodeCache::clear_inline_caches() {
 871   assert_locked_or_safepoint(CodeCache_lock);
 872   NMethodIterator iter;
 873   while(iter.next_alive()) {
 874     iter.method()->clear_inline_caches();
 875   }
 876 }
 877 
 878 // Keeps track of time spent for checking dependencies
 879 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
 880 
 881 int CodeCache::mark_for_deoptimization(DepChange& changes) {
 882   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 883   int number_of_marked_CodeBlobs = 0;
 884 
 885   // search the hierarchy looking for nmethods which are affected by the loading of this class
 886 
 887   // then search the interfaces this class implements looking for nmethods
 888   // which might be dependent of the fact that an interface only had one
 889   // implementor.
 890   // nmethod::check_all_dependencies works only correctly, if no safepoint
 891   // can happen
 892   No_Safepoint_Verifier nsv;
 893   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
 894     Klass* d = str.klass();
 895     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
 896   }
 897 
 898 #ifndef PRODUCT
 899   if (VerifyDependencies) {
 900     // Object pointers are used as unique identifiers for dependency arguments. This
 901     // is only possible if no safepoint, i.e., GC occurs during the verification code.
 902     dependentCheckTime.start();
 903     nmethod::check_all_dependencies(changes);
 904     dependentCheckTime.stop();
 905   }
 906 #endif
 907 
 908   return number_of_marked_CodeBlobs;
 909 }
 910 
 911 
 912 #ifdef HOTSWAP
 913 int CodeCache::mark_for_evol_deoptimization(instanceKlassHandle dependee) {
 914   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 915   int number_of_marked_CodeBlobs = 0;
 916 
 917   // Deoptimize all methods of the evolving class itself
 918   Array<Method*>* old_methods = dependee->methods();
 919   for (int i = 0; i < old_methods->length(); i++) {
 920     ResourceMark rm;
 921     Method* old_method = old_methods->at(i);
 922     nmethod *nm = old_method->code();
 923     if (nm != NULL) {
 924       nm->mark_for_deoptimization();
 925       number_of_marked_CodeBlobs++;
 926     }
 927   }
 928 
 929   NMethodIterator iter;
 930   while(iter.next_alive()) {
 931     nmethod* nm = iter.method();
 932     if (nm->is_marked_for_deoptimization()) {
 933       // ...Already marked in the previous pass; don't count it again.
 934     } else if (nm->is_evol_dependent_on(dependee())) {
 935       ResourceMark rm;
 936       nm->mark_for_deoptimization();
 937       number_of_marked_CodeBlobs++;
 938     } else  {
 939       // flush caches in case they refer to a redefined Method*
 940       nm->clear_inline_caches();
 941     }
 942   }
 943 
 944   return number_of_marked_CodeBlobs;
 945 }
 946 #endif // HOTSWAP
 947 
 948 
 949 // Deoptimize all methods
 950 void CodeCache::mark_all_nmethods_for_deoptimization() {
 951   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 952   NMethodIterator iter;
 953   while(iter.next_alive()) {
 954     nmethod* nm = iter.method();
 955     if (!nm->method()->is_method_handle_intrinsic()) {
 956       nm->mark_for_deoptimization();
 957     }
 958   }
 959 }
 960 
 961 int CodeCache::mark_for_deoptimization(Method* dependee) {
 962   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 963   int number_of_marked_CodeBlobs = 0;
 964 
 965   NMethodIterator iter;
 966   while(iter.next_alive()) {
 967     nmethod* nm = iter.method();
 968     if (nm->is_dependent_on_method(dependee)) {
 969       ResourceMark rm;
 970       nm->mark_for_deoptimization();
 971       number_of_marked_CodeBlobs++;
 972     }
 973   }
 974 
 975   return number_of_marked_CodeBlobs;
 976 }
 977 
 978 void CodeCache::make_marked_nmethods_zombies() {
 979   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 980   NMethodIterator iter;
 981   while(iter.next_alive()) {
 982     nmethod* nm = iter.method();
 983     if (nm->is_marked_for_deoptimization()) {
 984 
 985       // If the nmethod has already been made non-entrant and it can be converted
 986       // then zombie it now. Otherwise make it non-entrant and it will eventually
 987       // be zombied when it is no longer seen on the stack. Note that the nmethod
 988       // might be "entrant" and not on the stack and so could be zombied immediately
 989       // but we can't tell because we don't track it on stack until it becomes
 990       // non-entrant.
 991 
 992       if (nm->is_not_entrant() && nm->can_not_entrant_be_converted()) {
 993         nm->make_zombie();
 994       } else {
 995         nm->make_not_entrant();
 996       }
 997     }
 998   }
 999 }
1000 
1001 void CodeCache::make_marked_nmethods_not_entrant() {
1002   assert_locked_or_safepoint(CodeCache_lock);
1003   NMethodIterator iter;
1004   while(iter.next_alive()) {
1005     nmethod* nm = iter.method();
1006     if (nm->is_marked_for_deoptimization()) {
1007       nm->make_not_entrant();
1008     }
1009   }
1010 }
1011 
1012 // Flushes compiled methods dependent on dependee.
1013 void CodeCache::flush_dependents_on(instanceKlassHandle dependee) {
1014   assert_lock_strong(Compile_lock);
1015 
1016   if (number_of_nmethods_with_dependencies() == 0) return;
1017 
1018   // CodeCache can only be updated by a thread_in_VM and they will all be
1019   // stopped during the safepoint so CodeCache will be safe to update without
1020   // holding the CodeCache_lock.
1021 
1022   KlassDepChange changes(dependee);
1023 
1024   // Compute the dependent nmethods
1025   if (mark_for_deoptimization(changes) > 0) {
1026     // At least one nmethod has been marked for deoptimization
1027     VM_Deoptimize op;
1028     VMThread::execute(&op);
1029   }
1030 }
1031 
1032 // Flushes compiled methods dependent on a particular CallSite
1033 // instance when its target is different than the given MethodHandle.
1034 void CodeCache::flush_dependents_on(Handle call_site, Handle method_handle) {
1035   assert_lock_strong(Compile_lock);
1036 
1037   if (number_of_nmethods_with_dependencies() == 0) return;
1038 
1039   // CodeCache can only be updated by a thread_in_VM and they will all be
1040   // stopped during the safepoint so CodeCache will be safe to update without
1041   // holding the CodeCache_lock.
1042 
1043   CallSiteDepChange changes(call_site(), method_handle());
1044 
1045   // Compute the dependent nmethods that have a reference to a
1046   // CallSite object.  We use InstanceKlass::mark_dependent_nmethod
1047   // directly instead of CodeCache::mark_for_deoptimization because we
1048   // want dependents on the call site class only not all classes in
1049   // the ContextStream.
1050   int marked = 0;
1051   {
1052     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1053     InstanceKlass* call_site_klass = InstanceKlass::cast(call_site->klass());
1054     marked = call_site_klass->mark_dependent_nmethods(changes);
1055   }
1056   if (marked > 0) {
1057     // At least one nmethod has been marked for deoptimization
1058     VM_Deoptimize op;
1059     VMThread::execute(&op);
1060   }
1061 }
1062 
1063 #ifdef HOTSWAP
1064 // Flushes compiled methods dependent on dependee in the evolutionary sense
1065 void CodeCache::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1066   // --- Compile_lock is not held. However we are at a safepoint.
1067   assert_locked_or_safepoint(Compile_lock);
1068   if (number_of_nmethods_with_dependencies() == 0) return;
1069 
1070   // CodeCache can only be updated by a thread_in_VM and they will all be
1071   // stopped during the safepoint so CodeCache will be safe to update without
1072   // holding the CodeCache_lock.
1073 
1074   // Compute the dependent nmethods
1075   if (mark_for_evol_deoptimization(ev_k_h) > 0) {
1076     // At least one nmethod has been marked for deoptimization
1077 
1078     // All this already happens inside a VM_Operation, so we'll do all the work here.
1079     // Stuff copied from VM_Deoptimize and modified slightly.
1080 
1081     // We do not want any GCs to happen while we are in the middle of this VM operation
1082     ResourceMark rm;
1083     DeoptimizationMarker dm;
1084 
1085     // Deoptimize all activations depending on marked nmethods
1086     Deoptimization::deoptimize_dependents();
1087 
1088     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1089     make_marked_nmethods_not_entrant();
1090   }
1091 }
1092 #endif // HOTSWAP
1093 
1094 
1095 // Flushes compiled methods dependent on dependee
1096 void CodeCache::flush_dependents_on_method(methodHandle m_h) {
1097   // --- Compile_lock is not held. However we are at a safepoint.
1098   assert_locked_or_safepoint(Compile_lock);
1099 
1100   // CodeCache can only be updated by a thread_in_VM and they will all be
1101   // stopped dring the safepoint so CodeCache will be safe to update without
1102   // holding the CodeCache_lock.
1103 
1104   // Compute the dependent nmethods
1105   if (mark_for_deoptimization(m_h()) > 0) {
1106     // At least one nmethod has been marked for deoptimization
1107 
1108     // All this already happens inside a VM_Operation, so we'll do all the work here.
1109     // Stuff copied from VM_Deoptimize and modified slightly.
1110 
1111     // We do not want any GCs to happen while we are in the middle of this VM operation
1112     ResourceMark rm;
1113     DeoptimizationMarker dm;
1114 
1115     // Deoptimize all activations depending on marked nmethods
1116     Deoptimization::deoptimize_dependents();
1117 
1118     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1119     make_marked_nmethods_not_entrant();
1120   }
1121 }
1122 
1123 void CodeCache::verify() {
1124   assert_locked_or_safepoint(CodeCache_lock);
1125   FOR_ALL_HEAPS(heap) {
1126     (*heap)->verify();
1127     FOR_ALL_BLOBS(cb, *heap) {
1128       if (cb->is_alive()) {
1129         cb->verify();
1130       }
1131     }
1132   }
1133 }
1134 
1135 // A CodeHeap is full. Print out warning and report event.
1136 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1137   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1138   CodeHeap* heap = get_code_heap(code_blob_type);
1139   assert(heap != NULL, "heap is null");
1140 
1141   if (!heap->was_full() || print) {
1142     // Not yet reported for this heap, report
1143     heap->report_full();
1144     if (SegmentedCodeCache) {
1145       warning("%s is full. Compiler has been disabled.", get_code_heap_name(code_blob_type));
1146       warning("Try increasing the code heap size using -XX:%s=", get_code_heap_flag_name(code_blob_type));
1147     } else {
1148       warning("CodeCache is full. Compiler has been disabled.");
1149       warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
1150     }
1151     ResourceMark rm;
1152     stringStream s;
1153     // Dump code cache  into a buffer before locking the tty,
1154     {
1155       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1156       print_summary(&s);
1157     }
1158     ttyLocker ttyl;
1159     tty->print("%s", s.as_string());
1160   }
1161 
1162   _codemem_full_count++;
1163   EventCodeCacheFull event;
1164   if (event.should_commit()) {
1165     event.set_codeBlobType((u1)code_blob_type);
1166     event.set_startAddress((u8)heap->low_boundary());
1167     event.set_commitedTopAddress((u8)heap->high());
1168     event.set_reservedTopAddress((u8)heap->high_boundary());
1169     event.set_entryCount(nof_blobs());
1170     event.set_methodCount(nof_nmethods());
1171     event.set_adaptorCount(nof_adapters());
1172     event.set_unallocatedCapacity(heap->unallocated_capacity()/K);
1173     event.set_fullCount(_codemem_full_count);
1174     event.commit();
1175   }
1176 }
1177 
1178 void CodeCache::print_memory_overhead() {
1179   size_t wasted_bytes = 0;
1180   FOR_ALL_HEAPS(heap) {
1181       CodeHeap* curr_heap = *heap;
1182       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1183         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1184         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1185       }
1186   }
1187   // Print bytes that are allocated in the freelist
1188   ttyLocker ttl;
1189   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1190   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1191   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1192   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1193 }
1194 
1195 //------------------------------------------------------------------------------------------------
1196 // Non-product version
1197 
1198 #ifndef PRODUCT
1199 
1200 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1201   if (PrintCodeCache2) {  // Need to add a new flag
1202     ResourceMark rm;
1203     if (size == 0)  size = cb->size();
1204     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1205   }
1206 }
1207 
1208 void CodeCache::print_internals() {
1209   int nmethodCount = 0;
1210   int runtimeStubCount = 0;
1211   int adapterCount = 0;
1212   int deoptimizationStubCount = 0;
1213   int uncommonTrapStubCount = 0;
1214   int bufferBlobCount = 0;
1215   int total = 0;
1216   int nmethodAlive = 0;
1217   int nmethodNotEntrant = 0;
1218   int nmethodZombie = 0;
1219   int nmethodUnloaded = 0;
1220   int nmethodJava = 0;
1221   int nmethodNative = 0;
1222   int max_nm_size = 0;
1223   ResourceMark rm;
1224 
1225   int i = 0;
1226   FOR_ALL_HEAPS(heap) {
1227     if (SegmentedCodeCache && Verbose) {
1228       tty->print_cr("-- %s --", (*heap)->name());
1229     }
1230     FOR_ALL_BLOBS(cb, *heap) {
1231       total++;
1232       if (cb->is_nmethod()) {
1233         nmethod* nm = (nmethod*)cb;
1234 
1235         if (Verbose && nm->method() != NULL) {
1236           ResourceMark rm;
1237           char *method_name = nm->method()->name_and_sig_as_C_string();
1238           tty->print("%s", method_name);
1239           if(nm->is_alive()) { tty->print_cr(" alive"); }
1240           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1241           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1242         }
1243 
1244         nmethodCount++;
1245 
1246         if(nm->is_alive()) { nmethodAlive++; }
1247         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1248         if(nm->is_zombie()) { nmethodZombie++; }
1249         if(nm->is_unloaded()) { nmethodUnloaded++; }
1250         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1251 
1252         if(nm->method() != NULL && nm->is_java_method()) {
1253           nmethodJava++;
1254           max_nm_size = MAX2(max_nm_size, nm->size());
1255         }
1256       } else if (cb->is_runtime_stub()) {
1257         runtimeStubCount++;
1258       } else if (cb->is_deoptimization_stub()) {
1259         deoptimizationStubCount++;
1260       } else if (cb->is_uncommon_trap_stub()) {
1261         uncommonTrapStubCount++;
1262       } else if (cb->is_adapter_blob()) {
1263         adapterCount++;
1264       } else if (cb->is_buffer_blob()) {
1265         bufferBlobCount++;
1266       }
1267     }
1268   }
1269 
1270   int bucketSize = 512;
1271   int bucketLimit = max_nm_size / bucketSize + 1;
1272   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1273   memset(buckets, 0, sizeof(int) * bucketLimit);
1274 
1275   NMethodIterator iter;
1276   while(iter.next()) {
1277     nmethod* nm = iter.method();
1278     if(nm->method() != NULL && nm->is_java_method()) {
1279       buckets[nm->size() / bucketSize]++;
1280     }
1281   }
1282 
1283   tty->print_cr("Code Cache Entries (total of %d)",total);
1284   tty->print_cr("-------------------------------------------------");
1285   tty->print_cr("nmethods: %d",nmethodCount);
1286   tty->print_cr("\talive: %d",nmethodAlive);
1287   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1288   tty->print_cr("\tzombie: %d",nmethodZombie);
1289   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1290   tty->print_cr("\tjava: %d",nmethodJava);
1291   tty->print_cr("\tnative: %d",nmethodNative);
1292   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1293   tty->print_cr("adapters: %d",adapterCount);
1294   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1295   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1296   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1297   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1298   tty->print_cr("-------------------------------------------------");
1299 
1300   for(int i=0; i<bucketLimit; i++) {
1301     if(buckets[i] != 0) {
1302       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1303       tty->fill_to(40);
1304       tty->print_cr("%d",buckets[i]);
1305     }
1306   }
1307 
1308   FREE_C_HEAP_ARRAY(int, buckets);
1309   print_memory_overhead();
1310 }
1311 
1312 #endif // !PRODUCT
1313 
1314 void CodeCache::print() {
1315   print_summary(tty);
1316 
1317 #ifndef PRODUCT
1318   if (!Verbose) return;
1319 
1320   CodeBlob_sizes live;
1321   CodeBlob_sizes dead;
1322 
1323   FOR_ALL_HEAPS(heap) {
1324     FOR_ALL_BLOBS(cb, *heap) {
1325       if (!cb->is_alive()) {
1326         dead.add(cb);
1327       } else {
1328         live.add(cb);
1329       }
1330     }
1331   }
1332 
1333   tty->print_cr("CodeCache:");
1334   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1335 
1336   if (!live.is_empty()) {
1337     live.print("live");
1338   }
1339   if (!dead.is_empty()) {
1340     dead.print("dead");
1341   }
1342 
1343   if (WizardMode) {
1344      // print the oop_map usage
1345     int code_size = 0;
1346     int number_of_blobs = 0;
1347     int number_of_oop_maps = 0;
1348     int map_size = 0;
1349     FOR_ALL_HEAPS(heap) {
1350       FOR_ALL_BLOBS(cb, *heap) {
1351         if (cb->is_alive()) {
1352           number_of_blobs++;
1353           code_size += cb->code_size();
1354           OopMapSet* set = cb->oop_maps();
1355           if (set != NULL) {
1356             number_of_oop_maps += set->size();
1357             map_size           += set->heap_size();
1358           }
1359         }
1360       }
1361     }
1362     tty->print_cr("OopMaps");
1363     tty->print_cr("  #blobs    = %d", number_of_blobs);
1364     tty->print_cr("  code size = %d", code_size);
1365     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1366     tty->print_cr("  map size  = %d", map_size);
1367   }
1368 
1369 #endif // !PRODUCT
1370 }
1371 
1372 void CodeCache::print_summary(outputStream* st, bool detailed) {
1373   FOR_ALL_HEAPS(heap_iterator) {
1374     CodeHeap* heap = (*heap_iterator);
1375     size_t total = (heap->high_boundary() - heap->low_boundary());
1376     if (SegmentedCodeCache) {
1377       st->print("%s:", heap->name());
1378     } else {
1379       st->print("CodeCache:");
1380     }
1381     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1382                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1383                  total/K, (total - heap->unallocated_capacity())/K,
1384                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1385 
1386     if (detailed) {
1387       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1388                    p2i(heap->low_boundary()),
1389                    p2i(heap->high()),
1390                    p2i(heap->high_boundary()));
1391     }
1392   }
1393 
1394   if (detailed) {
1395     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1396                        " adapters=" UINT32_FORMAT,
1397                        nof_blobs(), nof_nmethods(), nof_adapters());
1398     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1399                  "enabled" : Arguments::mode() == Arguments::_int ?
1400                  "disabled (interpreter mode)" :
1401                  "disabled (not enough contiguous free space left)");
1402   }
1403 }
1404 
1405 void CodeCache::print_codelist(outputStream* st) {
1406   assert_locked_or_safepoint(CodeCache_lock);
1407 
1408   NMethodIterator iter;
1409   while(iter.next_alive()) {
1410     nmethod* nm = iter.method();
1411     ResourceMark rm;
1412     char *method_name = nm->method()->name_and_sig_as_C_string();
1413     st->print_cr("%d %d %s ["INTPTR_FORMAT", "INTPTR_FORMAT" - "INTPTR_FORMAT"]",
1414                  nm->compile_id(), nm->comp_level(), method_name, (intptr_t)nm->header_begin(),
1415                  (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1416   }
1417 }
1418 
1419 void CodeCache::print_layout(outputStream* st) {
1420   assert_locked_or_safepoint(CodeCache_lock);
1421   ResourceMark rm;
1422 
1423   print_summary(st, true);
1424 }
1425 
1426 void CodeCache::log_state(outputStream* st) {
1427   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1428             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1429             nof_blobs(), nof_nmethods(), nof_adapters(),
1430             unallocated_capacity());
1431 }